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Lagrange—d'Alembert’s principle

In a Lagrangian system,

_doL oL
- dtdg  Oq
so F € C° means
d oL 0oL
S PR Sa = for §
(dt@c’; 0q> 0g=0 fordge C

(in addition, g € C)

FeC° = F-g=0(power) = preservation of energy

Constraints on motion + pple. of virtual work

4

constraints on variations
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Lagrange—d'Alembert’s principle

Some advantages:

@ It is convenient
Applies to a wide range of problems
Covariance

Reduction, discretization...
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Generalization

Suitable generalization of Lagrange—d'Alembert’s principle
@ elastic rolling bodies, pneumatic tires
@ dissipative systems
@ servomechanisms, control strategies

@ isoparallel problems

Maintain advantages, such as covariance and reduction theory
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Generalized nonholonomic systems

Generalized nonholonomic system (GNHS) on Q:
e L: TQ —R
e Cx C TQ (kinematic distribution)
e Cy C TQ (variational distribution)
A trajectory of a GNHS is a curve g(t) such that
@ gec Ck
e 0 [ L(q,q)dt =0 with respect to dg € Cy, which implies

(d@L oL

— = f
dt 94 8q> 6g=0 fordge Cy

Constraint forces: F € Cy,
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Comparison

q(t)
AF q(t) F
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Comparison

q(t)
AF q(t) F
24
q
L Ck
\ 9 oq
5q CK = CV
Cv

Nonholonomic
(Lagrange—d'Alembert)

Generalized nonholonomic

Energy is not preserved in GNHS
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Isoparallel problems

@ Principal bundle @, with structure group G

@ Principal connection A: TQ — ¢

EQ
/—\

o TT——*x1 x

@ For each curve x(t) joining xo to x1, there is a parallel
transport operator mapping 7 *(xo) into 7 1(x1)

@ Many curves might share the same parallel transport operator
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Isoparallel problems
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X0 X1
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Isoparallel problems

/—\

xXo T—*x X

@ Riemannian metric on the base

Isoparallel problem: Find a curve on X that extremizes length
among those with a given parallel transport operator.

Equivalently: Among those horizontal curves joining g to g1, find
one whose projection extremizes length.

When xg = x1, this is called the isoholonomic problem.
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Isoparallel problems

For a given parallel transport operator...

@ Is there any curve realizing it?
@ Are there “enough” curves?

o Working with C! curves, not always (rigid curves)
e Working with absolutely continuous curves, yes
(if horizontal distribution is bracket-generating)

Absolutely continuous curves provide a nice setting:

@ Horizontal lifts are still well defined
o Mixed partial derivatives are equal in L?

@ Integration by parts works

We will assume the regular case

Sebastian Ferraro — IMAFF, CSIC



Falling cat:
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X = Q/G = shapes (disregarding rigid rotations)

Horizontal distribution in TQ defined by “angular momentum
equals zero”
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Falling cat:

Q@ = space of positions of the cat as a deformable body
G =S0(3)
X = Q/G = shapes (disregarding rigid rotations)

Horizontal distribution in TQ defined by “angular momentum
equals zero”

Loop on X --» Hor. lift --+ Reorientation

Metric on X measuring energy expenditure

» What is the most efficient way that the cat could change its
shape so as to land on its feet?

Sebastian Ferraro — IMAFF, CSIC
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Locomotion of a microorganism in a fluid

O

Q C mappings from S! into R?
G = SE(2)
X=Q/G

v € TQ: vector field on the membrane --» response of the fluid

Define a principal connection on @ and a metric on X
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Montgomery's theorem

Take a bi-invariant metric 3 on G (if there is any!)
If k is the metric on the base, define L: TQ — R by

Lo, ) =5 (k(Tr(0.0). Tn(9.0)) + 5 (A(.4).A(q, )

(related to the metric k & 3 on Q)
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Montgomery's theorem

Take a bi-invariant metric 3 on G (if there is any!)
If k is the metric on the base, define L: TQ — R by

L(9.4) = 5 (K (Tr(9.4), T (0,4) + 5 (A(q.4),A(0,9)))
(related to the metric k & 3 on Q)

» Then the (normal) solutions of the isoparallel problem are
precisely the projections of the geodesics [Montgomery, 1990]
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Montgomery's theorem

geodesic Q
™
/—\
T T——x;  x
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Montgomery's theorem

geodesic - Q
™
/—\
X0 T—*x; X

Lagrangian system --» project (and lift)

But... some groups do not admit a bi-invariant metric (e.g. SE(2))

» Replace Lagrangian system by generalized nonholonomic system
[Cendra and Ferraro, 2006]
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Some definitions

M = symmetric bilinear forms on g.

G-action: For g € G, f € M and 11,12 € g, define

(&8) (m,m2) =B <Adg—1 M, Adg—1 772) :
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Some definitions

M = symmetric bilinear forms on g.

G-action: For g € G, f € M and 11,12 € g, define

(g/B) (771, 7]2) = /8 <Adg_1 ., Adg_l 7]2) .
Infinitesimal generator: If £ € g and § € M then

(€8) (m,m2) = B (= [&;m].m) + B (m, — [&m]) -
If 3 is Ad-invariant then £8 = 0 for all &.
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The GNHS

Generalized nonholonomic system:
@ Itis asystemon Q@ x M
o L: T(QR xM)—R,

L(q,B,q,8) = %k (Tw(q,4), Tr (q, d))+%6 (A(q,9),A(q,4))
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The GNHS

Generalized nonholonomic system:
@ Itis asystemon Q@ x M
o L: T(QR xM)—R,

L(q,B,q,8) = %k (Tw(q,4), Tr (q, d))+%6 (A(q,9),A(q,4))

e Distributions in T(Q x M)

o Kinematic Cx: 3= A(q,q)0
e Variational Cy: 63=0

@ The Lagrangian and distributions are G-invariant
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Associated bundles: B
M=(QxM)/G

g=(Qx9)/G
These are bundles over X = Q/G with standard fiber M (resp. g).

Notation: B _
/8 = [q7ﬁ]G € M

V:[an]Geﬁ
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Associated bundles: B
M=(QxM)/G

g=(Qx9)/G
These are bundles over X = Q/G with standard fiber M (resp. g).

Notation: B _
/8 = [q7ﬁ]G € M

V:[an]Geﬁ

The curvature 2-form B of the principal connection A induces

B(x)(%,0x) = [q, B(q)(4,q)] . € §
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Reduced tangent bundle
TRxM=TRExTM=TQR®(Q x M)® (Q x M)

(T(Q x M))/G=TX®g®2M
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Reduced tangent bundle
TRxM=TRExTM=TQR®(Q x M)® (Q x M)

(T(Q x M))/G=TX®g®2M
The reduced Lagrangian £: TX ®g®2M — R is

eQ&M@V@B@E)zéﬂx@+%m%W

. oo Dj
@ Reduced kinematic distribution: ?ﬁ = 0 (there is a covariant
derivative of curves on associated bundles)

o Reduced variational distribution: 643 = —713
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Reduced variations
ox = Tr(dq)
547 = B(x)(0x, X) + % + [v,7]
04 =~
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Reduced variations
ox = Tr(dq)
59 = Bx)(5x%. ) + 20 + [7,7]
048 = —np
Reduced equations for the GNHS
DB
D °
DV _
Dt
(ViX)’ = =B(7, B(x)(%,"))

(BEM, Ve, xex)
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Lagrange multipliers

@ Find a curve from qg to ¢1

e Extremizing ftzl \/k(Tﬂ(Q), T7(g)) dt
e Constrained to A(g,g) =0

Sebastian Ferraro — IMAFF, CSIC



Lagrange multipliers

@ Find a curve from qg to ¢1

e Extremizing ftzl \/k(Tﬂ(Q), T7(g)) dt
e Constrained to A(g,g) =0

@ Fix a metric § and define

5(q,e)=/tt1 \/k(TW(é/), Tn(q)) dt+/ B(e Alg, q)) dt,

t1
to

where e(t) is a curve on g.
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Lagrange multipliers

@ Find a curve from qg to ¢1

e Extremizing ftzl \/k(Tﬂ(Q), T7(g)) dt
e Constrained to A(g,g) =0

@ Fix a metric § and define

5(q,e)=/tt1 \/k(TW(é/), Tn(q)) dt+/ B(e Alg, q)) dt,

t
to
where e(t) is a curve on g. We get the reduced equations
D5 _, De_,
(Vi) = —B (2, B(x)(%. "))
(And A(g, g) =0.) Same as equations for GNHS.
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Comparison

GNHS Lagrange multipliers
_ _ D3 De

%:07 &:0 Dt_o’ Ft_o’
> > (Vi) = ~B(z B((x.))

- ~ xX) = —pl\e, X)X, -

(VXX)b = _ﬁ(v> B(X)(Xv )) .
Alg,q) =0

Q Q ]
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Comparison

GNHS Lagrange multipliers
_ _ D3 De

bs -0 Dv -0 Dt 0, Dt 0,
o (Vi) = — (5 B()(5, )

- ~ xX) = —pl\e, X)X, -

(VXX)b = _ﬁ(v> B(X)(Xv )) .
Alg,q) =0

Q Q ]

Reduced versions match, unreduced versions do not

Sebastian Ferraro — IMAFF, CSIC



Relationship with theorem on geodesics

Sebastian Ferraro — IMAFF, CSIC



Relationship with theorem on geodesics

s

//\
- X

Trajectory of GNHS --» project and lift

Sebastian Ferraro — IMAFF, CSIC



Relationship with theorem on geodesics

s

//\
- X

Trajectory of GNHS --» project and lift

Geodesic --+ project and lift

Sebastian Ferraro — IMAFF, CSIC



Relationship with theorem on geodesics

s

//\
- X

Trajectory of GNHS --» project and lift

Geodesic --+ project and lift

With a bi-invariant metric, Cx = TQ ®0and Cy = TQ 4 0, and
the GNHS becomes Montgomery's Lagrangian system
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Conclusions

o W

[0}

have defined GNHS
Do not preserve energy

Dissipative systems, control strategies
Covariance
Reduction
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Conclusions

@ We have defined GNHS

Do not preserve energy

Dissipative systems, control strategies
Covariance

Reduction

[0}

o Disadvantage: no universal procedure to find Cy

@ Isoparallel problems

@ Natural extension of theorem on geodesics for arbitrary groups
or metrics
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