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phylogenetics

Phylogenetics:

reconstructing

nistorical  relation
petween  species
oy analyzing their
oresent features
and putting their
common ances-
tors In a diagram
which forms a tree.
[e.g. Hackel, 1866]
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‘ trees, sockets and networks

Consider a tree 7 which
has d + 1 leaves L, d —
1 nner trivalent nodes
N and 2d — 1 edges €&;
socket Is a subset of L
which has even number
of elements; path in 7T
IS a connected union of
edges, network is a set
of non-meeting paths In
T with ends in £
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‘ tree — variety, first view

[lemma] There Is a bijection between the set of
sockets and networks, that Is for every socket o
there exists a unique network (o) whose end

points are in ¢




‘ tree — variety, first view

[lemma] There Is a bijection between the set of
sockets and networks, that Is for every socket ¢
there exists a unique network (o) whose end
points are in ¢

—or every edge e € £ we consider a P! with
nomogeneous coordinates [y, y{|. Moreover
consider a projective space Py, of dimension

2¢ — 1 with homogeneous coordinates [z,]

indexed by sockets of 7.




‘ tree — variety, first view

[lemma] There Is a bijection between the set of
sockets and networks, that Is for every socket o
there exists a unique network (o) whose end
points are in ¢

Define rational map ||

e P — Py such that

:[]: Yy - :[]: Yo

ecu(o eZu(o

The model of the tree, X (7) C Py, is the closure

of the image of this map, dim X (7) = 2d — 1. \
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‘ flrst examples

Leaves of T are labeled by numbers 1,...,d+1
and sockets are denoted by 0/1 of length d + 1.
Tripod tree model:

P! x P} x P! — P 2
2000 = ?/(C)L?Jg?/g <110 = y%yi’yﬁ b C
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‘ flrst examples

Leaves of T are labeled by numbers 1,...,d+1
and sockets are denoted by 0/1 of length d + 1.

Four leaf tree model in P?

20000 = YeURySySys 2 = vARySyiyE o

200 = YIURYGYOYS 200 = YSUoYsYTYE D ..
21000 = VA uSytue 2001 = viuSudyS o/ \e

20110 = y(‘)‘y[fyfyiiyg 20101 = ygy[{yfygyf 1



‘ flrst examples

Leaves of T are labeled by numbers 1,...,d+1
and sockets are denoted by 0/1 of length d + 1.

Therefore X ()-) ~ P and X ()«) is a complete
intersection in P7:

£1001<0110

=+ )

<0000<1111 = <1100<0011 £1010<0101

A= 0 A



‘ binary Markov process on tree

Fix a root r In tree 7. this implies a partial order
< on the set of vertexes V = L UN. To each
vertex v € V assign a random variable &, which

takes value in {aq, as}.




‘ binary Markov process on tree

Fix a root r In tree 7. this implies a partial order
< on the set of vertexes V = L UN. To each
vertex v € V assign a random variable &, which
takes value in {aq, as}.

Variables &, determine a Markov process on 7T if
(intuitively) the value of &, depends only on the
value of &,, where u Is the node immediately

preceding v.
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‘ binary Markov process on tree

Fix a root r In tree 7. this implies a partial order
< on the set of vertexes V = L UN. To each
vertex v € V assign a random variable &, which

takes value in {aq, as}.
For each edge e = (u, v) bounded by vertexes

u < v define the transition matrix A¢:

Afj = P(& = aj|éu = ay)
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‘ binary Markov process on tree

Fix a root r In tree 7. this implies a partial order
< on the set of vertexes V = £ UN. To each
vertex v € V assign a random variable &, which

takes value in {aq, as}.
For each edge e = (u, v) bounded by vertexes

u < v define the transition matrix A¢:

Afj = P(& = aj|éu = ay)

and set the probability of the variable &, at the

root: P/ = P(& = «;) \



‘ from Markov to phylogenetics

For a Markov process on a rooted tree 7 as
above
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‘ from Markov to phylogenetics

For a Markov process on a rooted tree 7 as
above and any function £ > v — p(v) € {1,2}

PAG o) =S Fio TT 4,

vel (u,v)e€

where the sum is taken over all p : V — {1,2}
which extend p. Phylogenetics: understand
the shape of 7 by looking at the distribution of

P(Nyer §o = Qpw))- \



‘ tree — variety, Markov view

Phylogenetics wants to understand the locus of
possible probabllity values of a Markov process
on a fixed tree T

{Co = P(N\yer §o = apw))  Af;, P are arbitrary}

In the simplex with coordinates ¢, where ¢, > 0,

> 6= 1.
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‘ tree — variety, Markov view

We deal with a very special case, we assume:
e the root distribution is uniform, P{ = P
e the transition matrices are symmetric:

e _ Ae e _ Ae
A12 o A217 All o A22

note: these assumptions are very special but
then incidently we have
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‘ tree — variety, Markov view

We deal with a very special case, we assume:
e the root distribution is uniform, P{ = P
e the transition matrices are symmetric:

e __ Ae e __ Ae
A12 T A217 All o A22

[theorem: Sturmfels, Sullivant] Then after
suitable change of coordinates (and identifying
spaces) the varieties X'(7) and X (7)) coincide.
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‘ tree — variety, via quotients

On P with homogeneous coordinates
2000, 2110, 2101, 2011] take three actions of C* whose
weights are determined by socket 0/1 sequence:

A1 (%) 2000, 2110, 2101, 2011] = 2000, t2110, t2101, 2011]
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On P with homogeneous coordinates
2000, 2110, 2101, 2011] take three actions of C* whose
weights are determined by socket 0/1 sequence:

A1 (%) 2000, 2110, 2101, 2011] = 2000, t2110, t2101, 2011]

Trivalent trees are built from tripods by
identifying edges of leaves:

2a 20 2a
e



‘ tree — variety, via quotients

On P with homogeneous coordinates
2000, 2110, 2101, 2011] take three actions of C* whose
weights are determined by socket 0/1 sequence:

A1 (%) 2000, 2110, 2101, 2011] = 2000, t2110, t2101, 2011]

Take quotient P2 x P3//(X3q - A5;')

a a a a b b b b
([Zoom 21105 2101 2011]7 [Zoom 21105 2101 2011]) —
a b a b a b a b a b
[200020007 200021107 1102000 #110°110> #101°101>

a b a b a b
£1017011° 201171017 20112011] \
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‘ tree — variety, via quotients

On P with homogeneous coordinates
2000, 2110, 2101, 2011] take three actions of C* whose
weights are determined by socket 0/1 sequence:

A1 (%) 2000, 2110, 2101, 2011] = 2000, t2110, t2101, 2011]

The variety X (7) is obtained as a quotient of
product of P° indexed by inner nodes by a torus
identifying legs of tripods to inner edges of the

tree. \
IM PAN talk 2006 — p.9/2
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‘ tree — variety, toric view

In toric geometry P can be .
viewed as a tetrahedron in- =

scribed in a cube with the three
principal directions of projection
representing respective C* ac-
tions. |
Thus toric varieties associated to trees can be

viewed as the fiber products of such tetrahedra.

Surprise: Hilbert-Ehrhart polynomial does not de-

pend on the shape of X (7).




‘ Hilbert-Ehrhart: x product

For a positive integer n let [n] ={0,...n}.
Function f : [n] — Z is symmetric if for every

k € [n]itholds f(k) = f(n — k).

By 1 : [n| — Z denote the unit function.

If f1 fo: |n] — Z are symmetric functions then we
define their symmetric product fixfs : [n] — Z
such that for £ < n/2:

(faf2) (k) = 2 (S45) Sig @) folk +i — 27) )
+ (Z?z_kk S0 f1(0) falk + i — 2j)>

IM PAN talk 2006




‘ geometric interpretation of x

Consider the simplex A as In
the picture

(frf2)(k) is equal to the sum
of products of f; and f
counted over points of lattice
spanned by A in k-th slice of
n-A

7 (B (k) = (k+ 1) (n—k+1)
. IS the number of lattice points
N In k-th slice of n - A and thus

! * can be used to compute
_— Hilbert-Ehrhart polynomial \
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‘ properties of x

e x IS commutative, fixfs = foxfi

e x IS usually non-associative, I.e.
(Jixf2)*x[3 # Jix([ax[3)

* however, [theorem] If €2 is the smallest set of
functions closed under x and containing 1
then x Is associative within (2
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‘ properties of x

e x IS commutative, fixfs = foxfi

e x IS usually non-associative, I.e.
(Jixf2)*x[3 # Jix([ax[3)

* however, [theorem] If €2 is the smallest set of
functions closed under x and containing 1
then x Is associative within (2

f2 /3 /2 /3

fi >ﬁ§f1*f2)*f3 fi Ifl*(fQ*fS) \

IM



deforming X (7) within Py,

Recall that leaves of 7 can be labeled by
numbers 1,...,d + 1 or, equivalently, given d + 1
points we can make them leaves of a
(non-unique) tree 7.



deforming X (7) within Py,

Recall that leaves of 7 can be labeled by
numbers 1,...,d + 1 or, equivalently, given d + 1
points we can make them leaves of a
(non-unique) tree 7.



deforming X (7) within Py,

Recall that leaves of 7 can be labeled by
numbers 1,...,d + 1 or, equivalently, given d + 1
points we can make them leaves of a
(non-unique) tree 7.

Thus, all varieties representing different labeled
trees can be embedded in a fixed Py

IM PAN talk 2006



deforming X (7) within Py

Recall that leaves of 7 can be labeled by
numbers 1,...,d + 1 or, equivalently, given d + 1
points we can make them leaves of a
(non-unique) tree 7.

Thus, all varieties representing different labeled
trees can be embedded in a fixed Py

These varieties can be non-isomorphic (one can
check it), however they are in the same
connected component of the Hilbert scheme of

Py, that IS



deforming X (7) within Py,

Recall that leaves of 7 can be labeled by
numbers 1,...,d + 1 or, equivalently, given d + 1
points we can make them leaves of a
(non-unique) tree 7.

Thus, all varieties representing different labeled
trees can be embedded in a fixed Py

[theorem] X (7;) can be deformed to X (75) if only
7, and 7, have the same number of leaves.
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N
H <
| N
| N
| N
H N
| N
H N
| N
N
| N
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Translate the original problem into toric geometry

tree nolytope variety
% ,,,,,,,,,,,, IP)B
a leaf orojection C* action

X

IM PAN talk 2006



‘ proof. working dictionary

Translate the original problem into toric geometry

tree nolytope variety
% ,,,,,,,,,,,, IP)B
a leaf orojection C* action

>

IM PAN talk 2006



‘ proof. working dictionary

Translate the original problem into toric geometry

tree nolytope variety
% ,,,,,,,,,,,, IP)B
a leaf orojection C* action

> X e GIT quotient

IM PAN talk 2006



‘ proof. working dictionary

Translate the original problem into toric geometry

tree nolytope variety
% ,,,,,,,,,,,, IP)B
a leaf orojection C* action

> X e GIT quotient

IM PAN talk 2006



‘ proof. working dictionary

Translate the original problem into toric geometry

tree nolytope variety

a leaf orojection C* action
>< el S GIT quotient
= T deformation
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‘ proof: the i1dea

The mutation of a 4-leaf tree

2 3 2 3
V< . I
1 4 1 4

can be explicitly written as deformation which

preserves the action of C* groups associated to
leaves,
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‘ proof: the i1dea

The mutation of a 4-leaf tree

2 3 2 3

Y §
1 4 1 4
can be explicitly written as deformation which
preserves the action of C* groups associated to
leaves, thus via GIT quotient it can be extended

to a mutation of any tree along any inner edge
To T3 To T3



‘ a problem to think about (1)

can one see the size a tree by looking at a leaf?
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can one see the size a tree by looking at a leaf?

——




‘ a problem to think about (2)

a symmetric model of four state system ACTG




‘ a problem to think about (2)

a symmetric model of four state system ACTG
with transition matrix
d )

[ a
b C

a )

O & & o
S QL O

s



a problem to think about (2)

a symmetric model of four state system ACTG

O O O O —H O O O
o O A O O - O O
O +H O O O O~
O O O —H = A —A O
O O O O O o O
— - O O O O O O
O O O —-H O O O
o O -4 O O O — O
— O O O O — O O
O O O —H O O O
o 4 O O O O o O
O O O O O OO o O
O O — A O —A O O
O O O O O O —~
o O O O +H O O
o O 4 O O O — O
o -4 O O O +H O O



‘ a problem to think about (3)

the strand model of four state system ACTG




‘ a problem to think about (3)

the strand model of four state system ACTG with
transition matrix
/ a b c d \

h
e

a )

e [ g
h g |
d ¢ b

\
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