Lectures on Homology of Symbols

Mariusz Wodzicki

Notes taken by Paweł Witkowski

December 2006

Contents

1	The	algebra of classical symbols	3
	1.1	Local definition of the algebra of symbols	3
	1.2	Classical pseudodifferentials operators	5
	1.3	Statement of results	7
	1.4	Derivations of the de Rham algebra	7
	1.5	Koszul-Chevalley complex	12
	1.6	A relation between Hochschild and Lie algebra homology	13
	1.7	Poisson trace	15
		1.7.1 Graded Poisson trace	17
	1.8	Hochschild homology	18
	1.9	Cyclic homology	21
		1.9.1 Further analysis of spectral sequence	25
		1.9.2 Higher differentials	30
A	Тор	ological tensor products	32
В	Spe	ctral sequences	34
	B.1	Spectral sequence of a filtered complex	34
	B.2	Examples	37

Chapter 1

The algebra of classical symbols

1.1 Local definition of the algebra of symbols

Let X be a C^{∞} -manifold (not necessarily compact), and E a vector bundle on X. Consider a coordinate patch

$$f_U: U \to X$$
, $U \subset \mathbb{R}^n$.

The cotangent bundle $T^*X \to X$ pulls back to U

$$T_0^* U \longrightarrow T^* U \longrightarrow T^* X$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$U = U \xrightarrow{f_U} X$$

The bundle T_0^*U is defined as $T^*U \setminus U$. There is an isomorphism

$$T_0^* U \xrightarrow{\simeq} U \times \mathbb{R}_0^n \subset \mathbb{R}^n \times \mathbb{R}_0^n$$

Using it we can denote the coordinates on T_0^*U by (u,ξ) , where $u=(u_1,\ldots,u_n)\in\mathbb{R}_0^n$, and $\xi\in(\xi_1,\ldots,\xi_n)\in\mathbb{R}^n$.

To each open set U we associate a section $a^U := \sum_{j=0}^{\infty} a_j^U$, where each a_j^U is a section of the bundle $\operatorname{End}(\pi^* f_U^* E)$, where

$$\pi^* f_U^* E \longrightarrow f_U^{\bullet} E \longrightarrow E$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$T_0^* U \stackrel{\pi}{\longrightarrow} U \stackrel{f_U}{\longrightarrow} X$$

More precisely by a_{m-j}^U we denote the homogeneous part of degree m-j

$$a_{m-j}^U \in C^{\infty}(T_0^*U, \operatorname{End}(\pi^* f_U^* E))(m-j).$$

There is a natural action of \mathbb{R}_+^* on T_0^*X given by $t\cdot(u,\xi):=(u,t\xi)$. The infinitesimal action is provided by the Euler field

$$\Xi = \sum_{i=1}^n \xi_i \partial_{\xi_i}.$$

The homogenity condition for a_{m-j}^U is given by $a_{m-j}^U(u,t\xi) = t^{m-j}a_{m-j}^U(u,\xi)$. The section a^U belongs to the product

$$\prod_{j=0}^{\infty} C^{\infty}(T_0^* U, \operatorname{End}(\pi^* f_U^* E))(m-j)$$

which has a natural structure of Frechet space. With the norm

$$|\xi| := \sqrt{\xi_1^2 + \dots \xi_n^2}$$

we can write

$$|\xi|^{j-m}a_{m-j}^U\in C^{\infty}(T_0^*U,\operatorname{End}(\pi^*f_U^*E))(0)\simeq C^{\infty}(S^*U,\operatorname{End}(\pi^*f_U^*E)),$$

where S^*U is the cosphere bundle $T_0^*U/\mathbb{R}_+^* \xrightarrow{\pi} U$. The cotangent bundle $T^*X \to X$ is canonically oriented and S^*X is canonically oriented (even though we do not have the orientation on X). Now S^*U is a canonically oriented (2n-1)-manifold and $S^*U \simeq U \times S^{n-1}$.

The sections a^U are given locally, so we need a compatibility condition. We need a composition law such that it will depend on all jets, not only on 1-jets as usual composition.

$$a^U \circ_u b^U \colon \sum_{\alpha} \delta^{\alpha}_{\xi} a^U D^{[\alpha]}_u b^U$$
 $lpha = (lpha_1, \dots, lpha_n), \quad lpha_i \in \mathbb{N}$ $D_{u_i} \coloneqq rac{1}{i} \partial_{u_i}, \quad D^{[lpha]}_u = rac{1}{lpha!} D^{lpha}_u = rac{1}{lpha!} \partial^{lpha}_u.$

If a^U is of order m, b^U of order m' using the notation for classical symbols

$$CS_U^m(U, E) := \prod_{j=0}^{\infty} (T_0^* U, End(\pi^* f_U^* E))(m - j)$$

we can write

$$\circ_u \colon \mathrm{CS}^m_U(U,E) \times \mathrm{CS}^{m'}_U(U,E) \to \mathrm{CS}^{m+m'}_U(U,E), \quad m,m' \in \mathbb{C}.$$

Now suppose we have two open sets $U, V \in \mathbb{R}^n$ such that the images of charts $f_U \colon U \to X$, $f_V \colon V \to X$ have nonempty intersection $f(U) \cap f(V)$. Denote

$$U' := f_U^{-1}(f(U) \cap f(V)), \quad V' := f_V^{-1}(f(U) \cap f(V)),$$

$$f_{UV} := f_U^{-1} \circ f_V \colon V' \to U'.$$

For a smooth map $f: X \to Y$ there are induced maps

$$Tf: TC \to TY, \quad (Tf)_x: (TX)_x \to (TY)_{f(x)},$$

 $Tf^*: T^*X \to T^*Y, \quad (Tf)_x^*: (T^*X)_x \leftarrow (T^*Y)_{f(x)}.$

Assume that Tf is invertible

$$((Tf)_x^*)^{-1} \colon (TX)_x^* \to (TY)_{f(x)}^*$$

Define a maps

$$X \times TX \to Y \times TY$$
, $(x,v) \mapsto (f(x),(Tf)_x(v))$, $X \times T^*X \to Y \times T^*Y$, $(x,\xi) \mapsto (f(x),((Tf)^*)_x^{-1}(\xi))$.

Now comes the question, to what extend a^V and $(T^*f)^*a^U$ agree? We have

$$a^V = (T^*f)^*(a^U + (\text{arbitrary high order correction terms}))$$

= $(T^*f_{UV})^*(\sum_{\alpha} \psi_{\alpha} \partial_{\xi}^{\alpha} a^U)$,

where

$$\begin{split} \psi_{\alpha}(u,\xi) &= D_{z}^{[\alpha]} e^{i\langle j_{u}^{>1}(z), (Tf_{UV})_{v}^{*}(\xi)\rangle} \Big|_{z=u, \, v=(f_{V}^{-1} \circ f_{U})(u)'} \\ &j_{u}^{>1}(z) = f_{V}^{-1} \circ f_{U} - j_{U}^{1}(f_{V}^{-1} \circ f_{U}), \end{split}$$

so $j_u^{>1}$ vanishes up to second order at point $u \in U$. The $\psi_{\alpha}(u,\xi)$ are scalar valued functions on coordinate charts. They do not depend on symbols, only on manifold.

In the whole notes we will be using a projective tensor product of topological vector spaces desribed in the appendix (A).

The product

$$CS^m(X, E) \times CS^{m'}(X, E) \rightarrow CS^{m+m'}(X, E)$$

of Frechet spaces is associative. Define the algebra of symbols as

$$CS(X, E)$$
: = $\bigcup_{m \in \mathbb{Z}} CS^m(X, E)$.

Let $a := \{a^U\}_{f_U: U \to X}$. The topology on CS(X, E) is defined as follows. We say that the net $\{a_{\lambda}\}$ converges to a symbol a if for any $m \in \mathbb{C}$ there exists λ_0 such that $a_{\lambda} - a \in CS^m(X, E)$ for all $\lambda \geq \lambda_0$.

The subalgebra $CS^0(X, E)$ is a Frechet algebra, and $CS^{-j}(X, E)$, $j \in \mathbb{Z}_+$ is a two sided ideal in $CS^0(X, E)$.

Remark 1.1. The multiplication

$$CS^m(X, E) \otimes CS(X, E) \rightarrow CS(X, E)$$

is not continuous in both arguments.

1.2 Classical pseudodifferentials operators

Let $A: C_c^{\infty}(X, E) \to C^{\infty}(X, E)$ be a pseudo differential operator. For a chart $f_U: U \to X$ there is an operator

$$f_U^{\sharp}A\colon C_c^{\infty}(U,f_U^*E)\to C^{\infty}(U,f_U^*E)$$

We can define it for $\varphi \in C_c^{\infty}(U, f_U^*E)$ as follows. First take $(\varphi \circ f_U^{-1})|_{f(\text{supp }\varphi)}$, and then extend by 0, apply A and pullback, as in the following diagram

$$C_{c}^{\infty}(X,E) \xrightarrow{A} C^{\infty}(X,E)$$

$$\downarrow^{f_{U}} \qquad \qquad \downarrow^{f_{U}^{*}}$$

$$C_{c}^{\infty}(U,f_{U}^{*}E) \xrightarrow{f_{U}^{\#}A} C^{\infty}(U,f_{U}^{*}E)$$

Explicitly

$$(f_U^{\#}A)\varphi(u) = \int_{\mathbb{R}^n_z} \int_U e^{i\langle u-u',\xi\rangle} \beta(u,u',\xi) \varphi(u') du' \bar{d}\xi + (T\varphi)(u),$$

where $\beta \in C^{\infty}(U \times T^*U, \operatorname{End}(\pi^* f_U^* E))$ is called an amplitude,

$$\beta(u,u',\xi) \sim \sum_{j=0}^{\infty} \beta_{m-j}(u,u',\xi),$$

$$\beta_{m-j}(u, u', t\xi) = t^{m-j}\beta(u, u', \xi),$$

T is a smoothing operator

$$(T\phi)(u) = \int_{U} K(u, u') \varphi(u') |du'|,$$

and

$$|du| = |du_1 \wedge \cdots \wedge du_n|, \quad \bar{d}\xi = \frac{1}{(2\pi)^n} |d\xi_1 \wedge \cdots \wedge d\xi_n|.$$

By $\mathrm{CL}^m(X,E)$ we denote the space of classical pseudo differential operators, and by $\mathrm{CL}^m_{prop}(X,E)$ the subset of operators which take functions with compact support into functions with compact support. For $A \in \mathrm{CL}^m(X,E)$ there is a decomposition $A = A_{prop} + S$ into a proper part A_{prop} and non proper smoothing part S. Define a Frechet space of arbitrary low order operators by

$$L^{-\infty}(X,E) := \bigcap_{m \in \mathbb{Z}} CL^m(X,E).$$

There is an isomorphism

$$CL^m(X, E)/L^{-\infty}(X, E) \xrightarrow{\simeq} CS^m(X, E).$$

Classical symbols have a product

$$\operatorname{CL}^m_{prop}(X,E) \times \operatorname{CL}^{m'}_{prop}(X,E) \to \operatorname{CL}^{m+m'-1}_{prop}(X,E), \quad m,m' \in \mathbb{C}.$$

We define the algebra of classical symbols as

$$CL(X, E) := \bigcup_{m \in \mathbb{Z}} CL^m(X, E).$$

The space of smoothing operators $\mathcal{L}^{\infty}(X, E)$ is defined as a kernel

$$\mathcal{L}^{\infty}(X,E) \rightarrow \mathrm{CL}(X,E) \rightarrow \mathrm{CS}(X,E)$$

and if X is closed it is isomorphic (non canonically) to the space of rapidly decaying matrices

$$L^{-\infty} = \{(a_{ij})_{i,j=1...,\infty} \mid |a_{ij}|(i+j)^N \to 0, \text{ as } i+j \to \infty\}.$$

This is the noncommutative orientation class of a closed manifold and index theorem is the way to state that. Index measures to what extend this sequence is not split.

The map

$$CL(X,E)/L^{-\infty}(X,E) \to CS(X,E)$$

is defined as follows. For a classical pseudo differential operator

$$A: C_c^{\infty}(X, E) \to C^{\infty}(X, E)$$

we take the amplitude

$$\beta^{U}(u,u',\xi) \sim \sum_{i=0}^{\infty} \beta^{U}_{m-j}(u,u',\xi)$$

and then define $a^U \in CS(X, E)$ by

$$a^{U}:=\left(e^{\sum_{i=1}^{n}\partial_{\xi_{i}}D_{u_{i}}\beta^{U}}\right)\big|_{u=u'}.$$

1.3 Statement of results

The main goal is to compute the Hochschild and cyclic homology of the algebra of symbols CS(X). Let $T_0^*X = T^*X \setminus X$ and Y^c be the \mathbb{C}^* -bundle over the cosphere bundle S^*X defined as

$$Y^c := T_0^* X \times_{\mathbb{R}_+} \mathbb{C}^*$$

$$\downarrow^{\mathbb{C}^*}$$
 $S^* X$

Theorem 1.2. There is a canonical isomorphism

$$HH_q(CS(X)) \simeq H_{dR}^{2n-q}(Y^c).$$

Regarding cyclic homology, consider on $HC_q^{cont}(CS(X))$ the filtration by the kernels of the iterated *S*-map:

$$\{0\} = \mathcal{S}_{q0} \subset \mathcal{S}_{q1} \subset \ldots \subset \mathcal{S}_{qt} = \mathrm{HC}_q(\mathrm{CS}(X)),$$

where $t = \begin{bmatrix} \frac{q}{2} \end{bmatrix}$ and $S_{qr} := \ker S^{1+r}_* \cap \operatorname{HC}_q(\operatorname{CS}(X))$.

Theorem 1.3. *The canonical map*

$$I: HH_{\bullet}(CS(X)) \to HC_{\bullet}(CS(X))$$

is injective. In particular

$$HC_{\mathit{qr}}(CS(\mathit{X})) = \mathsf{gr}^{S}_{\mathit{r}} \, HC_{\mathit{q}}(CS(\mathit{X})) := \mathcal{S}_{\mathit{qr}}/\mathcal{S}_{\mathit{q,r-1}}$$

is canonically isomorphic with

$$H_{dR}^{2n-q+2r}(Y^c), \quad r=0,1,\ldots.$$

1.4 Derivations of the de Rham algebra

Let \mathcal{O} be a commutative k-algebra with unit, and k any commutative ring of coefficients. We define

$$\Omega^{ullet}_{\mathcal{O}/k} := \Lambda^{ullet}_{\mathcal{O}} \Omega^1_{\mathcal{O}/k'}$$

where $\Omega^1_{\mathcal{O}/k}$ can be defined in a three ways:

• Serre's picture

$$\Omega^1_{\mathcal{O}/k} := I_{\Delta}/I_{\Delta}^2$$

where $I_{\Delta} := \ker(\mathcal{O}^{\otimes 2} \to \mathcal{O})$.

Hochschild picture

$$\Omega^1_{\mathcal{O}/k} := \mathcal{O}^{\otimes 2}/b\mathcal{O}^{\otimes 3}.$$

• Leibniz picture

$$\Omega^1_{\mathcal{O}/k} := \frac{\mathcal{O}\langle df \mid f \in \mathcal{O}\rangle}{\mathcal{O}\langle d(f+g) - df - dg, \ dc = 0 \ (c \in k), \ d(fg) - fdg - gdf\rangle}.$$

The differential $d \colon \mathcal{O} \to \Omega^1_{\mathcal{O}/k}$ is defined in those three pictures as follows

- $f \mapsto d_{\Delta}f \mod I_{\Delta}^2 = (1 \otimes f f \otimes 1) \mod I_{\Delta}^2$ (Serre's picture),
- $f \mapsto d_{\Delta}f \mod b\mathcal{O}^{\otimes 3} = (1 \otimes f f \otimes 1) \mod b\mathcal{O}^{\otimes 3}$ (Hochschild picture),
- $f \mapsto df$ (Leibniz picture).

The derivation $d_{\Delta} \colon \mathcal{O} \to I_{\Delta} \subset \mathcal{O} \otimes \mathcal{O}$ is universal in the sense that if we have an \mathcal{O} -bimodule M and a derivation $\delta \colon \mathcal{O} \to M$, then there exists a unique \mathcal{O} -bimodule map $\widetilde{\delta}$ such that the following diagram commutes

Let $\operatorname{Der}^m(\Omega^{\bullet}) = \operatorname{Der}_k^m(\Omega^{\bullet})$ denote the algebra of degree m derivations, and

$$\mathrm{Der}^{\bullet}(\Omega^{\bullet}) := \bigoplus_{m \in \mathbb{Z}} \mathrm{Der}^m(\Omega^{\bullet}).$$

If η is of degree p and ζ of degree q, then for $\delta \in \mathrm{Der}^m(\Omega^{\bullet})$ we have

$$\delta(\eta \wedge \zeta) = \delta(\eta) \wedge \zeta + (-1)^{pm} \eta \wedge \delta(\zeta).$$
$$\delta \colon \Omega^p \to \Omega^{p+m}.$$

Furthermore $\mathrm{Der}^{ullet}(\Omega^{ullet})$ is a super Lie algebra, that is the commutators satisfy the super Jacobi identity

$$0 = [[a,b],c] + (-1)^{|a|(|b|+|c|)}[[b,c],a] + (-1)^{|c|(|a|+|b|)}[[c,a],b].$$

Denote $\delta_p := \delta|_{\Omega_p}$.

Proposition 1.4. The set $\operatorname{Der}^m(\Omega^{\bullet})$ is naturally identified with the set of pairs (δ_0, δ_1) , where

$$\delta_0 \colon \mathcal{O} \to \Omega^m$$

is a k-linear derivation of \mathcal{O} with values in Ω^m ,

$$\delta^1 : \Omega^1 \to \Omega^{m+1}$$

is a k-linear map such that

$$\delta_1(f\alpha) = \delta_0(f) \wedge \alpha + f\delta_1(\alpha).$$

and

$$\delta_1(\alpha)\alpha - (-1)^{m+1}\alpha\delta_1(\alpha) = 0,$$

that is the super commutator $[\delta_1(\alpha), \alpha] = 0$.

Any derivation of degree m is uniquely determined by δ_0 and δ_1 . Thus $\operatorname{Der}^m(\Omega^{\bullet}) = 0$ for m < -1.

For $\delta_0 = 0$ we have

$$\delta(f\alpha_1 \wedge \cdots \wedge \alpha_p) = \sum_{i=1}^p (-1)^{m(i-1)} f\alpha_1 \wedge \cdots \wedge \delta_1(\alpha_i) \wedge \cdots \wedge \alpha_p.$$

Similarly for any $\phi \in \text{Hom}_{\mathcal{O}}(\Omega^1, \Omega^{m+1})$ there exists a corresponding derivation

$$\delta_{\phi}(f\alpha_1 \wedge \cdots \wedge \alpha_p) := \sum_{i=1}^p (-1)^{m(i-1)} f\alpha_1 \wedge \cdots \wedge \phi(\alpha_i) \wedge \cdots \wedge \alpha_p.$$

Example 1.5. (The de Rham derivation) Let $d_0 = d \colon \mathcal{O} \to \Omega^1$. Now we will give a construction of $d_1 \colon \Omega^1 \to \Omega^2$. Consider a k-linear pairing

$$\mathcal{O} \times \mathcal{O} \to \Omega^{2}, \quad (f,g) \mapsto df \wedge dg$$

$$\mathcal{O} \times \mathcal{O} \longrightarrow \Omega^{2} \qquad \mathcal{O} \times \mathcal{O} \longrightarrow \Omega^{2}$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

Now we can take a restriction to $I_{\Delta}/I_{\Delta}^2 \subset (\mathcal{O} \otimes_k \mathcal{O})/I_{\Delta}^2$. Recall that I_{Δ} consists of sums of terms of the form

$$f_0 d_{\Delta} f_1 = f_0 (1 \otimes f_1 - f_1 \otimes 1)$$

= $f_0 \otimes f_1 - f_0 f_1 \otimes 1$.

Similarly I_{Δ}^2 consists of sums of terms of the form

$$f_0 d_{\Delta} f_1 d_{\Delta} f_2 = f_0 (1 \otimes f_1 - f_1 \otimes 1) (1 \otimes f_2 - f_2 \otimes 1)$$

$$= f_0 (1 \otimes f_1 f_2 + f_1 f_2 \otimes 1 - f_1 \otimes f_2 - f_2 \otimes f_1)$$

$$= f_0 \otimes f_1 f_2 + f_0 f_1 f_2 \otimes 1 - f_0 f_1 \otimes f_2 - f_0 f_2 \otimes f_1)$$

The last expression maps to

$$\begin{split} df_0 \wedge d(f_1 f_2) + d(f_0 f_1 f_2) \wedge d1 - d(f_0 f_1) \wedge df_2 - d(f_0 f_2) \wedge df_1 \\ &= df_0 \wedge ((df_1) f_2 + f_1 df_2) - ((df_0) f_1 + f_0 df_1) \wedge df_2 - ((df_0) f_2 + f_0 df_2) \wedge df_1 \\ &= f_2 df_0 \wedge df_1 + f_1 df_0 \wedge df_2 - f_1 df_0 \wedge df_2 - f_0 df_1 \wedge df_2 - f_2 df_0 \wedge df_1 - f_0 df_2 \wedge df_1 \\ &= -f_0 df_1 \wedge df_2 - f_0 df_2 \wedge df_1 \\ &= 0. \end{split}$$

Proposition 1.6. Any derivation $\delta \in \operatorname{Der}_k^m(\Omega^{\bullet})$ can be uniquely expressed as

$$[\delta_{\phi},d]+\delta_{\psi}$$

for $\phi \in \text{Hom}_{\mathcal{O}}(\Omega^1, \Omega^m)$, $\psi \in \text{Hom}_{\mathcal{O}}(\Omega^1, \Omega^{m+1})$.

Example 1.7. (O-linear derivation) For m=-1 $\operatorname{Der}_k^{-1}(\Omega^{\bullet})=\operatorname{Der}_{\mathcal{O}}^{-1}(\Omega^{\bullet})$ and by restriction to Ω^1

$$\mathrm{Der}_{\mathcal{O}}^{-1}(\Omega^{\bullet}) = \mathrm{Hom}_{\mathcal{O}}(\Omega^{1}, \Omega^{\bullet}).$$

If $\mathcal{O} = \mathcal{O}(X)$, then $\operatorname{Der}_k \mathcal{O} = \mathcal{T}X$.

Suppose that $\delta, \delta' \in \operatorname{Der}_k^m(\Omega^{\bullet})$ are such that

$$\delta_0 = \delta|_{\mathcal{O}} = \delta'|_{\mathcal{O}} = \delta'_0.$$

Then

$$\delta - \delta' \in \mathrm{Der}^m_{\mathcal{O}}(\Omega^{\bullet}) \quad \mathcal{O} - \mathrm{linear}.$$

Suppose that we have a derivation $D \in \operatorname{Der}_k^1(\Omega^{\bullet})$. Then for any $\phi \in \operatorname{Hom}_{\mathcal{O}}(\Omega^1, \Omega^m)$ there is a $\delta_{\phi} \in \operatorname{Der}_{\mathcal{O}}^{m-1}(\Omega^{\bullet})$ and

$$[\delta_{\phi}, D] \in \mathrm{Der}^m(\Omega^{\bullet})$$

$$[\delta_{\phi}, D]_0 = \delta_{\phi}D = \phi \circ D = d$$
(the de Rham derivation)

If there exists $d_1 : \Omega^1 \to \Omega^2$, k-linear and satisfying

$$d_1(f\alpha) = df \wedge \alpha + fd\alpha$$

then there exists a derivation $d \in \operatorname{Der}_k^1(\Omega^{\bullet})$.

There is a natural identification between \mathcal{O} -modules

$$\operatorname{Der}(\mathcal{O},\Omega^m) \longleftrightarrow \operatorname{Hom}_{\mathcal{O}}(\Omega^1,\Omega^m)$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$\operatorname{Der}_{\mathcal{O}}^{m-1}(\Omega^{\bullet})$$

Let $\eta = \phi \circ d$ which on Ω^0 is $= [\delta_{\phi}, d]$. Then $\iota_{\eta} = \delta_{\phi}$ is the interior product with derivation η . If m = -1 this is the classical product of differential forms with a given vector field. Define a Lie derivative with respect to η

$$\mathcal{L}_{\eta} := [\delta_{\phi}, d] = [\iota_{\eta}, d].$$

Then

$$[\mathcal{L}_{\eta}, d] = [[\iota_{\eta,d}], d] = (-1)^{m-1} d\iota_{\eta} d - (-1)^{m} d\iota_{\eta} d = 0.$$

Any derivation δ is of the form $\delta = \mathcal{L}_{\eta} + \iota_{\zeta}$ where $\zeta = \psi \circ d$ for some $\psi \in \operatorname{Hom}_{\mathcal{O}}(\Omega^{1}, \Omega^{m+1})$. Consider a special $\phi \colon \Omega^{1} \to \Omega^{m}$

$$\phi(\alpha) = \varphi \wedge \alpha$$

for some $\varphi \in \Omega^{m-1}$. Then

$$[\delta_{\varphi}, d](\omega) = \varphi \wedge d\omega - (-1)^{m-1} p d\varphi \wedge \omega$$

= $\varphi \wedge d\omega - (-1)^{m-1} d\varphi \wedge \deg$.

A degree map deg is a derivation deg $=\delta_{\mathrm{id}}$, id: $\Omega^1 \to \Omega^1$, $[\delta_{\mathrm{id}}, d] = d$.

Remark 1.8. To prove identities like $\delta = \delta'$, where δ, δ' are \mathcal{O} -linear derivations on Ω^{\bullet} , it is enough to prove it on $d\mathcal{O} \subset \Omega^1$. For example, for vector fields there is an identity

$$[\mathcal{L}_{\eta}, \iota_{\zeta}] = [\iota_{\eta}, \mathcal{L}_{\zeta}] = \iota_{[\eta, \zeta]}.$$

The expressions are \mathcal{O} -linear, so we can check the equalities by evaluating on df, $f \in \mathcal{O}$.

For $\omega \in \Omega^p$ we have the formula

$$[\delta_{\varphi \wedge -}, d]^{2}(\omega) = \begin{cases} 0 & m = 1\\ \frac{1 - m}{2} d(\varphi \wedge \varphi) \wedge d\omega & \text{if } m \text{ is odd } \neq 1\\ (m + p) p d\varphi \wedge d\varphi \wedge \omega & \text{if } m \text{ is even.} \end{cases}$$

For example if $m = 1 \varphi$ is the contact 1-form on \mathbb{A}^1 , that is $\sum_{i=1}^n \xi_i dx_i$.

$$\omega = \mathcal{L}_{\Xi}\omega = d\iota_{\Xi}\omega.$$

In case m = 0, for any function $f \in \mathcal{O}$ let $f \cdot -$ denote the multiplication by the function f

$$[\delta_{f-}, d] = fd - df \wedge \deg, \quad [\delta_{1-}, d] = d_{\mathrm{dR}}.$$

Let $\eta_1, \ldots, \eta_p \in \operatorname{Der}_k(\mathcal{O})$ (vector fields if $\mathcal{O} = \mathcal{O}(X)$). Then there is a formula

$$[d, \iota_{\eta_1} \dots \iota_{\eta_p}] = \sum_{1 \le i \le p} (-1)^{i-1} \iota_{\eta_1} \dots \widehat{\iota_{\eta_i}} \dots \iota_{\eta_p} \mathcal{L}_{\eta_i} +$$

$$(1.1)$$

$$+ \sum_{1 \leq i < j \leq p} (-1)^{i+j-1} \iota_{[\eta_i,\eta_j]} \iota_{\eta_1} \dots \widehat{\iota_{\eta_i}} \dots \widehat{\iota_{\eta_j}} \dots \iota_{\eta_p}.$$

where deg $\iota_{\eta_i} = -1$ for all i = 1, ..., p. Similarly

$$[\iota_{\eta_p} \dots \iota_{\eta_1}, d] = \sum_{1 \le i \le p} (-1)^{i-1} \mathcal{L}_{\eta_i} \iota_{\eta_p} \dots \widehat{\iota_{\eta_i}} \dots \iota_{\eta_1} +$$
 (1.2)

$$+ \sum_{1 \leq i < j \leq p} (-1)^{i+j} \iota_{\eta_p} \dots \widehat{\iota_{\eta_j}} \dots \widehat{\iota_{\eta_i}} \dots \iota_{\eta_1} \iota_{[\eta_i, \eta_j]}.$$

This is in analogy to the Cartan formula for $\omega \in \Omega^{p-1}$

$$(d\omega)(\eta_1,\ldots,\eta_p) = \sum_{1 \le i \le p} (-1)^{i-1} \mathcal{L}_{\eta_i} \omega(\eta_1,\ldots,\widehat{\eta_i},\ldots,\eta_p) +$$
(1.3)

$$+\sum_{1\leq i< j\leq j}(-1)^{i+j}\omega([\eta_i,\eta_j],\eta_1,\ldots,\widehat{\eta}_i,\ldots,\widehat{\eta}_j,\ldots,\eta_p).$$

1.5 Koszul-Chevalley complex

Let \mathfrak{m} be a \mathfrak{g} -module, where \mathfrak{g} is a Lie k-algebra This means that $[,]: \mathfrak{g} \otimes_k \mathfrak{g} \to \mathfrak{g}$ satisfies Jacobi identity, each $g \in \mathfrak{g}$ acts as an endomorphism of a k-module \mathfrak{m} , and the map

$$\mathfrak{g} \to \mathfrak{gl}_k(\mathfrak{m}) = \text{Lie}(\text{End}_k(\mathfrak{m})), \quad g \mapsto \rho_g$$
 - action of g on \mathfrak{m}

is a homomorphism of Lie-k-algebras. We have

$$\rho_{[g_1,g_2]} = [\rho_{g_1},\rho_{g_2}]$$

and $\mathfrak{gl}_k(\mathfrak{m})$ has the right \mathfrak{g} -module structure

$$\widetilde{\rho}_g(m) := mg$$
,

$$mg_1g_2 - mg_2g_1 = (\widetilde{\rho}_{g_2}\widetilde{\rho}_{g_1} - \widetilde{\rho}_{g_1}\widetilde{\rho}_{g_2})(m) = [\widetilde{\rho}_{g_2},\widetilde{\rho}_{g_1}] = m[g_2,g_1].$$

This shows that $\widetilde{\rho}\mathfrak{g} \to \mathfrak{gl}(m)$ is an antihomomorphism of Lie algebras (it corresponds to the fact that the inverse $G \to G$, $g \mapsto g^{-1}$ corresponds to $g \mapsto -g$ on \mathfrak{g}).

Definition 1.9. Koszul-Chevalley complex of a Lie k-algebra g with coefficients in m

$$C_{\bullet}(\mathfrak{g},\mathfrak{m}):=\mathfrak{m}\otimes\Lambda_{k}^{\bullet}\mathfrak{g},\quad\partial\colon C_{p}(\mathfrak{g},\mathfrak{m})\to C_{p+1}(\mathfrak{g},\mathfrak{m}),$$

where

$$\partial(m\otimes g_1\wedge\cdots\wedge g_p):=\sum_{1\leq i\leq p}(-1)^{i-1}g_im\otimes g_1\wedge\cdots\wedge\widehat{g_i}\wedge\cdots\wedge g_p+$$

$$+\sum_{1\leq i\leq j\leq n}(-1)^{i+j-1}m\otimes [g_i,g_j]\wedge g_1\wedge\cdots\wedge\widehat{g_i}\wedge\cdots\wedge\widehat{g_j}\wedge\cdots\wedge g_p.$$

$$C^{\bullet}(\mathfrak{g},\mathfrak{m}):==\mathrm{Alt}^{\bullet}(\mathfrak{g}\times\cdots\times\mathfrak{g},\mathfrak{m}),\quad \delta\colon C_{p-1}(\mathfrak{g},\mathfrak{m})\to C_p(\mathfrak{g},\mathfrak{m}),$$

where for $\gamma \in Alt^{p-1}(\mathfrak{g} \times \cdots \times \mathfrak{g}, \mathfrak{m})$ we define $\delta(\gamma) \in Alt^p(\mathfrak{g} \times \cdots \times \mathfrak{g}, \mathfrak{m})$ by

$$\delta(\gamma)(g_1,\ldots,g_p):=\sum_{1\leq i\leq p}(-1)^{i-1}g_i\gamma(g_1,\ldots,\widehat{g_i},\ldots,g_p)+$$

$$+\sum_{1\leq i\leq j\leq p}(-1)^{i+j-1}\gamma([g_i,g_j],g_1,\ldots,\widehat{g_i},\ldots,\widehat{g_j},\ldots,g_p).$$

In the next definition we use a relative Tor and Ext groups, which are the derived functors tors in the sense of relative homological algebra ([?], [?]).

Definition 1.10. *Lie algebra homology and cohomology with coefficients in a* g*-module* m

$$H_{\bullet}(\mathfrak{g};\mathfrak{m}) := H(C_{\bullet}(\mathfrak{g},\mathfrak{m}),\partial) \simeq Tor_{\bullet}^{(\mathcal{U}(\mathfrak{g}),k)}(k,\mathfrak{m}),$$

$$H_{\bullet}(\mathfrak{g};\mathfrak{m}) := H(C^{\bullet}(\mathfrak{g},\mathfrak{m}),\delta) \simeq \operatorname{Ext}^{\bullet}_{(\mathcal{U}(\mathfrak{g}),k)}(k,\mathfrak{m}).$$

1.6 A relation between Hochschild and Lie algebra homology

Consider the following situation: A is an associative k-algebra with unit, M an A-bimodule. Let Lie(A) = A as a k-module with commutator bracket [a,b] := ab - ba. Let $a \in A$ act on $m \in M$ by $m \mapsto am - ma$. Consider $d_{\Delta} \colon A \to A \otimes A^{op}$, $a \mapsto 1 \otimes a^{op} - a \otimes 1$,

$$[d_{\Delta}a, d_{\Delta}b] = -\underbrace{[1 \otimes a^{op}, b \otimes 1]}_{=0} - \underbrace{[a \otimes 1, 1 \otimes b^{op}]}_{=0} + [1 \otimes a^{op}, 1 \otimes b^{op}] + [a \otimes 1, b \otimes 1]$$
(because $A \otimes 1$ and $1 \otimes A^{op}$ commute in A)
$$= 1 \otimes [a^{op}, b^{op}] + [a, b] \otimes 1$$

$$= 1 \otimes [b, a]^{op} - [b, a] \otimes 1$$

$$= -d_{\Delta}[a, b].$$

Universal derivation is an antihomomorphism, so

$$-d_{\Delta}$$
: Lie(A) \rightarrow Lie($A \otimes A^{op}$)

is a homomorphism of Lie algebras.

In what follows we will use many arguments based on spectral sequences, and the necessary basics of the theory is presented in appendix (B).

Let $R = \mathcal{U}(\text{Lie}(A))$, $S = A \otimes A^{op}$. Any bimodule N can be viewed as a left $A \otimes A^{op}$ -module. The base change spectral sequence takes the form

$$E_{pq}^{2} = \operatorname{Tor}_{p}^{A \otimes A^{op}} (\operatorname{Tor}_{q}^{\mathcal{U}(\operatorname{Lie}(A))}(k, A \otimes A^{op}), N)$$
$$a \cdot (b \otimes c^{op}) = ab \otimes c^{op} - b \otimes a^{op}c^{op} = ab \otimes c^{op} - b \otimes (ca)^{op}$$

Assume that $\mathcal{U}(\text{Lie}(A))$ is flat over k. Then

$$\operatorname{Tor}_p^{A\otimes A^{op}}(\operatorname{Tor}_q^{\mathcal{U}(\operatorname{Lie}(A))}(k,A\otimes A^{op}),N)\simeq\operatorname{Tor}_p^{A\otimes A^{op}}(\operatorname{H}_q(\operatorname{Lie}(A);A\otimes A^{op}),N).$$

In our base change spectral sequence we get an edge homomorphism

$$H_p(\operatorname{Lie}(A); N) \to \operatorname{Tor}_p^{A \otimes A^{op}}(H_0(\operatorname{Lie}(A); A \otimes A^{op}), N).$$

In general if $\mathfrak g$ is a Lie algebra, and M a $\mathfrak g$ -module, then $H_0(\mathfrak g;M)=M_{\mathfrak g}$ - the coinvariants of the $\mathfrak g$ -action. Thus we have a map from Lie algebra homology to Hochschild homology

$$H_p(\operatorname{Lie}(A); N) \to \operatorname{Tor}_p^{A \otimes A^{op}}(\underbrace{H_0(\operatorname{Lie}(A); A \otimes A^{op})}_{A}, N) = \operatorname{Tor}_p^{A \otimes A^{op}}(A, N) = H_p(A; N).$$

When k is of characteristic 0, that map, up to a sign, is induced by inclusion

$$\eta: C_{\bullet}(\operatorname{Lie}(A); N) \to C_{\bullet}(A; N)$$

$$n \otimes a_1 \wedge \cdots \wedge a_p \mapsto \sum_{l_1,\ldots,l_p} (-1)^{\overline{l_1\ldots l_p}} n \otimes a_{l_1} \otimes \cdots \otimes a_{l_p}$$

where on the right hand side we have a sum over all permutations of the set $\{1, ..., p\}$, and $\overline{l_1 ... l_p}$ denotes the sign of a permutation.

Proposition 1.11. *The map* η *is a map of complexes, that is*

$$b\eta = -\eta \partial$$
,

where b is the Hochschild boundary, and ∂ the boundary of the Koszul-Chevalley complex. *Proof.* On the left hand side we have:

$$\begin{split} b\eta(n\otimes a_1\wedge\cdots\wedge a_p) &= \sum_{l_1,\dots,l_p} (-1)^{\overline{l_1...l_p}} na_{l_1}\otimes\cdots\otimes a_{l_p} \\ &+ \sum_{1\leq m\leq p-1} \sum_{l_1,\dots,l_p} (-1)^{\overline{l_1...l_p}+m} n\otimes a_{l_1}\otimes\cdots\otimes a_{l_m} a_{l_{m+1}}\otimes\cdots\otimes a_{l_p} \\ &+ \sum_{l_1,\dots,l_p} (-1)^{\overline{l_1...l_p}+p} a_{l_p} n\otimes a_{l_1}\otimes\cdots\otimes a_{l_{p-1}} \\ &= \sum_{1\leq i\leq p} (-1)^{i-1} \sum_{\substack{l_1,\dots,l_p\\l_i=i}} (-1)^{\overline{l_1...l_p}+p} a_{l_p} na_{l}\otimes a_{l_2}\otimes\cdots\otimes a_{l_p} \\ &\text{(because } \overline{ll_2\dots l_p} = \overline{l_2\dots l_p} \cdot (-1)^{\overline{l_1...l_p}+1} \\ &+ \sum_{1\leq m\leq p-1} \sum_{1\leq i< j\leq p} \sum_{\substack{l_1,\dots,l_p\\l_p=i}} (-1)^{\overline{l_1...l_p}+1} (-1)^{\overline{l_1...l_p}+m} n\otimes a_{l_1}\otimes\cdots\otimes a_{l_m} a_{l_{m+1}}\otimes\cdots\otimes a_{l_p} \\ &+ \sum_{1\leq m\leq p-1} \sum_{1\leq i< j\leq p} \sum_{\substack{l_1,\dots,l_p\\l_m=i,l_{m+1}=j}} (-1)^{\overline{l_1...l_p}+m} n\otimes a_{l_1}\otimes\cdots\otimes a_{l_m} a_{l_{m+1}}\otimes\cdots\otimes a_{l_p} \\ &+ \sum_{1\leq m\leq p-1} \sum_{1\leq i< j\leq p} \sum_{\substack{l_1,\dots,l_p\\l_m=j,l_{m+1}=i}} (-1)^{\overline{l_1...l_p}+m} n\otimes a_{l_1}\otimes\cdots\otimes a_{l_m} a_{l_{m+1}}\otimes\cdots\otimes a_{l_p} \\ &+ \sum_{1\leq m\leq p-1} \sum_{1\leq i< j\leq p} (-1)^{\overline{l_1...l_p}+(-1)^m} \sum_{\substack{l_1,\dots,l_p\\l_m=j,l_{m+1}=i}} (-1)^{\overline{l_1...l_m-1}l_{m+2}\dots l_p} \cdot (-1)^{(i-1)+(j-1)} \\ &+ \sum_{1\leq m\leq p-1} \sum_{1\leq i< j\leq p} (-1)^{(i-1)+(j-1)} \sum_{\substack{l_1,\dots,l_p\\l_m=j,l_{m+1}=i}} (-1)^{\overline{l_1...l_m-1}l_{m+2}\dots l_p} \\ &+ \sum_{1\leq m\leq p-1} \sum_{1\leq i< j\leq p} (-1)^{(i-1)+(j-1)} \sum_{\substack{l_1,\dots,l_p\\l_m=j,l_{m+1}=i}} (-1)^{\overline{l_1...l_m-1}l_{m+2}\dots l_p} \\ &= \eta \left(\sum_{1\leq i< p} (-1)^{i+j+1} [a_i,a_j] \wedge a_1 \wedge\cdots\wedge\widehat{a_i} \wedge\cdots\wedge\widehat{a_j} \wedge\cdots\wedge\widehat{a_j} \wedge\cdots\wedge a_p\right) \\ &= -\eta\partial(n\otimes a_1\wedge\cdots\wedge a_n). \end{split}$$

1.7 Poisson trace

Consider the Lie algebra of derivations $\operatorname{Der} \mathcal{O} = \operatorname{Der}_k \mathcal{O}$. The algebra \mathcal{O} is always a $\operatorname{Der} \mathcal{O}$ -module via the natural representation. Let $\varphi \in \Omega^p_{\mathcal{O}/k}$. Then it defines an alternating \mathcal{O} -p-linear map

$$\underbrace{\operatorname{Der} \mathcal{O} \times \cdots \times \operatorname{Der} \mathcal{O}}_{p} \to \mathcal{O}$$

$$(\eta_1,\ldots,\eta_p)\mapsto \varphi(\eta_1,\ldots,\eta_p):=\iota_{\eta_p}\ldots\iota_{\eta_1}\varphi\in\Omega^0=\mathcal{O}.$$

There is an \mathcal{O} -linear map,

$$\Omega^{\bullet} \to \operatorname{Alt}_{\mathcal{O}}^{\bullet}(\operatorname{Der} \mathcal{O}, \mathcal{O}) \hookrightarrow \operatorname{Alt}_{k}^{\bullet}(\operatorname{Der} \mathcal{O}, \mathcal{O})$$

which transforms the de Rham differential d into δ

$$d\varphi \mapsto \delta(\iota_{\eta_v} \dots \iota_{\eta_1} \varphi).$$

(Cartan's picture of de Rham complex).

Let $\Omega^{vol} = \Omega^n$, where n is such that $\Omega^n \neq 0$, $d: \Omega^n \to \Omega^{n+1}$ identically 0. Then

$$C_{\bullet}(\operatorname{Der} \mathcal{O}; \Omega^{vol}) = \Omega^{vol} \otimes_k \Lambda_k^{\bullet} \operatorname{Der}_k \mathcal{O} \twoheadrightarrow \Omega^{vol} \otimes_{\mathcal{O}} \Lambda_{\mathcal{O}}^{\bullet} \operatorname{Der}_k \mathcal{O}$$

where the last epimorphism is \mathcal{O} -linearization and is an isomorphism if \mathcal{O} is smooth algebra of dim n.

Claim 1.12. *The kernel of O-linearization is a subcomplex of* $C_{\bullet}(\text{Der }\mathcal{O};\Omega^{vol})$ *.*

For
$$\nu \in \Omega^{vol} = \Omega^n$$

$$\nu \otimes \eta_1 \wedge \cdots \wedge \eta_p \mapsto \iota_{\eta_1} \dots \iota_{\eta_p} \nu \in \Omega^{n-p} =: \Omega_p.$$

The composition

$$C_{\bullet}(\operatorname{Der} \mathcal{O}; \Omega^{vol}) \to \Omega^{vol} \otimes_{\mathcal{O}} \Lambda_{\mathcal{O}}^{\bullet} \operatorname{Der}_{k} \mathcal{O}$$

is the map of complexes. It suffices to apply the formula for $[d, \iota_{\eta_1} \dots \iota_{\eta_p}]$ only to *n*-forms.

$$(C_{\bullet}(\operatorname{Der}_k \mathcal{O}, \Omega^{vol}), \partial) \twoheadrightarrow (\Omega_{\bullet}, d)$$

(Spencer's picture of de Rham complex).

Now we fix the volume form ν , and denote

$$\operatorname{Der}_k \mathcal{O}_{\nu} := \{ \operatorname{derivations annihilating } \nu \}.$$

There is an \mathcal{O} -module morphism

$$\mathcal{O}
ightarrow \Omega^{vol}$$
, $f \mapsto f
u$,

$$C_{\bullet}(\operatorname{Der}_k \mathcal{O}_{\nu}, \mathcal{O}) \to C_{\bullet}(\operatorname{Der} \mathcal{O}, \Omega^{vol}) \to \Omega_{\bullet}$$

("Divergentless vector fields").

Suppose that $\mathcal{O} = \mathcal{O}(X)$, where X is a symplectic manifold of dimension 2n, $\omega \in \Omega^2$ is closed and nondegenerate.

$$\omega \colon \operatorname{Der} \mathcal{O} \to \Omega^1$$
, $\eta \mapsto \iota_{\eta} \omega$

is injective. Furthermore $\omega^n \in \Omega^{vol}$ and we can take $\nu = \omega^n$.

Define $\operatorname{Ham}(X, \omega) \subset \operatorname{Der}_k \mathcal{O}_{\omega^n}$ as

$$\operatorname{Ham}(X,\omega) := \{ \eta \in \operatorname{Der} \mathcal{O}_{\omega^n} \mid \mathcal{L}_{\eta}\omega = 0 \}.$$

Define $Poiss(X, \omega)$ as an algebra \mathcal{O} with the Poisson bracket

$$\{f,g\} := \mathcal{L}_{H_f}g = \omega(H_f,H_g) = \iota_{H_g}\iota_{H_f}\omega,$$

where H_f is the vector field characterized by

$$\iota_{H_f}\omega = -df.$$

There is a homomorphism of Lie algebras

$$Poiss(X, \omega) \rightarrow Ham(X, \omega)$$
,

and an \mathcal{O} -linear map of complexes

$$C_{\bullet}(\operatorname{Poiss}(X,\omega),\operatorname{ad}) \to C_{\bullet}(\operatorname{Ham}(X,\omega),\omega^n).$$

$$f_0 \otimes f_1 \wedge \cdots \wedge f_p \mapsto f_0 \omega^n \otimes f_1 \wedge \cdots \wedge f_p$$
.

There is also a map

$$C_{\bullet}(\operatorname{Ham}(X,\omega),\omega^n) \to \Omega_{\bullet}$$

$$f_0\omega^n\otimes f_1\wedge\cdots\wedge f_p\mapsto f_0\iota_{H_{f_1}}\ldots\iota_{H_{f_p}}\omega^n.$$

We have

$$\mathcal{L}_{H_f} = [d, \iota_{H_f}]\omega = 0.$$

Proposition 1.13. *For any* f, $g \in \mathcal{O}$

$$H_{f,g} = [H_f, H_g].$$

Proof. It is sufficient to prove the corresponding identity for contractions

$$\iota_{[H_f,H_g]}=\iota_{H_{\{f,g\}}}.$$

We have

$$\begin{split} \iota_{[H_f,H_g]}\omega &= [\mathcal{L}_{H_f},\iota_{H_g}] \\ &= \mathcal{L}_H(\iota_{H_g}\omega) - \iota_{H_g}\underbrace{\mathcal{L}_{H_f}\omega}_0 \\ &= -\mathcal{L}_{H_f}(dg) \\ &= -d(\mathcal{L}_{H_f}g) \\ &= -d\{f,g\} \\ &= -\iota_{H_{\{f,g\}}}. \end{split}$$

There is a well defined map, called a **Poisson trace**

$$\operatorname{ptr}_{\bullet}: (C_{\bullet}(\operatorname{Poiss}(X,\omega);\operatorname{ad}),\partial) \twoheadrightarrow (\Omega_{\bullet},d).$$

Let *Y* be a symplectic manifold, dim Y = 2n, with a symplectic 2-form ω . Then we have a canonical morphism of chain complexes

ptr:
$$C_{\bullet}(\text{Poiss}(Y,\omega); \text{ad}) \rightarrow \Omega_{\bullet}(Y)$$

where $\Omega_q(Y) = \Omega^{\dim Y - q}(Y)$, given by

$$f_0 \otimes f_1 \wedge \cdots \wedge f_q \mapsto f_0 \iota_{H_{f_1}} \dots \iota_{H_{f_q}} \omega^n$$
.

An important special case is when Y is a symplectic cone, i.e. Y is acted upon by \mathbb{R}_+^* . Let Ξ be the corresponding Euler field (the image of $t\frac{d}{dt}$). We have $t^*\omega = t\omega$ or equivalently

$$\mathcal{L}_{\Xi}\omega=\omega.$$

1.7.1 Graded Poisson trace

We consider the graded algebra of functions on Y

$$\mathcal{O}_{ullet} := \bigoplus_{m \in \mathbb{Z}} \mathcal{O}(m),$$

where

$$\mathcal{O}(m) := \{ f \in \mathcal{O} \mid \mathcal{L}_{\Xi} f = mf \}.$$

Then the Poisson bracket $\{\cdot,\cdot\}$ agrees with the grading in the following way

$$\{\mathcal{O}(l), \mathcal{O}(m)\} \subseteq \mathcal{O}(l+m-1).$$

Let

$$\mathcal{P}_l := \mathcal{O}(l+1), \quad \mathcal{P}_{ullet} := \bigoplus_{l \in \mathbb{Z}} \mathcal{P}_l$$

be the graded Lie algebra when equipped with the Poisson bracket $\{\cdot,\cdot\}$. The map $f\mapsto H_f$ is a homomorphism of Lie algebras $\mathcal{O}\to\mathcal{P}=\mathrm{Poiss}(Y,\omega)$, and furthermore

$$\mathcal{L}_{\Xi}H_f = (\deg(f) - 1)H_f.$$

To check this identity one computes

$$\iota_{[\Xi,H_f]}\omega = [\mathcal{L}_{\Xi}, \iota_{H_f}]\omega = -\deg(f)df + df = (1 - \deg(f))df = (\deg(f) - 1)H_f$$

because $\iota_{H_f}\omega = -df$. Thus there is a **graded Poisson trace**

$$\begin{split} & \mathsf{ptr}_{\bullet} \colon C_{\bullet}(\mathcal{P}_{\bullet}, \mathsf{ad}) \to \Omega_{\bullet \bullet}(Y) \\ & \mathsf{ptr}_{\bullet} \colon \bigoplus_{k \in \mathbb{Z}} C_{\bullet}^{(k)}(\mathcal{P}_{\bullet}, \mathsf{ad}) \to \Omega_{\bullet, k+n}(Y), \end{split}$$

where

$$C^{(k)}_{ullet}(\mathcal{P}_{ullet}, \operatorname{ad}) = (\mathcal{P}_{ullet} \otimes \Lambda^q \mathcal{P}_{ullet})(k+q)$$

and ∂ preserves k. Explicitely we have

$$\mathcal{L}_{\Xi}(f_0\iota_{H_{f_1}}\dots\iota_{H_{f_q}}\omega^n) = (l_0 + (l_1 - 1) + \dots + (l_q - 1) + m)f_0\iota_{H_{f_1}}\dots\iota_{H_{f_q}}\omega^n$$

$$= ((l_0 + \dots + l_q) + n - q)f_0\iota_{H_{f_1}}\dots\iota_{H_{f_q}}\omega^n,$$

$$(\mathcal{P}_{\bullet}\otimes\Lambda^q\mathcal{P}_{\bullet})(l) \to \Omega_q(l - q)$$

1.8 Hochschild homology

Let $C_{\bullet}(CS(X))$ be the completed Hochschild complex of CS(X). Define

$$C_{\bullet}^{(m)} := C_{\bullet}(\mathrm{CS}(X)) / F_{m-1} C_{\bullet}(\mathrm{CS}(X)),$$

where $F_{m-1}C_{\bullet}(\operatorname{CS}(X))$ is the filtration induced by order. Then

$$C_j = \lim_{m \to -\infty} C_j^{(m)}, \quad j \in \mathbb{N}$$

The complexes $C_{\bullet}^{(m)}$ inherit filtration from C_{\bullet}

$$\{0\} = F_{m-1}C^{(m)}_{\bullet} \subset F_mC^{(m)}_{\bullet} \subset \dots$$

where

$$F_pC_{\bullet}^{(m)} := \begin{cases} F_pC_{\bullet}(\operatorname{CS}(X))/F_{m-1}C_{\bullet}(\operatorname{CS}(X)) & \text{for } p \ge m-1, \\ 0 & \text{for } p \le m-1. \end{cases}$$
(1.4)

We have

$$C_j^{(m)} = \lim_{p \to \infty} F_{pj}^{(m)}, \quad m \in \mathbb{Z}, \ j \in \mathbb{N}.$$

Let $HH^{(m)}_{\bullet}$ denote the homology of $C^{(m)}_{\bullet}$ and HH_{\bullet} the homology of C_{\bullet} . Our first objective will be to find $HH^{(m)}_{\bullet}$.

There is a Milnor short exact sequence

$$0 \to \lim^{1} H_{q+1}(C_{\bullet}^{(m)}) \to HH_{q}(CS(X)) \to \lim H_{q}(C_{\bullet}^{(m)}) \to 0.$$

If the system $\{H_{q-1}(C_{\bullet}^{(m)})\}_{m\to -\infty}$ satisfies the Mittag-Leffler condition, then \lim^1 vanishes. Suppose $\{V_{\lambda}\}$ is an inverse system of sets (k-modules). It satisfies Mittag-Leffler condition if for all λ the system of subsets ($\lim(V_{\mu}\to V_{\lambda})$) for $\mu>\lambda$ stabilizes. The inverse system $\{V_{\lambda}\}$ can be treated as a sheaf \widetilde{V} over the indexing set Λ with partial order topology. Then

$$\lim^{p} \{V_{\lambda}\} = H^{p}(\Lambda, \widetilde{V}),$$

and in particular $\lim \{V_{\lambda}\} = \Gamma(\Lambda, \widetilde{V})$.

Theorem 1.14 (Emmanouil). For $\Lambda = \omega$ - the first infinite ordinal, the inverse system of vector spaces $\{V_{\lambda}\}$ is Mittag-Leffler if and only if one of the following conditions is satisfied

$$\lim^{1} \{ V_{\lambda} \otimes_{k} W \} = 0, \text{ for all vector spaces } W \text{ over } k, \tag{1.5}$$

$$\lim^1 \{V_\lambda \otimes_k W\} = 0$$
, for some infinite dimensional vector space W over k. (1.6)

Recall that $T_0^*X = T^*X \setminus X$ and Y^c is the \mathbb{C}^* -bundle over the cosphere bundle S^*X defined as

$$Y^c := T_0^* X \times_{\mathbb{R}_+} \mathbb{C}^*$$

$$\downarrow^{\mathbb{C}^*}$$

$$S^* X$$

Consider the eigenspace of the action of the Euler field $\Xi = \sum_{i=1}^{n} \xi_i \partial \xi_i$ on $T_0^* X$

$$\Omega^{\bullet}(T_0^*X)(m) \subset \Omega^{\bullet}_{\mathbb{C}^{\infty}}(T_0^*X)$$

$$t^*\eta = t^m\eta$$

Then

$$\Omega^{\bullet \bullet}(T_0^*X) := \bigoplus_{m \in \mathbb{Z}} \Omega^{\bullet}(T_0^*X)(m)$$

is a bigraded algebra whose cohomology is naturally isomorphic with $H^{\bullet}(Y^c)$. We denote it by $H^{\bullet}_{dR}(Y^c)$.

There is a spectral sequence $E_{\bullet\bullet}^{(m),r}$ converging to $HH_{\bullet}^{(m)}$ which is associated with the filtration (1.4) of $E_{\bullet\bullet}^{(m)}$. Its complete description is provided in the following proposition.

Proposition 1.15. *Assume* $m \le -\dim X = -n$. *Then*

a) the second term of a spectral sequence ${}^{\prime}E_{\bullet\bullet}^{(m),r}$ which is associated with the filtration on $C_{\bullet}^{(m)}$ which is induced by the order filtration as in (1.4) is given by

$${}'E_{pq}^{(m),2} \simeq egin{cases} \mathbf{H}_{\mathrm{dR}}^{n-p}(Y^c) & q=n \\ \Omega^{2n-m-q}(n-q)/d\Omega^{2n-1-m-q}(n-q) & p=m \\ 0 & otherwise \end{cases}$$

- b) the spectral sequence $'E^{(m),r}_{ullet}$ degenerates at $'E^2$
- c) the identification in a) are compatible with the spectral sequence morphisms induced by the canonical spectral sequence projections

$$C^{(l)}_{ullet} \rightarrow C^{(m)}_{ullet}$$

for $l \leq m$.

Corollary 1.16. The inverse system of the homology groups $\{HH_p^{(m)}\}_{m\in\mathbb{Z}_{<-n}}$ satisfies Mittag-Leffler condition, in fact

$$HH_p^{(l_1,m)} = HH_p^{(l_2,m)}$$

for any $l_1 \leq l_2 \leq m < -n$, where $HH_p^{(l,m)} := im(HH_p^{(l)} \rightarrow HH_p^{(m)})$.

Proof. From the proposition (1.15) we obtain a commutative diagrams whose rows are exact.

$$\begin{array}{c|c} \frac{\Omega^{2n-p}(n+m-p)}{d\Omega^{2n-1-p}(n+m-p)} & > & \rightarrow H_p^{(m)} & \longrightarrow H_{\mathrm{dR}}^{2n-p}(Y^c) \\ \downarrow & & \uparrow & & \parallel \\ \frac{\Omega^{2n-p}(n+l-p)}{d\Omega^{2n-1-p}(n+l-p)} & > & \rightarrow H_p^{(l)} & \longrightarrow H_{\mathrm{dR}}^{2n-p}(Y^c) \end{array}$$

Consider a spectral sequence with ${}^\prime E^0_{p\bullet}$ being the p-th component of the graded complex $\operatorname{gr}^F(\operatorname{CS}(X))$.

Taking homology with respect to the differential $d^0_{p ullet}$: ${}'E^0_{p ullet} \to {}'E^0_{p, ullet - 1}$ we obtain

$${}^{\prime}E^{1}_{pq} = \mathrm{HH}_{p+q}(\mathcal{O}_{\bullet}(X))(p),$$

calculated in terms of differential forms.

If \mathcal{O} is a smooth algebra, there is a map of complexes

$$(C_{\bullet},b) \to (\Omega^{\bullet},0)$$

$$f_0 \otimes \cdots \otimes f_q \to f_0 df_1 \wedge \cdots \wedge df_q.$$

But instead of this map we take

$$f_0\otimes\cdots\otimes f_q\to rac{(-1)^q}{q!}f_0\iota_{H_{f_1}}\ldots\iota_{H_{f_q}}\omega^n.$$

We can compose the two maps

The first map

$$(C_{\bullet}(\operatorname{Lie}(\operatorname{CS}(X))), \partial) \longrightarrow (C_{\bullet}(\operatorname{CS}(X)), b) \longrightarrow (\Omega_{\bullet \bullet}, d).$$

$$\eta \colon a_0 \otimes a_1 \wedge \cdots \wedge a_q \mapsto \sum_{l_1, \dots, l_q} (-1)^{\overline{l_1 \dots l_q}} a_0 \otimes a_{l_1} \otimes \cdots \otimes a_{l_q},$$

is a map of complexes, while the second one is a map of complexes only if d = 0. But the composition is still a map of complexes.

We identified $E_{pq}^{(m),1}$ with $\Omega_{\mathcal{O}}^{2n-p-q}(n-q)$ for $p \geq m$ and d^1 with d_{dR} . To demonstrate that the spectral sequence degenerates at E_2 one has to show that the only possibly nontrivial differentials

$$d_{pn}^{(m),p-m}: {}'E_{pn}^{(m),p-m} \to {}'E_{m,n+p-m-1}^{(m),p-m}$$

all vanish. This is a consequence of the commutativity of the diagram

$${}'E_{pn}^{(m),p-m} \xrightarrow{d_{pn}^{(m),p-m}} {}'E_{m,n+p-m-1}^{(m),p-m}$$

$$\cong \bigwedge \qquad \qquad \bigwedge \qquad \qquad \bigwedge \qquad \qquad \\ {}'E_{p,n}^{(l),p-m} \xrightarrow{d_{pn}^{(l),p-m}} {}'E_{m,n+p-m-1}^{(l),p-m}$$

for l < m.

Now $H_{\bullet} = HH_{\bullet}(CS(X))$ is the homology of the projective limit $\lim C_{\bullet}^{(m)}$. The projective system $C^{(m)}$ satisfies Mittag-Leffler condition. The same holds for the projective systems of homology groups $\{HH^{(m)}_{\bullet}\}_{m\in\mathbb{Z}_{<-n}}$ by corollary (1.16). Hence

$$HH_j = \lim_m HH_j^{(m)} \simeq H_{dR}^{2n-j}(\Upsilon^c),$$

and we proved the theorem.

Theorem 1.17. There is a canonical isomorphism

$$HH_q(CS(X)) \simeq H_{dR}^{2n-q}(Y^c).$$

1.9 Cyclic homology

We will use the Connes double complex $\mathcal{B}_{\bullet \bullet}(CS(X))$. The maps I, B, S which involve Hochschild and cyclic homology HH., HC. are induced by morphism of filtered chain complexes.

The first column is a Hochschild complex $C_{\bullet}(CS(X))$. The rest is the same complex but shifted diagonally by 1, so the total complex is shifted by 2.

Let us put

$$\mathcal{B}^{(m)}_{\bullet\bullet} := \mathcal{B}_{\bullet\bullet}/F_{m-1}\mathcal{B}_{\bullet\bullet},$$

where $F_p \mathcal{B}_{kl} := F_p \mathcal{C}_{l-k}$. Much as we did before we consider the projective system of quotient complexes

Tot
$$\mathcal{B}_{\bullet\bullet}^{(m)} = \text{Tot } \mathcal{B}_{\bullet\bullet} / F_{m-1} \mathcal{B}_{\bullet\bullet}, \quad m \to -\infty.$$

Then we have

$$\mathcal{B}_{kl}^{(m)} = \lim_{p \to \infty} F_{pkl}^{(m)}, \quad m \in \mathbb{Z}, \ k, l \ge 0$$

and

$$\mathcal{B}_{kl} = \lim_{m \to -\infty} \mathcal{B}_{kl}^{(m)}, \quad k, l \geq 0,$$

where

$$F_{pkl}^{(m)}:=F_p\mathcal{B}_{kl}/F_{m-1}\mathcal{B}_{kl}.$$

Let $HC^{(m)}_{\bullet}$ denote the homology of Tot $\mathcal{B}^{(m)}_{\bullet\bullet}$, and $HC_{\bullet\bullet}$ the homology of Tot $\mathcal{B}_{\bullet\bullet}$.

Proposition 1.18. Assume that $m \le 0$ and $q \ge 2n + 1$. Then there exist isomorphisms

$$\mathrm{HC}_q^{(m)} \simeq egin{cases} \mathrm{H}_{\mathrm{dR}}^{ev}(Y^c) & q \ even \ \mathrm{H}_{\mathrm{dR}}^{odd}(Y^c) & q \ odd \end{cases}$$

compatible with the canonical maps $HC_q^{(m')} \to HC_q^{(m)}$ for $m' \leq m$.

In particular, the systems $\{HC^{(m)}\}_{m\in\mathbb{Z}_{\leq 0}}$ satisfy for $q\geq 2n+1$ the Mittag-Leffler condition. This gives us a corollary.

Corollary 1.19. *There are, for* $q \ge 2n + 1$ *, natural isomorphisms*

$$\mathrm{HC}_q \simeq \lim_{m \to -\infty} \mathrm{HC}_q^{(m)} \simeq egin{cases} \mathrm{H}_{\mathrm{dR}}^{ev}(Y^c) & q \ even \ \mathrm{H}_{\mathrm{dR}}^{odd}(Y^c) & q \ odd \end{cases}$$

This corollary together with a theorem (1.17) imply the following theorem for cyclic homology of an algebra of symbols if dim $H_{dR}^{\bullet}(Y^c) < \infty$.

Theorem 1.20. *The canonical map*

$$I: HH_{\bullet}(CS(X)) \to HC_{\bullet}(CS(X))$$

is injective. In particular

$$HC_{qr}(CS(X)) = \operatorname{gr}_r^S HC_q(CS(X)) := \mathcal{S}_{qr}/\mathcal{S}_{q,r-1}, \quad \mathcal{S}_{qr} = \ker S^{1+r}_* \cap HC_q(CS(X))$$

is canonically isomorphic with

$$H_{dR}^{2n-q+2r}(Y^c), \quad r=0,1,\ldots.$$

With some more work we can prove the theorem without assumption of finite dimension of $H^{\bullet}_{dR}(Y^c)$. Then one represents X as a union $\bigcup_{j\in\mathbb{N}}X_j$, where each X_j is compact (with smooth or empty boundary) and $X_j\subset \operatorname{Int}X_{j+1}$. Then the restriction maps $\operatorname{CS}(X)\to\operatorname{CS}(X_j)$ induce homomorphisms

$$\theta \colon HH_{\bullet}(CS(X)) \to \widehat{HH}_{\bullet} := \lim_{j} HH_{\bullet}(CS(X)),$$
 (1.7)

$$\eta: \operatorname{HC}_{\bullet}(\operatorname{CS}(X)) \to \widehat{\operatorname{HC}}_{\bullet} := \lim_{j} \operatorname{HC}_{\bullet}(\operatorname{CS}(X)).$$
(1.8)

For each *q* there is a commutative diagram

$$\begin{array}{ccc} \operatorname{HH}_q(\operatorname{CS}(X)) & \xrightarrow{\theta_q} & \widehat{\operatorname{HH}_q} \\ & & & \downarrow \simeq \\ & & \downarrow \simeq \\ & \operatorname{H}^{2n-q}_{\operatorname{dR}} & \xrightarrow{} & \lim_j \operatorname{H}^{2n-q}_{\operatorname{dR}}(Y_j^c) \end{array}$$

Notice that also the lower arrow is an isomorphism, since

$$\Omega_{\mathcal{O}}^{ullet} = \lim_{j} \Omega_{\mathcal{O}_{j}}^{ullet}$$

where \mathcal{O}_j denotes the corresponding graded algebra of functions on Y_j^c . Since both projective systems $\{\Omega_j^{\bullet}\}$ and $\{H_{dR}^{\bullet}(Y_j^c)\}$ satisfy Mittag-Leffler condition, we have that θ in (1.7) is an isomorphism.

The naturality of the Connes exact sequence gives us the commutative diagram

$$\cdots \xrightarrow{0} \widehat{HH}_{q} \xrightarrow{\widehat{I}} \widehat{HC}_{q} \xrightarrow{\widehat{S}} \widehat{HC}_{q-2} \xrightarrow{0} \widehat{HH}_{q-1} \xrightarrow{\widehat{I}} \cdots$$

$$\theta_{q} \stackrel{}{\uparrow} \simeq \eta_{q} \stackrel{}{\uparrow} \eta_{q-2} \stackrel{}{\uparrow} \theta_{q-1} \stackrel{}{\uparrow} \simeq$$

$$\cdots \xrightarrow{B} HH_{q} \xrightarrow{I} HC_{q} \xrightarrow{S} HC_{q-2} \xrightarrow{B} HH_{q-1} \xrightarrow{I} \cdots$$

with a priori only the lower sequence being exact. The exactness of the upper sequence follows from

$$\lim_{i \to \infty} HH_q(CS(X_i)) = 0, \text{ for all } q \in \mathbb{N},$$

which is a consequence of the finite-dimensionality of the groups $\mathrm{HH}_q(\mathrm{CS}(X_j)) = \mathrm{H}_{\mathrm{dR}}(Y_j^c)$. Thus the "five lemma" and an easy inductive argument prove that η is an isomorphism and B=0.

Now it remains to prove the proposition (1.18). The filtration $\{F_{p\bullet\bullet}^{(m)} \mid p=m,m+1,\ldots\}$ on $\mathcal{B}_{\bullet\bullet}^{(m)}$ induces a filtration on Tot $\mathcal{B}_{\bullet\bullet}^{(m)}$. Denote by $E_{pq}^{(m),r}$ the associated spectral sequence which converges to $HC_{\bullet}^{(m)}$.

This spectral sequence is a priori located in the region $\{(p,q) \mid p \geq m, p+q \geq 0\}$. We

shall see that $E_{pq}^{(m),r}$ for $r \ge 1$ vanishes in fact outside the region shown below

i.e. $E_{pq}^{(m),r}=0$ also if $p+q\geq 2n$ and $p\neq 0$. Indeed, $E_{pq}^{(m),1}$ is equal, for $p\geq m$, to

$$H_{p+q}(\operatorname{Tot} \mathcal{B}_{\bullet \bullet}(\mathcal{O})(p)) = \operatorname{HC}_{p+q}(\mathcal{O})(p).$$

Actually, the first spectral sequence of the double complex $\mathcal{B}_{\bullet \bullet}(\mathcal{O})(p)$ degenerates at E^2 yielding thus that

$$E_{pq}^{(m),1}\simeq\Omega_{\mathcal{O}}^{p+q}(p)/d\Omega_{\mathcal{O}}^{p+q-1}(p),\quad p\geq m,\;p\neq 0,$$

and

$$E_{0q}^{(m),1}\simeq \mathrm{H}_{\mathrm{dR}}^{\tilde{q}}(Y^c),\quad q\geq 2n,$$

where \tilde{q} is the parity of q and $H_{dR}^{\bullet} = H_{dR}^{(0)}(Y^c) \oplus H_{dR}^{(1)}(Y^c)$. This implies the required location of non-vanishing $E_{pq}^{(m),r}$ and as a corollary gives

$$\mathrm{HC}_q^{(m)} \simeq E_{0q}^{(m),1} \simeq \mathrm{H}_{\mathrm{dR}}^{(\tilde{q})}(\Upsilon^c)$$

for $q \ge 2n+1$. The isomorphisms are also compatible with the canonical mappings $\mathrm{HC}_q^{(m')} \to \mathrm{HC}_q^{(m)}$.

1.9.1 Further analysis of spectral sequence

We will use the notation ${}^{\prime}E_{pq}^{(m),r}$ for the earlier spectral sequence converging to Hochschild homology $\mathrm{HH}^{(m)}$.

First, let us consider the morphism of spectral sequences induced by *S*

$$\begin{array}{c}
'E_{pq}^{(m),r} \\
\downarrow S_{pq}^{(m),r} \\
'E_{p,q-2}^{(m),r}
\end{array}$$

For r=1 we have

$$E_{pq}^{(m),1} = \begin{cases} HC_{p+q}(\mathcal{O})(p), & \mathcal{O} = gr(CS(X)) = \bigoplus_{p \in \mathbb{Z}} \mathcal{O}(p) & p \geq m \\ 0 & p < m \end{cases}$$

Then

$$E_{pq}^{(m),1}$$

$$\downarrow^{S_{pq}^{(m),1}}$$

$$E_{p,q-2}^{(m),1}$$

is the corresponding component of the S-map on cyclic homology of graded algebra \mathcal{O} .

If
$$p = 0$$

$$\mathrm{HC}_{p+q}(\mathcal{O}) = \overline{\Omega}^q \oplus \mathrm{H}_{\mathrm{dR}}^{q-2} \oplus \mathrm{H}_{\mathrm{dR}}^{q-4} \oplus \ldots,$$

where

$$\Omega^{\bullet} := \Omega_{\mathcal{O}}^{\bullet}, \quad \mathbf{H}_{\mathrm{dR}}^{\bullet} := \mathbf{H}^{\bullet}(\Omega^{\bullet}).$$

$$\overline{\Omega}^{k}(p) := \Omega^{k}(p) / d\Omega^{k-1}(p)$$

For $p \neq 0$

$$\mathrm{HC}_{p+q}(\mathcal{O})(p) = egin{cases} \overline{\Omega}^{p+q}(p) & p \geq m \\ 0 & p < m \end{cases}$$

$$p = -2 \qquad \qquad p = -1 \qquad \qquad p = 0 \qquad \qquad p = 1 \qquad \qquad p = 2$$

$$\overline{\Omega}^{q-2}(-2) \stackrel{d^1}{\longleftarrow} \overline{\Omega}^{q-1}(-1) \stackrel{d^1}{\longleftarrow} \overline{\Omega}^q \oplus H_{dR}^{q-2} \oplus H_{dR}^{q-4} \oplus \dots \stackrel{d^1}{\longleftarrow} \overline{\Omega}^{q+1}(1) \stackrel{d^1}{\longleftarrow} \overline{\Omega}^{q+2}(2)$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\overline{\Omega}^{q-2}(-4) \stackrel{d^1}{\longleftarrow} \overline{\Omega}^{q-1}(-3) \stackrel{d^1}{\longleftarrow} \overline{\Omega}^{q-2} \oplus H_{dR}^{q-4} \oplus H_{dR}^{q-4} \oplus \dots \stackrel{d^1}{\longleftarrow} \overline{\Omega}^{q-1}(1) \stackrel{d^1}{\longleftarrow} \overline{\Omega}^q(2)$$

where for p = 0 we have

$$\overline{\Omega}^q$$
 \oplus H_{dR}^{q-2} \oplus H_{dR}^{q-4} \oplus \cdots \downarrow \downarrow \parallel 0 \oplus $\overline{\Omega}^{q-2}$ \oplus H_{dR}^{q-4} \oplus \cdots

Denote

$$\overline{E}_{pq}^{(m),1} := \begin{cases} \overline{\Omega}^{p+q}(p) & p \ge 0\\ 0 & p < 0 \end{cases}$$

Corollary 1.21. There is an isomorphism of chain complexes

$$(E_{\bullet,q}^{(m),1},d_{\bullet,q}^1)\simeq(\overline{E}_{\bullet,q}^{(m),1}\oplus(H_{\mathrm{dR}}^{q-2}\oplus H_{\mathrm{dR}}^{q-4}\oplus\ldots)[0],d)$$

and there is an exact sequence of complexes

Consider the second spectral sequence of the double complex but arranged according to conventions of Cartan-Eilenberg's book. Denote it by ${}_{q}\mathcal{E}_{\bullet \bullet}^{r}$, although it depends also on m. The $_{q}\mathcal{E}_{\bullet\bullet}^{2}$ looks as follows.

There is an isomorphism

$$\overline{E}_{pq}^{(m),2} \xrightarrow{\simeq} \overline{E}_{p+1,q+1}^{(m),2}$$

except
$$(p,q) = (0,q), (1,q-1), (1,q), (2,q).$$

except (p,q) = (0,q), (1,q-1), (1,q), (2,q).The term $\overline{E}_{pq}^{(m),2}$ appears twice, in ${}_{q}\mathcal{E}_{\bullet \bullet}^{r}$ and ${}_{q+1}\mathcal{E}_{\bullet \bullet}^{r}$.

There are two cases:

$$q < n$$
 then for $l = \left[\frac{q}{2}\right] + 1$

$$\overline{E}_0^{(m),2} \xleftarrow{\simeq} \overline{E}_{-1,q-1}^{(m),2} \xleftarrow{\simeq} \overline{E}_{-2,q-2}^{(m),2} \xrightarrow{\simeq} \dots \xrightarrow{\simeq} \overline{E}_{-l,q-l}^{(m),2} \subseteq HC_{q-2l}(\mathcal{O})(-l) = 0$$

because q - 2l < 0.

The \mathcal{E}^1 -term is the same as the \mathcal{E}^2 -term:

In \mathcal{E}^3 there are only two terms and the spectral sequence collapses at \mathcal{E}^4 .

 $q-1 \ge n$ then for $l=n-\left[\frac{q}{2}\right]$

$$\overline{E}_{2,q-1}^{(m),2} \xrightarrow{\simeq} \overline{E}_{3,q}^{(m),2} \xrightarrow{\simeq} \overline{E}_{4,q+1}^{(m),2} \xrightarrow{\simeq} \dots \xrightarrow{\simeq} \overline{E}_{2+l,q+l-1}^{(m),2} \simeq \overline{\Omega}^{2l+q-1}(2+l) = 0$$

because 2l + q - 1 > 2n.


```
\uparrow H^{2n+2} \oplus H^{2n+1} = 0 \cdots
                                                                                H^{2n+1} \oplus H^{2n} = 0 \cdots
                                                                                 H^{2n} \oplus H^{2n-1} = 0 \cdots
                                                                0
                                                                                H^{2n-1} \oplus H^{2n-3} 0
                                                                       H^{2n}
                                                                0
                                                                                H^{2n-2} \oplus H^{2n-4} \quad 0 \quad \cdots
                                                             H^{2n} H^{2n-1}
                                                 ... H^{2n} H^{2n-1} H^{2n-2}
                                                                                H^{2n-3} \oplus H^{2n-5} 0
                                 H^{2n} H^{2n-1} \cdots H^{n+5} H^{n+4} H^{n+3}
                                                                                  H^{n+2} \oplus H^n
                                                                                                   0
                                                                                                        0
n+2
                   0
                                                                                                                         0
                                                                                 \mathbf{H}^{n+1} \oplus \mathbf{H}^{n-1} = \mathbf{0}
                        H^{2n} H^{2n-1} H^{2n-2} ... H^{n+3} H^{n+3} H^{n+2}
n+1
                   0
                                                                                                          0
                                                                                                                         0
                 H^{2n} H^{2n-1} H^{2n-2} H^{2n-3} ... H^{n+3} H^{n+2} H^{n+1}
                                                                                  H^n \oplus H^{n-2}
n
                                                                                                          0
                                                                                                                         0
                                                                                 H^{n-3} \oplus H^{n-5} = 0 H^{n-2} H^{n-3} H^{n-4} H^{n-5} ... H^3 H^2 H^1 H^0
                   0
                                           0 \cdots 0
n-1
                                                                0
                                                                                 H^{n-4} \oplus H^{n-6} = 0 H^{n-3} H^{n-4} H^{n-5} H^{n-6} ... H^2 H^1 H^0 0
n-2
                   0
                                           0
                                                ... 0
                                                                0
                                                                         0
                                                                                                   0 H^{n-4} H^{n-5} H^{n-6} H^{n-7} \cdots H^{1} H^{0} 0 0
                                                                                 H^{n-5} \oplus H^{n-7}
           0
                   0
                                           0
                                                 ... 0
                                                                0
                                                                         0
                                                                                                    0 	 H^3 	 H^2
                                                                                   H^2 \oplus H^0
                                                                                                                        H^1
                                                                                                                               H_0 \cdots
                                                                         0
                                                                                       H^1
                                                                                                        H^2
                                                                                                                H^1
                                                                                                                        \mathbf{H}^0
                                                                                                                                 0 ...
                                                                         0
                                                                                       H^0
                                                                                                        \mathsf{H}^1
                                                                                                                 H^0
                                                                                                    0
                                                                                                                         0
                                                                                                                                 0 ...
                                                                                                         \mathbf{H}^0
                                                                                                                  0
                                                                                                    0
                                                                                                                         0
                                                                                                                                     . . .
                                                                                                          0
                                                 -4 -3
                                                                -2
                                                                        -1
                                                                                                          2
                                                                                                                  3
 \cdots -n-1-n
                                                                                                                                                n-1 n ···
```

1.9.2 Higher differentials

For r = 1, 2, ... the differentials in the spectral sequence are as follows

Let E_{pq}^r be a spectral sequence such that each E_{pq}^r (for $r > r_0$) is a finite dimensional vector space. Let R be a region in the (p,q)-plane which contains finitely many boxes. Then

$$\sum_{(p,q)\in R} \dim E^r_{pq} \ge \sum_{(p,q)\in R} \dim E^{r+1}_{pq} \ge \ldots \ge \sum_{(p,q)\in R} \dim E^{\infty}_{pq}.$$

The equality holds if and only if there is no nontrivial differential originating or leaving R, that is the equality

$$\sum_{(p,q)\in R} \dim E_{pq}^{r'} = \sum_{(p,q)\in R} \dim E_{pq}^{\infty}$$

is another way of saying that the spectral sequence in region R degenerates at $E^{r'}$. In our spectral sequence

$$E_{pq}^{(m),2} \implies \mathrm{H}_{p+q}(\mathrm{Tot}\,\mathcal{B}_{\bullet\bullet}(\mathrm{CS}(X))/F_{m-1}\,\mathrm{Tot}\,\mathcal{B}_{\bullet\bullet}(\mathrm{CS}(X)))$$

We claim that the only nonvanishing differentials d_{pq}^r for $r \ge 2$ are

$$d_{pq}^p \colon E_{pq}^{(m),p} \to E_{0,p+q-1}^{(m),2}$$

which inject $E_{pq}^{(m),2} = E_{pq}^{(m),2} \simeq \mathbf{H}_{\mathrm{dR}}^{q-2}$ into $E_{0,p+q-1}^{(m),p}$.

We can define two regions R, R' as follows.

[PICTURE]

Then

$$\sum_{(p,q)\in R} \dim E_{pq}^{r'} = \sum_{(p,q)\in R} \dim E_{pq}^{\infty}.$$

Suppose that ther is no nontrivial differential originating from R' or nontrivial differential hitting R and originating outside. Then

$$\sum_{(p,q) \in R'} \dim E^r_{pq} - \sum_{(p,q) \in R} \dim E^r_{pq} \geq \sum_{(p,q) \in R'} \dim E^{r+1}_{pq} - \sum_{(p,q) \in R} \dim E^{r+1}_{pq}$$

Equality holds if and only if all d^r inside R are zero, and then for all $r > r_0$ for some r_0

$$\sum_{(p,q)\in R'} \dim E^r_{pq} - \sum_{(p,q)\in R} \dim E^r_{pq} = \sum_{(p,q)\in R'} \dim E^\infty_{pq} - \sum_{(p,q)\in R} \dim E^\infty_{pq}.$$

We can write

$$\sum_{0 \le q \le n} \dim E_{0q}^{(m),2} - \sum_{0 \le q \le n} \dim E_{0q}^{(m),\infty} = \sum_{p > 0} \dim E_{pq}^{(m),2}.$$

For $r \ge 2$ let us introduce the following statements:

 $(A)_r$ The natural maps

$$E_{pq}^{(m),r} \to E_{pq}^{(m),r} \langle Y^{n-1} \rangle$$

are isomorphisms for p > 0, r fixed.

 $(B)_r$ The differentials

$$d_{pq}^r \colon E_{rq}^{(m),r} \to E_{0,q+r-1}^{(m),r}$$

are injective.

 $(C)_r$ The differentials

$$d_{pq}^r \colon E_{pq}^{(m),r} \to E_{p-r,q+r-1}^{(m),r}$$

are zero for $p \ge r$.

We prove them by induction on r, simultaneously

and so on. Furthermore let us introduce two more sequences of statements:

 $(D)_r$ For p > m

$$d_{pq}^r = \lim_j d_{pq,j}^r.$$

 $(E)_r$ For p > m

$$E_{pq}^{(m),r} = \lim_{i} E_{pq}^{(m),r} \langle Y_{j} \rangle.$$

These are also proved by induction on r in the following way. The $(E)_r$ implies $(D)_r$ and $(E)_r$ and $(D)_r$ together with the condition that $\{E_{pq}^{(m),r}\langle Y^j\rangle\}$, $\{E_{pq}^{(m),r+1}\langle Y^j\rangle\}$ satisfy Mittag-Leffler condition, imply $(E)_{r+1}$.

The $(A)_2$ statement follows from the following remark. Suppose $H^k_{dR}(Y^c) = 0$ for k > n and that dim $H^{\bullet}_{dR}(Y^c) < \infty$. Then

$$\sum_{j=0}^{2n-2} \dim E_{0j}^{(m),2} - \sum_{p>0,q} \dim E_{pq}^{(m),2} = \sum_{j=0}^{2n-2} \dim HC_j(CS_Y).$$

The maps

$$H^j_{dR}(Y^c) \to H^j_{dR}((Y^k)^c)$$

are isomorphisms for j < k, monomorphism for j = k, zero for j > k + 1.

Appendix A

Topological tensor products

Let $(E, \{p_{\alpha}\}_{\alpha \in A})$, $(F, \{q_{\beta}\}_{\beta \in B})$ be vector spaces with the systems of seminorms $\{p_{\alpha}\}_{\alpha \in A}$, $\{q_{\beta}\}_{\beta \in B}$ respectively. Define a system of seminorms on $E \otimes F$ by

$$(p_{\alpha} \otimes q_{\beta})(\tau) := \inf \sum_{i \in I} p_{\alpha}(e_i) q_{\beta}(f_i), \tag{A.1}$$

where infimum is taken over all representations $\tau = \sum_{i \in I} e_i \otimes f_i$, in which I is a finite set.

Definition A.1. A locally convex space $E \otimes F$ with topology induced by the system of seminorms $\{p_{\alpha} \otimes q_{\beta}\}_{(\alpha,\beta) \in A \times B}$ is calles a **projective tensor product** and denoted by $E \otimes_{\pi} F$. Its completion is denoted by $E \otimes_{\pi} F$.

A bilinear map

$$\phi \colon E \times F \to E \widehat{\otimes}_{\pi} F$$
, $(e, f) \mapsto e \otimes f$,

is continuous in both variables and has the following universal property.

Fact A.2. For every bilinear jointly continuous mapping $f: E \times F \to W$ into locally convex space W there exists unique continuous linear map $L_{\phi}: E \widehat{\otimes}_{\pi} F \to W$ such that following diagram commutes.

$$E \times F \xrightarrow{f} W$$

$$E \otimes_{\pi} F$$

Remark A.3. There are also different tensor products on topological vector spaces, like injective and inductive tensor products, but we will not describe them here.

Suppose that $E' = \bigcup_{m \in \mathbb{Z}} E'_m$, where

$$\ldots \subseteq E'_{m-1} \subseteq E'_m \subseteq \ldots$$

is a \mathbb{Z} -filtration of E' by locally convex closed vector subspaces of E', and analogously for the space E''. Then define

$$E'\widetilde{\otimes}E'':=\lim_{(l_1,l_2)\in\mathbb{Z}\times\mathbb{Z}}E'_{l_1}\widehat{\otimes}_{\pi}E''_{l_2}.$$

If for any m there is a continuous projections $E'_m \to E'_{m-1}$, $E''_m \to E''_{m-1}$, then the space $E'_{l_1} \hat{\otimes}_{\pi} E''_{l_2}$ is a closed subspace in $E'_{m_1} \hat{\otimes}_{\pi} E''_{m_2}$ for any $m_1 \geq l_1$, $m_2 \geq l_2$.

Define a \mathbb{Z} -filtration on $E'\widetilde{\otimes}E''$

$$(E'\widetilde{\otimes}E'')_m := \bigcup_{\substack{(l_1,l_2)\in\mathbb{Z}\times\mathbb{Z}\l_1+l_2\leq m}} E'_{l_1}\widehat{\otimes}_{\pi}E''_{l_2}.$$

In similar way we define $E^{(1)}\widetilde{\otimes}\ldots\widetilde{\otimes}E^{(p)}$ with \mathbb{Z} -filtration

$$(E^{(1)}\widetilde{\otimes}\ldots\widetilde{\otimes}E^{(p)})_m:=\bigcup_{\substack{(l_1,\ldots,l_p)\in\mathbb{Z}^p\\l_1+\ldots+l_p\leq m}}E_{l_1}^{(1)}\widehat{\otimes}_{\pi}\ldots\widehat{\otimes}_{\pi}E_{l_p}^{(p)}.$$

Appendix B

Spectral sequences

Lecture given by prof. Wodzicki on October 2004 in Warsaw, with remarks added in November 2006.

B.1 Spectral sequence of a filtered complex

Let $(C_{\bullet}, F, \partial)$ be a filtered chain complex, that is

$$\ldots \subseteq F_pC_{\bullet} \subseteq F_{p+1}C_{\bullet} \subseteq \ldots \subseteq C_{\bullet}.$$

We say that the filtration is

- 1. **separable** if $\bigcap_p F_p C_n = \{0\}$,
- 2. **complete** if $C_n \stackrel{\simeq}{\to} \lim_p C_n / F_p C_n$,
- 3. **cocomplete** if $\bigcup_p F_p C_n \xrightarrow{\cong} C_n$,

for all $n \in \mathbb{Z}$.

We define $E^0_{\bullet\bullet} := \operatorname{gr}^F_{\bullet} C_{\bullet}$ (the associated graded complex), where $E^0_{pq} := F_p C_{p+q} / F_{p-1} C_{p+q}$, and $d^0_{\bullet\bullet}$ is the boundary operator induced by ∂ , $d^0_{pq} : E^0_{pq} \to E^0_{p,q-1}$. Thus $(E^0_{\bullet\bullet}, d^0_{\bullet\bullet})$ is the direct sum of complexes

$$(E^0_{\bullet\bullet}, d^0_{\bullet\bullet}) = \bigoplus_{p \in \mathbb{Z}} (E^0_{p\bullet}, d^0_{p\bullet}).$$

Next we define

$$\begin{split} E^1_{pq} &:= \mathbf{H}_q(E^0_{p\bullet}, d^0_{p\bullet}) \\ &= \frac{\{c \in F_pC_{p+q} \mid \partial c \in F_{p-1}C_{p+q-1}\}}{\{c \in F_pC_{p+q} \mid c = \partial b \text{ for some } b \in F_pC_{p+q+1}\}} \mod F_{p-1}C_{p+q} \\ &=: \frac{Z^1_{pq} + F_{p-1}C_{p+q}}{B^1_{pq} + F_{p-1}C_{p+q}}. \end{split}$$

On E^1_{pq} the boundary operator ∂ induces a boundary operator $d^1_{pq} \colon E^1_{pq} \to E^1_{p-1,q}$ and so on...

Define for $r = 1, 2, \dots$

$$E_{pq}^{r} = \frac{\{c \in F_{p}C_{p+q} \mid \partial c \in F_{p-r}C_{p+q-1}\}}{\{c \in F_{p}C_{p+q} \mid c = \partial b \text{ for some } b \in F_{p+r-1}C_{p+q+1}\}} \mod F_{p-1}C_{p+q}$$

$$=: \frac{Z_{pq}^{r} + F_{p-1}C_{p+q}}{B_{pq}^{r} + F_{p-1}C_{p+q}}.$$

$$\cdots F_{p-r}C_{p+q-1} \qquad F_{p-r}C_{p+q} \qquad F_{p-r}C_{p+q+1} \qquad \cdots$$

$$\cdots F_{p-1}C_{p+q-1} \qquad F_{p-1}C_{p+q} \qquad F_{p-1}C_{p+q+1} \qquad \cdots$$

$$\cdots F_{p}C_{p+q-1} \qquad O \qquad F_{p}C_{p+q} \qquad O \qquad F_{p}C_{p+q+1} \qquad \cdots$$

$$\cdots F_{p+r}C_{p+q-1} \qquad O \qquad F_{p+r}C_{p+q} \qquad O \qquad F_{p+r}C_{p+q+1} \qquad \cdots$$

$$\cdots F_{p+r}C_{p+q-1} \qquad O \qquad F_{p+r}C_{p+q} \qquad O \qquad F_{p+r}C_{p+q+1} \qquad \cdots$$

$$\cdots F_{p+r}C_{p+q-1} \qquad O \qquad F_{p+r}C_{p+q} \qquad O \qquad F_{p+r}C_{p+q+1} \qquad \cdots$$

$$\cdots F_{p+r}C_{p+q-1} \qquad O \qquad F_{p+r}C_{p+q} \qquad O \qquad F_{p+r}C_{p+q+1} \qquad \cdots$$

$$\cdots F_{p+r}C_{p+q-1} \qquad O \qquad F_{p+r}C_{p+q} \qquad O \qquad F_{p+r}C_{p+q+1} \qquad \cdots$$

$$\cdots F_{p+r}C_{p+q-1} \qquad O \qquad F_{p+r}C_{p+q} \qquad O \qquad F_{p+r}C_{p+q+1} \qquad \cdots$$

Now $E_{\bullet \bullet}^r$ equipped with the boundary operator induced by ∂ becomes a direct sum of complexes

$$\cdots \leftarrow E^r_{p-r,q+r-1} \xleftarrow{d^r_{pq}} E^r_{pq} \xleftarrow{d^r_{p+r,q-r+1}} E^r_{p+r,q-r+1} \leftarrow \cdots,$$

$$E^r_{p-r,q+r-1} = \cdots \qquad \cdots \qquad \cdots \qquad \cdots$$

$$\cdots \qquad \cdots \qquad \cdots \qquad \cdots \qquad \cdots$$

$$\cdots \qquad \cdots \qquad \cdots \qquad \cdots \qquad \cdots$$

which we can denote by $(E^r_{p+\bullet r,q-\bullet(r-1)}, d^r_{p+\bullet r,q-\bullet(r-1)})$. Now E^{r+1}_{pq} is canonically isomorphic to the homology of the complex $(E^r_{p+\bullet r,q-\bullet(r-1)}, d^r_{p+\bullet r,q-\bullet(r-1)})$ at the E^r_{pq} .

For each (p,q) we defined a system of subobjects of F_pC_{p+q} :

$$\{0\} = B_{pq}^{0} \subseteq B_{pq}^{1} \subseteq \dots \subseteq B_{pq}^{r} \subseteq \dots$$

$$\subseteq \bigcup_{r} B_{pq}^{r} =: B_{pq}^{\infty} \subseteq Z_{pq}^{\infty} := \bigcap_{r} Z_{pq}^{r} \subseteq$$

$$\dots \subseteq Z_{pq}^{r} \subseteq \dots \subseteq Z_{pq}^{1} \subseteq Z_{pq}^{0} = F_{p}C_{p+q}$$

such that

$$E_{pq}^r = Z_{pq}^r / B_{pq}^r \mod F_{p-1} C_{p+q}.$$

Morphism $\varphi \colon (C_{\bullet}, F, \partial) \to ('C_{\bullet}, F, '\partial)$ of filtered complexes induces a morphism

$$E^r_{\bullet\bullet}(\varphi)\colon E^r_{\bullet\bullet}\to' E^r_{\bullet\bullet}, r\geq 0,$$

of corresponding spectral sequences.

Theorem B.1 (Eilenberg-Moore). *If* $E_{\bullet \bullet}^r(\varphi)$ *is an isomorphism for some r and both filtrations are complete and cocomplete, then* φ *is a quasi-isomorphism.*

We say that the spectral sequence $E_{\bullet \bullet}^r$ converges to filtered module M if

$$E_{pq}^{\infty} \simeq F_p M_{p+q} / F_{p-1} M_{p+q}, \quad p,q \in \mathbb{Z}.$$

We write then $E_{pq}^r \implies M_{p+q}$.

If the filtration is locally bounded from below (i.e. $F_pC_n = \{0\}$ for $p \ll 0$) and cocomplete, then $E_{\bullet \bullet}^r$ converges to $H_*(C_{\bullet}, \partial)$. The homology of a complex (C_{\bullet}, ∂) is equipped with canonical filtration

$$F_p \operatorname{H}_*(C_{\bullet}, \partial) := \operatorname{im}(\operatorname{H}_*(F_p C_{\bullet}, \partial) \to \operatorname{H}_*(C_{\bullet}, \partial)).$$

We say that the spectral sequence $E_{\bullet \bullet}^r$ degenerates (or collapses) at E^s if $E_{\bullet \bullet}^s \simeq E_{\bullet \bullet}^\infty$. Consider the r-th term E_r of the spectral sequence.

The source term E_{pq}^r is mapped to the rightmost one $E_{p'q'}^r$. There is a sequence of maps

$$E_{pq}^r woheadrightarrow E_{pq}^{r+1} woheadrightarrow E_{pq}^{\infty} o H_{p+q}(C),$$

and similarly

$$H_{p'+q'}(C) \to E^{\infty}_{p'q'} \rightarrowtail \cdots \rightarrowtail E^{r+1}_{p'q'} \rightarrowtail E^{r}_{p'q'}.$$

These maps are called the **edge homomorphisms**. For the first quadrant spectral sequence they correspond to maps from leftmost column p = 0

$$E_{0q}^r \to \mathbf{H}_q(C)$$
,

and to bottom row q = 0

$$H_p(C) \to E_{v0}^r$$
.

B.2 Examples

Example B.2. Two spectral sequences associated with the double complex $(C_{\bullet \bullet}, \partial', \partial'')$.

Recall that

$$\partial'^2 = \partial''^2 = 0$$
, $[\partial', \partial''] = \partial'\partial'' + \partial''\partial' = 0$,

and the total complex is defined by

$$(\operatorname{Tot} C)_n := \prod_{p=-\infty}^{-1} C_{p,n-p} \oplus \bigoplus C_{p,n-p}, \quad \partial := \partial' + \partial''.$$

There are two filtrations on Tot *C*:

1. filtration by columns

$${}'F_p(\operatorname{Tot} C)_n := \prod_{r \le p} C_{r,n-r}$$

2. filtration by rows

$$^{\prime\prime}F_p(\operatorname{Tot} C)_n := \bigoplus_{p \le s} C_{n-s,s}$$

Filtration by rows is complete and cocomplete only if for all $n \in \mathbb{Z}$ $C_{pq} \neq 0$ for only finite number of p,q such that p+q=n. Filtration by columns is always complete and cocomplete.

There are two spectral sequences associated to double complex $(C_{\bullet \bullet}, \partial', \partial'')$.

1. First spectral sequence associated to the filtration by columns

$${}'E^1_{pq}=\mathrm{H}_q(C_{p\bullet},\partial'').$$

It converges to $H_{p+q}(C_{\bullet \bullet}) := H_{p+q}(\operatorname{Tot}(C_{\bullet \bullet}))$ if $C_{p,n-p} = 0$ for $p \ll 0$ ($n \in \mathbb{Z}$).

2. Second spectral sequence associated to the filtration by rows

$$^{\prime\prime}E_{pq}^{1}=\mathrm{H}_{q}(C_{\bullet p},\partial^{\prime}).$$

It converges to $H_{p+q}(C_{\bullet \bullet})$ if $C_{p,n-p} = 0$ for $p \ll 0$ and $p \gg 0$ ($n \in \mathbb{Z}$).

Example B.3. Double complex $\mathcal{B}(A)_{\bullet \bullet}$ (Connes double complex). Let A be the associative algebra with unit.

$$\mathcal{B}(A)_{pq} := egin{cases} A^{\otimes (q-p+1)} & \text{if } q \geq p \geq 0, \\ 0 & \text{otherwise.} \end{cases}$$

Here *b* is the Hochschild boundary operator and *B* is defined as

$$B := (1 - t)sN,$$

where

$$s(a_0 \otimes \cdots \otimes a_n) := 1 \otimes a_0 \otimes \cdots \otimes a_n$$

$$t(a_0 \otimes \cdots \otimes a_n) := (-1)^n \otimes a_0 \otimes \cdots \otimes a_{n-1}$$

$$N(a_0 \otimes \cdots \otimes a_n) := (\mathrm{id} + t + \ldots + t^n)(a_0 \otimes \cdots \otimes a_n)$$

Example B.4. Double complex $\mathcal{D}(A)_{\bullet \bullet}$. Here A is commutative k-algebra with unit.

$$\mathcal{D}(A)_{pq} := \begin{cases} \Omega_{A/k}^{q-p} & \text{if } q \ge p \ge 0, \\ 0 & \text{otherwise.} \end{cases}$$

If $A \xrightarrow{\simeq} A \otimes_{\mathbb{Z}} \mathbb{Q}$ (i.e. the additive group (A, +) is uniquely divisible), then the formula

$$\mu(a_0 \otimes \cdots \otimes a_n) := \frac{1}{n!} a_0 da_0 \wedge \cdots \wedge da_n$$

induces a morphism of double complexes $\mu \colon \mathcal{B}(A)_{\bullet \bullet} \to \mathcal{D}(A)_{\bullet \bullet}$.

On the level of spectral sequences associated with the filtration by columns we obtain surjective maps

$$E^1(pq)(\mu) \colon A^{\otimes (q-p+1)} \twoheadrightarrow \Omega^{q-p}_{A/k}.$$

These maps are isomorphisms if A is a function algebra on the smooth algebraic variety over a perfect field (i.e. of characteristic 0 or such that $k^p = k$ if $\operatorname{char}(k) = p$), or iductive limit of such (for example $A = \mathbb{C}$ as \mathbb{Q} -algebra).

The first spectral sequence of a double complex $(\mathcal{D}(A)_{\bullet\bullet},0,d)=\bigoplus_{q\geq 0}(\Omega_{A/k}^q\xleftarrow{d}\ldots\xleftarrow{d}A)$ degenerates at the term E^2 :

$$\begin{array}{cccc}
\vdots & & \vdots & & \vdots \\
\Omega_{A/k}^2/d\Omega_{A/k}^1 & \stackrel{d}{\longleftarrow} & \operatorname{H}_{\mathrm{dR}}^1(A) & \stackrel{d}{\longleftarrow} & \operatorname{H}_{\mathrm{dR}}^0(A) \\
\downarrow & & \downarrow & & \downarrow \\
0 & & & \downarrow & & \downarrow \\
\Omega_{A/k}^1/dA & \stackrel{d}{\longleftarrow} & \operatorname{H}_{\mathrm{dR}}^0(A) \\
\downarrow & & & \downarrow & & \downarrow \\
A & & & & & & \\
\end{array}$$

Thus the first spectral sequence of the double complex $(\mathcal{B}(A)_{\bullet\bullet}, b, B)$ also degenerates at the term E^2 , and we get an isomorphism

$$\mathrm{HC}_n(A) := \mathrm{H}_n(\mathcal{B}(A)_{\bullet \bullet}) = \Omega^n_{A/k} / d\Omega^{n-1}_{A/k} \oplus \mathrm{H}_{\mathrm{dR}}^{n-2}(A) \oplus \mathrm{H}_{\mathrm{dR}}^{n-4}(A) \oplus \dots$$

Example B.5. Let P_{\bullet} be a projective resolution of a right R-module M, and Q_{\bullet} a projective resolution of a left R-module N. Consider the double complex $P_{\bullet} \otimes_R Q_{\bullet}$. Then

$${}'E_{pq}^2 = \begin{cases} H_p(P_{\bullet} \otimes_R N) & q = 0, \\ 0 & q \neq 0 \end{cases}$$

$$^{\prime\prime}E_{pq}^2 = \begin{cases} H_p(M \otimes_R Q_{\bullet}) & q = 0, \\ 0 & q \neq 0 \end{cases}$$

Both spectral sequences converge to $H_{p+q}(P_{\bullet} \otimes_R Q_{\bullet}) =: \operatorname{Tor}_{p+q}^R(M,N)$, so we get an important canonical isomorphisms

$$H_p(P_{\bullet} \otimes_R N) \simeq \operatorname{Tor}_p^R(M, N) \simeq H_p(M \otimes_R Q_{\bullet}).$$

They express the fact that the bifunctor \otimes_R : $\mathbf{Mod} - R \times R - \mathbf{Mod} \to \mathbf{Ab}$ is balanced.

Example B.6. Two hiperhomology spectral sequences. A Cartan-Eilenberg resolution of a complex (C_{\bullet}, ∂) is a double complex $(P_{\bullet \bullet}, \partial', \partial'')$ with augmentation $\eta : P_{\bullet 0} \to C_{\bullet}$ satisfying the following conditions:

- 1. for all p, q the modules P_{pq} , im ∂'_{pq} , $\ker \partial'_{pq}$, $H_p(P_{\bullet q}, \partial')$ are projective,
- 2. the augmented complexes

$$P_{p \bullet} \qquad \operatorname{im} \partial'_{p \bullet} \qquad \ker \partial'_{p \bullet} \qquad \operatorname{H}_{p}(P_{\bullet q}, \partial')$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$C_{p} \qquad \operatorname{im} \partial_{p} \qquad \ker \partial_{p} \qquad \operatorname{H}_{p}(C_{\bullet}, \partial)$$

are projective resolutions.

Such resolution can be obtained from the arbitrary projective resolutions of $H_p(C_{\bullet}, \partial)$ and im ∂_{p-1} by gluing them.

$$P_{p \bullet}^{H} \ll ---P_{p \bullet}^{Z} \ll --P_{p \bullet}^{B} \ll --P_{p \bullet} \ll --P_{p \bullet}^{Z} \ll -$$

For an additive functor F the hiperhomology spectral sequences are the first and second spectral sequences of a double complex $(F(P_{\bullet \bullet}), F(\partial'), F(\partial''))$

$$'E_{pq}^{1} = (L_{q}F)(C_{p}),$$
 $''E_{pq}^{2} = F(P_{pq}^{H}),$

and

$$'E_{pq}^2 = H_p((L_q F)(C_{\bullet})),$$

$$''E_{pq}^2 = (L_p F)(H_q(C_{\bullet})).$$

Both spectral sequences converge to

$$\mathbb{L}_{p+q}F(C_{\bullet}) := \mathcal{H}_{p+q}(F(P_{\bullet \bullet})).$$

if C_{\bullet} is bounded from below, that is $C_n = 0$ for $n \ll 0$.

Assume that $C_n = 0$ for n < 0, C_{\bullet} is F-acyclic, that is $(L_0F)(C_n) \xrightarrow{\cong} C_n$, $(L_pF)(C_n) = 0$ for p > 0, and that

$$H_n(C_{\bullet}) = \begin{cases} M & n = 0, \\ 0 & n > 0. \end{cases}$$

Such complex is called an *F*-acyclic resolution of the module *M*. In that case

$${}'E_{pq}^2 \simeq egin{cases} \mathrm{H}_p(F(C_ullet)) & q=0, \ 0 & q
eq 0, \end{cases}$$
 ${}''E_{pq}^2 \simeq egin{cases} L_pF(M) & p=0, \ 0 & p
eq 0. \end{cases}$

Thus we obtain an isomorphism

$$H_{\nu}(F(C_{\bullet})) \simeq (L_{\nu}F)(M).$$

We proved a very important fact, that to compute $(L_pF)(M)$ it is enough to use an arbitrary F-acyclic resolution of M.

Example B.7. Flat module is an *F*-acyclic module for $F = (-) \otimes_R N$, where *N* is an arbitrary left *R*-module. For $R = \mathbb{Z}$ flat modules are the torsion free abelian groups. Thus

$$0 \leftarrow \mathbb{Q}/\mathbb{Z} \leftarrow \mathbb{Q} \leftarrow \mathbb{Z} \leftarrow 0$$

is a flat resolution of the group \mathbb{Q}/\mathbb{Z} (injective cogenerator of a category of abelian groups Ab). From this we obtain

$$\operatorname{Tor}_{1}^{\mathbb{Z}}(\mathbb{Q}/\mathbb{Z}, A) = \ker(A \to A \otimes_{\mathbb{Z}} \mathbb{Q}) = \operatorname{Torsion}(A).$$

Example B.8. Consider two composable additive functors

$$\mathcal{A} \xrightarrow{G} \mathcal{B} \xrightarrow{F} \mathcal{C}$$

where \mathcal{A} , \mathcal{B} , \mathcal{C} are abelian categories. Let M be an object in \mathcal{A} , P_{\bullet} its projective resolution. In the hiperhomology spectral sequence we put $C_{\bullet} = G(P_{\bullet})$. Then if G sends projective objects into F-acyclic objects

$${}'E_{pq}^2 = \mathrm{H}_p((L_q F)(G(P_{\bullet}))) \simeq \begin{cases} \mathrm{H}_p((F \circ G)(P_{\bullet})) = (L_p(F \circ G))(M) & q = 0\\ 0 & q \neq 0 \end{cases}$$

$$^{\prime\prime}E_{pq}^2 = (L_pF \circ L_qG)(M)$$

In this case we obtain that

This spectral sequence is called a spectral sequence of a composition of functors.

Example B.9. Let $\varphi: R \to S$ be a homomorphism of unital rings, M a right R-module, N a left S-module. Consider a composition

$$\mathbf{Mod} - R \xrightarrow{G=(-)\otimes_R S} \mathbf{Mod} - S \xrightarrow{F=(-)\otimes_R N} \mathbf{Ab}$$

The spectral sequence of a composition of these two functors (*G* sends projective *R*-modules into projective *S*-modules) in looks as follows:

$$E_{pq}^2 = \operatorname{Tor}_p^S(\operatorname{Tor}_q^R(M, S), N) \implies \operatorname{Tor}_{p+q}^R(M, N)$$

and it is called a base change spectral sequence.

Suppose that $R \to S$ is a homomorphism of k-algebras, M_R , SN are respectively right R-module and left S-module. Their tensor product $M \otimes RN$ gives rise to a sequence of derived functors $\operatorname{Tor}_{\bullet}^R(M,N)$.

Suppose that $P_{\bullet} \twoheadrightarrow M$ is a projective R-module resolution of M, and $Q_{\bullet} \twoheadrightarrow N$ a projective S-module resolution for N.

$$M \otimes_R N \leftarrow P_{\bullet} \otimes_R Q_{\bullet} \simeq (P_{\bullet} \otimes_R S) \otimes_S Q_{\bullet}$$

Suppose $F(\cdot, \cdot)$ is a functor with both covariant arguments.

We say that it is **left balanced** if there are isomorphisms $L_q^{\{1\}} \simeq L_q^{\{1,2\}} \simeq L_q^{\{2\}}$.

We say that it is **right balanced** if there are isomorphisms $R^q_{\{1\}} \simeq R^q_{\{1,2\}} \simeq R^q_{\{2\}}$. There is an isomorphism

$$P_{\bullet} \otimes_{R} N \stackrel{\simeq}{\leftarrow} P_{\bullet} \otimes_{R} Q_{\bullet} \simeq (P_{\bullet} \otimes_{R} S) \otimes_{S} Q_{\bullet}$$

$$\operatorname{Tor}_q^R(M, S \otimes_S Q_{\bullet}) \xrightarrow{\simeq} \operatorname{Tor}_q^R(M, S) \otimes_S Q_{\bullet}.$$

Taking homology we get

$$H_p(\operatorname{Tor}_q^R(M,S)\otimes Q_{\bullet})\simeq \operatorname{Tor}_p^S(\operatorname{Tor}_q^R(M,S),N),$$

and a base change spectral sequence

$$E_{na}^2 = \operatorname{Tor}_n^S(\operatorname{Tor}_a^R(M, S), N) \implies \operatorname{Tor}_{n+a}^R(M, N).$$

The boundary maps (transgressions) of this spectral sequences are as follows:

$$E_{0n}^{2} = \operatorname{Tor}_{n}^{R}(M, S) \otimes_{S} N \to \operatorname{Tor}_{n}^{R}(M, N)$$
$$\operatorname{Tor}_{n}^{R}(M, N) \to E_{n0}^{2} = \operatorname{Tor}_{n}^{S}(M \otimes S, N)$$

Example B.10. For an unital k-algebra A let Lie(A) denote the associated Lie algebra with bracket [a,a'] = aa' - a'a. The universal derivation

$$d_{\Lambda}: A \to A \otimes_k A^{op}, \quad d_{\Lambda}(a) = 1 \otimes a^{op} - a \otimes 1$$

is a homomorphism of Lie algebras $\mathrm{Lie}(A) \to \mathrm{Lie}(A \otimes_k A^{op})$, so it induces a homomorphism of associative algebras $R := U(\mathrm{Lie}(A)) \to A \otimes_k A^{op} =: S$. Let M = k (trivial representation of a Lie algebra $\mathrm{Lie}(A)$). The base change spectral sequence has the form

$$E_{pq}^2 = \operatorname{Tor}_p^{A \otimes_k A^{op}} (\operatorname{Tor}_q^{U(\operatorname{Lie}(A))}(k, A \otimes_k A^{op}), N) \implies \operatorname{Tor}_{p+q}^{U(\operatorname{Lie}(A))}(k, N),$$

that is if *A* is flat over *k* then

$$E_{pq}^2 = \operatorname{Tor}_p^{A \otimes_k A^{op}}(\operatorname{H}_q^{\operatorname{Lie}}(A; A \otimes_k A^{op}), N) \implies \operatorname{H}_{p+q}^{\operatorname{Lie}}(k, N).$$

Because $k \otimes_{U(\text{Lie}(A))} (A \otimes A^{op}) \simeq A$ as a right $A \otimes A^{op}$ -module, we have that the second boundary map gives a canonical homomorphism

$$\mathrm{H}_n^{\mathrm{Lie}}(A;N) \to \mathrm{H}_n(A;N) \simeq E_{n0}^2.$$

There is a homomorphism of standard chain complexes

$$(C_{\bullet}(\operatorname{Lie}(A); N), \partial) \to (C_{\bullet}(A, N), b)$$

where

$$\partial(n \otimes a_1 \wedge \dots \wedge a_n) := \sum_{i=1}^n (-1)^i \underbrace{(a_i n - n a_i)}_{-(d_\Delta a)n} \otimes a_1 \wedge \dots \wedge \widehat{a_i} \wedge \dots \wedge a_n$$
$$+ \sum_{1 < i < j < n} (-1)^{i+j} n \otimes [a_i, a_j] \wedge a_1 \wedge \dots \wedge \widehat{a_i} \wedge \dots \wedge \widehat{a_j} \wedge \dots \wedge a_n$$

In the special case N = A we obtain canonical homomorphism

$$H_n^{Lie}(A; ad) \rightarrow HH_n(A)$$

Example B.11. Hiper-Tor spectral sequences and Künneth spectral sequence. For a right R-module M and a complex of left modules C_{\bullet} we define

$$\mathbf{Tor}_n^R(M, C_{\bullet}) := \mathbf{H}_n(P_{\bullet} \otimes_R C_{\bullet})$$

where $P_{\bullet} \to M$ is a projective resolution of M. Then the first and second spectral sequence of a bicomplex $P_{\bullet} \otimes_R C_{\bullet}$ are as follows:

$${}^{\prime}E_{pq}^{1} = P_{p} \otimes_{R} H_{q}(C)$$

$${}^{\prime}E_{pq}^{2} = \operatorname{Tor}_{p}^{R}(M, H_{q}(C)) \implies \operatorname{Tor}_{p+q}^{R}(M, C_{\bullet})$$

and

$$''E_{pq}^{1} = \operatorname{Tor}_{q}^{R}(M, C_{p})$$

$$''E_{pq}^{2} = H_{p}(\operatorname{Tor}_{q}^{R}(M, C_{\bullet})) \simeq \begin{cases} H_{p}(M \otimes_{R} C_{\bullet}) & q = 0\\ 0 & q \neq 0 \end{cases}$$

where the isomorphism for E_{pq}^2 holds if the complexes $\operatorname{Tor}_q^R(M, C_{\bullet})$ are acyclic for q > 0, for example if C_n are flat. Then we obtain a Künneth spectral sequence

$$E_{pq}^2 = \operatorname{Tor}_p^R(M, H_q(C)) \implies H_{p+q}(M \otimes_R C_{\bullet})$$

if $C_n = 0$ for $n \ll 0$.

Example B.12. If a group G acts on semigroup S and its representation V, then G acts on Bar-complex $(B_{\bullet}(S;V),b')$, where $B_q(S;V)=(kS)^{\otimes_k q}\otimes_k V$, and b' is a standard boundary operator. Then

$$\mathbf{Tor}_n^{k[G]}(G, B_{\bullet}(S; V)) =: \mathbf{H}_n^G(S; V)$$

are the equivariant homology of a semigroup S with coefficients in representation V. In an analogous way one can define equivariant homology of a Lie algebra, Hochschild homology, singular homology of a topological space etc.