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M. Elżanowski defective crystals Slide 1



'

&

$

%

Content

• Theory of Material Inhomogeneities

• Possible Generalizations

• Structurally Based Theory of Defective Crystals

• Properties of States with Constant ddt.

• References
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Theory of Material Inhomogeneities

The mechanical properties of a material point X of the body B (a
differentiable manifold) are completely characterized by the density
of the stored energy function per unit reference (configuration)
volume, W (F, X), where:

• A configuration of B is a (global) chart u : B → R3.

• F denotes the deformation gradient ∇u : TB → R3.

The body B is said to be materially uniform if it is made of the
same material at all points. This means that there exist smoothly
distributed uniformity maps P(X) from the reference crystal V to
TXB and a real-valued function Ŵ , such that

W (F; X) = Ŵ (FP(X)) (1)

for all deformations F, detF > 0, and every material point X.
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Given a basis Eα (α = 1, 2, 3) in the reference crystal V and a
(right-handed) coordinate system eI (I = 1, 2, 3) in R3 the
mappings P(X) induce in the reference configuration a frame field

fβ(X) ≡ P I
β (X)eI (2)

called a uniform reference.

A uniform reference is not unique if the strain energy function W

has a not-trivial continuous symmetry group:

• G ∈ GL(R, 3) is a symmetry of the function W at X if
W (FG; X) = W (F; X) for all F.

• If B is materially uniform the group Ĝ ≡ P−1GP is material
point independent.

• P ≡ PĜ = GP induces another uniform reference.
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• A collection of all uniform references is a Ĝ-structure on B.

• A collection of all P maps defines a transitive Lie groupoid.
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Any uniform reference induces on B a smooth distant parallelism.
The Christoffel symbols of the corresponding material connection
are given in the Cartesian coordinate system by

ΓI
KJ (X) = −P I

α,J(X)Pα
K(X). (3)

• Material connection is not unique unless the symmetry group
Ĝ is discrete.

• Every material connection has zero curvature but its torsion
T I

KJ ≡ ΓI
KJ − ΓI

JK does not necessarily vanish.

• If a torsion of a material connection vanishes the corresponding
uniform reference is a gradient of a global configuration.

• When the material connection is unique, as it is in the case of
the body made of triclinic crystals, the torsion can be
recognized as the true measure of the density of the distribution
of inhomogeneities.
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Generalizations

• Higher-grade materials (diffusive phenomena, interactions
between cracks, disclinations):

W (F,∇F, X). (4)

• Micromorphic media (Cosserat media, liquid crystals):

W (F,H,∇H;X), (5)

where the tensor H = HI
αeI ⊗Eα represents the extra

microstructure describing, for example, a homogeneous
deformation of small grains embedded in the elastic matrix B.

• Homogeneity is now characterized by three different
connections.
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Structurally Based Theory of Defective Crystals

• A crystal state Σ is defined by prescribing the domain Ω and
the frame field li : Ω → R3, i = 1, 2, 3.

• The dislocation density tensor (ddt.) is given at a point by

Sij =
1
n
∇∧ di · dj (6)

where di(·) denotes the dual to li(·) frame field and n is the
corresponding determinant.

• An elastic deformation is defined as a mapping y : Ω → R3

producing lattice vectors l̂i(·) on y(Ω) such that

l̂i(y(X)) = ∇yli(X), X ∈ Ω. (7)
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• The focus of the theory is on objects which are elastic
invariants like the Bürger’s vector ∇∧ di(·) and the ddt.

• Deformations which preserve elastic invariants but are not
elastic are called the neutral deformations, e.g., slip in planes
where the lattice vectors are constant.

• It is necessary that the ddt. be singular if neutral deformations
are to exist.
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Basic constitutive assumptions

• Point values of the frame and the ddt. are enough to determine
the value of the energy at a material point.

• The density of the energy function is constant in a crystal state
with uniform (constant throughout the body) ddt.

• We focus on cases when ddt. is singular.
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Properties of states with constant ddt.

• There exists an (associative) Lie group structure function

ψ : R3 × R3 → R3 (8)

such that the frame field is right invariant. That is, constant
ddt. implies that given the frame field li(·) such that li(0) = ei,
the differential system

li(ψ(x, u)) = ∇1ψ(x, u)li(x), ψ(x, 0) = ψ(0, x) = x, (9)

has a unique invertible solution ψ with the property

ψ(u, ψ(v, w)) = ψ(ψ(u, v), w). (10)

• The group property is available for any constant ddt. state.

• Elastic deformation of a crystal w constant ddt. produces a
crystal state with constant ddt.
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When ddt. is singular, one can choose a crystal state such that ψ is
affine with respect to its first argument.

• The pair {li(·), S} defines a Lie algebra structure.

• Using the classification of 3-dimensional Lie algebras, one can
assume that

S =




∗ ∗ 0

∗ ∗ 0

0 0 0


 . (11)

Theorem 1 Given singular ddt., one can choose

ψ(x, y) = y + e−y3Cx, (12)

where C has components Cir ≡ εrk3Sik.

E.g., S11 = S22 = 1 corresponds to rotating the frames about e3.
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We investigate the conditions which would allows us to introduce a
”material symmetry“ group in a fashion analogous to the
continuum mechanics of simple materials.

The objective is to construct right invariant frame field
{li(·), i = 1, 2, 3} such that li(e) = Lei, and the corresponding
group composition function, say ψ̂.

We propose the following construction:

• Given ddt. S define the affine group composition function ψ,
and a frame field li(·) such that li(0) = ei.

• Define the elastic deformation y : R3 → R3 by

y(x) = Lx + e.
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• The state
{̂

li(·),R3
}

elastically related by the deformation y to

the canonical state
{
li(·),R3

}
is such that

l̂i(y(x)) = Lli(x), and l̂i(e) = Lei. (13)

• The group composition function for the new state is

ψ̂(y(x), y(u)) = y(ψ(x, u)). (14)

• The relevant symmetry group

Fe = LGL−1 (15)

where the commutative group

G =
{
g : g = etC , t ∈ R}

(16)

should be view as the symmetry group of the ”canonical state”
as

w(L, S) = w(Lg, S). (17)
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Final remarks

It can be shown, and this underscores both the validity of our
original assumption as well as the the importance of our findings,
that:

• there is no nontrivial elastic deformation which preserves the
form of the canonical state,

• the state defined by the lattice vectors (FetCF−1)L(·) is a
translation of the state defined by the lattice vectors L(·).
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