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Chapter 1

The algebra of classical symbols

1.1 Local definition of the algebra of symbols

Let X be a C*-manifold (not necessarily compact), and E a vector bundle on X. Consider a

coordinate patch
fu: u—X, UCcC R".

The cotangent bundle T*X — X pulls back to U

;U T*U T*X

1 ],

u U——-=X

The bundle T;U is defined as T*U \ U. There is an isomorphism

TiU —=Ux R} C R" xR}

!

Using it we can denote the coordinates on TjU by (u,¢), where u = (uy,...,u,) € Rfj, and

CG (61,...,§n) c R".

To each open set U we associate a section a! := Z;‘io a]-u, where each a]l.l is a section of
the bundle End(7* f;E), where

T f;E foE E
iU x

More precisely by atl j we denote the homogeneous part of degree m — j
am_; € C®(TyU, End (7t fE)) (m — j).

There is a natural action of R on T; X given by ¢ - (u,¢) := (u,t¢). The infinitesimal action
is provided by the Euler field

E=) &g



The homogenity condition for ”%—j is given by a%_j(u, &) = t’”*jtzfnl_j(u, ).
The section a'! belongs to the product

o]

[1C™(T3U, End(7" fGE)) (m — j)
j=0

which has a natural structure of Frechet space. With the norm

& :=/EF+...82

we can write
e "a,; € C¥(TgU, End(7r" fiE)) (0) =~ C(S"U, End (7" f;E)),

where S*U is the cosphere bundle T;U/R*. © U. The cotangent bundle T*X — X is canon-
ically oriented and $*X is canonically oriented (even though we do not have the orientation
on X). Now S*U is a canonically oriented (21 — 1)-manifold and S*U ~ U x S"~ 1.

The sections a are given locally, so we need a compatibility condition. We need a com-
position law such that it will depend on all jets, not only on 1-jets as usual composition.

a o, bY: ZégauDl[f‘]bu
o

a=(aq,...,ay), o €N

1 1
= -3y, Dyl =-Di=
1 n©

|Tu

1

D,
" alilel

1

o
-
If aY is of order m, b of order m’ using the notation for classical symbols

CS"L}(U, E):= H(TSLI, End(rt*f[}E))(m —J)
j=0
we can write

ou: CSPH(U,E) x CS¥ (U, E) — CS"™ (U, E), m,m' € C.

Now suppose we have two open sets U, V € IR" such that the images of charts fi;: U — X,
fv: V — X have nonempty intersection f(U) N f(V). Denote

U = fR (fU) N f(V), V= FfA(FU)NF(V)),

fuvi=filofv: V - U.

For a smooth map f: X — Y there are induced maps

Tf:TC —TY, (Tf)s: (TX)x — (TY) 500,
TF:T'X = TY, (T (T'X)s — (TY) (o).

Assume that Tf is invertible
(TH ™ (TX) = (TY)}
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Define a maps

XXTX =Y xTY, (x,0)— (f(x),(Tf):(0)),
XxT'X =Y xTY, (x8)~ (f(x),(T)):'(©)).

Now comes the question, to what extend 4" and (T f)*a" agree? We have

V= (T*f)*(a" + (arbitrary high order correction terms))
T* f UV Z 1/1046

where

a1, &) = D[zx i ()/(Tfuv)é(é)wz:u’ o= (f o ) ()

(@) = £t o fu—julfy o fu)s
so j! vanishes up to second order at point u € U. The ,(u, &) are scalar valued functions
on coordinate charts. They do not depend on symbols, only on manifold.
In the whole notes we will be using a projective tensor product of topological vector

spaces desribed in the appendix (A).
The product

CS™(X,E) x CS™ (X, E) — CS™" (X, E)
of Frechet spaces is associative. Define the algebra of symbols as

CS(X,E): = | CS"(X,E).

meZ

Leta := {a'} fu: u—x- The topology on CS(X, E) is defined as follows. We say that the net
{a,} converges to a symbol a if for any m € C there exists Ag such that a, —a € CS"(X,E)
forall A > Ay.

The subalgebra CSO(X, E) is a Frechet algebra, and Ccs/ (X,E), j € Z, is a two sided
ideal in CS°(X, E).

Remark 1.1. The multiplication
CS"(X,E) @ CS(X,E) — CS(X,E)

is not continuous in both arguments.

1.2 Classical pseudodifferentials operators

Let A: CX(X,E) — C*®(X, E) be a pseudo differential operator. For a chart fi;: U — X there
is an operator

fiA: CE(U, fiE) — C™(U, fiE)
We can define it for ¢ € CZ°(U, f;E) as follows. First take (¢ o f; Bl F(supp ¢)» and then extend
by 0, apply A and pullback, as in the following diagram

C®(X,E) C*(X,E)

(fu)!T lffw

CE (U, fiiE) - C¥ (U, fE)

u
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Explicitly
(fiA)g / [ B, €)pa Y dE + (T ),

where B € C®(U x T*U, End(7t* f;E)) is called an amplitude,
Bu,u', &) ~ Zﬁm i(u, ', 8),

:Bm—j(ul u// tg) = tm_j,B(u/ u’, g)/

T is a smoothing operator

(Tg) () = /u K(u, 1) p(u) o,

and

\du| = |duy A~ ANduy,|, dE = |dEL A - AdE,|.

1
(277)"
By CL" (X, E) we denote the space of classical pseudo differential operators, and by CL},,, (X, E)
the subset of operators which take functions with compact support into functions with com-
pact support. For A € CL"(X,E) there is a decomposition A = Ay, + S into a proper
part Aoy and non proper smoothing part S. Define a Frechet space of arbitrary low order
operators by

L™(X,E):= (] CL™(X,E).
meZ

There is an isomorphism
CL"(X,E)/L™(X,E) = CS"(X,E).
Classical symbols have a product

CLoy (X, E) x CL’;fmp(X E) — CL’;%F’,” YX,E), mm eC.

We define the algebra of classical symbols as

CL(X,E):= | J CL™(X, E).

mez
The space of smoothing operators £%°(X, E) is defined as a kernel
LY(X,E) — CL(X,E) - CS(X,E)
and if X is closed it is isomorphic (non canonically) to the space of rapidly decaying matrices
L™ = {(aj)ij=1.0 | [a55] (i + )N — 0, asi+j — oo}.

This is the noncommutative orientation class of a closed manifold and index theorem is the
way to state that. Index measures to what extend this sequence is not split.
The map
CL(X,E)/L *(X,E) — CS(X,E)



is defined as follows. For a classical pseudo differential operator
A: CPX(X,E) —» C*(X,E)
we take the amplitude
B (u,u,2) ~ iﬁﬁj(u,u’, 0)
j=

and then define a € CS(X, E) by

u=u'"

at = (ez?zlaCiD“iﬁu) ‘

1.3 Statement of results

The main goal is to compute the Hochschild and cyclic homology of the algebra of symbols
CS(X). Let T; X = T*X \ X and Y* be the C*-bundle over the cosphere bundle S*X defined
as

YO i=T; X xg, C*

e
§*X
Theorem 1.2. There is a canonical isomorphism
2n—
HH, (CS(X)) ~ Hj "(Y9).

Regarding cyclic homology, consider on HC{*™(CS(X)) the filtration by the kernels of
the iterated S-map:

{0} =S8 C S C ... C S = HC,(CS(X)),
where t = [1] and S, := ker S1*" N HC, (CS(X)).
Theorem 1.3. The canonical map
I: HH,(CS(X)) — HC,.(CS(X))
is injective. In particular
HC,,(CS(X)) = gr; HC,(CS(X)) := Sgr/Sgr-1
is canonically isomorphic with

Ho (), r=0,1,....

1.4 Derivations of the de Rham algebra

Let O be a commutative k-algebra with unit, and k any commutative ring of coefficients. We
define

. . ° 1
o/k =NoQo ks

where Q)f, , can be defined in a three ways:



e Serre’s picture
Qp i = Ia/13,
where I := ker(0%? — O).

e Hochschild picture
Qp i = 092 /O™,

e Leibniz picture

. Olf| f€0) |
O/ Old(f +g) —df —dg, dc = 0 (c €K), d(fg) — fdg — ga)

The differential d: O — Q, /i 18 defined in those three pictures as follows
o frodaf mod I3 =(1®f—f®1) mod I3 (Serre’s picture),
o fr—daf mod O = (1® f— f®1) mod bO®? (Hochschild picture),
o f — df (Leibniz picture).

The derivation dp: O — [y C O ® O is universal in the sense that if we have an O-bimodule
M and a derivation §: O — M, then there exists a unique O-bimodule map ¢ such that the
following diagram commutes

M
5 A
ls
\
O—=1\/1%
N
I

Let Der (Q2*) = Der}' (Q2*) denote the algebra of degree m derivations, and

Der®( @ Der™ (Q)*).

meZ

If 7 is of degree p and { of degree g, then for 6 € Der™(Q)*) we have
S Ag) =3d(m) AL+ (=1)P"y AS(E).
5: QF — QP

Furthermore Der*® (Q)°*) is a super Lie algebra, that is the commutators satisfy the super Jacobi
identity
= [la, bl c] + (=)D [[p, ] a] + (=)0 ED e, a], ).

Denote 6, := 6|q,.

Proposition 1.4. The set Der" (Q)*) is naturally identified with the set of pairs (éo, 01), where
bo: O — Q"

is a k-linear derivation of O with values in ()",

sl — omt!



is a k-linear map such that
b1 (ftX) =0 (f) Ao+ f(sl (Dé)

and
S1(a)a — (—=1)" ad (a) =0,

that is the super commutator [61(«), a] = 0.

Any derivation of degree m is uniquelly determined by Jy and 1. Thus Der” (Q*) = 0
form < —1.
For 6p = 0 we have

1

P ,
S(far A Aap) =Y (=1 Dfag Ao NSy (@) A Ay
=1
Similarly for any ¢ € Homep(Q!, )"*1) there exists a corresponding derivation

(=)™ D fag A A(ai) A Aap.

M-

Il
—_

Op(far A=+~ Nap) 1=

1

Example 1.5. (The de Rham derivation) Let dy = d: O — Q. Now we will give a construc-
tion of d;: Q! — 2. Consider a k-linear pairing

Ox0O—0% (fg) v dfAdg

OxO——02 Ox0O 0?
| -~ | .-~
OO (O®r0)/1%

Now we can take a restriction to In/I3 C (O ®; 0)/I3. Recall that I consists of sums of
terms of the form

fodafi=fo(l1® i— fi®1)
=fo®fi—foi®l.

Similarly I3 consists of sums of terms of the form

fodafidafo=fo(l® fi— A®1)(A® fr— L ®1)
=fH(1® fifr+ i ®1—-fi® o — 2 ® f1)
=fo® fif2a+ fofife®1—fofi® fa— fofo® f1)

The last expression maps to

dfo Nd(fif2) +d(fof1f2) Ndl —d(fofr) Ndfz —d(fof2) Ndfi
=dfoN((df1)f2+ fidf2) — ((dfo) fr + fodf1) Ndfa — ((dfo) f2 + fodf2) ANdfa
= fzdfo A\ dfl + f] dfo A dfz — fldfO A dfz — defl A dfz — fzdfo A\ dfl — fodfz A dfl

= —fodfi Ndfa — fodfa Ndfy
=0.



Proposition 1.6. Any derivation 6 € Der}' (Q2*) can be uniquelly expressed as
[0p, d] 4 &y
for ¢ € Homp(Q!, ™), ¥ € Homp (Q!, Q"1

Example 1.7. (O-linear derivation) For m = —1 Der, L) = Derél(ﬂ‘) and by restriction
to Q!
Derél(ﬂ’) = Homp (O}, Q°).

If O = O(X), then Dery O = TX.

ol — 0

1.7

O
Suppose that J,¢" € Der}'(Q)®) are such that
S0 = 6lo = &0 = o).

Then
5 — 08 € Ders(Q)®) O — linear.

Suppose that we have a derivation D € Der}(Q®). Then for any ¢ € Homp(Q!, Q™)
thereisa éy € Ders 1 (Q®) and
[04, D] € Der™ (Q)*)

[0¢, D)o = 89D = ¢ o D = d(the de Rham derivation)
If there exists d; : Q! — ()%, k-linear and satisfying
di(fa) =df Na+ fda,

then there exists a derivation d € Der} (Q*).
There is a natural identification between O-modules

Der(O, ") <— Homp (O, Q™)

I

Ders 1(Q*)

Let 7 = ¢ od which on O is = [§¢, d]. Then 1, = &, is the interior product with derivation 7.
If m = —1 this is the classical product of differential forms with a given vector field. Define
a Lie derivative with respect to 5

Ly = [6g,d] = [1,d].

Then
[Ly,d] = [[zmd],d] = (—1)m’1dz,7d — (=1)"dw,d = 0.

Any derivation 6 is of the form 6 = £, + 1; where { = o d for some ¢ € Homp (Q!, Q"*1).
Consider a special ¢: Q! — Q™
pla) =g Aun
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for some ¢ € Q"1 Then
[6p,d](w) = ¢ Ndw — (=1)" pde A w
= pANdw — (=1)""de A deg.
A degree map deg is a derivation deg = diq, id: Q! — Q!, [6,4,d] = d.

Remark 1.8. To prove identities like § = ¢’, where 6, ¢’ are O-linear derivations on Q)°, it is
enough to prove it on dO C Q. For example, for vector fields there is an identity

[Ly,1g] = g, L] = 1.0

The expressions are O-linear, so we can check the equalities by evaluating on df, f € O.

For w € OO we have the formula

o

m=1
Bpr, dP(w) = { B2d(p Ag) Adw  ifmisodd # 1
( +p)pdp Ndp Aw if m is even.

For example if m = 1 ¢ is the contact 1-form on Al, that is Y7 &dx;.
w=Lzw = digw.
In case m = 0, for any function f € O let f - — denote the multiplication by the function f
[05._,d] = fd —df Ndeg, [01.—,d] = dgr.

Let#1,...,1, € Der(O) (vector fields if O = O(X)). Then there is a formula

[d by -1y, ] = Z (—1)1"11,71 ol e ey, Lyt (1.1)

1<i<p

itj-1 ~ o~
+ ) (-1 Uil =+ g o= gy o+ Ly
1<i<j<p

where deg iy, = —1foralli =1,..., p. Similarly

gy - tped) =Y (=D Ly, iy (1.2)

1<i<p

i ~  n
+ Z o S R T N T
1<izj<p

This is in analogy to the Cartan formula for w € Q7!

dw)(m,...mp) = Y, (1) Lywlm, ... i, mp)+ (1.3)
1<i<p
+ Y Dol e i )
1<i<j<j

11



1.5 Koszul-Chevalley complex

Let m be a g-module, where g is a Lie k-algebra This means that [,]: g ®, g — g satisfies
Jacobi identity, each ¢ € g acts as an endomorphism of a k-module m, and the map

g — glg(m) = Lie(Endg(m)), g — pg - action of g onm
is a homomorphism of Lie-k-algebras. We have
Plsg) = [0g1/ Pge]
and gl;(m) has the right g-module structure
pg(m) :=mg,

mg182 — MEr81 = (ﬁgzﬁgl _ﬁglﬁgz)(m) = [ﬁgzlﬁgl] = M[gz,gﬂ-

This shows that pg — gl(m) is an antihomomorphism of Lie algebras (it corresponds to the
fact that the inverse G — G, ¢ — ¢! corresponds to g — —g on g).

Definition 1.9. Koszul-Chevalley complex of a Lie k-algebra g with coefficients in m

C'(g/m) = m®A]:g/ 9: Cp(g/m) - Cerl(GIm)/

where
a(m®g1A~--/\gp)i= Z (—1)i_1gim®g1/\-~A§i/\-'-/\gp+
1<i<p
+ Y (DY 'me (g gl AgIAAGIA T AGIA A gy

1<i<j<p
C*(gm) == Alt*(g x ---x g,m), 6:Cp 1(g,m) — Cp(g,m),

where for v € Alt" (g x - - - x g, m) we define 5() € AltP(g x - -- x g, m) by

S(V)(@&1 - 8p) =Y, (=1 'giv(gr- -, & 8p)+

1<i<p

+ ) ( 1)+t (8, &, 811 8iv -1 8ir- -1 8p)-

1<i<j<p

In the next definition we use a relative Tor and Ext groups, which are the derived func-
torsin the sense of relative homological algebra ([?], [?]).

Definition 1.10. Lie algebra homology and cohomology with coefficients in a g-module m
H. (g;m) := H(C4(g,m),d) ~ Tor&@* (k, m),

H.(g;m) := H(C*(g,m), 8) = Bxtyy () 1 (k, m).

12



1.6 A relation between Hochschild and Lie algebra homology

Consider the following situation: A is an associative k-algebra with unit, M an A-bimodule.
Let Lie(A) = A as a k-module with commutator bracket [a,b] := ab — ba. Leta € A act on
m e Mby m — am —ma. Considerdy: A = A®A?,a— 1047 —a®1,

[daa,dpb] = —[1@aP, b1 -[a®1,10b°]|+[1®a7, 1007+ [a®1,b®1]
=0 =0
(because A ® 1 and 1 ® A°? commute in A)
=1® [a°?,bP] + [a,b] @ 1
=1®[b,a]’? —[ba]®1
= —dA [a, b}

Universal derivation is an antihomomorphism, so
—dp: Lie(A) — Lie(A ® AP)

is a homomorphism of Lie algebras.

In what follows we will use many arguments based on spectral sequences, and the nec-
essary basics of the theory is presented in appendix (B).

Let R = U(Lie(A)), S = A® A°?. Any bimodule N can be viewed as a left A ® A°P-
module. The base change spectral sequence takes the form

E2, = Tor)®A" (Tory ") (k, A @ A%%),N)

a-(bec?)=ab@c? —b®a’?c’? =ab® c? —b® (ca)’?
Assume that U/ (Lie(A)) is flat over k. Then

Torf®A” (Torly ) (k, A ® A°), N) =~ Tor/®A” (H,(Lie(A); A ® A%),N).

In our base change spectral sequence we get an edge homomorphism

H, (Lie(A); N) — Tor, ®4" (Ho(Lie(A); A® A7), N).

In general if g is a Lie algebra, and M a g-module, then Hy(g; M) = M, - the coinvariants of
the g-action. Thus we have a map from Lie algebra homology to Hochschild homology

H, (Lie(A); N) — Tor, ®*" (Ho(Lie(A); A ® A%?),N) = Tory“4" (A,N) = Hy(A; N).

A
When k is of characteristic 0, that map, up to a sign, is induced by inclusion

7: Ce(Lie(A); N) — Co(A; N)

n@ayA---Nay — Z (—1)11“'ll’n<g>al1 Q- Qa,,
Byl

where on the right hand side we have a sum over all permutations of the set {1,..., p}, and

l1...1, denotes the sign of a permutation.
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Proposition 1.11. The map 1 is a map of complexes, that is

by = -9,

where b is the Hochschild boundary, and 0 the boundary of the Koszul-Chevalley complex.
Proof. On the left hand side we have:

bﬂ(ﬂ@ﬂl/\"'

Nap) =

Z (—1)11"'1Pna11 K- ap
ol

+ Y Y COrhtThea e e, © 0

1<m<p-11,..1,

+ Z (—1)11"'lp+pﬂl,,n Ra, Q- ® ar,

14

P

[
i—1 l 1

— Z (—1) Z (=1 rna;@a, - @a,

1<i<p

Ii=i
(because il . .. lp =h...I,- (-1
- Z 112 pllan®a11®"'®alp71
1<i<p
l,,_l

(because Iy ... 1, i =1 ...1,_1 - (—1)P7)

+ (—1)m+mn®al®...®al a ®...®al
1 mbm41

1<m<p-11<i<j<p Iy..dp
lm=i, lm+1:j

+ (-t e @ @a e ®--@a
1 mbm+1

1<m<p-11<j<i<p  Ip.dp
l"l:jr lm+l:i
= Z (_1)i[aizn]®€l1/\-~-/\[z\i/\.../\ap

1<i<p

(because I . .. z,, : (—1)m =D Dytlpg2-- Ly - (=1)EDFG)

+ Z Z +(j-1) Z (_UW

1<m<p-11<i<j<p Iy..lp
lm:i/ lm+1:j
n@a,®---@a,a,. -4,
——
Eliﬂ]'
+ Z Z (_1)(i_1)+(j_1) Z (_1)ll~~-1m—llm+2-~~lp
1<m<p-11<j<i<p Iy..lp
lnz:jr lm+l:i
n®all ®"'®alm’llm+1®"'®alp
N——
ajai
= 17< Z (=D'fajn]@ay A---Na; A--- Nap
1<i<p
1+ +1 -~ -~
+ ) j al,a]-]/\al/\---/\ui/\-"/\a]-/\---/\ap>
1<z<]<p

=-nd(n@ayA---Nay).
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1.7 Poisson trace

Consider the Lie algebra of derivations Der O = Der; O. The algebra O is always a Der O-
module via the natural representation. Let ¢ € QF, /¢ Then it defines an alternating O-p-
linear map

Der O x --- x DerO — O

p

(11, ) = @1, ) =gy el @ € Q= 0.

There is an O-linear map,

O° — Alty(Der O, 0) — Alt(Der O, O)
which transforms the de Rham differential d into ¢

de — 6(ty, - Ly @)

(Cartan’s picture of de Rham complex).
Let Q%! = ()", where 7 is such that Q" # 0, d: Q" — Q"+ identically 0. Then

C.(Der O; Q%) = 0% @ Af Dery O — QP @0 A% Dery O

where the last epimorphism is O-linearization and is an isomorphism if O is smooth algebra
of dimn.

Claim 1.12. The kernel of O-linearization is a subcomplex of Co(Der O; Q).
For v € Q%! = ("
VRN Al by ey, v € QTP =10,

The composition
C.(Der 0; 0" — O @0 Al Dery O

is the map of complexes. It suffices to apply the formula for [d, iy, ... 1;,] only to n-forms.
(Co(Der 0, 0%, 9) — (Q,d)

(Spencer’s picture of de Rham complex).
Now we fix the volume form v, and denote

Dery O, := {derivations annihilating v}.
There is an O-module morphism
O — Q" fisfu,
C.(Der O,,0) — Co(Der 0,0 — Q,

("Divergentless vector fields”).
Suppose that O = O(X), where X is a symplectic manifold of dimension 21, w € O? is
closed and nondegenerate.
w: Der©O — Ql, = yw

is injective. Furthermore w" € O and we can take v = w".

15



Define Ham(X, w) C Dery O, as

Ham(X, w) := {1 € Der Oy | Lyw = 0}.
Define Poiss(X, w) as an algebra O with the Poisson bracket

{f, 8} = Ln,g = w(Hy, Hy) = 1ty th,w,
where Hy is the vector field characterized by

tHw = —df.
There is a homomorphism of Lie algebras
Poiss(X, w) — Ham(X, w),
and an O-linear map of complexes
Ce(Poiss(X, w),ad) — Co(Ham(X, w), w").

fo® ik Afp o fow" @ fin- A fp.

There is also a map
Co(Ham(X, w), w") — Q.

wan ®fl A /\fp — fOlel .. .Lprw”.

We have
EHf = [d, le]w =0.

Proposition 1.13. Forany f,g € O
Hyg = [Hy, H]
Proof. It is sufficient to prove the corresponding identity for contractions

LHy,Hg] = tHp gy

We have

i 1@ = Loy
= ﬁH(Lng) — LHg ﬁwa
~——
0
= _EHf(dg)
= _d(‘CHfg)
= —d{f, &}

= TlHy g
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There is a well defined map, called a Poisson trace
ptr,: (Ce(Poiss(X,w);ad),d) — (Q.,d).

Let Y be a symplectic manifold, dimY = 2n, with a symplectic 2-form w. Then we have a
canonical morphism of chain complexes

ptr: Co(Poiss(Y, w);ad) — Q. (Y),
where (), (Y) = QdmY=q(Y), given by
fO ®fl NAeee /\fq — folel . ..leann.

An important special case is when Y is a symplectic cone, i.e. Y is acted upon by R*.. Let &
be the corresponding Euler field (the image of t%). We have t*w = tw or equivalently

Lzw = w.

1.7.1 Graded Poisson trace

We consider the graded algebra of functions on Y
0. := P O(m),
meZ
where
O(m) :={f € O Lef =mf}.
Then the Poisson bracket {-, -} agrees with the grading in the following way
{01), O(m)} CO(I4+m—1).

Let
Pri=0(+1), P.:=EPP
leZ
be the graded Lie algebra when equipped with the Poisson bracket {-, -}. The map f — Hy
is a homomorphism of Lie algebras O — P = Poiss(Y, w), and furthermore

To check this identity one computes
g H)w = [La, t]w = —deg(f)df +df = (1 —deg(f))df = (deg(f) — 1)Hy
because 1, w = —df. Thus there is a graded Poisson trace
ptr,: Ce(P.,ad) — Qee(Y)
ptr,: @ (P.,ad) — Qujern(Y),

keZ

where
cP(p,,ad) = (P. @ ATP.) (k + q)

and 0 preserves k. Explicitely we have
EE(fOlel . leqwn) = (lo =+ (ll — 1) 4+ ...+ (lq — 1) + m)fOlel A [qua)n

= ((lo +...+ lq) +n— q)folHﬁ .. .tquw”,
(Pe @ ATP) (1) — Qy(l — q)

17



1.8 Hochschild homology

Let C,(CS(X)) be the completed Hochschild complex of CS(X). Define
Ca" 1= Cu(CS(X))/ Fu1 Ca(CS(X)),

where F,,_1C.(CS(X)) is the filtration induced by order. Then

Ci= lim C™, jeN

m——oco |

m

The complexes Cq’ inherit filtration from C,

{0} = F 1 C™ c FuC™ ...

where

F O {ng.(CS(X))/Fm_lc.(CS(X)) forp>m—1, 14

forp <m-—1.

We have

(m) _ 1 (m) ;
C]. _;}g{}oppf’ meZ,jecN.

(m

Let HH" denote the homology of C, ) and HH, the homology of C,. Our first objective

will be to find HH{" .
There is a Milnor short exact sequence

0 — lim' H 1 (C{"™) — HH,(CS(X)) — limH,(C{") — 0.

If the system {H, 1 (Cﬁm> )} oo satisfies the Mittag-Leffler condition, then lim' vanishes.
Suppose {V) } is an inverse system of sets (k-modules). It satisfies Mittag-Leffler condi-

tion if for all A the system of subsets (im(V},, — V})) for u > A stabilizes. The inverse system

{V3} can be treated as a sheaf V over the indexing set A with partial order topology. Then

lim”{V,} = H?(A, V),
and in particular im{V)} = T'(A, V).

Theorem 1.14 (Emmanouil). For A = w - the first infinite ordinal, the inverse system of vector
spaces { V) } is Mittag-Leffler if and only if one of the following conditions is satisfied

liml{V;L ®k W} =0, for all vector spaces W over k, (1.5)

lim' {V @ W} = 0, for some infinite dimensional vector space W over k. (1.6)

Recall that T; X = T*X \ X and Y* is the C*-bundle over the cosphere bundle 5*X defined
as
Y =T X xg, C*

e

S*X

18



Consider the eigenspace of the action of the Euler field & = Y} ; ¢;9¢; on Tj X
O (T3 X) (m) © Qe (T3 X)

tp =ty
Then
O (TsX) :== P Q*(T; X) (m)
me#Z

is a bigraded algebra whose cohomology is naturally isomorphic with H*(Y¢). We denote it
by Hip(Y*).

There is a spectral sequence 'EQY o

" converging to HH, "’ which is associated with the

filtration (1.4) of CS’“). Its complete description is provided in the following proposition.
Proposition 1.15. Assume m < —dim X = —n. Then

a) the second term of a spectral sequence ' E7 which is associated with the filtration on ci™

which is induced by the order filtration as in (1.4) is given by

H .7 (Y9) g=n
IE;ZZ)’Z ~ an—m—q(n B q)/dQZn—l—m—q(n B q) p=m
0 otherwise
b) the spectral sequence’ E{m” degenerates at ' E2

c) the identification in a) are compatible with the spectral sequence morphisms induced by the
canonical spectral sequence projections

ch _, cm

forl < m.

q=n
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Corollary 1.16. The inverse system of the homology groups {HH,(;") Ymez._, satisfies Mittag-Leffler
condition, in fact
(lhm) (I,m)
HH,"" = HH,?

forany Iy <lp < m < —n, where HHél’m) = im(HHél) - HHS”)).

Proof. From the proposition (1.15) we obtain a commutative diagrams whose rows are exact.

Q¥ P (n+m—p) (m) 2n—p
dQ?"=1-P (n+m—p) HP HdR (Yc)
O ‘

0P (n+1-p) (n) 2m—p
dQ? =17 (n+1—p) HP HdR (Y)

O

Consider a spectral sequence with 'E), being the p-th component of the graded complex
gr' (CS(X)).

p+q=0

Taking homology with respect to the differential d),: 'E), —' Egl.fl we obtain

,E;)q = HHp+q(O- (X)) (p),

calculated in terms of differential forms.
If O is a smooth algebra, there is a map of complexes

(C.,b) — (Q°,0)
fo® @ f; — fodfi A--- Adf,.

But instead of this map we take

1)
f0®...®fq — %fOlel ...Lquw”.
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We can compose the two maps
(Ce(Lie(CS(X))),0) — (Co(CS(X)), b) — (Qes, d).

The first map \,,,/

n:ag@ay N - — Z l1 lqa0®a11®"'®alq/

is a map of complexes, while the second one is a map of complexes only if 4 = 0. But the
composition is still a map of complexes.

We identified 'Ejy"! with Q% 7~ (n — g) for p > m and d* with dag.

To demonstrate that the spectral sequence degenerates at 'E, one has to show that the
only possibly nontrivial differentials

(m), (m),p— (m),p
dpnpm /E " Emn+pm1

all vanish. This is a consequence of the commutativity of the diagram

(- 40" o)
yo(m),p—m yplim),p—m
Epn - Em,n+p—m—1

forl < m.
Now H, = HH,(CS(X)) is the homology of the projective limit lim C"™ . The projective
system C(") satisfies Mittag—Lefﬂer condition. The same holds for the projective systems of

homology groups {HH }meZ< , by corollary (1.16). Hence
. 2n—
HH; = lim HH[" ~ H/ (v°),
and we proved the theorem.
Theorem 1.17. There is a canonical isomorphism

HH, (CS(X)) =~ Hap " (Y).

1.9 Cyclic homology

We will use the Connes double complex B..(CS(X)). The maps I, B, S which involve
Hochschild and cyclic homology HH,, HC, are induced by morphism of filtered chain com-

plexes.
Ce(CS(X)) — Tot(Bee(CS(X))) — Tot(Bee (CS(X)))[2]

Lo

CS(X)®3 <L— CS(X)¥2 <2— CS(X)
b hl
CS(X)#2 <2— CS(X)
b

CS(X)
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The first column is a Hochschild complex C,(CS(X)). The rest is the same complex but
shifted diagonally by 1, so the total complex is shifted by 2.
Let us put

BET) = B../Fm_1B..,

where F,By; := F,C;_i. Much as we did before we consider the projective system of quotient
complexes

Tot B = Tot Bee/Eyy_1Bes, 1M — —o0.

Then we have

(m) _ 1ip F7)
By _r}g{}oPij, meZz,kl>0

and
By = lim BY, kI1>0,
m——00

where
F;EZ;) = Pkal/Fm—lBkl-
Let HC{™ denote the homology of Tot B\, and HC., the homology of Tot B,..

Proposition 1.18. Assume that m < 0 and q > 2n + 1. Then there exist isomorphisms

HCM ~ qr(Y€)  qgeven
1 H%(Y¢) g odd
m
q

compatible with the canonical maps HCE,'”/) — Hc!™ form' < m.

In particular, the systems {HC(’”)}MGZSO satisfy for g > 2n + 1 the Mittag-Leffler condi-
tion. This gives us a corollary.

Corollary 1.19. There are, for q > 2n + 1, natural isomorphisms

(4% YC
HC, ~ lim HC!" ~ dg}d( ) qeven
oo Hag (Y€) g odd

This corollary together with a theorem (1.17) imply the following theorem for cyclic ho-
mology of an algebra of symbols if dim Hjz (Y¢) < co.

Theorem 1.20. The canonical map
I: HH,(CS(X)) — HC,.(CS(X))
is injective. In particular
HC,,(CS(X)) = grP HC;(CS(X)) = Sgr/Sgr—1,  Sgr = ker S.7" NHC,(CS(X))
is canonically isomorphic with

H (), r=0,1,....
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With some more work we can prove the theorem without assumption of finite dimension
of Hjr(Y). Then one represents X as a union {J;c Xj, where each X; is compact (with
smooth or empty boundary) and X; C Int X; 1. Then the restriction maps CS(X) — CS(X;)
induce homomorphisms

6: HH,(CS(X)) — HH, := lim HH,(CS(X)), (1.7)
)

n: HC.(CS(X)) — HC, := lim HC, (CS(X)). (1.8)
]

For each g there is a commutative diagram

0 —

HH, (CS(X)) HH,

. lN

2n— . 2n—q
Hyg ’ lim; Hy *(Yf)

Notice that also the lower arrow is an isomorphism, since

Qf = lim O},
)

where O; denotes the corresponding graded algebra of functions on Y;. Since both projective
systems {Q2*} and {Hgg(Y)} satisfy Mittag-Leffler condition, we have that 6 in (1.7) is an
isomorphism.

The naturality of the Connes exact sequence gives us the commutative diagram

FITY I I~ S = 0 1773 I
HHq HCq HCq_z —— HHq_l

GqTN UqT ﬂqZT eqlTN

B I S B I
HH, —L~HC, —%~HC, , —2~HH, ; L~ ...

0

with a priori only the lower sequence being exact. The exactness of the upper sequence
follows from

1
lim HH, (CS(X;)) = 0, forallg € N,

which is a consequence of the finite-dimensionality of the groups HH;(CS(X;)) = HdR(Y]?).
Thus the “five lemma” and an easy inductive argument prove that 7 is an isomorphism and
B =0.

Now it remains to prove the proposition (1.18). The filtration {F, m |lp=mm+1,...}
on B
which converges to HC{™.

induces a filtration on Tot B{2’. Denote by E;f,’;)’r the associated spectral sequence

This spectral sequence is a priori located in the region {(p,q) | p > m, p+q > 0}. We
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shall see that E,(f;’) " for r > 1 vanishes in fact outside the region shown below

ie. E%)’r =0alsoif p+g>2nand p # 0.
Indeed, E%)’l is equal, for p > m, to

Hp14(Tot Bea (O)(p)) = HCp14(O) (p).

Actually, the first spectral sequence of the double complex B..(O)(p) degenerates at E>
yielding thus that

m), -1
EWOt ~ Qb (p) /dQl T (p), p=m, p#£0,

and

A 7
Eg ~ HIL(Y9), q>2n,

where 4 is the parity of g and Hjy = Hggg (Y9) @ Héllg (Y€). This implies the required location

of non-vanishing E %V and as a corollary gives

HCém) ~ E(()Zl)’l o~ HSQ(YC)

for g > 2n + 1. The isomorphisms are also compatible with the canonical mappings HCE{”/) —

HC™.
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1.9.1 Further analysis of spectral sequence

We will use the notation ’ E%)’r for the earlier spectral sequence converging to Hochschild

homology HH™.
First, let us consider the morphism of spectral sequences induced by S

(m),r
"Epg

(m),
Jsi-

yp(m),r
EWI*Z

For r=1 we have

E(m),l _ HCerq(O)(P)r 0= gr(CS(X)) = @peZ O(p) p > m
P 0 p<m
Then
(m),1
Epg
X
(m),1
Epg’a
is the corresponding component of the S-map on cyclic homology of graded algebra O.
Ifp=0
HC,,(0) =Q'oH o H L o,
where
QO° =0y, Hig:=H'(Q".
—k -
Q' (p) := O (p)/dY (p)
Forp #0
Q") pzm
HC,,(O = -
1a(O)(p) {0 o
p=-2 p=-1 p=20 p=1 p=2
I 1 o 1 . _ _ 1 - 1 -
O () <" -y~ eHeH e 0" (1) < 0"
) ) | L
o 1 o 1 o . - 1 o 1 _
Q<o () <o e R e H e <0 () = Q')

where for p = 0 we have
— q—2 q—4
gf? ©& H IR e HL e

—g-2 q—4
0 ®& 0 ® Hi

S
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Denote

g _ (O (p) p=o0
0 p<0

Corollary 1.21. There is an isomorphism of chain complexes

(Bl )~ (B0 @ (H2 e Hig @) [0],d)

and there is an exact sequence of complexes

Consider the second spectral sequence of the double complex but arranged according to
conventions of Cartan-Eilenberg’s book. Denote it by ;&,,, although it depends also on m.
The ,E2, looks as follows.

q—2
HdR

Zq 1 1q 1 EOq 1 Elq 1 EZq 1 E3q 1
m)Z
Zq 1 1q 1 —1 EZq 1

There is an isomorphism

except (p,q) = (0,9), (1, = 1), (1,q), (2,9)-
The term Eg;)’z appears twice, in ;&;, and ;,1&,,.
There are two cases:

g <n thenfor! = [1]+1

B B2 S E, S L S E? CHC, w(0)(-1) = 0

because g — 21 < 0.



The £l-term is the same as the £2-term:

q—1
HdR
0 0 0 EN;= By
0 0 0 0 0
_( )/2 _( ),2
0 0 0 0 Ey, Ey,

In &3 there are only two terms and the spectral sequence collapses at £ 4

q—1
HdR

-2

0 0O O 0 0 0 0
q-1 q—2
0 0O O 0 0 Hig Hig

q—1>n thenforl=n— [1]

(m)2 ~ =(m)2 ~ =(m)2 ~ ~ —=(m)2 =2l+q9-1
Eygr1 = B3y~ = Eggi1 = oo > Exyfgu 1 = Q 2+1)=0
because 2] +q —1 > 2n.
-1
Hi
0 0 0 0 0 EnMA EWA

Hg§3 H3§2 Hg-iR-l chlR Hn—l Hn72 Hn73

—(m),Z _(m)/z _(m)rz
—1,n
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6¢

0 0 H2n+2@H2n+l 0
0 0 H2n+1 ® HZn 0
0 0 HZn D H2n—1 0
0 0 HZn Hanl @ H2n73 0
0 HZn HZn—l H2n72 @ H2n74 0
H2n H2n71 H2n72 H2n73 D H2n75 0
n+2 0 0 0 HZn HZn—l Hn+5 Hn+4 Hn+3 Hn+2@Hn 0 0 0 0 0 0 0 0 0
n+1 0 0 [ g2l g2 oo gt ogetd g2 | HtleH™! 00 0 0 0 0 0 0 0 0
n 0 H2n HZn—l H2n72 H2n73 Hn+3 Hn+2 Hn+1 Hn@Hn—Z 0 0 0 0 0 0 0 0 0
n—1 0 0 0 0 0 0 0 0 Hn73@Hn75 0 Hn—Z Hn—3 Hn74 Hn—5 H3 HZ Hl HO
n—2 0 0 0 0 0 0 0 0 Hn—4@Hn—6 0 Hn73 Hn74 Hn75 Hn76 H2 Hl HO 0
0 0 0 0 0 0 0 0 Hn75@Hn77 0 Hn74 Hn—5 Hn—é Hn—7 Hl HO 0 0
0o 0 0 H*eH 0 ®® ©* H' H°
0 0 0 H! 0 H> H' H O
0 0 0 H° 0 H' H° 0 0
0 0 0 0 0 H° 0 0 0
0 0 0 0 0 O 0 0 0
—n—1 —n —4 -3 -2 -1 0 1 2 3 4 n—1 n



1.9.2 Higher differentials

Forr =1,2,... the differentials in the spectral sequence are as follows

p
Let E}, be a spectral sequence such that each Ej, (for r > r¢) is a finite dimensional vector
space. Let R be a region in the (p, g)-plane which contains finitely many boxes. Then

Z dim Ej,, > Z dlmEerl > ... > Z dim Eg,
(pa)ER (pa)ER (pa)ER
The equality holds if and only if there is no nontrivial differential originating or leaving R,
that is the equality
Y, dimE,, = ) dimEj
(pa)eR (pa)ER
is another way of saying that the spectral sequence in region R degenerates at E".
In our spectral sequence

EW? — Hyyy(Tot Beo(CS(X))/ Fyu1 Tot Baa (CS(X)))
We claim that the only nonvanishing differentials d;q forr > 2 are
. p(m), 2
dgq- Ep’t? P - E(()TZ)-i-q—l

which inject ES;)’Z = E;’Z;) ~ H‘iR into E(() p)ﬂ7 -

We can define two regions R, R’ as follows.
[PICTURE]

Then
Z dim Er = Z dim E
(p7)ER (v g)€R

Suppose that ther is no nontrivial differential originating from R’ or nontrivial differential
hitting R and originating outside. Then

Z dimE;q Z dlmEr > Z d1mErJr1 Z dimE;qul
(pq)eR’ (pq)eR (pg)eR’ (p.g)€ER
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Equality holds if and only if all " inside R are zero, and then for all r > ry for some rg
Y dim Ep, - ) dim ELq = ) dim En — ) dim En
(pa)eR’ (pg)€R (pa)ER’ (pa)€R

We can write
Z dim qu Z dim qu Z dim qu) .

0<g<n 0<g<n p>0
For r > 2 let us introduce the following statements:
(A); The natural maps
Eip B
are isomorphisms for p > 0, r fixed.

(B); The differentials
o BT B
are injective.

(C); The differentials

. plm)r (m),r
dr W - Epfr,qurfl

are zero for p > r.

We prove them by induction on 7, simultaneously

(B)2 (B)s

yd
(A)2 (B)2 A (C)2 == (A)3
N\ N\

(C2) (C)3

and so on. Furthermore let us introduce two more sequences of statements:

(D), Forp >m
dpg = h}n Dy
(E), Forp >m
ET = Hm ES (V).
j

These are also proved by induction on r in the following way. The (E), implies (D), and (E),
and (D), together with the condition that {E%)’r<Yj '} {E;(,'Z;)’r+1 (Y1)} satisfy Mittag-Leffler
condition, imply (E),1.

The (A), statement follows from the following remark. Suppose Hy (Y¢) = 0 for k > n
and that dim Hj (Y¢) < co. Then

2n—2 (m)2 (m) 2n—2
Z dimEOj “— Z dlmqu Z dim HC;(CSy).
j=0 p>04 j=0

The maps ‘ '
Hlp (Y6) — H (V)

are isomorphisms for j < k, monomorphism for j = k, zero for j > k + 1.

31



Appendix A

Topological tensor products

Let (E, {pa}taca), (F, {95} pcp) be vector spaces with the sytems of seminorms {pa faca, {95} peB
respectively. Define a system of seminorms on E ® F by

(Pa ®qp)(T) :=inf ) _ pa(e)qp(fi), (A1)

1€]
where infimum is taken over all representations T = ) ;c; ¢; ® f;, in which I is a finite set.

Definition A.1. A locally convex space E @ F with topology induced by the system of seminorms
{pa® Clﬁ}(a,@e AxB 1s calles a projective tensor product and denoted by E ® F. Its completion is
denoted by EQ - F.

A bilinear map
¢ZEXF—>E®NF/ (E,f)'—>€®f,

is continuous in both variables and has the following universal property.

Fact A.2. For every bilinear jointly continuous mapping f: E x F — W into locally convex space W
there exists unique continuous linear map Ly: E®F — W such that following diagram commutes.

ExF ! W

7
Ve
x //LlP

E®,F

Remark A.3. There are also different tensor products on topological vector spaces, like injec-
tive and inductive tensor products, but we will not describe them here.

Suppose that E' = | J,,,cz E;,, where
...CE, ,CE,C...

is a Z-filtration of E’ by locally convex closed vector subspaces of E’, and analogously for
the space E”. Then define

E®E = lim E|&E).
(ll,lz)EZXZ 1 2
If for any m there is a continuous projections E;, — E; ,, E;, — E] _,, then the space

E{1®HE{; is a closed subspace in E;,, @nE;’Q for any my > Iy, mp > Iy.
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Define a Z-filtration on E'®QE"

(EQE")w:= |J Ei ®EL.

(I1.1p)€ZX7Z.
h+lh<m

In similar way we define E D& ... REP) with Z-filtration

EVG. GEP), = ) E 8.

(I lp)eZP
l1+...+lp§m
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Appendix B

Spectral sequences

Lecture given by prof. Wodzicki on October 2004 in Warsaw,
with remarks added in November 2006.

B.1 Spectral sequence of a filtered complex
Let (C,, F, 9) be a filtered chain complex, that is
... CFCy CFpiCe C ... C C.
We say that the filtration is
1. separableif (), F,C, = {0},
2. complete if C, = limp Cn/Fan,

3. cocomplete if  J, F,Cy = Cy,

foralln € Z.

We define EY, := grf C, (the associated graded complex), where qu = F,Cpig/Fp1Cpiy,
and d?, is the boundary operator induced by 9, dgq: qu — ES, -1 Thus (EY,,dY,) is the di-
rect sum of complexes

(E(o)o/ d?o) = @(Ego/ d?}o)
peZ

Next we define
E,, == Hy(Ep., dy,)
- {C € chp+q | dc € Pp—lcp+q—1}
{c € F,Cpyg|c=0bforsomeb € F,Cpiyi1}
_ Zp+FpiCpiyg
' Bplaq + Fp_1cp+q '

mod F, 1Cpyy

On E}?q the boundary operator d induces a boundary operator d}gq : E}?q — E! | and soon...

p—14
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Define forr =1,2,...

P {c € F,Cpiy|c=0bforsomeb € Fp, 1Cpigi1}
_ gt E1Cpg
B}, + Fy-1Cpig

mod F, 1Cp4y

r? fcp+q 1 FP rCP+'i FP pr+q+1

Fya Cp\l C\Cp+q+l

FpCpiq- 1<—FCP+6/<—FP pHq+l

0 90
pHCle Cp+q p+1cp+q+1

Fp—l—GCJrq 1 <— Fp+rcp+q Fp+rcp+q+l

ad a9
Cp+q—1 <~ Cp+q -~ Cp+q+1

Now E;, equipped with the boundary operator induced by d becomes a direct sum of
complexes

p+r q—r+1 Er

r r
'(_Ep rg+r—1 E pHrg—r+1 ey

EI’

r
p—r.q+r—1 E

gired
\ )

Ei’

r
p+r,g—r+1 E

p+r+l,g—r+1

dr

which we can denote by (E” bterq—e(r—1))"

pterq—e(r—1)/
to the homology of the complex (E’

Now ErH is canonically isomorphic

p+er,g—e(r—1)’ d]ﬂ+or,q70(r—1)) at the E;q
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For each (p, q) we defined a system of subobjects of F,C;4:

R0 1
{0y =BY CBL C...CB, C..
gUB;EI = By € Zpg ::ﬂZ;qg

T r

r 1 0 _
. CZh, C...CZL CZ5 =FCpig

such that
Epg = Zpg/ By mod Fy_1Cpy.

Morphism ¢: (C,, F,9) — ('C,,/ F, 9) of filtered complexes induces a morphism
E..(¢): E,, =" El,,r >0,
of corresponding spectral sequences.

Theorem B.1 (Eilenberg-Moore). If E,,(¢) is an isomorphism for some r and both filtrations are
complete and cocomplete, then ¢ is a quasi-isomorphism.

We say that the spectral sequence E/,, converges to filtered module M if
E;?? ~ FpMerq/Fp—lMerql P, q cZ.

We write then E;q = Mpy.

If the filtration is locally bounded from below (i.e. F,C, = {0} for p < 0) and cocom-
plete, then E[, converges to H.(C,,d). The homology of a complex (C,,9) is equipped with
canonical filtration

F, H.,(C.,d) := im(H,(F,C.,d) — H.(C.,d)).

We say that the spectral sequence E/,, degenerates (or collapses) at E° if E;, ~ E;.
Consider the r-th term E, of the spectral sequence.

14
The source term E},; is mapped to the rightmost one E,, . There is a sequence of maps
r r+1
qu — qu e EZZ — Hp+q(c)/

and similarly
0 r+1 r
th;,.q'(C) — Ep/q/ —_ e Ep/q, — Ep/q/.

These maps are called the edge homomorphisms. For the first quadrant spectral sequence
they correspond to maps from leftmost column p = 0

E6q - Hq(C),

and to bottom row g =0
H,(C) — Ejo.
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B.2 Examples

Example B.2. Two spectral sequences associated with the double complex (C,,, 0, 9").

al
e Cpoigr1 =—Cpgr1 =—— Cpprg41 ~— -
a// al/ a/l

o o
s Cpflfq CPq CPH/‘I -~

a// a// a//

/
o< Cp—l,q—l -~ Cp,q—l <~ CP+1/’1_1 <~ ..

Recall that
8/2 — a//Z -0 [a/ a//] — a/a// + a//a/ =0

and the total complex is defined by

-1
(TotC)pi= [] Cpnp®ECpnyp, 9:=0"+09".

p=—00
° °
Con i
o Cipa ° ° °
° ° Con-2 ° °
° ° ° Cho11 o
° ° ° ° Cuo

There are two filtrations on Tot C:

1. filtration by columns

/Fp (TOt C)n = H Cr’n_r

r<p
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Con @ ° °
o Cin ° ° ° ° °
° o (Cuo ° ° ° °
° ° ° Conp ° ° °
° ° ° ° Coiinp1 ° °
° ° ° ° ° Cho11 @
° ° ° ° ° ° Cuo
p

2. filtration by rows
//Fp (TOt C)n = @ Cn_s’S

p<s

° ° ° °

Co,n ° ° °
o Cy,1 ° ° ° ° °
° o (Cono ° ° ° °
° ° ° Cupyp ° ° °

p p

° ° ° ° Cop-1pt1 ° °
° ° ° ° ° Cho11 @
° ° ° ° ° ° Cuo

Filtration by rows is complete and cocomplete only if for all n € Z Cp; # 0 for only finite
number of p,q such that p + g = n. Filtration by columns is always complete and cocom-
plete.

There are two spectral sequences associated to double complex (Cae,d’,0").

1. First spectral sequence associated to the filtration by columns
'Epy = Hy(Cpa, d").
It converges to Hy4(Cee) := Hp14(Tot(Css)) if Cp i p = 0 for p < 0 (n € Z).
2. Second spectral sequence associated to the filtration by rows
1
"E,q = Hy(Cop, d").
It converges to Hy4(Cee) if Cppp = 0for p < Oand p > 0 (n € Z).

Example B.3. Double complex B(A).. (Connes double complex). Let A be the associative
algebra with unit.
A®@—-p+l) i g>p>0,

B(A),; =
( )p 1 {O otherwise.
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Here b is the Hochschild boundary operator and B is defined as
B:=(1—1)sN,
where

s(a® - @ay) =10a @ - ay
Hag® - ®ap) == (-1)"®@ag @ - ®ayq
N(ag®---®ay) = (id+t+...+t" (@ - Qay)

Example B.4. Double complex D(A)... Here A is commutative k-algebra with unit.

QP ifg>p>0,

D(A)y,, := Alk
( )pq {0 otherwise.

If A= A®zQ (ie. the additive group (A, +) is uniquely divisible), then the formula

1
g -+ - ®ay) = anduo/\---/\dun

induces a morphism of double complexes yi: B(A)ee — D(A)ee.
On the level of spectral sequences associated with the filtration by columns we obtain
surjective maps
E'(pg)(p): A7) — QR

These maps are isomorphisms if A is a function algebra on the smooth algebraic variety over
a perfect field (i.e. of characteristic 0 or such that k” = k if char(k) = p), or iductive limit of
such (for example A = C as Q-algebra).

39



The first spectral sequence of a double complex (D(A)..,0,d) = P qZO(QZX P L. 4

A) degenerates at the term E2:

N

d
OF /dQ) . <—Har' (A) <— Hgr’(A)
0 ol
Q}A/k/dA 4 Har’(A)

0

A

Thus the first spectral sequence of the double complex (B(A).., b, B) also degenerates at the
term E2, and we get an isomorphism

HC,(A) :=H,(B(A)ee) = Q4 1/d L & Har" 2 (A) @ Har" *(A) @ ...

Example B.5. Let P, be a projective resolution of a right R-module M, and Q. a projective
resolution of a left R-module N. Consider the double complex P, ®r Q.. Then

/EZ _ HP(P°®RN) qZO,
Pq 0 q#o

//E2 — HP(M ®R Q‘) q = O/
pq 0 q £0

Both spectral sequences converge to Hy (P ®r Q.) =: Torﬁ +4(M, N), so we get an impor-
tant canonical isomorphisms

H, (P. @g N) ~ Tory (M, N) ~ H,(M &g Q.).

They express the fact that the bifunctor ®z: Mod — R x R — Mod — Ab is balanced.

Example B.6. Two hiperhomology spectral sequences. A Cartan-Eilenberg resolution of a
complex (C,, 9) is a double complex (P..,d’,9") with augmentation 77: Poog — C, satisfying
the following conditions:

1. for all p, q the modules Pp;, im 9, ker o,

pq’ pq’ Hp(P.q, a/) are projective,

2. the augmented complexes

Py, imay, ker d,, Hp(Pyy, 9")
| I |
Cp imad, kerd, H,(C,,0)
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are projective resolutions.

2 01
B —— Pp_]_,q szq PP+1,11 - ...

! ! A
o, 9

p+1
Pp,q_l Pp+1’q_1 -~ ..

< Pp—l,q—l

% i1
& & &
a/ a/
r p+1
c<—— Py Py Ppi10<—---
U 1 U

ap ap+1

Cpin

e Cyy

Such resolution can be obtained from the arbitrary projective resolutions of Hy,(C,,d) and
imd,_1 by gluing them.

B
P;{«ffffpgﬁffxppfll, PP, <— — Ppo<———P2

| |
| Lo
l v l v
H,(Cp,0) <—kerdy <——ma, ; imd, <— C, <—kerd,

For an additive functor F the hiperhomology spectral sequences are the first and second
spectral sequences of a double complex (F(P.,), F(9"), F(9"))

'Epy = (LgF)(Cp),
2 _ p(pH
HEP‘I - F(qu)’
and
'Epg = Hy((LgF)(C)),
"E2 = (L,F)(H,(C.)).
Both spectral sequences converge to
Ly qF(Ca) i= Hypg(F(Pas).

if C, is bounded from below, thatis C,, = 0 for n < 0. B
Assume that C, = 0 for n < 0, C, is F-acyclic, that is (LoF)(Cy,) — Cy, (LyF)(Cy) = 0 for

p > 0, and that
M n=0
H,(C,) = ’
n(C) {0 n>0.
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Such complex is called an F-acyclic resolution of the module M. In that case

B2 - {pr(c.)) 7=0,

0 q#0,
//EZ ~ LPF(M) p= 0,
P00 p # 0.

Thus we obtain an isomorphism
H,(F(C,)) ~ (L,F)(M).

We proved a very important fact, that to compute (L,F)(M) it is enough to use an arbitrary
F-acyclic resolution of M.

Example B.7. Flat module is an F-acyclic module for F = (—) ®g N, where N is an arbitrary
left R-module. For R = Z flat modules are the torsion free abelian groups. Thus

0—Q/Z—Q«—Z 0

is a flat resolution of the group Q/Z (injective cogenerator of a category of abelian groups
ADb). From this we obtain

Tor?(Q/Z, A) = ker(A — A ®z Q) = Torsion(A).
Example B.8. Consider two composable additive functors
A% sLe,

where A, B, C are abelian categories. Let M be an object in A, P, its projective resolution. In
the hiperhomology spectral sequence we put C, = G(P,). Then if G sends projective objects
into F-acyclic objects

Hy((FoG)(P.)) = (Ly(Fo G))(M) q=0

’E@:=P%(UWFKG(R)DCX{O q#0
"Epy = (LyF o L;G)(M)

In this case we obtain that

"E2 = (LyFo LiG)(M) — (Lpsq(FoG))(M).

/E%q:E;Z:
(Lo(Fo G))(M)  (Li(FoG))(M)  ---  (Ly(FoG))(M)
P
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//EZ —

pq
(LoFo LyG)(M)  (LiFoL,G)(M) -+ (L,FoL,G)(M)
! (L()F o LlG)(M) (LlF o L1G)(M) cee (LPF o LlG)(M)
(LoF 0 LoG)(M)  (LiFoLoG)(M)  ---  (LyFoLoG)(M)
P

This spectral sequence is called a spectral sequence of a composition of functors.

Example B.9. Let ¢: R — S be a homomorphism of unital rings, M a right R-module, N a
left S-module. Consider a composition

(—)®rS Mod — S F=(-)®rN

Mod — R == Ab
The spectral sequence of a composition of these two functors (G sends projective R-modules

into projective S-modules) in looks as follows:

Ef,q = Torf;(Torf;(M,S),N) — Tork

p+q (Mr N)

and it is called a base change spectral sequence.

Suppose that R — S is a homomorphism of k-algebras, Mg, sN are respectively right R-
module and left S-module. Their tensor product M @ RN gives rise to a sequence of derived
functors TorR (M, N).

Suppose that P, —+ M is a projective R-module resolution of M, and Q. — N a projective
S-module resolution for N.

M®@g N « Py g Qe = (Pe @R S) ®5 Qe

Suppose F(-,-) is a functor with both covariant arguments.

LoF(- ) L EC, )
LYEC, ) LPF(,-)
L?F(-,-)

F ifg=0
0 ifg#0
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We say that it is left balanced if there are isomorphisms Lb{ll} o~ LL{Il’Z} o~ Lb{lz} .

RIF(-,-) =R, F(-,")

\
Ri F()
/

F(,)

{1} E(,)

F ifg=0
0 ifg#0

We say that it is right balanced if there are isomorphisms R/ = ~ R! = ~ R!

{12 {24

There is an isomorphism
Py @r N <= Pe @R Qo = (Po @R S) @5 Qa
Tory (M, S ®5 Qs) = Tory (M, S) ®s Q..
Taking homology we get
H, (Tors (M, S) @ Q.) ~ Tory (Tory (M, S), N),
and a base change spectral sequence

E%q = Torf,(Torf;(M,S),N) — TorR, (M, N).

p+q
The boundary maps (transgressions) of this spectral sequences are as follows:
E}, = Tor® (M, S) @5 N — Tork (M, N)
Tor® (M, N) — E2, = Tor;,(M® S, N)

Example B.10. For an unital k-algebra A let Lie(A) denote the associated Lie algebra with
bracket [a,a’] = aa’ — a’a. The universal derivation

dAZA—>A®kAOP, dA(ﬂ):l(X)ﬂop—ﬂ@l

is a homomorphism of Lie algebras Lie(A) — Lie(A ® A7), so it induces a homomorphism
of associative algebras R := U(Lie(A)) — A ®x A°? =: S. Let M = k (trivial representation
of a Lie algebra Lie(A)). The base change spectral sequence has the form

Eiq = Tor;‘&‘Aup (Tor,l,'I(Lie(A))(k,A ®r A?),N) = Torpf;e( Dk, N),

that is if A is flat over k then

E2, = Tory ™" (HL®(A; A @ AP),N) = Hbi

Lie (k).

Because k ®yj(rie(a)) (A ® A7) ~ A as a right A ® A°’-module, we have that the second
boundary map gives a canonical homomorphism

HL¢(A;N) — H,(A;N) ~ E2,.
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There is a homomorphism of standard chain complexes
(Ce(Lie(A);N),0) — (Co(A,N),b)

where
n

dn@ay A Aay) =Y (1) (an —na)) @ay A~ Nay A+ Aay
%,—/

i=1
—(daa)n

+ Y (D)n@a,alAay A NG NGA - Aay
1<i<j<n

In the special case N = A we obtain canonical homomorphism
HLY¢(A;ad) — HH, (A)

Example B.11. Hiper-Tor spectral sequences and Kiinneth spectral sequence. For a right R-
module M and a complex of left modules C, we define

TorX (M, C,) := H, (P, ®x C.)

where P, — M is a projective resolution of M. Then the first and second spectral sequence
of a bicomplex P, ®r C, are as follows:
'Ej, = P, ©r Hy(C)

'E;, = Tory (M,H,(C)) = Tor,,(M,C,)

p+q

and
"E,, = Torj (M, Cp)
NE%q _ Hp(TOI'tI;(M,C.)) ~ {HP<M ®rCe) =0
0 q#0

where the isomorphism for E%q holds if the complexes Torf; (M, C,) are acyclic for g > 0, for
example if C, are flat. Then we obtain a Kiinneth spectral sequence

E;, = Tory (M, Hy(C)) = Hpo(M®g C.)

if C, =0forn <« 0.
Example B.12. If a group G acts on semigroup S and its representation V, then G acts on
Bar-complex (B.(S;V),b’), where By(S; V) = (kS)“ @, V, and b’ is a standard boundary
operator. Then

Tor)“'(G, B«(S; V)) = HS(S; V)
are the equivariant homology of a semigroup S with coefficients in representation V. In an

analogous way one can define equivariant homology of a Lie algebra, Hochschild homology,
singular homology of a topological space etc.
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