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Lagrange–d’Alembert’s principle

Constrained mechanical system

L : TQ → R
C ⊆ TQ (distribution)

Principle of virtual work: No work is done by the constraint forces
in any virtual displacement consistent with the constraints

F ∈ C ◦ ⊂ T ∗Q
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Lagrange–d’Alembert’s principle

In a Lagrangian system,

F =
d

dt

∂L

∂q̇
− ∂L

∂q

so F ∈ C ◦ means(
d

dt

∂L

∂q̇
− ∂L

∂q

)
· δq = 0 for δq ∈ C

(in addition, q̇ ∈ C )

F ∈ C ◦ ⇒ F · q̇ = 0 (power) ⇒ preservation of energy

Constraints on motion + pple. of virtual work
⇓

constraints on variations
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Lagrange–d’Alembert’s principle

Some advantages:

It is convenient

Applies to a wide range of problems

Covariance

Reduction, discretization...

...
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Generalization

Suitable generalization of Lagrange–d’Alembert’s principle

elastic rolling bodies, pneumatic tires

dissipative systems

servomechanisms, control strategies

isoparallel problems

Maintain advantages, such as covariance and reduction theory
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Generalized nonholonomic systems

Generalized nonholonomic system (GNHS) on Q:

L : TQ → R
CK ⊆ TQ (kinematic distribution)

CV ⊆ TQ (variational distribution)

A trajectory of a GNHS is a curve q(t) such that

q̇ ∈ CK

δ
∫

L(q, q̇) dt = 0 with respect to δq ∈ CV , which implies(
d

dt

∂L

∂q̇
− ∂L

∂q

)
· δq = 0 for δq ∈ CV

Constraint forces: F ∈ C ◦
V
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Comparison

q̇

δq CK = CV

q(t)F

q̇

δq

CV

q(t)F

CK

Nonholonomic
(Lagrange–d’Alembert) Generalized nonholonomic

Energy is not preserved in GNHS
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Isoparallel problems

Principal bundle Q, with structure group G

Principal connection A : TQ → g

Q

π

X

For each curve x(t) joining x0 to x1, there is a parallel
transport operator mapping π−1(x0) into π−1(x1)

Many curves might share the same parallel transport operator
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Isoparallel problems

Q

π

Xx0 x1

q0

q1

Riemannian metric on the base

Isoparallel problem: Find a curve on X that extremizes length
among those with a given parallel transport operator.

Equivalently: Among those horizontal curves joining q0 to q1, find
one whose projection extremizes length.

When x0 = x1, this is called the isoholonomic problem.
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Isoparallel problems

For a given parallel transport operator...

Is there any curve realizing it?

Are there “enough” curves?

Working with C 1 curves, not always (rigid curves)
Working with absolutely continuous curves, yes
(if horizontal distribution is bracket-generating)

Absolutely continuous curves provide a nice setting:

Horizontal lifts are still well defined

Mixed partial derivatives are equal in L2

Integration by parts works

We will assume the regular case
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Examples

Falling cat:

Q = space of positions of the cat as a deformable body

G = SO(3)

X = Q/G = shapes (disregarding rigid rotations)

Horizontal distribution in TQ defined by “angular momentum
equals zero”

Loop on X 99K Hor. lift 99K Reorientation

Metric on X measuring energy expenditure

I What is the most efficient way that the cat could change its
shape so as to land on its feet?
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Examples

Locomotion of a microorganism in a fluid

Q ⊂ mappings from S1 into R2

G = SE(2)
X = Q/G

v ∈ TQ: vector field on the membrane 99K response of the fluid

Define a principal connection on Q and a metric on X
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Montgomery’s theorem

Take a bi-invariant metric β on G (if there is any!)
If k is the metric on the base, define L : TQ → R by

L (q, q̇) =
1

2

(
k

(
Tπ (q, q̇) ,Tπ (q, q̇)

)
+ β

(
A (q, q̇) ,A (q, q̇)

))
(related to the metric k ⊕ β on Q)

I Then the (normal) solutions of the isoparallel problem are
precisely the projections of the geodesics [Montgomery, 1990]
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Montgomery’s theorem

Q

π

Xx0 x1

geodesic

Lagrangian system 99K project (and lift)

But... some groups do not admit a bi-invariant metric (e.g. SE(2))

I Replace Lagrangian system by generalized nonholonomic system
[Cendra and Ferraro, 2006]
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Some definitions

M = symmetric bilinear forms on g.

G -action: For g ∈ G , β ∈ M and η1, η2 ∈ g, define

(gβ) (η1, η2) = β
(
Adg−1 η1,Adg−1 η2

)
.

Infinitesimal generator: If ξ ∈ g and β ∈ M then

(ξβ) (η1, η2) = β
(
− [ξ, η1] , η2

)
+ β

(
η1,− [ξ, η2]

)
.

If β is Ad-invariant then ξβ = 0 for all ξ.

Sebastián Ferraro – IMAFF, CSIC



Some definitions

M = symmetric bilinear forms on g.

G -action: For g ∈ G , β ∈ M and η1, η2 ∈ g, define

(gβ) (η1, η2) = β
(
Adg−1 η1,Adg−1 η2

)
.

Infinitesimal generator: If ξ ∈ g and β ∈ M then

(ξβ) (η1, η2) = β
(
− [ξ, η1] , η2

)
+ β

(
η1,− [ξ, η2]

)
.

If β is Ad-invariant then ξβ = 0 for all ξ.

Sebastián Ferraro – IMAFF, CSIC



The GNHS

Generalized nonholonomic system:

It is a system on Q ×M

L : T (Q ×M) → R,

L(q, β, q̇, β̇) =
1

2
k

(
Tπ (q, q̇) ,Tπ (q, q̇)

)
+

1

2
β

(
A (q, q̇) ,A (q, q̇)

)
Distributions in T (Q ×M)

Kinematic CK : β̇ = A(q, q̇)β
Variational CV : δβ = 0

The Lagrangian and distributions are G -invariant
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Notation

Associated bundles:
M̃ = (Q ×M)/G

g̃ = (Q × g)/G

These are bundles over X = Q/G with standard fiber M (resp. g).

Notation:
β̄ = [q, β]G ∈ M̃

v̄ = [q, v ]G ∈ g̃

The curvature 2-form B of the principal connection A induces

B̃(x)(ẋ , δx) =
[
q,B(q)(q̇, δq)

]
G
∈ g̃
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Reduction

Reduced tangent bundle

T (Q ×M) ≡ TQ × TM ≡ TQ ⊕ (Q ×M)⊕ (Q ×M)(
T (Q ×M)

)
/G ≡ TX ⊕ g̃⊕ 2M̃

The reduced Lagrangian ` : TX ⊕ g̃⊕ 2M̃ → R is

`
(
(x , ẋ)⊕ v̄ ⊕ β̄ ⊕ β̄′

)
=

1

2
k(ẋ , ẋ) +

1

2
β̄(v̄ , v̄)

Reduced kinematic distribution:
Dβ̄

Dt
= 0 (there is a covariant

derivative of curves on associated bundles)

Reduced variational distribution: δAβ̄ = −η̄β̄
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1

2
β̄(v̄ , v̄)

Reduced kinematic distribution:
Dβ̄

Dt
= 0 (there is a covariant

derivative of curves on associated bundles)

Reduced variational distribution: δAβ̄ = −η̄β̄

Sebastián Ferraro – IMAFF, CSIC



Reduction

Reduced variations

δx = Tπ(δq)

δAv̄ = B̃(x)(δx , ẋ) +
D η̄

Dt
+ [v̄ , η̄]

δAβ̄ = −η̄β̄

Reduced equations for the GNHS

Dβ̄

Dt
= 0

Dv̄

Dt
= 0

(∇ẋ ẋ)[ = −β̄
(
v̄ , B̃(x)(ẋ , ·)

)
(
β̄ ∈ M̃, v̄ ∈ g̃, x ∈ X

)
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Lagrange multipliers

Find a curve from q0 to q1

Extremizing
∫ t1
t0

√
k
(
Tπ(q̇),Tπ(q̇)

)
dt

Constrained to A(q, q̇) = 0

Fix a metric β and define

S (q, e) =

∫ t1

t0

√
k
(
Tπ(q̇),Tπ(q̇)

)
dt +

∫ t1

t0

β
(
e,A(q, q̇)

)
dt,

where e(t) is a curve on g. We get the reduced equations

Dβ̄

Dt
= 0,

Dē

Dt
= 0,

(∇ẋ ẋ)[ = −β̄
(
ē, B̃(x)(ẋ , ·)

)
(And A(q, q̇) = 0.) Same as equations for GNHS.
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Comparison

GNHS Lagrange multipliers

Dβ̄

Dt
= 0,

Dv̄

Dt
= 0,

(∇ẋ ẋ)[ = −β̄
(
v̄ , B̃(x)(ẋ , ·)

)
Dβ̄

Dt
= 0,

Dē

Dt
= 0,

(∇ẋ ẋ)[ = −β̄
(
ē, B̃(x)(ẋ , ·)

)
A(q, q̇) = 0

q(t)

x(t)

Q

X

q(t) (horiz.)

g̃

ē(t)

x(t)

Q

X

Reduced versions match, unreduced versions do not
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(∇ẋ ẋ)[ = −β̄
(
v̄ , B̃(x)(ẋ , ·)
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Relationship with theorem on geodesics

Q

X

traj. of GNHS

Trajectory of GNHS 99K project and lift

Geodesic 99K project and lift

With a bi-invariant metric, CK = TQ ⊕ 0 and CV = TQ ⊕ 0, and
the GNHS becomes Montgomery’s Lagrangian system
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Conclusions

We have defined GNHS

Do not preserve energy
Dissipative systems, control strategies
Covariance
Reduction

Disadvantage: no universal procedure to find CV

Isoparallel problems

Natural extension of theorem on geodesics for arbitrary groups
or metrics
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