Isoparallel problems as generalized nonholonomic systems

Sebastián J. Ferraro

Departamento de Matemáticas, IMAFF - CSIC, Madrid
XXII International Workshop on Differential Geometric Methods
in Theoretical Physics
Będlewo, August 25th, 2007

Lagrange-d'Alembert's principle

Constrained mechanical system

- $L: T Q \rightarrow \mathbb{R}$
- $C \subseteq T Q$ (distribution)

Principle of virtual work: No work is done by the constraint forces
in any virtual displacement consistent with the constraints

Lagrange-d'Alembert's principle

Constrained mechanical system

- $L: T Q \rightarrow \mathbb{R}$
- $C \subseteq T Q$ (distribution)

Principle of virtual work: No work is done by the constraint forces in any virtual displacement consistent with the constraints

Lagrange-d'Alembert's principle

Constrained mechanical system

- $L: T Q \rightarrow \mathbb{R}$
- $C \subseteq T Q$ (distribution)

Principle of virtual work: No work is done by the constraint forces in any virtual displacement consistent with the constraints

Lagrange-d'Alembert's principle

Constrained mechanical system

- $L: T Q \rightarrow \mathbb{R}$
- $C \subseteq T Q$ (distribution)

Principle of virtual work: No work is done by the constraint forces in any virtual displacement consistent with the constraints

$$
F \in C^{\circ} \subset T^{*} Q
$$

Lagrange-d'Alembert's principle

In a Lagrangian system,

$$
F=\frac{d}{d t} \frac{\partial L}{\partial \dot{q}}-\frac{\partial L}{\partial q}
$$

so $F \in C^{\circ}$ means
(in addition, $\dot{q} \in C$)

$F \in C^{\circ} \quad \Rightarrow \quad F \cdot \dot{q}=0$ (power) $\quad \Rightarrow$
 preservation of energy

Constraints on motion + pple. of virtual work

Lagrange-d'Alembert's principle

In a Lagrangian system,

$$
F=\frac{d}{d t} \frac{\partial L}{\partial \dot{q}}-\frac{\partial L}{\partial q}
$$

so $F \in C^{\circ}$ means

$$
\left(\frac{d}{d t} \frac{\partial L}{\partial \dot{q}}-\frac{\partial L}{\partial q}\right) \cdot \delta q=0 \quad \text { for } \delta q \in C
$$

Lagrange-d'Alembert's principle

In a Lagrangian system,

$$
F=\frac{d}{d t} \frac{\partial L}{\partial \dot{q}}-\frac{\partial L}{\partial q}
$$

so $F \in C^{\circ}$ means

$$
\left(\frac{d}{d t} \frac{\partial L}{\partial \dot{q}}-\frac{\partial L}{\partial q}\right) \cdot \delta q=0 \quad \text { for } \delta q \in C
$$

(in addition, $\dot{q} \in C$)

Constraints on motion + pple. of virtual work

Lagrange-d'Alembert's principle

In a Lagrangian system,

$$
F=\frac{d}{d t} \frac{\partial L}{\partial \dot{q}}-\frac{\partial L}{\partial q}
$$

so $F \in C^{\circ}$ means

$$
\left(\frac{d}{d t} \frac{\partial L}{\partial \dot{q}}-\frac{\partial L}{\partial q}\right) \cdot \delta q=0 \quad \text { for } \delta q \in C
$$

(in addition, $\dot{q} \in C$)

$$
F \in C^{\circ} \quad \Rightarrow \quad F \cdot \dot{q}=0(\text { power }) \quad \Rightarrow \quad \text { preservation of energy }
$$

Lagrange-d'Alembert's principle

In a Lagrangian system,

$$
F=\frac{d}{d t} \frac{\partial L}{\partial \dot{q}}-\frac{\partial L}{\partial q}
$$

so $F \in C^{\circ}$ means

$$
\left(\frac{d}{d t} \frac{\partial L}{\partial \dot{q}}-\frac{\partial L}{\partial q}\right) \cdot \delta q=0 \quad \text { for } \delta q \in C
$$

(in addition, $\dot{q} \in C$)
$F \in C^{\circ} \quad \Rightarrow \quad F \cdot \dot{q}=0$ (power) $\quad \Rightarrow \quad$ preservation of energy

Constraints on motion + pple. of virtual work

Lagrange-d'Alembert's principle

In a Lagrangian system,

$$
F=\frac{d}{d t} \frac{\partial L}{\partial \dot{q}}-\frac{\partial L}{\partial q}
$$

so $F \in C^{\circ}$ means

$$
\left(\frac{d}{d t} \frac{\partial L}{\partial \dot{q}}-\frac{\partial L}{\partial q}\right) \cdot \delta q=0 \quad \text { for } \delta q \in C
$$

(in addition, $\dot{q} \in C$)
$F \in C^{\circ} \quad \Rightarrow \quad F \cdot \dot{q}=0$ (power) $\quad \Rightarrow \quad$ preservation of energy

Constraints on motion + pple. of virtual work

Lagrange-d'Alembert's principle

Some advantages:

- It is convenient
- Applies to a wide range of problems
- Covariance
- Reduction, discretization..

Lagrange-d'Alembert's principle

Some advantages:

- It is convenient
- Applies to a wide range of problems
- Covariance
- Reduction, discretization.

Lagrange-d'Alembert's principle

Some advantages:

- It is convenient
- Applies to a wide range of problems
- Covariance
- Reduction, discretization.

Lagrange-d'Alembert's principle

Some advantages:

- It is convenient
- Applies to a wide range of problems
- Covariance
- Reduction, discretization...
- ...

Generalization

Suitable generalization of Lagrange-d'Alembert's principle - elastic rolling bodies, pneumatic tires

- dissipative systems
- servomechanisms, control strategies
- isoparallel problems

Maintain advantages, such as covariance and reduction theory

Generalization

Suitable generalization of Lagrange-d'Alembert's principle

- elastic rolling bodies, pneumatic tires
- dissipative systems
- servomechanisms, control strategies
- isoparallel problems

Maintain advantages, such as covariance and reduction theory

Generalization

Suitable generalization of Lagrange-d'Alembert's principle

- elastic rolling bodies, pneumatic tires
- dissipative systems
- servomechanisms, control strategies
- isoparallel problems

Maintain advantages, such as covariance and reduction theory

Generalization

Suitable generalization of Lagrange-d'Alembert's principle

- elastic rolling bodies, pneumatic tires
- dissipative systems
- servomechanisms, control strategies
- isoparallel problems

Maintain advantages, such as covariance and reduction theory

Generalization

Suitable generalization of Lagrange-d'Alembert's principle

- elastic rolling bodies, pneumatic tires
- dissipative systems
- servomechanisms, control strategies
- isoparallel problems

Maintain advantages, such as covariance and reduction theory

Generalized nonholonomic systems

Generalized nonholonomic system (GNHS) on Q :

- $L: T Q \rightarrow \mathbb{R}$
- $C_{K} \subseteq T Q$ (kinematic distribution)
- $C_{V} \subseteq T Q$ (variational distribution)

A trajectory of a GNHS is a curve $q(t)$ such that

- $\delta \int L(q, \dot{q}) d t=0$ with respect to $\delta q \in C_{V}$, which implies

Generalized nonholonomic systems

Generalized nonholonomic system (GNHS) on Q :

- $L: T Q \rightarrow \mathbb{R}$
- $C_{K} \subseteq T Q$ (kinematic distribution)
- $C_{V} \subseteq T Q$ (variational distribution)

A trajectory of a GNHS is a curve $q(t)$ such that

- $\dot{q} \in C_{K}$
- $\delta \int L(q, \dot{q}) d t=0$ with respect to $\delta q \in C_{V}$, which implies

Constraint forces: $F \in C_{V}^{\circ}$

Generalized nonholonomic systems

Generalized nonholonomic system (GNHS) on Q :

- $L: T Q \rightarrow \mathbb{R}$
- $C_{K} \subseteq T Q$ (kinematic distribution)
- $C_{V} \subseteq T Q$ (variational distribution)

A trajectory of a GNHS is a curve $q(t)$ such that

- $\dot{q} \in C_{K}$
- $\delta \int L(q, \dot{q}) d t=0$ with respect to $\delta q \in C_{V}$, which implies

$$
\left(\frac{d}{d t} \frac{\partial L}{\partial \dot{q}}-\frac{\partial L}{\partial q}\right) \cdot \delta q=0 \quad \text { for } \delta q \in C_{V}
$$

Constraint forces: $F \in C_{V}^{\circ}$

Comparison

Comparison

Energy is not preserved in GNHS

Isoparallel problems

- Principal bundle Q, with structure group G
- Principal connection $A: T Q \rightarrow g$

- For each curve $x(t)$ joining x_{0} to x_{1}, there is a parallel transport operator mapping $\pi^{-1}\left(x_{0}\right)$ into $\pi^{-1}\left(x_{1}\right)$
- Many curves might share the same parallel transport operator

Isoparallel problems

- Principal bundle Q, with structure group G
- Principal connection $A: T Q \rightarrow \mathfrak{g}$

- For each curve $x(t)$ joining x_{0} to x_{1}, there is a parallel transport operator mapping $\pi^{-1}\left(x_{0}\right)$ into $\pi^{-1}\left(x_{1}\right)$
- Many curves might share the same parallel transport operator
- Principal bundle Q, with structure group G
- Principal connection $A: T Q \rightarrow \mathfrak{g}$

- For each curve $x(t)$ joining x_{0} to x_{1}, there is a parallel transport operator mapping $\pi^{-1}\left(x_{0}\right)$ into $\pi^{-1}\left(x_{1}\right)$
- Many curves might share the same parallel transport operator
- Principal bundle Q, with structure group G
- Principal connection $A: T Q \rightarrow \mathfrak{g}$

- For each curve $x(t)$ joining x_{0} to x_{1}, there is a parallel transport operator mapping $\pi^{-1}\left(x_{0}\right)$ into $\pi^{-1}\left(x_{1}\right)$
- Many curves might share the same parallel transport operator
- Principal bundle Q, with structure group G
- Principal connection $A: T Q \rightarrow \mathfrak{g}$

- For each curve $x(t)$ joining x_{0} to x_{1}, there is a parallel transport operator mapping $\pi^{-1}\left(x_{0}\right)$ into $\pi^{-1}\left(x_{1}\right)$
- Many curves might share the same parallel transport operator
- Principal bundle Q, with structure group G
- Principal connection $A: T Q \rightarrow \mathfrak{g}$

- For each curve $x(t)$ joining x_{0} to x_{1}, there is a parallel transport operator mapping $\pi^{-1}\left(x_{0}\right)$ into $\pi^{-1}\left(x_{1}\right)$
- Many curves might share the same parallel transport operator

- Riemannian metric on the base

Isoparallel problem: Find a curve on X that extremizes length among those with a given parallel transport operator.

Equivalently: Among those horizontal curves joining q_{0} to q_{1}, find one whose projection extremizes length.

When $x_{0}=x_{1}$, this is called the isonolonomic problem.

- Riemannian metric on the base

Isoparallel problem: Find a curve on X that extremizes length among those with a given parallel transport operator.

Equivalently: Among those horizontal curves joining qo to q_{1}, find one whose projection extremizes length.

When $x_{0}=x_{1}$, this is called the isoholonomic problem.

- Riemannian metric on the base

Isoparallel problem: Find a curve on X that extremizes length among those with a given parallel transport operator.

Equivalently: Among those horizontal curves joining q_{0} to q_{1}, find one whose projection extremizes length.

- Riemannian metric on the base

Isoparallel problem: Find a curve on X that extremizes length among those with a given parallel transport operator.

Equivalently: Among those horizontal curves joining q_{0} to q_{1}, find one whose projection extremizes length.

When $x_{0}=x_{1}$, this is called the isoholonomic problem.

- Riemannian metric on the base

Isoparallel problem: Find a curve on X that extremizes length among those with a given parallel transport operator.

Equivalently: Among those horizontal curves joining q_{0} to q_{1}, find one whose projection extremizes length.

When $x_{0}=x_{1}$, this is called the isoholonomic problem.

Isoparallel problems

For a given parallel transport operator...

- Is there any curve realizing it?
- Are there "enough" curves?
- Working with C^{1} curves, not always (rigid curves)
- Working with absolutely continuous curves, yes (if horizontal distribution is bracket-generating)

Absolutely continuous curves provide a nice setting:

- Horizontal lifts are still well defined
- Mixed partial derivatives are equal in L^{2}
- Integration by parts works

We will assume the regular case

Isoparallel problems

For a given parallel transport operator...

- Is there any curve realizing it?
- Are there "enough" curves?
- Working with C^{1} curves, not always (rigid curves)
- Working with absolutely continuous curves, yes (if horizontal distribution is bracket-generating)

Absolutely continuous curves provide a nice setting:

- Horizontal lifts are still well defined
- Mixed partial derivatives are equal in L^{2}
- Integration by parts works

We will assume the regular case

Isoparallel problems

For a given parallel transport operator...

- Is there any curve realizing it?
- Are there "enough" curves?
- Working with C^{1} curves, not always (rigid curves)
- Working with absolutely continuous curves, yes (if horizontal distribution is bracket-generating)

Absolutely continuous curves provide a nice setting:

- Horizontal lifts are still well defined
- Mixed partial derivatives are equal in L^{2}
- Integration by parts works

We will assume the regular case

For a given parallel transport operator...

- Is there any curve realizing it?
- Are there "enough" curves?
- Working with C^{1} curves, not always (rigid curves)
- Working with absolutely continuous curves, yes (if horizontal distribution is bracket-generating)

Absolutely continuous curves provide a nice setting:

- Horizontal lifts are still well defined
- Mixed nartial derivatives are equal in L^{2}
- Integration by parts works

We will assume the regular case

Isoparallel problems

For a given parallel transport operator...

- Is there any curve realizing it?
- Are there "enough" curves?
- Working with C^{1} curves, not always (rigid curves)
- Working with absolutely continuous curves, yes (if horizontal distribution is bracket-generating)

Absolutely continuous curves provide a nice setting:

- Horizontal lifts are still well defined
- Mixed partial derivatives are equal in L^{2}
- Integration by parts works

We will assume the regular case

Isoparallel problems

For a given parallel transport operator...

- Is there any curve realizing it?
- Are there "enough" curves?
- Working with C^{1} curves, not always (rigid curves)
- Working with absolutely continuous curves, yes (if horizontal distribution is bracket-generating)

Absolutely continuous curves provide a nice setting:

- Horizontal lifts are still well defined
- Mixed partial derivatives are equal in L^{2}
- Integration by parts works

We will assume the regular case

Examples

Falling cat:
$Q=$ space of positions of the cat as a deformable body

$$
G=\mathrm{SO}(3)
$$

$$
X=Q / G=\text { shapes (disregarding rigid rotations) }
$$

Horizontal distribution in $T Q$ defined by "angular momentum equals zero"

Loop on $X \longrightarrow$ Hor. lift \rightarrow Reorientation
Metric on X measuring energy expenditure

- What is the most efficient way that the cat could change its
shape so as to land on its feet?

Examples

Falling cat:
$Q=$ space of positions of the cat as a deformable body

$$
G=\mathrm{SO}(3)
$$

$$
X=Q / G=\text { shapes (disregarding rigid rotations) }
$$

Horizontal distribution in $T Q$ defined by "angular momentum equals zero"

Loop on $X \rightarrow$ Hor. lift \rightarrow Reorientation
Metric on X measuring energy expenditure

- What is the most efficient way that the cat could change its
shape so as to land on its feet?

Falling cat:
$Q=$ space of positions of the cat as a deformable body

$$
G=\mathrm{SO}(3)
$$

$$
X=Q / G=\text { shapes (disregarding rigid rotations) }
$$

Horizontal distribution in TQ defined by "angular momentum equals zero"

Loop on $X \rightarrow$ Hor. lift \rightarrow Reorientation
Metric on X measuring energy expenditure

- What is the most efficient way that the cat could change its
shape so as to land on its feet?

Falling cat:
$Q=$ space of positions of the cat as a deformable body

$$
G=\mathrm{SO}(3)
$$

$$
X=Q / G=\text { shapes (disregarding rigid rotations) }
$$

Horizontal distribution in $T Q$ defined by "angular momentum equals zero"

Loop on $X \rightarrow$ Hor. lift \rightarrow Reorientation
Metric on X measuring energy expenditure

- What is the most efficient way that the cat could change its shape so as to land on its feet?

Examples

Locomotion of a microorganism in a fluid

$Q \subset$ mappings from S^{1} into \mathbb{R}^{2}
$G=S E(2)$
$X=Q / G$
$v \in T Q$: vector field on the membrane \rightarrow response of the fluid
Define a principal connection on Q and a metric on X

Examples

Locomotion of a microorganism in a fluid

$Q \subset$ mappings from S^{1} into \mathbb{R}^{2}
$G=\operatorname{SE}(2)$
$X=Q / G$
$v \in T Q$: vector field on the membrane $--\rightarrow$ response of the fluid
Define a principal connection on Q and a metric on X

Examples

Locomotion of a microorganism in a fluid

$Q \subset$ mappings from S^{1} into \mathbb{R}^{2}
$G=\operatorname{SE}(2)$
$X=Q / G$
$v \in T Q$: vector field on the membrane \rightarrow response of the fluid Define a principal connection on Q and a metric on X

Montgomery's theorem

Take a bi-invariant metric β on G (if there is any!)
If k is the metric on the base, define $L: T Q \rightarrow \mathbb{R}$ by

$$
L(q, \dot{q})=\frac{1}{2}(k(T \pi(q, \dot{q}), T \pi(q, \dot{q}))+\beta(A(q, \dot{q}), A(q, \dot{q})))
$$

(related to the metric $k \oplus \beta$ on Q)

- Then the (normal) solutions of the isoparallel problem are precisely the projections of the geodesics [Montgomery, 1990]

Take a bi-invariant metric β on G (if there is any!) If k is the metric on the base, define $L: T Q \rightarrow \mathbb{R}$ by

$$
L(q, \dot{q})=\frac{1}{2}(k(T \pi(q, \dot{q}), T \pi(q, \dot{q}))+\beta(A(q, \dot{q}), A(q, \dot{q})))
$$

(related to the metric $k \oplus \beta$ on Q)

- Then the (normal) solutions of the isoparallel problem are precisely the projections of the geodesics [Montgomery, 1990]

Montgomery's theorem

Lagrangian system \rightarrow project (and lift)

But... some groups do not admit a bi-invariant metric (e.g. SE(2))

- Replace Lagrangian system by generalized nonholonomic system [Cendra and Ferraro, 2006]

Montgomery's theorem

Lagrangian system \rightarrow project (and lift)

But... some groups do not admit a bi-invariant metric (e.g. SE(2))

- Replace Lagrangian system by generalized nonholonomic system [Cendra and Ferraro, 2006]

Montgomery's theorem

Lagrangian system \rightarrow project (and lift)

But... some groups do not admit a bi-invariant metric (e.g. SE(2))

- Replace Lagrangian system by generalized nonholonomic system [Cendra and Ferraro, 2006]

But... some groups do not admit a bi-invariant metric (e.g. SE(2))

- Replace Lagrangian system by generalized nonholonomic system [Cendra and Ferraro, 2006]

But... some groups do not admit a bi-invariant metric (e.g. SE(2))

- Replace Lagrangian system by generalized nonholonomic system [Cendra and Ferraro, 2006]

Some definitions

$M=$ symmetric bilinear forms on \mathfrak{g}.
G-action: For $g \in G, \beta \in M$ and $\eta_{1}, \eta_{2} \in \mathfrak{g}$, define

$$
(g \beta)\left(\eta_{1}, \eta_{2}\right)=\beta\left(\operatorname{Ad}_{g^{-1}} \eta_{1}, \operatorname{Ad}_{g^{-1}} \eta_{2}\right)
$$

Infinitesimal generator: If $\xi \in \mathfrak{g}$ and $\beta \in M$ then

$$
(\xi \beta)\left(\eta_{1}, \eta_{2}\right)=\beta\left(-\left[\xi, \eta_{1}\right], \eta_{2}\right)+\beta\left(\eta_{1},-\left[\xi, \eta_{2}\right]\right)
$$

If β is Ad-invariant then $\xi \beta=0$ for all ξ
$M=$ symmetric bilinear forms on \mathfrak{g}.
G-action: For $g \in G, \beta \in M$ and $\eta_{1}, \eta_{2} \in \mathfrak{g}$, define

$$
(g \beta)\left(\eta_{1}, \eta_{2}\right)=\beta\left(\operatorname{Ad}_{g^{-1}} \eta_{1}, \operatorname{Ad}_{g^{-1}} \eta_{2}\right)
$$

Infinitesimal generator: If $\xi \in \mathfrak{g}$ and $\beta \in M$ then

$$
(\xi \beta)\left(\eta_{1}, \eta_{2}\right)=\beta\left(-\left[\xi, \eta_{1}\right], \eta_{2}\right)+\beta\left(\eta_{1},-\left[\xi, \eta_{2}\right]\right)
$$

If β is Ad-invariant then $\xi \beta=0$ for all ξ.

Generalized nonholonomic system:

- It is a system on $Q \times M$
- $L: T(Q \times M) \rightarrow \mathbb{R}$,

$$
L(q, \beta, \dot{q}, \dot{\beta})=\frac{1}{2} k(T \pi(q, \dot{q}), T \pi(q, \dot{q}))+\frac{1}{2} \beta(A(q, \dot{q}), A(q, \dot{q}))
$$

- Distributions in $T(Q \times M)$
- Kinematic $C_{K}: \dot{\beta}=A(q, \dot{q})$ - Variational $C_{V}: \delta \beta=0$
- The Lagrangian and distributions are G-invariant

Generalized nonholonomic system:

- It is a system on $Q \times M$
- $L: T(Q \times M) \rightarrow \mathbb{R}$,

$$
L(q, \beta, \dot{q}, \dot{\beta})=\frac{1}{2} k(T \pi(q, \dot{q}), T \pi(q, \dot{q}))+\frac{1}{2} \beta(A(q, \dot{q}), A(q, \dot{q}))
$$

- Distributions in $T(Q \times M)$
- Kinematic $C_{K}: \dot{\beta}=A(q, \dot{q}) \beta$
- Variational $C_{V}: \delta \beta=0$
- The Lagrangian and distributions are G-invariant

Generalized nonholonomic system:

- It is a system on $Q \times M$
- $L: T(Q \times M) \rightarrow \mathbb{R}$,

$$
L(q, \beta, \dot{q}, \dot{\beta})=\frac{1}{2} k(T \pi(q, \dot{q}), T \pi(q, \dot{q}))+\frac{1}{2} \beta(A(q, \dot{q}), A(q, \dot{q}))
$$

- Distributions in $T(Q \times M)$
- Kinematic $C_{K}: \dot{\beta}=A(q, \dot{q}) \beta$
- Variational $C_{V}: \delta \beta=0$
- The Lagrangian and distributions are G-invariant

Associated bundles:

$$
\begin{aligned}
\widetilde{M} & =(Q \times M) / G \\
\widetilde{\mathfrak{g}} & =(Q \times \mathfrak{g}) / G
\end{aligned}
$$

These are bundles over $X=Q / G$ with standard fiber M (resp. \mathfrak{g}).
Notation:

$$
\begin{gathered}
\bar{\beta}=[q, \beta]_{G} \in \widetilde{M} \\
\bar{v}=[q, v]_{G} \in \widetilde{\mathfrak{g}}
\end{gathered}
$$

The curvature 2-form B of the principal connection A induces

$$
\widetilde{B}(x)(\dot{x}, \delta x)=[q, B(q)(\dot{q}, \delta q)]_{G} \in \widetilde{g}
$$

Associated bundles:

$$
\begin{aligned}
\widetilde{M} & =(Q \times M) / G \\
\widetilde{\mathfrak{g}} & =(Q \times \mathfrak{g}) / G
\end{aligned}
$$

These are bundles over $X=Q / G$ with standard fiber M (resp. \mathfrak{g}).
Notation:

$$
\begin{gathered}
\bar{\beta}=[q, \beta]_{G} \in \widetilde{M} \\
\bar{v}=[q, v]_{G} \in \widetilde{\mathfrak{g}}
\end{gathered}
$$

The curvature 2-form B of the principal connection A induces

$$
\widetilde{B}(x)(\dot{x}, \delta x)=[q, B(q)(\dot{q}, \delta q)]_{G} \in \widetilde{\mathfrak{g}}
$$

Reduced tangent bundle

$$
\begin{gathered}
T(Q \times M) \equiv T Q \times T M \equiv T Q \oplus(Q \times M) \oplus(Q \times M) \\
(T(Q \times M)) / G \equiv T X \oplus \tilde{\mathfrak{g}} \oplus 2 \widetilde{M}
\end{gathered}
$$

The reduced Lagrangian $\ell: T X \oplus \tilde{\mathfrak{g}} \oplus 2 M \rightarrow \mathbb{R}$ is

- Reduced kinematic distribution: derivative of curves on associated bundles)
- Reduced variational distribution: $\delta^{A} \bar{\beta}=-\bar{\eta} \bar{\beta}$

Reduced tangent bundle

$$
\begin{gathered}
T(Q \times M) \equiv T Q \times T M \equiv T Q \oplus(Q \times M) \oplus(Q \times M) \\
(T(Q \times M)) / G \equiv T X \oplus \tilde{\mathfrak{g}} \oplus 2 \widetilde{M}
\end{gathered}
$$

The reduced Lagrangian $\ell: T X \oplus \widetilde{\mathfrak{g}} \oplus 2 \widetilde{M} \rightarrow \mathbb{R}$ is

$$
\ell\left((x, \dot{x}) \oplus \bar{v} \oplus \bar{\beta} \oplus \bar{\beta}^{\prime}\right)=\frac{1}{2} k(\dot{x}, \dot{x})+\frac{1}{2} \bar{\beta}(\bar{v}, \bar{v})
$$

- Reduced kinematic distribution:

Reduced tangent bundle

$$
\begin{gathered}
T(Q \times M) \equiv T Q \times T M \equiv T Q \oplus(Q \times M) \oplus(Q \times M) \\
(T(Q \times M)) / G \equiv T X \oplus \tilde{\mathfrak{g}} \oplus 2 \widetilde{M}
\end{gathered}
$$

The reduced Lagrangian $\ell: T X \oplus \widetilde{\mathfrak{g}} \oplus 2 \widetilde{M} \rightarrow \mathbb{R}$ is

$$
\ell\left((x, \dot{x}) \oplus \bar{v} \oplus \bar{\beta} \oplus \bar{\beta}^{\prime}\right)=\frac{1}{2} k(\dot{x}, \dot{x})+\frac{1}{2} \bar{\beta}(\bar{v}, \bar{v})
$$

- Reduced kinematic distribution: $\frac{D \bar{\beta}}{D t}=0$ (there is a covariant derivative of curves on associated bundles)
- Reduced variational distribution: $\delta^{A} \bar{\beta}=-\bar{\eta} \bar{\beta}$

Reduced variations

$$
\begin{aligned}
\delta x & =T \pi(\delta q) \\
\delta^{A} \bar{v} & =\widetilde{B}(x)(\delta x, \dot{x})+\frac{D \bar{\eta}}{D t}+[\bar{v}, \bar{\eta}] \\
\delta^{A} \bar{\beta} & =-\bar{\eta} \bar{\beta}
\end{aligned}
$$

Reduced equations for the GNHS

$(\bar{B} \in \tilde{M}$,
$\left(\nabla_{\dot{x}} \dot{x}\right)^{b}=-\bar{\beta}(\bar{v}, \widetilde{B}(x)(\dot{x}, \cdot))$

Reduced variations

$$
\begin{aligned}
\delta x & =T \pi(\delta q) \\
\delta^{A} \bar{v} & =\widetilde{B}(x)(\delta x, \dot{x})+\frac{D \bar{\eta}}{D t}+[\bar{v}, \bar{\eta}] \\
\delta^{A} \bar{\beta} & =-\bar{\eta} \bar{\beta}
\end{aligned}
$$

Reduced equations for the GNHS

$$
\begin{aligned}
\frac{D \bar{\beta}}{D t} & =0 \\
\frac{D \bar{v}}{D t} & =0 \\
\left(\nabla_{\dot{x}} \dot{x}\right)^{b} & =-\bar{\beta}(\bar{v}, \widetilde{B}(x)(\dot{x}, \cdot)) \\
(\bar{\beta} \in \widetilde{M}, \quad \bar{v} \in \widetilde{\mathfrak{g}}, \quad x \in X) &
\end{aligned}
$$

Lagrange multipliers

- Find a curve from q_{0} to q_{1}
- Extremizing $\int_{t_{0}}^{t_{1}} \sqrt{k(T \pi(\dot{q}), T \pi(\dot{q}))} d t$
- Constrained to $A(q, \dot{q})=0$
- Fix a metric β and define
$S(q, e)=\int_{t_{0}}^{t_{1}} \sqrt{k(T \pi(\dot{q}), T \pi(\dot{q}))} d t+\int_{t_{0}}^{t_{1}} \beta(e, A(q, \dot{q})) d t$,
where $e(t)$ is a curve on g. We get the reduced equations

(And $A(q, \dot{q})=0$.) Same as equations for GNHS.

Lagrange multipliers

- Find a curve from q_{0} to q_{1}
- Extremizing $\int_{t_{0}}^{t_{1}} \sqrt{k(T \pi(\dot{q}), T \pi(\dot{q}))} d t$
- Constrained to $A(q, \dot{q})=0$
- Fix a metric β and define

$$
S(q, e)=\int_{t_{0}}^{t_{1}} \sqrt{k(T \pi(\dot{q}), T \pi(\dot{q}))} d t+\int_{t_{0}}^{t_{1}} \beta(e, A(q, \dot{q})) d t
$$

where $e(t)$ is a curve on \mathfrak{g}. We get the reduced equations

Lagrange multipliers

- Find a curve from q_{0} to q_{1}
- Extremizing $\int_{t_{0}}^{t_{1}} \sqrt{k(T \pi(\dot{q}), T \pi(\dot{q}))} d t$
- Constrained to $A(q, \dot{q})=0$
- Fix a metric β and define

$$
S(q, e)=\int_{t_{0}}^{t_{1}} \sqrt{k(T \pi(\dot{q}), T \pi(\dot{q}))} d t+\int_{t_{0}}^{t_{1}} \beta(e, A(q, \dot{q})) d t
$$

where $e(t)$ is a curve on \mathfrak{g}. We get the reduced equations

$$
\begin{gathered}
\frac{D \bar{\beta}}{D t}=0, \quad \frac{D \bar{e}}{D t}=0 \\
\left(\nabla_{\dot{x}} \dot{x}\right)^{b}=-\bar{\beta}(\bar{e}, \widetilde{B}(x)(\dot{x}, \cdot))
\end{gathered}
$$

(And $A(q, \dot{q})=0$.) Same as equations for GNHS.

Comparison

GNHS

$$
\left(\nabla_{\dot{x}} \dot{x}\right)^{b}=-\bar{\beta}(\bar{v}, \widetilde{B}(x)(\dot{x}, \cdot))
$$

Lagrange multipliers

$$
\begin{gathered}
\frac{D \bar{\beta}}{D t}=0, \quad \frac{D \bar{e}}{D t}=0, \\
\left(\nabla_{\dot{x} \dot{x}}\right)^{b}=-\bar{\beta}(\bar{e}, \widetilde{B}(x)(\dot{x}, \cdot)) \\
A(q, \dot{q})=0
\end{gathered}
$$

Comparison

GNHS

$$
\frac{D \bar{\beta}}{D t}=0, \quad \frac{D \bar{v}}{D t}=0
$$

$$
\left(\nabla_{\dot{x}} \dot{x}\right)^{b}=-\bar{\beta}(\bar{v}, \widetilde{B}(x)(\dot{x}, \cdot))
$$

Lagrange multipliers

$$
\begin{gathered}
\frac{D \bar{\beta}}{D t}=0, \quad \frac{D \bar{e}}{D t}=0, \\
\left(\nabla_{\dot{x} \dot{x}}\right)^{b}=-\bar{\beta}(\bar{e}, \widetilde{B}(x)(\dot{x}, \cdot)) \\
A(q, \dot{q})=0
\end{gathered}
$$

Reduced versions match, unreduced versions do not

Relationship with theorem on geodesics

Trajectory of GNHS --> project and lift

Geodesic \rightarrow project and lift

With a bi-invariant metric, $C_{K}=T Q \oplus 0$ and $C_{V}=T Q \oplus 0$, and the GNHS becomes Montgomery's Lagrangian system

Relationship with theorem on geodesics

Trajectory of GNHS -- project and lift

Geodesic --> project and lift

With a bi-invariant metric, $C_{K}=T Q \oplus 0$ and $C_{V}=T Q \oplus 0$, and the GNHS becomes Montgomery's Lagrangian system

Relationship with theorem on geodesics

Trajectory of GNHS \rightarrow project and lift
Geodesic \rightarrow project and lift

With a bi-invariant metric, $C_{K}=T Q \oplus 0$ and $C_{V}=T Q \oplus 0$, and the GNHS becomes Montgomery's Lagrangian system

Relationship with theorem on geodesics

Trajectory of GNHS \rightarrow project and lift
Geodesic \rightarrow project and lift

With a bi-invariant metric, $C_{K}=T Q \oplus 0$ and $C_{V}=T Q \oplus 0$, and the GNHS becomes Montgomery's Lagrangian system

Conclusions

- We have defined GNHS
- Do not preserve energy
- Dissipative systems, control strategies
- Covariance
- Reduction
- Disadvantage: no universal procedure to find C_{V}
- Isoparallel problems
- Natural extension of theorem on geodesics for arbitrary groups or metrics

Conclusions

- We have defined GNHS
- Do not preserve energy
- Dissipative systems, control strategies
- Covariance
- Reduction
- Disadvantage: no universal procedure to find C_{V}
- Isoparallel problems
- Natural extension of theorem on geodesics for arbitrary groups or metrics

Conclusions

- We have defined GNHS
- Do not preserve energy
- Dissipative systems, control strategies
- Covariance
- Reduction
- Disadvantage: no universal procedure to find C_{V}
- Isoparallel problems
- Natural extension of theorem on geodesics for arbitrary groups or metrics

References and suggested reading

- Cendra H. and Ferraro S. A nonholonomic approach to isoholonomic problems and some applications. Dyn. Sys.: an Intl. J., 2006.
- Montgomery R. Isoholonomic problems and some applications. Comm. Math. Phys., 1990.
- Cendra H., Ibort A., de León M. and Martín de Diego D. A generalization of Chetaev's principle for a class of higher order nonholonomic constraints. J. Math. Phys., 2004.
- Cendra H., Marsden J. and Ratiu T. Lagrangian reduction by stages. Mem. Amer. Math. Soc., 2001.
- Cendra H. and Grillo S. Generalized nonholonomic mechanics, servomechanisms and related brackets. J. Math. Phys., 2006.
- Grillo S. Sistemas noholónomos generalizados, Ph.D. Thesis, Univ. Nac. del Sur, 2007.
- Marle C-M. Various approaches to conservative and non-conservative nonholonomic systems, Rep. Math. Phys., 1998.
- Koiller J., Ehlers K. and Montgomery R. Problems and progress in microswimming. J. Nonlinear Sci., 1996.
- Neĭmark Yu. and Fufaev N. Dynamics of Nonholonomic Systems. Translations of Mathematical Monographs, AMS, 1972.

