Iteration and iterative roots of continuous self-maps

Chaitanya Gopalakrishna Theoretical Statistics and Mathematics Unit, Indian Statistical Institute, Bangalore, India

Abstract

The dynamical system of a continuous self-map is generated by iteration of the map; however, the iteration itself, being an operator on the space of continuous self-maps, may generate interesting dynamical behaviors. In this talk, we use the Babbage functional equation $g^n = \text{id}$ to investigate some dynamical properties of the iteration operators on the space $\mathcal{C}(X)$ of continuous self-maps of a locally compact Hausdorff space X. On the other hand, we also discuss a new result on the nonexistence of solutions for the iterative root problem $g^n = f$, a general form of the Babbage functional equation, on arbitrary sets and use it to prove that every nonempty open set of $\mathcal{C}(X)$ contains a map that does not have even discontinuous iterative roots of order $n \geq 2$ for $X = [0, 1]^m$, \mathbb{R}^m and S^1 . This, in particular, proves that continuous self-maps on X with no continuous iterative roots at all are dense in $\mathcal{C}(X)$ for these X.