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Introduction to KK-theory

Lecture given by Christian Voigt

Motivation and background

Atiyah and Hirzebruch defined topological K-theory in 1960. For a compact topological space
X the K-theory group K0(X) is the Grothendieck group of the semigroup of isomorphism
classes of vector bundles over X. The definition can be extended to locally compact spaces.
Using n-fold suspension Rn ×X one defines K−n(X) := K0(Rn ×X). Bott periodicity says
that there is an isomorphism K−n−2(X) ≃ K−n(X).

From the Serre-Swan theorem we know that the category of vector bundles over X is
equivalent to the category of finitely generated projective modules over the ring of continuous
functions C(X). Thus K0(X) can be identified with algebraic K0-group K0(C(X)). Remark
that K0(C(X)) uses only algebraic structure, with no topology on C(X). Higher algebraic
K-theory groups Kn use also topology.

The Atiyah-Singer index theorem gives a means to calculate the index Index(P ) :=
dimkerP − dimcokerP , where P is an elliptic operator on a closed manifold M , in terms of
topological information. More precisely, the symbol of P gives a class [σ(P )] ∈ K0(T ∗M).
Atiyah and Singer defined two maps

a− Index, t− Index: K0(T ∗M) → Z

such that a−Index([σ(P )]) = Index(P ), and t−Index([σ(P )]) is given in terms of topological
data. Atiyah-Singer index theorem states that a− Index = t− Index. Using Chern character
one can pass to cohomology.

K-theory is a generalized cohomology theory. There is a dual homology theory K•(X).
Atiyah proposed an operator theoretic approach to K-homology based on ”abstract elliptic
operators”. Let X be compact topological space and H a Hilbert space. The set Ell(X)
consists of triples (φ0, φ1, T ), where φi : C(X) → L(H) are *-homomorphisms, T ∈ L(H) is a
Fredholm operator such that φ1(f)T − Tφ0(f) is compact for all f ∈ C(X). Atiyah defined
a map Ell(X) → K0(X) and showed that it is surjective provided X is a finite complex. The
problem was to describe explicitely the equivalence relation ∼ such that Ell(X)/ ∼≃ K0(X).

Consider an exact sequence

0 → K(H) → L(H)
π−→ Q(H) → 0,

where K(H) is the ideal of compact operators on H, and Q(H) = L(H)/K(H) is the Calkin
algebra. An operator T ∈ L(H) is called essentially normal (selfadjoint) if π(T ) is normal
(selfadjoint). Essential spectrum of T is the spectrum of π(T ). Weyl-von Neumann theorem
states that if T is essentially selfadjoint, then T = S + K, where S is selfadjoint and K
compact. One has T = URU∗ = K, where U is unitary, K compact, if and only if T and
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R have the same essential spectrum. Brown, Douglas and Filmore asked the following two
questions. If T is essentionally normal, then

• under what conditions can one write T = N +K, where N is normal and K compact,

• under what conditions on R is T = URU∗ +K, where U is unitary and K compact.

To answer these questions Brown, Douglas and Filmore studied extensions of C∗-algebras.
We say that an algebra E is extansion of A by B if there exists an exact sequence

0 → B → E → A→ 0.

If T is essentially normal, X ⊂ C its essential spectrum, then one has an extension

0 → K(H) → C∗(T, 1,K(H)) → C∗(π(T ))︸ ︷︷ ︸
≃C(X)

→ 0.

If A is separable and nuclear, B is σ-unital, then one obtains an abelian group Ext(A,B) by
considering extension of A by B⊗K(H). For A = C(X), B = C computation of Ext(C(X),C)
yields the solution to the above questions.

Definition

If B is a C*-algebra, then a Hilbert B-module is a right B-module E with a positive definite
sesquilinear form 〈−, −〉 : E × E → B such that for ξ, η ∈ E , b ∈ B

〈ξ, η · b〉 = 〈ξ, η〉 · b,
〈ξ, η〉∗ = 〈η, ξ〉,

〈ξ, ξ〉 ≥ 0

〈ξ, ξ〉 = 0 iff ξ = 0

and E is complete in the norm ‖ξ‖ =
√

‖〈ξ, ξ〉‖.
For B = C Hilbert B-modules are just Hilbert spaces. For B = C0(X) Hilbert B-modules

are continuous fields of Hilbert spaces over X. For each C*-algebra B, B itself is a Hilbert
B-module with 〈b, c〉 := b∗c. If (Ei)i∈I is a family of Hilbert modules, then the completed
direct sum

⊕
i∈I Ei is a Hilbert module. For a C*-algebra B we define a Hilbert B-module

HB :=
⊕∞

i=1B. Kasparov stabilization theorem states that if EB is countably generates, then
EB ⊕HB = HB.

Let E , F be Hilbert B-modules. Denote by L(E ,F) the space of all maps T : E → F such
that there exists T ∗ : F → E such that 〈Tξ, η〉 = 〈ξ, T ∗η〉 for all ξ ∈ E , η ∈ F . All such maps
are B-linear and bounded. T ∈ L(E ,F) is called finite rank operator if it is a finite sum of
operators |η〉〈ξ|, |η〉〈ξ|(λ) = η〈ξ, λ〉 for ξ ∈ E , η ∈ F . The set K(E ,F) of compact operators
is the closed linear span of the finite rank operators. For E = F , L(E ,F) os a C*-algebra,
K(E ,F) = K(E) ⊂ L(E) is an ideal.

If A, B are C*-algebras (separable for simplicity), then a Kasparov A-B-module is a triple
(E , φ, F ), where E is countably generated Hilbert B-module with gradation E = E+ ⊕ E−,
φ : A→ L(E) is a *-homomorphism of degree 0

φ(a) =

(
φ+(a) 0

0 φ−(a)

)
,
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F ∈ L(E) is of degree one,

F =

(
0 T
R 0

)

such that all operators [φ(a), F ], φ(a)(F − F ∗), φ(a)(F 2 − Id) are compact for all a ∈ A.

A homotopy between Kasparow A-B-modules E0, E1 is a Kasparov A-B⊗C([0, 1])-module
E , such that

ev : (E , φ, F ) ≃ (E ⊗evi
B,φ⊗ Id, F ⊗ Id),

where evi : B ⊗C([0, 1]) is the evaluation at i, that is (Ei, φi, Fi) for i = 0, 1. Let E(A,B) be
the set of all Kasparov A-B-modules. There is a binary operation on E(A,B) given by direct
sum. We define a KK-theory KK(A,B) to be the set of equivalence classes in E(A,B) with
respect to homotopy. The set KK(A,B) is an abelian group with addition induced by direct
sum. Zero element is a class of 0 = (0, 0, 0).

If φ : A→ B is a *-homomorphism, then (B ⊕ 0, φ, 0) is a Kasparov A-B-module. Let M
be a closed manifold, P : Γ(E+) → Γ(E−) be an elliptic pseudodifferential operator of order
zero. Let H = L2(E+)⊕ L2(E−) and φi : C(M) → L(H) send function f to a multiplication
operator by f . Then (

H, φ,
(

0 P
Q 0

))
,

where Q is a parametrix for P , is a Kasparov A-B-module. Let A, B be Morita-Rieffel
equivalent with equivalence bimodule AEB. Then (AEB, φ, 0) is a Kasparov A-B-module.

Properties

One of the deepest theorems in KK-theory is that there is an associative natural product

KK(A,B) × KK(B,C) → KK(A,C)

for all A,B,C.

The group KK(A,B) becomes a bifunctor, covariant in B, contravariant in A. It becomes
also a category with C*-algebraa as objects, and MorKK(A,B) = KK(A,B). One defines
KKn(A,B) := KK(C0(R

n) ⊗A,B).

We have KK•(C, B) = K•(B), KK•(A,C) = K•(A).

There is a Bott periodicity KK2(A,B) ≃ KK0(A,B), natural for all A and B.

For an extension

0 → K → E → Q→ 0

of C*-algebras and mild assumptions on A, there is a 6-term exact sequence in both variables

KK0(A,K) // KK0(A,E) // KK0(A,Q)

��
KK1(A,Q)

OO

KK1(A,E)oo KK1(A,K)oo

If Q is nuclear, then every extension 0 → K → E → Q → 0 yields an element ∂([Id]) ∈
KK(Q,K). Actually KK1(Q,K) ≃ Ext(Q,K) in this case.
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Applications and further development

In many cases the groups KK(A,B) are determined by K•(A), K•(B). Rosenberg-Schochet
theorem states that if A is KK-equivalent to a commutative C*-algebra, then there is a short
exact sequence of graded abelian groups

0 → Ext•(K•+1(A),K•(B)) → KK•(A,B) → Hom(K•(A),K•(B)) → 0.

Using this for A = C(X), X ⊂ C, B = C one can use the universal coefficients theorem
to prove the Brown-Douglas-Filmore theorem. It states that if T ∈ L(H) is essenitally
normal with essenital spectrum X ⊂ C, then T can be written as T = N +K, where N is
normal and K is compact, if and only if Index(T −λId) = 0 for all λ ∈ C(X). More generally
T = URU∗+K, where U is unitary, K compact, if and only if Index(T−λId) = Index(R−λId)
for all λ ∈ C \X.

Let M be a closed manifold. The cotangent bundle T ∗M is an almost complex man-
ifold. Hence there is the Dolbeault operator D = ∂̄ + ∂̄∗ which gives a class [∂̄M ] in
KK(C0(T

∗M),C). If P is an elliptic pseudodifferential operator, P : Γ(E+) → Γ(E−) on
M , then [P ] ∈ KK(C(M),C). Its symbol σ(P ) ∈ Hom(π∗E+, π∗E−) for π : T ∗M → M ,
and [σ(P )] ∈ KK1(C, C0(T

∗M)). Furthermore [[σ(P )]] ∈ KK(C(M), C0(T
∗M)) such that

[σ(P )] = 1 · [[σ(P )]]. Kasparov index theorem states that [P ] = [[σ(P )]] · [∂̄M ]. This implies
the index theorem of Atiyah-Singer

a− Index(P ) = 1 · [P ] = 1 · [[σ(P )]] · [∂̄M ] = [σ(P )] · [∂̄M ] = t− Index([σ(P )]).

A functor F from the category of C*-algebras to an additive category C is called

• homotopy invariant if F (f0) = F (f1) for f0, f1 homotopic *-homomorphisms,

• stable if F (A⊗K(H)) ≃ F (A) (naturally),

• split exact if for every split extension

0 // K // E
π // Q //

σ

��
0,

where σ : Q→ E is a *-homomorphism such that πσ = id, there is a split exact sequence

0 // F (K) // F (E) // F (Q) //

σ

~~
0.

Theorem of Higson and Cuntz states that the obvious functor from the category of
C*-algebras to KK-category is the universal split extact stable homotopy functor. It
means that whenever F ′ : C∗ −Alg → C is split exact stable homotopy invariant, then
there exists a unique F : KK → C such that the following diagram commutes

C∗ − Alg //

F ′

%%K

K

K

K

K

K

K

K

K

K

K

KK

F

��
C

Further topics include
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– Equivariant version of KK.

– Applications to Novikov conjecture and Baum-Connes conjecture.

– Applications in Kischberd-Philips classification of purely infinite simple C*-algebras.

– Generalizations of KK.
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Chapter 1

C*-algebras

1.1 Definitions

Definition 1.1. A Banach algebra (complex) is an algebra A which is a Banach space with
norm satisfying the inequality

‖ab‖ ≤ ‖a‖‖b‖, for all a, b ∈ A.

Assume that we have an involution on Banach algebra, ∗ : A→ A that is for all a, b ∈ A,
λ, µ ∈ C

a∗∗ = a,

(λa+ µb)∗ = λ̄a∗ + µ̄b∗,

(ab)∗ = b∗a∗.

Definition 1.2. A C*-algebra is a Banach algebra A with involution ∗ : A → A which
satisfies the C*-identity

‖a∗a‖ = ‖a‖2

for all a ∈ A.

We say that A is unital if there exists 1 ∈ A such that a · 1 = 1 · a = a. The involution ∗
is an isometry

‖a‖2 = ‖a∗a‖ ≤ ‖a∗‖‖a‖, ‖a‖ ≤ ‖a∗‖.
The C*-identity forces a strong connection between algebra and analysis.

Theorem 1.3. Let A, B be a C*-algebras (unital or not). If φ : A→ B is C*-homomorphism
then

1. for all a ∈ A we have ‖φ(a)‖ ≤ ‖a‖, i.e. φ is continuous with norm ‖φ‖ ≤ 1.

2. φ(A) is closed in B, in particular φ(A) is a subalgebra of B and the induced homomor-
phism A/ ker φ→ φ(A) is an isometry. An injective C*-homomorphism is an isometry.

1.2 Examples

Example 1.4. Let X be a locally compact Hausdorff space, and C0(X) the algebra of functions
vanishing at infinity. Then with respect to conjugation and norm ‖f‖ = supx∈X |f(x)|, the
algebra C0(X) is a C*-algebra.
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Example 1.5. The matrix algebra Mn(C) is a C*-algebra. Furthermore

Theorem 1.6. Every finite dimensional C*-algebra A is of the form Mn1(C) ⊕ · · · ⊕Mnk
(C).

More generally direct limits of finite dimensional C*-algebras are called AF algebras.

Example 1.7. Let L(H) be tha algebra of bounded operators on Hilbert space. It is not
separable unless it is finite dimensional. If dimH = n, then L(H) = Mn(C). If dimH = ∞,
then there is a closed ideal of compact operators K(H) ⊂ L(H) which takes over the role of
matrices. There is an extension

0 → K(H) → L(H) → L(H)/K(H) → 0,

where the quotient algebra L(H)/K(H) is denoted Q(H), and is called the Calkin algebra.

Theorem 1.8. Every C*-algebra A admits a faithful representation on H i.e. there is an
injective C*-homomorphism φ : A→ L(H) for some H. Then φ is an isometry, so A can be
identified with a C*-subalgebra of L(H).

Example 1.9. Let G be a discrete group (for simplicity). Its group ring C[G] is the ring of
finitely supported functions f : G → C, f =

∑
g∈G fgδg, fg ∈ C, δg(s) = 1 if s = g and 0

otherwise. The multiplication is given by convolution

(f ∗ g)(s) :=
∑

α,β=s

f(α)g(β) =
∑

t∈G

f(st−1)g(t).

We have δs ∗ δt = δst. We will assume that G is countable and then {δs}s∈G will provide a
basis for l2(G). For fixed g the action of δg ∗ − on l2(G) produces a permutation of {δs}s∈G

and so an operator Ug : l2(G) → l2(G),

(Ugξ)(t) = (δg ∗ ξ)(t) = ξ(g−1t)

The operator Ug is unitary U−1
g = Ug−1 = U∗

g . Indeed

〈Ugξ, η〉 =
∑

t∈G

(Ugξ)(t)η(t)

=
∑

t∈G

ξ(g−1t)η(t)

=
∑

t′∈G

ξ(t′)η(gt′)

= 〈ξ, Ug−1η〉

‖Ugξ‖2 =
∑

t∈G

|ξ(g−1t)|2 =
∑

t′∈G

|ξ(t′)|2 = ‖ξ‖2.

The left regular representation λ : C[G] → L(l2(G))

λ(f) =
∑

g∈G

fgUg

‖λ(f)‖ ≤
∑

g∈G

|fg| = ‖f‖1

extends to λ : l1(G) → L(l2(G)).
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Definition 1.10. The reduced group algebra C∗
r (G) of G is the norm closure λ(C[G]) =

λ(l1(G)).

IfG is abelian, then C∗
r (G) = C0(Ĝ), where Ĝ is the Pontryagin dual, Ĝ = Hom(G,U(1)).

There is a canonical trace on C[G]

τ :
∑

g∈G

fgδg 7→ fe ∈ C.

Proposition 1.11. If φ : G1 → G2 is an injective group homomorphism, then there is an
induced map φ : C∗

r (G1) → C∗
r (G2).

Let ΠU be the direct sum of all irreducible representations of G (up to unitary equiv-
alence). The algebra C∗(G) is defined as a closure of ΠU (C[G]). Equivalently, if ‖f‖ =
sup{‖π(f)‖ | f ∈ l1(G)}, where the supremum is taken over all *-representations of l1(G),
then C∗(G) is the completion of l1(G) in this norm. Our λ extends to a C*-algebra homo-
morphism λ : C∗(G) → C∗

r (G). The following theorem holds for all locally compact groups.

Theorem 1.12. The homomorphism λ : C∗(G) → C∗
r (G) is an isomorphism if and only if G

is amenable.

Proposition 1.13. If φ : G1 → G2 is a group homomorphism, then there is an induced map
φ : C∗(G1) → C∗(G2).

If X is a compact Hausdorff space, then f ∈ C(X) is a projection if and only if f̄ = f ,
f2 = f . It follows that f(x) = 0 or 1 for all x ∈ X. Denote Si := {x ∈ X | f(x) = i} for
i = 0, 1. Then S0 ∩ S1 = ∅, S0 ∪ S1 = X. If F is continuous, integer valued, then δ0, δ1 are
open and closed. So if f is a nontrivial projection, then X must be disconnected.

Hypothesis 1 (Idempotent conjecture). If G is discrete, torsion free, then C[G] has no non-
trivial idempotents.

Hypothesis 2 (Strong idempotent conjecture, Kadison-Kaplansky conjecture). If G is discrete,
torsion free, then C∗

r (G) has no nontrivial idempotents.

Both conjectures follow from the Baum-Connes conjecture.

Example 1.14. If a locally compact group G acts on locally compact Hausdorff space X, then
there is a crossed product algebra C0(X) ⋊ G. When G acts freely, properly on X, then
C0(X) ⋊G is morita equivalent to C0(X/G). Remark that X/G is not a Hausdorff space in
general.

Example 1.15. We will define a Toeplitz algebra as T := C∗(v), where v∗v = 1 (isometry),
vv∗ 6= 1 (not unitary). There is an isomorphism C∗(v) ≃ C∗(S), where S : l2(N) → l2(N) is
the shift operator

S(x1, x2, . . .) := (0, x1, x2, . . .), S∗(x1, x2, . . .) := (x2, x3, . . .).

Theorem 1.16 (Coburn). The algebra C∗(S) contains the compact operators K as an ideal
and there is an extension

0 → K → C∗(S) → C(S1) → 0,

where S1 is the circle.
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We can give another description using Hardy space H2 ⊂ L2(S1)

H2 = span{zn | n ≥ 0} (closed span).

Let P : L2(S1) → H2 be the orthogonal projection. For each f ∈ C(S1) define an operator
Tf : H2 → H2, Tf (g) = P (fg) for g ∈ H2. The operator Tz, where z is the identity funcion
in C(S1), acts as a shift operator on H2, so C∗(Tz) ≃ T ≃ C∗(S).

For f ∈ C(S1) let Mf be the operator of pointwise multiplication by f .

Exercise 1.17. ‖Mf‖ = ‖f‖.
Consider the action of [P,Mz ] on the basis {zn | n ∈ Z} of L2(S1).

PMz : zn 7→ zn+1, n ≥ −1

MzP : zn 7→ zn+1, n ≥ 0.

Both operators are zero outside this range. It follows that [P,Mz] is of rank one, and [P,Mzn ]
is of rank n on L2(S1). If p is a polynomial in z, then [P,Mp] is of finite rank.

For f ∈ C(S1) there exist a sequence of Laurent polynomials pn → f such that

‖Mpn −Mf‖ = ‖Mpn−f‖ = ‖pn − f‖ → 0, and so Mpn →Mf .

From this we have that [P,Mpn ] → [P,Mf ], so [P,Mf ] is compact.
For f, g ∈ C(S1)

TfTg = PMfPMg

= P (PMf − [P,Mf ])Mg

= PMfMg − P [P,Mf ]Mg

= Tfg +K,

where K is compact operator. Denote

B := {Tf +K | f ∈ C(S1), K ∈ K}.

Theorem 1.18 (Coburn). There is an isomorphism B ≃ C∗(Tz) ≃ T .

The map f 7→ π(Tf ) ∈ Q, where πL(H) → Q is a projection on Calkin algebra, gives an
isomorphism C(S1) ≃ C∗(Tz)/K. Furthermore

π(Tf )π(Tg) = π(TfTg) = π(Tfg +K) = π(Tfg).

Consider the Toeplitz extension

0 → K → T → C(S1) → 0.

We may ask whether there are other extensions

0 → K → E → C(S1) → 0

not equivalent to the Toeplitz extension. The example is E = C, where

C := {Mf +K | f ∈ C(S1), K ∈ K}.

There is no *-isomorphism T → C. Now we can ask about the classification of such extensions.
The answer was given by Brown, Douglas and Filmore, who introduced Ext-groups, which
have relation with K-homology.
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Example 1.19. More general construction than the Toeplitz algebra are the Cuntz algebras

On. These are generated by S1, . . . , Sn such that S∗
i Si = 1 (isometries),

∑n
i=1 SiS

∗
i = 1. The

algebras On are unique up to isomorphism, simple, purely infinite for n ≥ 2. There exist an
extension En

0 → K → En → On → 0.

We recall that:

Definition 1.20. A projection p ∈ A is infinite if p is equivalent to a proper subprojection of
itself. Otherwise it is called finite.

A simple C*-algebra is purely infinite if and only if the closure of xAx contains an
infinite projection for every positive x ∈ A.

Example 1.21. Noncommutative Riemann surfaces. Let Γg be a fundamental group of com-
pact oriented Riemann surface Σg of genus g ≥ 1.

Γg = {ujvj | j = 1, . . . , g,

g∏

j=1

[uj , vj ] = 1},

BΓg = Σg, H2(Γg; U(1)) = R/Z.

For all θ ∈ [0, 1) there is a cocycle δγ ∗ δµ = σθ(γ, µ)δγµ. By completion in operator norm we
get C∗

r (Γg, σθ).
We can give an alternative description by unitaries uj, vj such that

∏g
j=1[uj , vj ] = e2πiθ.

Noncommutative torus is a special case for g = 1.

1.3 Gelfand transform

Let A be a unital C*-algebra. For an element a ∈ A we define its spectrum as

spA(a) := {λ ∈ C | λ1 − a is not invertible},

and the resolvent as
ρA(a) := C \ spA(a).

The spectral radius of an element is

r(a) := sup{|λ| | λ ∈ spA(a)}, r(a) ≤ ‖a‖.

Proposition 1.22. 1. If A is a Banach algebra, then for every a ∈ A

lim
n→∞

‖an‖ 1
n = r(a).

2. If A is a C*-algebra, and a ∈ A is a normal element (a∗a = aa∗), then r(a) = ‖a‖.

3. If A is a C*-algebra, then for every a ∈ A

‖a‖2 = r(a∗a).

Let B be a C*-algebra, a ∈ B. Consider C*-algebra C∗(a) generated by a (when B is
unital we assume 1 ∈ C∗(a)). The algebra C∗(a) is commutative if and only if a is normal.
Define

Â := {φ : A→ C | φ is a homomomorphism, ‖φ‖ ≤ 1}.

13



Definition 1.23. Let A be a commutative C*-algebra.The Gelfand transform is the ho-
momorphism

A→ C0(Â), a 7→ â,

â(φ) := φ(a).

Theorem 1.24 (Gelfand). If A is commutative, then the Gelfand transform is an isometric
*-isomorphism form A to C0(Â).

Corollary 1.25. If a is normal element of a C*-algebra A, then the Gelfand transform gives
an isometric *-isomorphism C∗(a) → C(sp(a)).

Definition 1.26. If a is a normal element in a unital C*-algebra A and f ∈ C(sp(a)), then
the inverse of Gelfand transform f 7→ f(a) ∈ C∗(a) is called the functional calculus for a.

Example 1.27. Let A be a C*-algebra, u ∈ A unitary element. Then sp(u) ⊂ S1. Assume
sp(u) ( S1. Take a branch of logarithm defined on subset of S1 containing sp(u). Use
functional calculuc to define a family of unitary groups ut := exp(t log u), t ∈ [0, 1]. This
family constitutes a continuous path which connects u to the identity through unitaries.

There is also a holomorphic functional calculus. Let A be a unital Banach algebra,
a ∈ A. Assume that f is a holomorphic sunction in on an open set containing sp(a). Choose
a piecewise linear closed curve C in that set, but not intersecting sp(a). Then

f(a) :=
1

2πi

∫

C

f(z)(z − a)−1dz

defines an element of A. If H(a) is the set of holomorphic functions of this type, then this
gives an algebra homomorphism H(a) → A - holomorphic functional calculus.

If A is a subalgebra of a Banach algebra B, and Ã, B̃ are unitizations, then we say that
A is stable under holomorphic functional calculus if and only if for any a ∈ A, and f which
is holomorphic in an open set containing sp eB

(a), we have f(a) ∈ ã.

Proposition 1.28. Let A be a C*-algebra. Then for any x ∈ A the following are equivalent

1. x = x∗, sp(x) ⊂ R+,

2. there exists y ∈ A such that x = y∗y,

3. there exists y ∈ A such that y = y∗, y2 = x.

If x satisfies any of thers, then we say that it is positive and write x ≥ 0.

If x ≥ 0 and −x ≥ 0 then x = 0. Positivity induces a partial order on elements of A.
We say that x ≤ y if and only if y − x ≥ 0. Positive elements form a cone A+ ⊂ A. For
projections p, q we have p ≤ q if and only if pq = p.

Now we will define tensor products of C*-algebras. Let A, B be C*-algebras and A⊙B
be the algebraic tensor product (as vector spaces). The vector space A⊙B is a *-algebra

(a⊗ b) · (a′ ⊗ b′) = aa′ ⊗ bb′, (a⊗ b)∗ = a∗ ⊗ b∗.

C*-algebra norm on A⊙B is a cross norm ‖ − ‖α, ‖a⊗ b‖α = ‖a‖‖b‖, and satisfies

‖xy‖α ≤ ‖x‖α‖y‖α, ‖x∗x‖α = ‖x‖2
α.
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A completion of A ⊙ B with respect to such norm is a C*-algebra A ⊗α B. Let π : A →
L(H), σ : B → L(H′) be faithful representations. The algebraic tensor product gives a
representation

π ⊙ σ : A⊙B → L(H⊗H′),

((π ⊙ σ)(a⊗ b))(ξ ⊗ η) = π(a)ξ ⊗ σ(b)η.

Define a minimal norm ‖x‖min := ‖(π ⊙ σ)(x)‖L(H⊗H′). The theorem of Takesaki states
that this definition does not depend on π, σ.

Definition 1.29. A C*-algebra A is nuclear if and only if for any C*-algebra B there is a
unique C*-norm on A⊙B.

A is exact if and only if the functor B 7→ A⊗min B is exact (i.e. sends exact sequences
of C*-algebras to exact sequences).

Theorem 1.30 (Kirchberg-Wassermann). A discrete group G is exact if and only if C∗
r (G)

is exact.

Nuclear algebras are exact. For a free group on two generators F2 the reduced group
algebra C∗

r (F2) is exact but not nuclear. The full C*-subalgebra C∗(F2) of the nonabelian
free group on two generators is not exact.

Proposition 1.31. The reduced group algebra C∗
r (G) is nuclear if and only if G is amenable.

Maximal tensor product ⊗max has the following universal property. There is a natural
bijection between non degenerate C*-homomorphisms

A1 ⊗max A2 → L(H),

and pairs of commuting non degenerate C*-homomorphisms

A1 → L(H), A2 → L(H).

One can also replace L(H) be the multiplier algebra M(D) for any C*-algebra D.
There is a canonical C*-algebra homomorphism

A1 ⊗max A2 → A1 ⊗min A2

for any C*-algebras A1, A2. We can give a second definition

Definition 1.32. A C*-algebra A1 is nuclear if this map is an isomorphism for any C*-
algebra A2.

One can say that A1 is K-nuclear if this map induces an isomorphism on K-theory for
any C*-algebra A2.
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Chapter 2

K-theory

2.1 Definitions

Definition 2.1. If A is a unital C*-algebra, then p ∈ A is a projection if and only if p∗ = p,
p2 = p.

Definition 2.2. Let p, q ∈ A be a projections. We say that they are

1. Murray-von Neumann equivalent, p ∼v q, if there exist v ∈ A such that p = v∗v,
q = vv∗.

2. unitarily equivalent, p ∼u q, if there exist a unitary u ∈ A such that upu∗ = q.

3. homotopic, p ∼h q, if there exist a continuous map γ : [0, 1] → A such that γ(0) = p,
γ(1) = q, and γ(t) is a projection for all t ∈ [0, 1].

In a general C*-algebra there are implications

p ∼h q =⇒ p ∼u q =⇒ p ∼v q.

Let M∞(A) =
⋃

n≥1Mn(A). Then these three notions of equivalence coincide in M∞(A).
Denote by P (A) the set of projections in M∞(A). We have the following structure:

• Semigroup, for p ∈Mn(A), q ∈Mn(A)

p⊕ q =

(
p 0
0 q

)
∈Mn+m(A).

• A projection p ∈Mn(A) is equivalent to q ∈Mm(A), n ≤ m, if and only if p⊕0m−n ∼ q
in Mm(A).

• Projections p and q are stably isomorphic if and only if p⊕r ∼ q⊕r for some projection
r ∈ P (A).

• The set of stable equivalence classes of projections in P (A) with the addition induced
from P (A) is denoted by [P (A)].

• Two pairs ([p1], [p2]) and ([q1], [q2]) are equivalent if and only if

[p1] ⊕ [q2] = [p2] ⊕ [q1].
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Definition 2.3. The set of equivalence classes of pairs ([p1], [p2]) with componentwise addi-
tion is an abelian group denoted by K0(A).

Example 2.4. If A = C, then two projections in Mn(C) are homotopic if and only if they
have the same rank. It follows that K0(C) = Z.

Example 2.5. If H is a separable Hilbert space, and A = B(H) is the algebra of bounded
operators on H, then two projections p, q ∈ B(H) are equivalent in the sense of Murray- von
Neumann if and only if there exists a unitary isomorphism from the range of p to the range
of q. The set of projections in B(H) can be indexed by the dimension of the range (including
0 and ∞). Thus any two projections of infinite range are equivalent. If p ∈ B(H) is any
projection, then p ⊕ 1 ∼ 0 ⊕ 1, [p] + [1] = [0] + [1] in K0(A), so [p] = [0] = 0 in K0(A), and
K0(B(H)) = 0.

Proposition 2.6. 1. K0 is a covariant functor. If φ : A → B is a homomorphism of
C*-algebras, then there is an induced map φ∗ : K0(A) → K0(B).

2. If φ0, φ1 : A→ B are homotopic homomorphisms then φ0∗ = φ1∗ : K0(A) → K0(B).

3. If A is a unital C*-algebra and A1 ⊂ A2 ⊂ A3 ⊂ . . . is an increasing sequence of unital
C*-algebras whose union is dense in A then lim

−→
K0(An) = K0(A).

For any nonunital C*-algebra J there exists an unique (up to isomorphism) unital C*-algebra
J̃ which contains J as an ideal of codimension 1.

0 → J → J̃ → C → 0.

Define K0(J) := ker(K0(J̃) → K0(C)). When J is unital, then K0(J̃) = K0(C) ⊕ K0(J).

2.2 Unitizations and multiplier algebras

There are at least two ways to adjoin a unit to a C*-algebra A.

1. Represent A on a Hilbert space H. The image of A in B(H)) may not contain 1, even
if A is unital, as the following example shows

C →M2(C), µ 7→
(
µ 0
0 0

)
.

Let Ã be the C*-subalgebra of B(H) generated by A and 1. It contains 1 as an ideal
of codimension 1.

2. Use the left multiplication to represent A on the Banach space A. Regard Ã as generated
by A and 1.

Is there a reasonable maximal unitization?

Definition 2.7. A is an essential ideal in a C*-algebra B if and only if for all b ∈ B if
bA = {0} then b = 0.

There is a unique (up to isomorphism) unital C*-algebra which contains A as an essential
ideal and is maximal in the sense that it contains any other algebra with this property. This
is the multiplier algebra M(A).
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We will give an interpretation of the two, minimal and maximal, unitizations, in the
case of commutative C*-algebras. Let A = C0(X), and B a unital commutative C*-algebra,
B = C(Y ) for a compact space Y . Then the inclusion

A = C0(X) →֒ C(Y ) = B

corresponds to inclusion of X as an open subset in Y , and is given by extension by 0. Then
A is essential in B if and only if X is dense in Y , that is Y is a compactification of X. The
minimal choice of compactification is the one-point compactification X+. Then B = Ã. The
maximal choice is the Stone Čech compactification βX. Then M(C0(X)) = C(βX).

2.3 Stabilization

Stabilization map

a 7→
(
a 0
0 0

)

is an example of a nonunital C*-algebra morphism A→Mn(A) even when A is unital.

Proposition 2.8. The stabilization map induces an isomorphism in K-theory for all n.

Proof. For all k there is an isomorphismMk(Mn(A)) ≃Mkn(A), so any matrix inMk(Mn(A))
can be regarded as a projection in Mkn(A) which provides the two-sided inverse to the
stabilization map.

Example 2.9. Take M2(C) ⊂ M4(C) ⊂ M8(C) ⊂ . . .. The direct limit
⋃

n≥1M2n(C) is dense
in K, so

lim
−→

K0(M2n(C)) = K0(K) =⇒ K0(K) = Z.

By applying similar argument to Mn(A) we get the following stability property.

Proposition 2.10. For any C*-algebra A and the algebra of compact operators K there is
an isomorphism

K0(A) = K0(A⊗K).

2.4 Higher K-theory

Let A be a unital C*-algebra. Define the cone of A as a C*-algebra

CA := {f : [0, 1] → A | f is continuous, f(0) = 0}.
This is a contractible algebra, and a map φs : CA→ CA given by

φs(f)(t) = f(ts), s ∈ [0, 1]

gives a homotopy between id : A→ A (s = 1) and 0: A→ 0 (s = 0).
Define the suspension of A as a C*-algebra

SA := {f ∈ CA | f(1) = 0}.
There is a suspension extension

0 → SA→ CA→ A→ 0.

Definition 2.11. The higher K-theory groups are defined by

K1(A) := K0(SA) = K0(C0(R) ⊗A)

Kp(A) := K0(S
pA) = K0(C0(R

p) ⊗A)
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2.5 Excision and relative K-theory

Let J be an ideal in a C*-algebra A,

0 → J → A→ A/J → 0.

Then the induced sequence of K0-groups

K0(J) → K0(A) → K0(A/J)

is exact in the middle (half-exactness). If the sequence is split-exact, then K0 is additive,
K0(A) = K0(J) ⊕ K0(A/J).

Definition 2.12. A relative cycle is a triple (p, q, x), where p, q are projections in Mn(A)
for some n, and x ∈ Mn(A) is such that π(x) ∈ Mn(A/J) for π : A → A/J is a partial
isometry implementing the Murray-von Neumann equivalence between π(p) and π(q).

Such a triple is nondegenerate if and only if x provides the Murray-von Neumann
equivalence between p and q.

Definition 2.13. Relative K-theory group K0(A,A/J) is the abelian group with one gen-
erator [p, q, x] for each relative cycle modulo homotopy equivalence and degeneracy.

If J is an ideal in a unita algebra A, then J̃ may be regarded as a subalgebra of A. The
excision map is a homomorphism

K0(J) = K0(J̃ ,C) → K0(A,A/J).

Theorem 2.14. The excision map K0(J) → K0(A,A/J) is an isomorphism.

Example 2.15. Let D be the open unit disc in R2, A = C(D). Let J = C0(D) - continuous
functions on D which vanish on ∂D. Then A/J = C(∂D).

The inclusion D →֒ C can be regarded as an element of A. The triple (1, 1, z̄) defines
a relative K-cycle in K0(C(D), C(∂D)). By excision this gives an element of K0(C0(D)).
Since D ≃ R2 we have an element b ∈ K0(C0(R

2)). This is the Bott generator. Under the
isomorhism K0(C0(R

2)) ≃ Z, the Bott generator b is mapped to 1 ∈ Z.

Definition 2.16. The mapping cone of a surjective morphism π : A ։ B of C*-algebras
is the C*-algebra

C(A,B) := {(a, f) | a ∈ A, f : [0, 1] → B is continuous , f(0) = 0, f(1) = π(a)}.

If π = id: A → A then C(A,A) = CA. This construction is useful in the following
situation. If J is an ideal in A, π : A→ A/J , we get C(A,A/J). There is a map C(A,A/J) →
A, (a, f) 7→ a. An element (a, f) is in the kernel of this map if and only if a = 0 and f(1) = 0.
Since f(0) = 0 by definition, this means that f ∈ S(A/J). Thus we have the following exact
sequence

0 → S(A/J) → C(A,A/J) → A→ 0,

where the first map is given by f 7→ (0, f).

There is also a homomorphism J → C(A,A/J) given by a 7→ (a, 0).

Proposition 2.17. Excision map K0(J) → K0(C(A,A/J)) is an isomorphism.
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By applying K0 to the above exact sequence we get

0 → K0(S(A/J)) → K0(C(A,A/J)) → K0(A) → 0.

Using the definition of K1 and the isomorphism in proposition we can write a sequence

K1(A/J) → K0(J) → K0(A) → K0(A/J),

which is exact at K0(J) and K0(A). By iterating this we obtain

Proposition 2.18. Let 0 → J → A → A/J → 0 be a short exact sequence of C*-algebras.
Then there is a natural exact sequence of abelian groups.

. . .Kn+1(A/J) → Kn(J) → Kn(A) → Kn(A/J) → Kn−1(J) → . . . → K0(A/J).

Example 2.19. Consider a Hilbert space H and an exact sequence

0 → K(H) → B(H) → Q(H) → 0,

where Q(H) is the Calkin algebra. Take T ∈ B(H) such that T ∗T −1 ∈ K(H) and TT ∗−1 ∈
K(H) (T is essenitally unitary). Then (1, 1, T ) is a relative K-cycle for (B(H),Q(H)),

π(T )∗π(T ) = 1, π(T )π(T )∗ = 1.

By excision and computation of K0(K(H)) we have

K0(B(H),Q(H)) = K0(K(H)) = Z, [T ] 7→ m ∈ Z.

Let p be an orthogonal projection onto kerT , and q an orthogonal projection onto ker T ∗.
Then

(1, 1, T ) = (p, q, 0) + (1 − p, 1 − q, T (1 − p)).

The second cycle is degenerated because T restricts to an invertible operator from im(1− p)
to im(1 − q). The cycle (p, q, 0) ∈ K0(K̂,C) corresponds to

dim im p− dim im q = Index(T ).

To summarise, the relative K-theory leads to half-exactness of K-theory and the cone
construction provides the connecting homomorphism ∂ in the and long exact sequence in
K-theory. Bott periodicity provides a six term exact sequence

K0(J) // K0(A) // K0(A/J)

��
K1(A/J)

OO

K1(A)oo K1(J)oo

We will give a more explicit description of K1(A).

Definition 2.20. Let A be a unital C*-algebra. Denote by Ku
1(A) the abelian group with one

generator for each unitary matrix in GLn(A), subject to the following relations.

1. If u, v ∈ GLn(A) can be joined by a path of unitaries in GLn(A) then [u] = [v].

2. [1] = [0].
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3. [u] + [v] = [u⊕ v]

For unitaries u, v ∈ GLn(A) we write u ∼ v if u and v can be joined by a path of unitaries.
Then u⊕ 1 ∼ 1 ⊕ u by using

Rt

(
u 0
0 1

)
R∗

t , Rt =

(
cos πt

2 sin πt
2

− sin πt
2 cos πt

2

)
.

Furthermore

u⊕ v ∼ uv ⊕ 1 ∼ vu⊕ 1, u⊕ u∗ ∼ 1 ⊕ 1

[u] + [v] = [u⊕ v] = [uv ⊕ 1] = [uv],

so addition in Ku
1(A) corresponds to matrix product.

Proposition 2.21. For a unital C*-algebra A

Ku
1(A) ≃ K0(SA) = K1(A).

2.6 Products

For any unital C*-algebras A1, A2 there exists a bilinear associative product

× : Ki(A1) × Kj(A2) → Ki+j(A1 ⊗min A2)

defined as follows.

1. If q1, q2 are projections in Mk(A1), Mp(A2), then q1⊗q2 is a projection in Mkp(A1⊗min

A2) using Mk(C) ⊗Mp(C) ≃Mkp(C).

2. This gives rise to the product

K0(A1) ⊗ K0(A2) → K0(A1 ⊗A2).

3. This extends to nonunital algebras.

4. Now use suspension and the isomorphism SiA1 ⊗ SjA2 ≃ Si+j(A1 ⊗A2) to get

Ki(A1) ⊗ Kj(A2) → Ki+j(A1 ⊗A2).

2.7 Bott periodicity

Let b ∈ K2(C) = K0(C0(R
2)) be the Bott generator. Taking the exterior product with b

defines a map

βA : K0(A) → K0(A⊗ C0(R
2)) = K2(A).

Theorem 2.22 (Bott periodicity). For every C*-algebra A, the map βA is an isomorphism.

Proof. We shall use the Toeplitz extension

0 → K → T → C(S1) → 0
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Proposition 2.23. The tensor product of a short exact sequence

0 → T1 → A1 → A1/T1 → 0

with a C*-algebra A2 i.e. a sequence

0 → T1 ⊗A2 → A1 ⊗A2 → A1/T1 ⊗A2 → 0

remains exact if either

1. the surjection A1 → A1/T1 has completely positive section s : A1/T1 → A2, or

2. A2 is nuclear.

A linear map f : A → B of C*-algebras is positive if and only if f(x) ≥ 0 for all x ≥ 0.
It is completely positive if and only if fn : Mn(A) → Mn(B), (aij) 7→ (f(aij)) is positive
for all n.

Proposition 2.24. The Toeplitz extension has completely positive section C(S1) → T , f 7→
Tf .

Remark that the map f 7→ Tf is not an algebra homomorphism.

Using the two propositions above we get that for every C*-algebra A ther is an exact
sequence.

0 → K⊗A→ T ⊗A→ C(S1) ⊗A→ 0.

The boundary map of this sequence is

∂ : K1(C(S1) ⊗A) → K0(K ⊗A) ≃ K0(A).

Regard S1 as a one-point compactification of R. Restrict to C0(R) ⊗A. Then we have

αA : K2(A) = K1(C0(R) ⊗A) → K0(A).

We will prove, after Atiyah, that αA is an inverse to βA with respect to the exterior product.
The proof depends on the following formal properties of αA

1. αC(b) = 1. If u is a unitary-valued function on S1, then αC : [u] → Tu is the minus
winding number of u. Furthermore b = (1, 1, z̄) 7→ 1.

2. for all A,B the following diagram is commutative

K2(A) ⊗ K0(B)

αA⊗id
��

// K2(A⊗B)

αA⊗B

��
K0(A) ⊗ K0(B) // K0(A⊗B)

(αA is right linear over K0(B), αA⊗B(x× y) = αA(a) × Y ).

We have from (1) that αAβA = id for A = C. In general if x ∈ K0(A) then from (2)

αAβA(x) = αA(b× x) = αA(b× x) = αC(b) × x = 1 × x = x.

αX⊗A(b× x) = αC(b) × x = 1 × x = x.
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Thus βA is injective. The idea of Atiyah’s proof is to use αAβA = id to prove that βAαA = id.
Consider two flip isomorphisms:

σ : A⊗ C0(R
2) → C0(R

2) ⊗A

τ : C0(R
2) ⊗A⊗ C0(R

2) → C0(R
2) ⊗A⊗ C0(R

2)

which interchange the first and last terms in the tensor products.
For any y ∈ K0(A⊗ C0(R

2))

τ∗(b× y) = σ∗(y) × b.

The map induced by τ on K-theory is the identity. Now

y = αA⊗C0(R2)(βA⊗C0(R2)(y)) = αA⊗C0(R2)(b× y) = αA⊗C0(R2)(σ∗(y) × b) = αA(σ∗(y)) × b

Applying σ∗ to both sides we obtain

σ∗(y) = σ∗βAαAσ∗(y).

But σ2
∗ = id and y was arbitrary, so βAαA = id.

2.8 Cuntz’s proof of Bott periodicity

We will give another proof of Bott periodicity, due to Cuntz. Let E be a functor on some
class of C*-algebras which is

1. homotopy invariant,

2. half exact,

3. stable.

Then one can define higher E-functors En, n ≥ 0. Moreover E is additive, that is if
φ1, φ2 : A→ B are C*-algebra morphisms such that φ1(A)φ2(A) = 0 then φ1 +φ2 : A→ B is
a C*-algebra morphism and E(φ1 + φ2) = E(φ1) + E(φ2).

Theorem 2.25 (Cuntz). Let E be a functor with these properties. Then E satisfies Bott
periodicity E2(A) ≃ E0(A) for every C*-algebra for which E is defined.

Proof. We start with Toeplitz extension

0 → K −→ T σ−→ C(S1) → 0

Define p : T → C as the composition

T σ // C(S1)
ε1 // C

Tf
� // f � // f(1)

Then p has a right inverse j : C → T . We want to prove, that E(p) : E(T ) → E(C),
E(j) : E(C) → E(T ) are inverses of each other. The easy part is id = E(p ◦ j) = E(p) ◦E(j)
because p ◦ j : C → C is the identity map.
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Proposition 2.26. The maps E(j) : E(C) → E(T ) and E(p) : E(T ) → E(C) estabilish an
isomorphism E(C) ≃ E(T ). Moreover for any C*-algebra the maps

idA ⊗ j : A = A⊗ C → A⊗ T
idA ⊗ p : A⊗ T → A

estabilish an isomorphism E(A) ≃ E(A⊗ T ).

Granted the proposition, the proof proceeds as follows. The extension

0 // T0
i // T p // C

j

bb
// 0

where by definition T0 = ker p, is split and the sequence

0 → A⊗K → A⊗ T0 → A⊗ C(S1) → 0

is exact. By proposition E(T0 ⊗A) = 0, so E0(A⊗K) ≃ E1(A⊗ C0(R)) = E2(A).

2.9 The Mayer-Vietoris sequence

Assume we have the pull-back diagram

A
q2 //

q1

��

A2

p2

��
A1 p1

// B

A = {(a1, a2) ∈ A1 ⊕A2 | p1(a1) = p2(a2)}.
Then there is an exact sequence

K0(A) // K0(A1) ⊕ K0(A2) // K0(B)

��
K1(B)

OO

K1(A1) ⊕ K1(A2)oo K1(A)oo

We have only to assume that at least one of p1, p2 is surjective.

Example 2.27. For n ≥ 2 the K-theory of Cuntz algebra On is

K0(On) = Z/(n− 1)Z,

K1(On) = 0.

From these computations it follows that On 6≃ Om.

Example 2.28. Noncommutative torus Aθ has the following K-theory

K0(Aθ) = Z ⊕ Z

K1(Aθ) = Z ⊕ Z

Example 2.29. For the free group on two generators F2 the map

C∗(F2) → C∗
r (F2)

induces an isomorphism in K-theory (K-amenability) which gives K0(C
∗
r (F2)), K1(C

∗
r (F2)).
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Chapter 3

Hilbert modules

3.1 Definitions

Suppose that A is a commutative unital C*-algebra, that is A = C(X) for some compact
topological space X. If X happens to be a manifold then suppose that E is a Hermitian
vector bundle over X. For instance we can take a fixed inner product space H and for all
t ∈ X let Ht ⊂ H be a subspace. Then we can put

E := {ξ : X → H | for all t ∈ X, ξ(t) ∈ Ht}.

Then E is a C(X)-module and has a C(X)-valued inner product

〈ξ, η〉(t) ∈ 〈ξ(t), η(t)〉H .

Definition 3.1. If A is a C*-algebra (not necessarily unital or commutative), then an inner

product A-module is a right A-module E with a compatible scalar multiplication

λ(xa) = (λx)a = x(λa), λ ∈ C, x ∈ E, a ∈ A

together with a map (inner product) E × E → A such that

1. 〈x, αy + βz〉 = α〈x, y〉 + β〈x, z〉

2. 〈z, αy〉 = 〈x, y〉α

3. 〈y, x〉 = 〈x, y〉∗

4. 〈x, x〉 ≥ 0 (in A) and if 〈x, x〉 = 0 then x = 0.

There is a Cauchy-Schwartz inequality for x, y ∈ E

〈y, x〉〈x, y〉 ≤ ‖〈x, x〉‖〈y, y〉.

Define a norm of x ∈ E by ‖x‖ := ‖〈x, x〉‖
1
2 . Then there is an inequality

‖〈x, y〉‖ ≤ ‖x‖‖y‖.

Definition 3.2. If an inner product A-module E is complete with respect to ‖ · ‖ then it is
called a Hilbert A-module.
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Example 3.3. A is a Hilbert A-module with respect to

〈x, y〉 = x∗y, ‖x‖H = ‖x‖A.

Similarly An is a Hilbert A-module with respect to

〈x, y〉 =

n∑

i=1

x∗i yi.

Example 3.4. If {Ei}n
i=1 is a finite family of Hilbert A-modules, then

⊕n
i=1Ei is a Hilbert

A-module with respect to

〈x, y〉 =
n∑

i=1

x∗i yi.

If {Ei}i∈I is an arbitrary family of Hilbert A-modules, then
⊕

i∈I Ei is the space of sequences
(xi)i∈I such that

∑
i∈I〈xi, xi〉 converges in A. Then

〈x, y〉 =
∑

i∈I

x∗i yi.

converges by Cauchy-Schwartz inequality.

Example 3.5. If H is a Hilbert space, then the algebraic tensor product H⊗algA has A-valued
inner product

〈ξ ⊗ a, η ⊗ b〉 = 〈ξ, η〉a∗b, ξ, η ∈ H, a, b ∈ A.
The completion with respect to a Hilbert A-module norm is a Hilbert A-module denoted by
H ⊗ A. If {ei} is an orthonormal basis for H, then H ⊗ A ≃ ⊕

Ai. When H is infinite
dimensional, separable, then H⊗A is denoted by HA.

Suppose E, F are Hilbert A-modules. Denote by L(E,F ) the set of bounded, adjointable
maps t : E → F that is such that there exists t∗ : F → E for which

〈tx, y〉F = 〈x, t∗y〉E , x ∈ E, y ∈ F.

For this to make sense, t needs to be A-linear, t(xa) = t(x)a. Not every bounded A-linear
map has an adjoint (for example the inclusion {f ∈ C([0, 1]) | f(1) = 0} →֒ C([0, 1])).

There is a composition

L(E,F ) × L(F,G) → L(E,G),

(t, s) 7→ s ◦ t.
It follows that L(E,E) is a C*-algebra.

Let E, F be Hilbert A-modules, x ∈ E, y ∈ F . Define for z ∈ F

θx,y : F → E, θx,y(z) = x〈y, z〉.

Then θx,y ∈ L(E,F ), (θx,y)
∗ = θy,x and θx,yθu,v = θx〈x, y〉v = θx,v〈u, y〉. For t ∈ L(E,G),

s ∈ L(G,F )

tθx,y = θtx,y, θx,ys = θx,s∗y.

Denote by K(E,F ) the closed linear span of {θx,y}. We write K(E) for K(E,E), which is an
analogue of compact operators.
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Example 3.6. If E = A, then K(A) = A and the isomorphism is given by

θa,b 7→ mab∗ (left multiplication)

θ1,1 = id: A→ A.

If A is unital, then K(A) ≃ L(A) and every t ∈ L(A) acts by t(1).

Example 3.7. If H is a Hilbert space, then K(H ⊗A) = K(H) ⊗A, where K(H) is the usual
space of compact operators. Apply

Proposition 3.8. Assume A is unital, E a Hilbert A-module. then the following are equiv-
alent

1. E is a finitely generated projective A-module.

2. K(E) ≃ L(E).

3. The identity map on E is compact.

4. id : E → E is of finite rank.

Proposition 3.9. Let A,B,C be C*-algebras such that A is an ideal in B and let E be a
Hilbert C-module. Suppose that α : A→ L(E) is a nondegenerate *-homomorphism (A ·E is
dense in E). Then α extends uniqualy to a *-homomorphism ᾱ : B → L(E). If α is injective
and A is essential in B, then ᾱ is injective.

Proof. Let ej be an approximate unit for A. For b ∈ B, a1, . . . , an ∈ A, ξ1, . . . , ξn ∈ E

‖
n∑

i=1

α(bai)ξi‖ ≤ lim
j

‖
n∑

i=1

α(bejai)ξi‖

= lim
j

‖α(bej)

n∑

i=1

α(ai)ξi‖

≤ ‖b‖‖
n∑

i=1

α(ai)ξi‖.

The map
n∑

i=1

α(ai)ξi 7→
n∑

i=1

α(bai)ξi

is well defined and continuous.
Since α is non-degenerate, it extends by continuity to a bounded map ᾱ(b) on E. Similar

argument shows that ᾱ(b∗) is an adjoint for ᾱ(b).

Apply this when C = E = A, and α : A → L(A) is the canonical embedding. Then any
C*-algebra B which contains A as an essential ideal embeds in L(A).

If B is a maximal essential extension of A (A is an essential ideal in B and if A is also an
essential ideal in C, then id : A → A extends to an embedding β : C → B), then there is an
injection β : L(A) → B whose restriction to A is the identity map.

By proposition, the canonical embedding α : A→ L(A) has an injective extension ᾱ : B →
L(A). We can apply the proposition again to A as an ideal in L(A). Then α has a unique
extension to a *-homomorphism L(A) → L(A). There are two maps

id, ᾱβ : L(A) → L(A)
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and ᾱβ = id, so ᾱ is surjective. L(A) is a unique maximal essential extension of A so
L(A) = M(A).

Theorem 3.10. Let A be a C*-algebra. Then

1. L(A) is an essential extension of K(A) which is maximal in the above sense.

2. If a C*-algebra B is maximal essential extension of A, then we have a *-isomorphism
B

≃−→ L(A) whose restriction to A is the canonical map A 7→ K(A).

Proposition 3.11. Let A,C be C*-algebras and E a Hilbert c-module. Suppose α : A→ L(E)
is a nondegenerate injective *-homomorphism and let B be the idealiser of α in LE,

B := {s ∈ L(E) | sL(A) ⊆ L(A), L(A)s ⊆ L(A)}.
Then α extends to a *-isomomorphism

M(A)
≃−→ B.

Theorem 3.12 (Kasparov). If E is a Hilbert module then L(E) ≃M(K(E)).

Proof. The inclusion map i : K(E) → L(E) is nondegenerate and the idealiser of K(E) is
L(E).

Example 3.13. For A = C we have M(K(H)) = L(H) and an exact sequence

0 → K(A) →M(A) →M(A)/sK(A) → 0.

We call Q(A) := M(A)/A the outer multiplier algebra.

Definition 3.14. The stable multiplier algebra

M s(A) := M(A⊗K),

and the quotient
Qs(A) := M(A⊗K)/A⊗K

is the stable outer multiplier algebra.

Proposition 3.15. For any C*-algebra A

K0(M
s(A)) = K1(M

s(A)) = 0.

Proof. Let vi be a sequence of projections in 1 ⊗ L(H) with orthogonal ranges. If p is any
projection in M s(A), then let q :=

∑
i vipv

∗
i

w :=

(
0 0
v1

∑
i vi+1v

∗
i

)(
p 0
0 q

)
.

The sums
∑

i vipv
∗
i and

∑
i vi+1v

∗
i converge in A⊗K.

w∗w =

(
p 0
0 q

)
, ww∗ =

(
0 0
0 q

)

so [p] + [q] = [q] in K0(M
s(A)).

For K1 there is a similar argument and the Cuntz-Higson theorem that U(M s(A)) is
contractible.

For any C*-algebra A there is an isomorphism

Ki(A)
≃−→ Ki−1(Q

s(A)).
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3.2 Kasparov stabilization theorem

A Hilbert B-module E is countably generated if there exists a countable subset X ⊂ E such
that the smallest closed submodule of E containing X is E.

Theorem 3.16. For every countably generated Hilbert B-module E there is an isomorphism

HB ⊕B ≃ HB.

Proof. A variant of Gram-Schmidt orthogonalization. There exists u ∈ L(HB ⊕B,HB) such
that u∗u = 1HB⊕B , uu∗ = 1HB

. It implies that for every countably generated B-module H
there exists a porjection p ∈ L(HB) such that E ≃ pHB.

3.3 Morita equivalence

Recall:

• A C*-algebra A is stable if and only if A ≃ A⊗K.

• Two C*-algebras A,B are stably isomorphic if and only if A⊗K ≃ B ⊗K.

• A Hilbert A-module E is full if and only if 〈E, E〉 is dense in A.

Suppose we have a C*-algebra, E,F are Hilbert A-modules. The space of compact operators
K(E,F ) from E to F is a right K(E)-module and a left K(F )-module with respect to the
natural composition of maps.

E
β //

fβ

##
E

f //

αf

;;F
α // E

Let B = K(E), G = K(E,F ). Then G is a right B-module and has a B-valued inner product

〈s, t〉B := s∗t, s, t ∈ G.

Proposition 3.17. Let A be a C*-algebra and E,F Hilbert A-modules. If E is full, then

KB(G) ≃ KA(F ),

LB(G) ≃ LA(F ).

Proof. Let t ∈ LA(F ). The map α(t) : u 7→ tu, u ∈ G, is adjointable

〈tu, v〉B = (tu)∗v = u∗t∗v = 〈u, t∗v〉B

so α(t) ∈ LB(G). Thus the left LA(F )-module structure on G provides a map α : LA(F ) →
LB(G) which is a *-homomorphism. If α(t) = 0 then tu = 0 for all u ∈ G. In particular

tθz,x(y) = 0, x, y ∈ E, z ∈ F

so tz〈x, y〉 = 0.
Now suppose E is full, so

F 〈E, E〉 = FA = F.
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Since tF 〈E, E〉 = {0} implies t = 0, we have that α is surjective.

Let x, y ∈ E, z,w ∈ F , s = θz,x, t = θw,y. Then s, t ∈ G and α(θz〈x, y〉,w) = θs,t. Since G
is generated as a normed linear space by the elements of the form s, t, and *-homomorphisms
between C*-algebras have closed range, it follows that α(KA(F )) ⊃ KB(G).

On the other hand if E is full then elements of the form θz〈x, y〉,w generate KA(F ), so
α(KA(F )) ⊂ KB(G). We can now restrict α to KA(F ) to get KA(F ) ≃ KB(G).

For the second statement we use the fact that if algebras are isomorphic, then their
multiplier algebras are also isomorphic.

Definition 3.18. Two C*-algebras are Morita equivalent, A ∼M B if and only if there is
a full Hilbert A-module E such that B ≃ KA(E) (strong Morita equivalence due to Rieffel).

Proposition 3.19. Morita equivalence is an equivalence relation.

Proof. 1. Reflexive: A ≃ KA(A).

2. Symmetric: by proposition (F = A) if B ≃ KA(E) and G = KA(E,A) as B-modules,
then A ≃ KB(G).

3. Transitive: suppose B ≃ KA(E), C ≃ KB(F ), E-full Hilbert A-module, F -fill Hilbert
B-module. If ι : B → LA(E) let G := F ⊗i E. Then G is a full Hilbert A-module and

ι∗ : C
≃−→ KA(G).

Theorem 3.20. Two σ-unital C*-algebras are Morita equivalent if and only if they are stably
isomorphic.

Proof. For any C*-algebra A

KA(HA) = KA(H ⊗A) ≃ KC(H) ⊗KA(A) = K⊗A

so A ∼M K⊗A. If A and B are stably isomorphic then

A ∼M K ⊗A ≃ K⊗B ∼M B

so A ∼ B (we do not need σ-unitality here).

Suppose that A ∼M B and let B ≃ KA(E). Then if A,B are σ-unital

K⊗B ≃ KA(H⊗ E) ≃ KA(HA) ≃ K ⊗A.

3.4 Tensor products of Hilbert modules

1. Outer tensor products For i = 1, 2 let Bi be a C*-algebras and Ei a Hilbert Bi-
module. The Hilbert B1 ⊗minB2-module E1 ⊗E2 is by definition the completion of the

algebraic tensor product E1 ⊗alg E2 in the norm ‖ξ‖ := ‖〈ξ, ξ〉‖
1
2 , where for ξi, ηi ∈ Ei

〈ξ1 ⊗ ξ2, η1 ⊗ η2〉 := 〈ξ1, η1〉 ⊗ 〈ξ2, η2〉.
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2. Inner tensor products Let A, B be two C*-algebras, E1 a Hilbert A-module, E2

a Hilbert B-module, and π : A → L(E2) a *-homomorphism. The Hilbert B-module
E1⊗πE2 (also denoted by E1⊗AE2) is the Hausdorff completion of the algebraic tensor

product E1 ⊗alg E2 with respect to the norm ‖ξ‖ := ‖〈ξ, ξ〉‖
1
2 , where for ξi, ηi ∈ Ei

〈ξ1 ⊗ ξ2, η1 ⊗ η2〉 := 〈ξ2, π(〈ξ1, η1〉)η1〉.

The action of B is given by (ξ1⊗ ξ2)b := ξ1⊗ ξ2b. Note that for a ∈ A, ξ1 ∈ E1, ξ2 ∈ E2

we have ξ1 ⊗ π(a)ξ2 = ξ1a⊗ ξ2.
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Chapter 4

Fredholm modules and Kasparov’s

K-homology

4.1 Fredholm modules

For the two bounded operators P,Q on Hilbert space we write P ∼ Q if and only if they
differ by a compact operator. We assume that A is a separable C*-algerba, not necessarily
unital.

Definition 4.1. An (ungraded) Fredholm module over A is given by the following data:

1. a separable Hilbert space H,

2. a representation ρ : A→ B(H),

3. an operator F on H such that for all a ∈ A

(F 2 − 1)ρ(a) ∼ 0

(F − F ∗)ρ(a) ∼ 0

Fρ(a) − ρ(a)F ∼ 0.

The representation ρ is not required to be non-degenerate.

Definition 4.2. Aa Z2-graded Fredholm module over A is given by the same data as in
definition (4.1) plus the following additional structure:

1. the Hilbert space is equipped with the decomposition H = H+ ⊕H−,

2. for each a ∈ H, ρ(a) is even, ρ(a) = ρ+(a) ⊕ ρ−(a),

ρ(a) =

(
ρ+(a) 0

0 ρ−(a)

)

where ρ± is a representation on H±,

3. F is odd,

F =

(
0 v
u 0

)
, u : H+ → H−, v : H− → H+.
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The operators u, v are not independent: V is essentially the adjoint of u. We can rewrite
the conditions of the original definition as follows

(uv − 1)ρ−(a) ∼ 0

(vu− 1)ρ+(a) ∼ 0

(u− v∗)ρ+(a) ∼ 0

uρ+(a) ∼ ρ−(a)u.

Let p ∈ N.

Definition 4.3. A p-graded Fredholm module is a Fredholm module (H, ρ, F ) as above for
which there exist operators ε1, . . . , εp such that

εj = −ε∗j , ε2j = −1, , εiεj + εjεi = 0, ; i 6= j.

Example 4.4. Fredholm modules over C. Assume that ρ : C → B(H) is the unique unital
representation. Then an ungraded Fredholm module is given by an essentially selfadjoint
Fredholm operator F . This characterisation follows from Atkinson’s theorem. Recall we de-
fined a Fredholm operator to be an operator F such that kerF , kerF ∗ are finite dimensional.

Theorem 4.5 (Atkinson). Let F ∈ B(H). Then then the following are equivalent

1. F is Fredholm.

2. The image of F in Q(H) = B(H)/K(H) is invertible.

3. There exist G ∈ B(H) such that 1 − FG, 1 −GF are compact.

A graded Fredholm module is given by an essentially selfadjoint operator F of the form

F =

(
0 v
u 0

)

where u and v are Fredholm and u ∼ v∗. By definition Index(F ) = Index(u).

Example 4.6. The pseudodifferential operator extension. Let M be a smooth manifold with-
out boundary (not necessarily compact). Let S∗M be the cosphere bundle of M : take the
cotangent bundle of M , delete the zero section (zero cotangent vectors), identify non-zero
cotangent vectors which differ only by multiplication by a positive scalar (if M is equipped
qith a Riemannian metric then S∗M can be identified with the space of unit length cotangent
vectors).

There is an extension

0 → K(L2(M)) → ΨDO(M) → C0(S
∗M) → 0

The outline of the construction is as follows. If M is an opent subset of Rn, then suppose
that σ is a complex valued function on T ∗M which has the property (homogenity):

σ(x, tξ) = σ(x, ξ), t ≥ 1, |ξ| ≥ 1.

Assume that σ is compactly supported in the M -direction, i.e. σ(x, ξ) vanishes when x is
outside some compact subset of M . Then the linear map Dσ : C∞

c (M) → C∞
c (M) given by

the integral formula

Dσf(x) :=
1

(2π)n

∫
σ(x, ξ)f̂(ξ)ei〈x, ξ〉dξ,

where f̂ denotes the Fourier transform of f , is an example of a pseudodifferential operator.
Because σ is homogeneous, it defines a function σ0 on the cosphere bundle S∗M , which is
called the symbol of the operator Dσ.
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Proposition 4.7. The operator Dσ extends by continuity to a bounded linear operator on
L2(M). The map which associates to each Dσ its symbol σ0 extends to a *-homomorphism
form the C*-algebra ΨDO(M) generated by all Dσ onto the C*-algebra C0(S

∗M).

The map ΨDO(M) → C0(S
∗M) is called the symbol map.

This proposition gives the extension when M is an open subset of Rn. The extension to
manifolds is done as follows. If M ⊆ Rn is open and g ∈ C∞

c (M) then the multiplication
operator Mg is a pseudodifferential operator associated with the function σ(x, ξ) = g(x), so
Mg ∈ ΨDO(M). Next we use the invariance of pseudodifferential operators under smooth
changes of coordinates. If Ψ: M → M ′ is a diffeomorphism of open sets in Rn, then the
transform under Ψ of an operator in ΨDO(M) with symbol σ0 is an operator in ΨDO(M ′)
with symbol Φ∗(σ0) (Φ: M → M ′ induces Cc(M

′) → Cc(M) by composition. Get unitary
u : L2(M ′) → L2(M) by multiplying by

√
Jac(f) and then T ∈ B(L2(M)) 7→ u∗TU ∈

B(L2(M ′))). So we can define ΨDO(M) for any smooth manifold (using invariance plus
partition of unity) to be a C*-algebra consisting of those T ∈ B(L2(M)) such that

1. lim ‖TMgn − T‖ = 0 = lim ‖MgnT − T‖ for some approximate unit gn for C0(M)

2. T commutes with C0(M) modulo compact operators

3. for each coordinate chart U and each g ∈ C0(U), the operator MgTMg belongs to
ΨDO(M).

Symbol of T is well defined as an element of C0(S
∗M).

The operator Dσ is Fredholm if and only if σ0 is nowhere zero. Let D ∈Mk(ΨDO(M)) be
a system of psedudodifferential operators whose symbol is a unitary matrix-valued function
on S∗M . Then

H = L2(M)k ⊕ L2(M)k, F =

(
0 D∗

D 0

)

together with a representation ρ : C(M) → B(L2(M)) by multiplication operators is a graded
Fredholm module over C(M).

This construction generalises Atiyah’s definition of Ell. There is a pairing with K-theory.
For a projection p ∈Mk(C(M))

Fp :=

(
0 ρ(p)D∗

ρ(p)D 0

)

is an operator on H = ρ(p)L2(M)k ⊕ ρ(p)L2(M)k, and

〈[p], [D]〉 := Index(ρ(p)Dρ(p)).

Let A be a C*-algebra and (H, F ) a Fredholm module over A. It extends to Mn(A) and
Hn := H⊗ Cn, Fn := F ⊗ idn.

Proposition 4.8. Let (H, F ) be a Fredholm module over A. There exists a unique additive
map φ : K0(A) → Z such that for every projection e ∈ Mn(A) we have φ([e]) = Index(T ),
where T : eH+

n → eH−
n is defined by Tx = eFnx for all x ∈ H+

n .
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4.2 Commutator conditions

In the definition of Fredholm module (H, F ) we have a condition [F, ρ(a)] ∈ K for all a ∈ A.
In Kasparov K-homology A has to be a separable C*-algebra. For more subtle invariants,
Connes allows Fredholm modules over *-algebras A, not necessarily C*-algebras. Most useful
condition is that [F, a] ∈ Lp(H) for some p ≥ 1. There is a fine balance to be struck here:
the class of algebras we allow for Fredholm modules should still have a meaningful K-theory,
fairly close to the K-theory for C*-algebras. Ideally we want K-theory with the same formal
properties as K-theory for C*-algebras. Note that the K-theory for such algebras needs to
be developed from scratch. A sensible class of C*-algebras may be determined using the
following

Proposition 4.9 (Connes). Let A be an involutive algebra, (H, F ) an (n + 1)-summable
Fredholm module over A with the parity of n. Let A be the C*-algebra closure of A (in its
action on H). Let Ā be the smallest involutive subalgebra of A containing A and stable under
holomorphic functional calculus. Then (H, F ) is an (n+ 1)-summable Fredholm module over
Ā.

From this one deduces that it is sufficient to restrict attention to local C*-algebras (pre
C*-algebras).

Proposition 4.10. Let A be a pre C*-algebra (local C*-algebra). Then

1. Any Fredholm module (H, F ) over A extends by continuity to a Fredholm module over
the associated C*-algebra A.

2. The inclusion A →֒ A is an isomorphism on K-theory.

Proposition 4.11 (Connes). Suppose that (H, F ) is a 1-summable Fredholm module and γ
is an involution im[plementing the Z/2-grading on H. Then the map

τ : A→ C, a 7→ 1
2 Tr(γF [F, a])

is a trace on A.

Proof. Define
A := {a ∈ A | [F, a] ∈ L1(H)}, A ⊂ A.

We have

γF [F, a] = γa− γFaF

= γa+ FaγF

= aγF 2 + FaγF − FγF + FaγF

= [F, a]γF,

where we use F 2 = 1 or the equalities are modulo K. Next

τ(ab) = 1
2 Tr(γF [F, ab])

= 1
2 Tr(γF [F, a]b + γFa[F, b])

= 1
2 Tr([F, a]γFb + [F, b]γFa)

= τ(ba).
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We call τ the character of the Fredholm module (H, F ).

Theorem 4.12 (Connes). Let A be a unital C*-algebra equipped with a faithful positive trace
τ , τ(1) = 1. Let (H, F ) be a Fredholm module over A such that

A := {a ∈ A | [F, a] ∈ L1(H)}
is a dense subalgebra of A and the restriction of τ to A is the character of the Fredholm
module (H, F ). Then A contains no nontrivial idempotents.

Proof. A is a subalgebra of A stable under holomorphic functional calculus. The inclusion
A →֒ A induces an isomorphism K0(A) → K0(A). The trace τ takes integer values (this is
the index map). If e is a projection then τ(e) = 0, 1. Because τ is faithful e = 0, 1.

Example 4.13. Let F2 be the nonabelian free group on two generators. It acts on a tree
(1-dimensional simplicial complex with no loops). Let ∆0 be the set of vertices and ∆1 be
the set of edges. Denote by [x, y] for x, y ∈ ∆0 the set of vertices on the unique path from x
to y, and by x0 the origin. For all x ∈ ∆0 \{x0} let β(x) ∈ ∆1 be the unique edge containing
x in [x, x0].

Lemma 4.14.

1. The map β : ∆0 → ∆1 is a bijection.

2. For a fixed g ∈ F2, the set of x ∈ ∆0 such that gβ(g−1x) 6= β(x) is finite and equals
[x0, gx0].

Proof. 1. The inverse is given by

β−1(edge u) := vertex of u further from x0.

2. gβ(g−1x) is the edge containing x and lying in [gx0, x]. Suppose x /∈ [gx0, x].

Define a map F : l2(∆0) → l2(∆1) by

Fδx :=

{
δβx

for x 6= x0

0 for x = x0

Proposition 4.15.

1. F is an operator of index 1, FF∗ = 1, F∗F = 1 − px0, where px0 : l2(∆0) → Cδx0.

2. Let π0, π1 be actions of F2 on l2(∆0), l
2(∆1). For all g ∈ F2 the operator π1(g)F −

Fπ0(g) is of finite rank and (l2(∆0) ⊕ l2(∆1),F) is a Fredholm module.

Let
A := {a ∈ C∗

r (F2) | [F , a] ∈ l2(∆0) ⊕ l2(∆1)}.
By the proposition C[F2] ⊂ A, so A is dense in C∗

r (F2). Now from the Connes theorem one
obtains the proof of the Kadison-Kaplansky conjecture

Theorem 4.16. The algebra C∗
r (F2) has no nontrivial idempotents.

Fredholm modules of this type can be constructed for any locally compact group acting
on a tree (Julg, Vallette).

Theorem 4.17. Let G be any locally compact group acting on a tree such that the stabiliser of
any vertes is amenable. Then G is K-amenable.

Remark 4.18. (Christian Voigt)
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4.3 Quantised calculus of one variable

Let f be a function on R. Find function algebras for which df := [F, f ] has a given regularity.
Take H = L2(R). The Hilbert transform is given by

(Fξ)(s) = lim
ε→0

1

πi

∫

|s−t|>ε

ξ(t)

s− t
dt.

We have F 2 = 1 and [F, f ] is the operator on L2(H) associated to the kernel

k(s, t) =
f(s) − f(t)

s− t

This can be transported to S1 by some conformal map. Then we obtain a Fredholm module
given by the data

H = L2(S1), F = 2P − 1,

where P : L2(S1) → H2(S1) is the orthogonal projection onto the Hardy space.
For any f ∈ L∞(S1)

• [F, f ] is a finite rank operator if and only if f is a rational function.

• [F, f ] is compact if and only if f is of vanishing mean oscillation, that is for

Maf := sup
|I|≤a

1

|I|

∫

I

|f − I(t)|dt,

where I(t) = 1
|I|

∫
fdx, we have lima→0Maf = 0.

• [F, f ] is in Lp(H) if and only if f is in Besov space B
1
p
p , that is

∫ ∫
|f(x+ t) − 2f(x) + f(x− t)|pt−2dxdt <∞.

4.4 Quantised differential calculus

Let (A,H, F ) be a Fredholm module over an involutive algebra A, n integer ≥ 0. We assume
that the Fredholm module is even for n even and odd for n odd. In either case it is (n+ 1)-
summable: [F, a] ∈ Ln+1(H) for all a ∈ H.

For k = 0, put Ω0 = A. For k > 0

Ωk := span{a0[F, a1] . . . [F, ak] | aj ∈ A}.
By Hölder inequality, Ωk ⊂ Ln+1

k (H). Put Ω• :=
⊕

k≥0 Ωk. The product in Ω• is the

operator product. We use the Leibniz rule for [F,−] to check that if ω ∈ Ωk and ω ∈ Ωk′

then ωω′ ∈ Ωk+k′

a0[F, a1] . . . [F, ak]ak+1 =
k−1∑

j=1

(−1)k−ja0[F, a1] . . . [F, ajaj+1] . . . [F, ak+1]+

+(−1)ka0a1[F, a2] . . . [F, ak+1].

It is a differential graded algebra (DGA) with differential d : Ωk → Ωk+1 given by the graded
commutator

dω = [F,ω] = Fω − (−1)|ω|ωF.

It is a graded derivation, that is

d(ω1ω2) = (dω1)ω2 + (−1)|ω1|dω2, d
2 = 0.
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4.5 Closed graded trace

We will define a supertrace Trs : Ωn → C. If T is an operator on H such that FT+TF ∈ L1(H)
then put

Tr′(T ) := 1
2 Tr(F (FT + TF )).

If T ∈ L1(H), then put
Tr′(T ) := Tr(T ).

Now define Trs(ω) for ω ∈ Ωn

Trs(ω) :=

{
Tr′(ω) for n odd

Tr′(γω) for n even

where γ is the involution implementing the Z/2-grading on H.

Proposition 4.19. Trs is a closed graded trace.

1. Trs(dω) = 0

2. If ω ∈ Ωk, ω′ ∈ Ωk′

, k + k′ = n, then

Trs(ωω
′) = (−1)kk′

Trs(ω
′ω)

Proof. In the odd case
Fω + ωF = [F,ω] = dω,

and in the even case

Fγω + γωF = −γFω + γωF = −γ[F,ω] = −γdω,

so for ω = dη, Trs(ω) = 0.
For the trace condition, take ω ∈ Ωk, ω′ ∈ Ωk′

, k + k′ = n, n odd.

Trs(ωω
′) = 1

2 Tr(Fd(ωω′))

= 1
2 Tr(F (dω)ω′ + (−1)|ω|Fω(dω))

= 1
2 Tr((−1)|ω|(dω)Fω′ + (−1)|ω|Fωdω′)

= 1
2 Tr((−1)|ω|+1Fω′dω + (−1)|ω|Fω)

= 1
2 Tr((−1)|ω|+1Fω′dω + (−1)|ω|+|ω′|+1F (dω′)ω)

= 1
2 Tr((−1)|ω|+1Fω′dω + (−1)|ω|+|ω′|+1F (d(ω′ω) + (−1)|ω

′|+1ω′(dω)))

= 1
2 Tr((−1)|ω|+|ω′|+1Fd(ω′ω))

= 1
2 Tr(Fd(ω′ω)).

If |ω| + |ω′| = n and n is odd, then |ω|, ω′ cannot both be odd, so |ω||ω′| = 0 mod 2 and

Trs(ωω
′) = (−1)|ω||ω

′| Trs(ω
′ω) = Trs(ω

′ω).

The even case is very similar, use the extra condition Fγ = −γF .

Definition 4.20. The character of the cycle (A,H, F ) is the cyclic cocycle

τn(a0, a1, . . . , an) = Trs a
0[F, a1] . . . [F, an].
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Difficult problem: provide an explicit formula for this cocycle in terms of data defining the
Fredholm module. The cyclic cocycle seems to depend on n, but in fact there is no problem
here.

Recall Connes’ periodicity operator S : HCn(A) → HCn+2(A),

. . .HHn−1(A,A) → HCn(A) → HCn+2(A) → HHn+2(A,A) → HCn+1(A) → . . .

Proposition 4.21. The characters τn+2q satisfy

τm+2 = − 2

m+ 2
Sτm, m = n+ 2q,

so the cocycles together determine a class in periodic cyclic cohomology

HP•(A) = lim
−→

(HCn(A), S)

Definition 4.22. Let (A,H, F ) be a finitely summable Fredholm module over an involutive
algebra A. The Chern character ch•(H, F ) ∈ HP•(A) is the periodic cyclic cohomology
class whose components are the following cyclic cocycles for large enough n:

(−1)
n(n−1)

2 Γ
(n

2
+ 1

)
Tr′(γa0[F, a1] . . . [F, an])

for n even (even Fredholm module), and

√
2i(−1)

n(n−1)
2 Γ

(n
2

+ 1
)

Tr′(γa0[F, a1] . . . [F, an])

for n odd.

Remark 4.23. Let ΩA be the universal differential graded algebra, N-graded. It is also Z/2-
graded algebra with respect to the Fedosov product

ω1 ◦ ω2 = ω1ω2 + (−1)|ω1|dω1dω2.

Supertraces Tr : ΩA→ C are linear maps which satisfy the suspension conditions.

Theorem 4.24 (Connes, Cuntz-Quillen). There is one-to-one correspondence between (har-
monic) periodic cocycles and supertraces on ΩA.

(ΩA, b,B) → (entire) cyclic type homology theories.

4.6 Index pairing formula

From Atiyah and Kasparov we have the following result:

Proposition 4.25. Let A be an involutive algebra, (H, F ) a Fredholm module over A. For
q ∈ N let (Hq, Fq) be the Fredholm module over Mq(A) = A ⊗ Mq(C), Hq = H ⊗ Cq,

Fq = F ⊗ idq. Extend the action of A on H to a unital action of Ã.

1. In the even case: let γ be the involution for Z/2-grading and e ∈Mq(Ã) be a projection.
Then the operator

π−q (e)Fqπ
+
q (e) : π+

q (e)H+
q → π−q (e)H−

q

is Fredholm. There is an additive map

ϕ : K0(A) → Z

given by
ϕ([e]) := Index(π−q (e)Fqπ

+
q (e)).
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2. In the odd case: let u ∈ GLq(Ã), E = 1+F
2 . Then

Eqπq(u)Eq : EqHq → EqHq

is Fredholm. There is an additive map

ϕ([u]) := Index(Eqπq(u)Eq).

When A is a C*-algebra, K1(A) in 2. is the topological K-theory Ktop
1 (A) as defined

before.
In both cases, the index map depends only on the class

[(H, F )] ∈ KKi(A,C) = Ki(A),

the K-homology of A. This can be regarded as a pairing

Ki(A) × Ki(A) → Z.

Proposition 4.26. For x ∈ Ki(A)

ϕ(x) = 〈x, ch∗(H, F )〉 = 〈ch(x), ch(H, F )〉.

On the right hand side in the proposition we have a pairing between K-theory and cyclic
sohomology. A more symmetric formula would use a complementary Chern character on K-
homology. Since Connes’ construction, formulae were given for Chern characters in K-theory
with values in HP•(A).

The pairing has simple definition. Let τ ∈ HCn(A). Take τ ⊗ Tr: Mk(A) → C for every
k,

τ ⊗ Tr(a0 ⊗ T 0, a1 ⊗ T 1, . . . , an ⊗ T n) = τ(a0, . . . , an)Tr(T 0, . . . .Tn).

Then

〈[e], [τ ]〉 =
1

m!
(τ ⊗ Tr)(e, e, . . . , e).

All this is explained in Quillen’s higher traces paper.

4.7 Kasparov’s K-homology

Let (ρ,H, F ) be a Fredholm module, U : H′ → H be a unitary isomorphism (preserving
the grading if there is one). Then (U∗ρU,H′, U∗FU) is also a Fredholm module unitarily
equivalent to (ρ,H, F ).

Definition 4.27. Suppose (ρ,H, Ft) is a family of Fredholm modules parametrized by t ∈
[0, 1], H is fixed Hilbert space, and Ft varies with t. If the function t 7→ Ft is norm continuous,
then we say that the family defines an operator homotopy between the Fredholm modules
(ρ,H, F0) and (ρ,H, F1) an that these two Fredholm modules are Operator homotopic.

Definition 4.28. If (ρ,H, F ) and (ρ,H, F ′) are Fredholm modules on H and (F − F ′)ρ(a)
is compact for all a ∈ A, then we call F a compact perturbation of F ′.

Compact perturbation impliest operator homotopy - the linear path from F to F ′ defines
an operator homotopy.

One can perform a compact perturbation to make F exactly self adjoint, F 7→ 1
2(F +F ∗).
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Definition 4.29. K-homology of a C*-algebra A, Kp(A), is an abelian group with one
generator [x] for each unitary equivalence class of graded Fredholm modules over A with the
following relations:

1. If x0 and x1 are operator homotopic graded Fredholm modules, then [x0] = [x1] ∈ Kp(A).

2. If x0 and x1 are graded Fredholm modules then [x0 ⊕ x1] = [x0] + [x1] in Kp(A), where
x0 ⊕ x1 = (A,H0 ⊕H1, ρ0 ⊕ ρ1, F0 ⊕ F1).

We have p = 0 for graded, and p = 1 for ungraded Fredholm modules.

Remark 4.30. p-graded Fredholm modules give rise to lower K-homology K−p(A) for all p ∈ N.

Kp(A) is a contravariant functor in A. If α : A′ → A is a *-homomorphism, and (ρ,H, F )
is a Fredholm A-module, then (ρ ◦ α,H, F ) is a Fredholm A′-module. We have an induced
map

α∗ : Kp(A) → Kp(A′).

Definition 4.31. A Fredholm module (ρ,H, F ) is degenerate if and only if

[ρ(a), F ] = 0

ρ(a)(F 2 − 1) = 0

ρ(a)(F − F ∗) = 0

for all a ∈ A.

Proposition 4.32. The class of a degenerate Fredholm module is zero in Kp(A).

Proof. Let x = (ρ,H, F ) be a degenerate Fredholm module. Then

x′ := (ρ′,H′, F ′), H′ :=

∞⊕

i=1

, F ′ :=

∞⊕

i=0

F, ρ′ :=

∞⊕

i=0

ρ.

This is a Fredholm module, since x is degenerate. But x⊕ x′ is unitarily equivalent to x′, so
[x⊕ x′] = [x] + [x′] = [x′] and [x] = 0.

Lemma 4.33. For a graded Fredholm module (ρ,H, F ) denote by (ρop,Hop,−F op) the Fred-
holm module with the opposite grading. This is the additive inverse to (ρ,H, F ).

Proof. Let

Ft :=

(
cos(π

2 t)F sin(π
2 t)Id

sin(π
2 t)Id − cos(π

2 t)F

)
,

F0 =

(
F 0
0 −F

)
, F1 =

(
0 1
1 0

)
.

This is the operator homotopy on H ⊕Hop from F0 = F ⊕ (−F op) to the degenerate F1 =(
0 1
1 0

)
.

Example 4.34. K0(C) = Z. If (ρ,H, F ) is a Fredholm module over C, then ρ(1) =: p is a
projection in B(H) and up to compact perturbation (ρ,H, F ) is the direct sum of (ρ, pH, pFp)
and (ρ, (1− p)H, (1− p)F (1− p)). The second module carries the zero action of C. The first
is determined by pFp. Put

(ρ,H, F ) 7→ Index(pFp).

This gives a homomorphism K0(C) → Z. Since an essentially unitary operator with index
zero is a compact perturbation of a unitary, this map is an isomorphism.
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Lemma 4.35. Let (ρ,H, F ) be a Z/2Z-graded Fredholm module. Assume that there exists a
self adjoint odd-graded involution E : H → H which commutes with ρ (the action of A) and
anticommutes with F . Then the Fredholm module (ρ,H, F ) represents the zero element in
K0(A).

Proof. Let Ft := cos(t)F + sin(t)E. This is an operator homotopy from F to the degenerate
operator E.

In particular putting tho ungraded Fredholm modules together produces a degenerate
Fredholm module. Conversely, if we ignore Z/2Z-grading on an even Fredholm module then
the resulting odd Fredholm module represents the zero element. A possible argument is as
follows. A Z/2Z-graded module is given by the data H = H+ ⊕H−,

F =

(
0 u∗

u 0

)
, ρ =

(
ρ(a) 0

0 ρ(a)

)
.

We construct an operator homotopy

Ft =

(
cos(π

2 t)Id sin(π
2 t)v

sin(π
2 t)u cos(π

2 t)Id

)

F0 =

(
1 0
0 1

)
, F1 =

(
0 v
u 0

)
.

For this we need to assume that F1 is an involution.

42



Chapter 5

Boundary maps in K-homology

5.1 Relative K-homology

Definition 5.1. Let J be an ideal in A. A relative Fredholm module for (A,A/J) is a
triple (ρ,H, F ), where

1. H is a separable Hilbert space

2. ρ : A→ B(H) is a *-representation

3. for all a ∈ A, j ∈ J

(F 2 − 1)ρ(j) ∼ 0

(F − F ∗)ρ(j) ∼ 0

[F, ρ(a)] ∼ 0

One defines also the graded version.
The relative Fredholm modules generate relative K-homology Kp(A,A/J). The natural

map
Kp(A,A/J) → Kp(J)

is an isomorphism (excision).
To any extension of separable C*-algebras one can associate an exact sequence of lenght

six

K1(A/J) // K1(A) // K1(J)

��
K0(J)

OO

K0(A)oo K0(A/J)oo

We can give an explicit description of the boundary maps in this six term exact sequence.

5.2 Semisplit extensions

There is ono-to-one correspondence between extensions of A by K(H) and unitary equivalence
classes of *-homomorphisms φ : A→ Q(H)

0 // K(H) // E //

��

A //

φ

��

0

0 // K(H) // B(H)
π // Q(H) // 0
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Definition 5.2. A unital injective extension φ : A → Q(H) is semisplit if there is another
unital extension φ′ : A→ Q(H) such that φ⊕ φ′ is split extension.

Definition 5.3. Let the extension

0 → J → A→ A/J → 0

be semisplit by a completely positive map Ã/J → Ã. Let ρ : A → B(H) be a representation
of A on a separable Hilbert space H. A Stinespring dilation associates to the above data
is a *-homomorphism

ψ =

(
ψ11 ψ12

ψ21 ψ22

)
: A/J → B(H⊕H′),

where H′ is a separable Hilbert space and ψ11(x) = ρ(s(x)).

The existence of such extension follows from Stinespring’s theorem.

Theorem 5.4 (Stinespring). A unital linear map σ : A→ B(H) is absolutely positive if and
only if there are

1. an isometry v : H → H

2. a nondegenerate representation ρ : A→ B(H) such that σ(a) = v∗ρ(a)v

In Z/2Z-graded case one applies this to each component separately.

Proposition 5.5. Take an extension as above. Let (ρ,H, F ) be a selfadjoint relative Fredholm
module (graded or ungraded). Let ψ : A/J → B(H⊕H′) be a Stinespring dilaton. Then the
boundary maps are given by

1. ∂ : K0(A,A/J) → K1(A/J) : the cycle (ρ,H, F ) is graded Fredholm module. Assume
that F 2 is a projection (this can always be done). Let Q± be the components of the
projection 1 − F 2 on H±. Then the projections

(
Q± 0
0 0

)
∈ B(H⊕H′)

commute modulo compacts with ψ(x) for all x ∈ A/J and so define ungraded Fredholm
modules. Their difference represents a class of ∂[ρ,H, F ] (if ρ : A→ B(H), P ∈ B(H)
is a projection such that [P, ρ(a)] ∈ K for all a ∈ A, then (ρ,H, F = 2P − 1) is an
ungraded Fredholm module over A).

2. ∂ : K1(A,A/J) → K0(A/J): the cycle (ρ,H, F ) is ungraded Fredholm module. Then

(
eiπF 0

0 −1

)
∈ B(H⊕H′)

is unitary on H⊕H′ commuting with ψ. The corresponding Fredholm module represents
a class of ∂[ρ,H, F ].

44



5.3 Schrödinger pairs

Recall that we call an operator X ∈ B(H) contractive if and only if ‖X‖ ≤ 1. For a
selfadjoint contractive operator X we define Xb to be a commutative C*-subalgebra of B(H)
consisting of all ψ(X) for ψ ∈ C0(−1, 1).

Definition 5.6. Let X,Y be contractive operators on H. The pair (X,Y ) is a Schrödinger

pair if and only if

1. Y commutes with Xb modulo K(H).

2. Xb · Y b ⊆ K(H).

We call (X,Y ) a graded Schrödinger pair if the commutator in 1 is graded.

We call (X,Y ) a strong Schrödinger pair if Y commutes with X.

Example 5.7. Let H = L2(R), X multiplies by x 7→ x√
1+x2

, and Y multiplies the Fourier

transform by ξ 7→ ξ√
1+ξ2

(Xf)(x) :=
x√

1 + x2
f(x)

(Y f̂)(ξ) :=
ξ√

1 + ξ2
f̂(ξ)

These are the position and momentum operators in quantum mechanics and (X,Y ) is a
strong Schrödinger pair.

Example 5.8. Let (ρ,H, F ) be an ungraded Fredholm module over J , where J is an ideal in
some C*-algebra A and ρ extends to A. If a is an element of A such that a2 − 1 ∈ J , then
X = ρ(a), Y = F constitute Schrödinger pair.

If the extension of ρ makes (ρ,H, F ) into a relative Fredholm module (i.e. [F, ρ(a)] ∼ 0
for all a ∈ A) then (X,Y ) is a strong Schrödinger pair.

Example 5.9. Let H = L2([−1, 1]). Define operators

(Tψ)(x) = ψ(−x),
(Sψ)(x) = xψ(x).

If f ∈ C0(−1, 1) then f(T ) = 0 and (T, S) is a Schrödinger pair. If f is an odd function on
[−1, 1] such that f(−1) = f(1) = 0, then

[f(S), T ] = −2f(S)T

which is not compact. Thus (S, T ) is not a Schrödinger pair.

Definition 5.10. Let (X,Y ) be a Schrödinger pair. The Schrödinger operator is given
by

V (X,Y ) := εX + (1 −X2)
1
2Y,

where ε = i in the ungraded, and ε = 1 in the graded case.

Proposition 5.11. Let (X,Y ) be a (graded) strong Schrödinger pair. Then

45



1. in the ungraded case the Schrödinger operator

V (X,Y ) = iX + (1 −X2)
1
2Y

is essentially unitary and so Fredholm,

2. in the graded case the Schrödinger operator

V (X,Y ) = X + (1 −X2)
1
2Y

is essentially selfadjoint graded and Fredholm.

Proposition 5.12.

1. In the ungraded case

IndexV (X,Y ) = IndexV (Y,X).

2. In the graded case

IndexV (X,Y ) = − IndexV (Y,X).

Proposition 5.13. If X,Y commute modulo compacts with a representation of C*-algebra
B then

1. in the graded case

[V (X,Y )] = [V (Y,X)] ∈ K0(B),

2. in the ungraded case

[V (X,Y )] = −[V (Y,X)] ∈ K1(B).

Proof.

V (X,Y )2 − 1 ∼ X2 + (1 −X2)Y 2 − 1

= −(1 −X2)(1 − Y 2) ∈ K(H),

because XY + Y X ∼ 0. Next

V (X,Y )V (Y,X) + V (Y,X)V (X,Y ) ∼ 2(Y (1 −X2)
1
2Y +X(1 − Y 2)

1
2X) ≥ 0,

so Fredholm modules associated with V (X,Y ) and V (Y,X) are homotopic, which is a con-
sequence of the following

Proposition 5.14. If (ρ,H, F0) and (ρ,H, F1) are (graded) Fredholm modules such that
ρ(a)(F0F1 + F1F0)ρ(a

∗) are positive modulo compacts for all a ∈ A, then F0 and F1 are
operator homotopic.

Recall the index map on K-homology

Index: Kp(A) → Z, (ρ,H, F ) 7→ inf F.

If F =

(
0 v
u 0

)
, then IndexF = Indexu.
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Lemma 5.15. Let (X,Y ) be a Schrödinger pair on an ungraded Hilbert space H. Put PY :=
1
2(1 + Y ). Then the operator

W1(X,Y ) := eiπXPY − (1 − PY )

is essentially unitary and Fredholm. Furthermore

IndexW1(X,Y ) = IndexV (X,Y ).

Proof. Denote for convinience S := sin(π
2X). From the definition of Schrödinger pair we

know that

• Y commutes with Sb modulo compacts,

• (1 − S2)(1 − Y 2) is compact.

Write

e−i π
2
XW1(X,Y ) = ei

π
2
XPY − e−i π

2
X(1 − PY )

= (cos(
π

2
X) + i sin(

π

2
X))PY − (cos(

π

2
X) − i sin(

π

2
X))(1 − PY )

= ((1 − S2)
1
2 + iS)PY − ((1 − S2)

1
2 − iS)(1 − PY )

= ((1 − S2)
1
2 + iS)(1

2 (1 + Y )) − ((1 − S2)
1
2 − iS)(1

2 (1 − Y ))

= iS + (1 − S2)
1
2Y

= V (S, Y ).

Thus the operator W1(X,Y ) is essentially unitary and homotopic to V (S, Y ) through the
path

t 7→ e−itπ
2
XW1(X,Y ), t ∈ [0, 1],

so [W1(X,Y )] = [V (S, Y )]. But S is homotopic to X via a path Xt := tX + (1 − t)S, and
(Xt, Y ) are a Schrödinger pairs for all t. This gives a homotopy V (Xt, Y ) and [V (X,Y )] =
[V (S, Y )] = W1(X,Y ).

Lemma 5.16. Let (X,Y ) be a graded Schrödinger pair on a graded Hilbert space H. Suppose
also that

1. QX = 1 −X2 is a projection

2. there exists a self adjoint involution Y0 on H which commutes with QX modulo the
compacts.

Then the operator W2(X,Y ) = Y QX+Y0(1−QX) is essentially self-adjoint, graded, Fredholm,
and

IndexW2(X,Y ) = IndexV (X,Y ).

Proof. Let

Xt := cos
(π

2
t
)
X + sin

(π
2
t
)
Y0(1 −QX).
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Then for all t ∈ [0, 1] we have

Xt(Y QX) ∼ 0

(Y QX)Xt ∼ 0

X2
t ∼ 1 −QX

Indeed:

X2
t = cos2

(π
2
t
)
X2 + sin2

(π
2
t
)
Y0(1 −QX)Y0(1 −QX)

+ cos
(π

2
t
)

sin
(π

2
t
)
XY0(1 −QX) + sin

(π
2
t
)

cos
(π

2
t
)
Y0(1 −QX)X

= cos2
(π

2
t
)
X2 + sin2

(π
2
t
)

(1 −QX)2.

The operator QX is a projection onto kerX. The path t 7→ Y QX + Xt gives an operator
homotopy from V (X,Y ) to W2(X,Y ). Indeed:

QXXt = cos
(π

2
t
)
QXX︸ ︷︷ ︸

0

+ sin
(π

2
t
)
QXY0(1 −QX) ∈ K(H).

Recall that V (X,Y ) = X + (1 −X2)
1
2Y . Thus for

t = 0 : Y QX +Xt = Y Qx +X ∼ V (X,Y ),

t = 1 : Y QX + Y0(1 −QX) = W2(X,Y ).

5.4 The index pairing

Proposition 5.17 (odd case). Let A be a unital C*-algebra and suppose given

1. an ungraded unital Fredholm module (ρ,H, F ) over A,

2. a unitary u in a matrix algebra Mk(A) over A.

Let Pk = 1⊗ 1
2(1+F ) : Hk → Hk and U = (1⊗ρ)(u) : Hk → Hk be a unitary operator. Then:

1. the operator W := PkUPk − (1 − Pk) : Hk → Hk is essentially unitary, so Fredholm.

2. The Fredholm index of W = PkUPk − (1 − Pk) depends only on [U ] ∈ K1(A) and
[P ] ∈ K1(A). This index gives a pairing

K1(A) × K1(A) → Z

([u], [F ]) 7→ Index(PkUPk − (1 − Pk)).

Assume that F 2 = 1 so that Pk is a projection. Then Hk = imPk ⊕ im(1 − Pk) and
W = PkUPk ⊕ (−Id) with respect to this decomposition. The second summand has index
zero, and this is precisely the pairing that was defined before.

By definition of Fredholm module Pk and U commute modulo compacts K(Hk) and

W ∗W ∼ PkU
∗UPk + (1 − Pk) ∼ 1.

Thus W ∗W ∼ 1 and similarly WW ∗ ∼ 1. The map ([u], [F ]) 7→ IndexW is additive and
stable under compact perturbations and homotopies.
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Proposition 5.18 (even case). Let (ρ,H, F ) be a graded unital Fredholm module over A and
let p ∈Mk(A) be a projection. Put P = 1 ⊗ ρ(p) : Hk → Hk (projection) and write

F =

(
0 v
u 0

)

relative to the graded decomposition H = H+ ⊕H−. Then

1. the operator P (1 ⊗ u)P : P (Cn ⊗ H+) → P (Cn ⊗ H−) is essentially unitary and so
Fredholm.

2. the pairing
(p, F ) 7→ IndexP (1 ⊗ u)P

depends only on the K-theory class of [p] and K-homology class of (ρ,H, F ).

Example 5.19. Let α : A→ C be a *-homomorphism. Define (ρ,H, F ) by H = C⊕0, ρ = α⊕0,
F = 0. The index pairing with this Fredholm module gives a homomorphism iα : K0(A) → Z

which by definition sends a projection p to the index of the zero operator 0: imα(p) → 0,
hence the index pairing gives the same map as

α∗ : K0(A) → K0(C).

Theorem 5.20. Let J be an ideal in a separable C*-algebra A for which the quotient map
A→ A/J is semi-split. We denote by ∂0, ∂1 the connecting homomorphisms in K-theory and
by ∂0, ∂1 the connecting homomorphisms in K-homology.

If x ∈ K0(A/J) and y ∈ K1(J) then

〈∂0x, y, y〉 = −〈x, ∂1y〉.

If x ∈ K1(A/J) and y ∈ K0(J) then

〈∂1x, y〉 = 〈x, ∂0y〉.

Proof. The six term exact sequences in K-theory and K-homology:

K0(J) // K0(A) // K0(A/J)

∂0

��
K1(A/J)

∂1

OO

K1(A)oo K1(J)oo

K0(A/J) // K0(A) // K0(J)

∂0

��
K1(J)

∂1

OO

K1(A)oo K1(A/J)oo

We shall assume that A/J is unital. The strategy is to construct a Schrödinger operator V
and show using two diefferent deformation arguments that

IndexV = 〈∂0,1x, y〉,
IndexV = ∓〈x, ∂1,0y〉

Case 1.
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Step 1. Suppose we are given a short exact sequence of separable C*-algebras

0 → J → A→ A/J → 0.

Let (ρ,H, F ) be an ungraded Fredholm module for J . Let p ∈ Mk(A/J) be a
projection and let a ∈Mn(A) be a lift of p. Then

X = (1 ⊗ ρ)(2a− 1), Y = 1 ⊗ F

form a Schrödinger pair. If (ρ,H, F ) is a relative Fredholm module for (A,A/J)
then (X,Y ) is a strong Schrödinger pair. The map

(p, F ) 7→ IndexV (X,Y )

defines pairings
K0(A/J) ⊗ K1(J) → Z

K0(A/J) ⊗ K1(A,A/J) → Z

which are compatible with the excision isomorphism K1(A,A/J)
≃−→ K1(J). For

x ∈ K0(A/J), y ∈ K1(J) denote this pairing by x · y.
Step 2. x · y = −〈x, ∂1y〉.

Assume that x = [p] with p ∈ A/J (similar arguments works for matrices) and
y = [(ρ,H, F )].

∂1y =

[(
ψ,H⊕H′,

(
eiπF 0

0 −1

))]
,

where ψ : A/J → B(H⊕H′) is a representation obtained from a completely positive

section s : Ã/J → Ã by composing with ρ and then applying Stinespring’s dilation.

Put

X̂ = ψ(2p − 1) ∈ B(H⊕H′), X̂ =

(
X11 X12

X21 X22

)
.

Then X11 = ρ(2a − 1), a ∈ A is a lift of p ∈ A/J . This is the operator which
appears in the definition of Schrödinger pairing.

If Y = F then X = X11 and Y form a strong Schrödinger pair and x · y =
IndexV (X,Y ). Now

Ŷ =

(
Y 0
0 1

)
, X̂ =

(
X11 X12

X21 X22

)

form a Schrödinger pair (not strong). Now

(X̂)2 = ψ((2p − 1)2) = 1

X12X21 = 1 −X2
11 = 1 −X2 ∈ ρ(J).

Furthermore X = ρ(2a − 1), and 2a − 1 lifts 2p − 1, (2p − 1)2 = 1, so (2a −
1)2 = 1 + j, where j ∈ J . Now X2 = ρ((2a − 1)2) = 1 + ρ(j) and we get the
required compactness conditions from the definition of Fredholm module. Indeed,
1 − Y 2 = 1 − F 2, so

(1 − F 2)ρ(j) = (1 − F 2)(1 −X2) ∈ K(H).
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Essentially the same calculation will show that

V (Ŷ , X̂) ∼
(
V (X,Y ) 0

0 1

)
.

By the proposition

IndexV (Ŷ , X̂) = IndexV (Y,X) = − IndexV (X,Y ) = −x · y.

If P bX
= 1

2(X̂ + 1) = ψ(p) then using the formula for ∂1y

〈x, ∂1y〉 = Index

((
eiπF 0

0 −1

)
P bX

− (1 − P bX
)

)

= Index(eiπFP bX
− (1 − P bX

))

= IndexW1(Ŷ , X̂).

But we have seen that Index(W1(Ŷ , X̂)) = Index(V (Ŷ , X̂)) so

〈x, ∂1y〉 = IndexW1(Ŷ , X̂) = Index(V (Ŷ , X̂)) = Index(V (X,Y )) = −x · y.

Step 3. As before, assume that a projection p ∈ A/J has a lift to a self adjoint a ∈ A, and
that y is represented by (ρ,H, F ). Put X := ρ(2a − 1), Y := F . The boundary
map in K-theory gives

∂0x = [e2πia] ∈Mk(J̃).

The index pairing is

〈∂0x, y〉 = Index((1 ⊗ ρ)e2πiaPY + (1 − PY )),

where PY = 1
2(1 + Y ). Put T := −e−iπXPY + (1 − PY ) = −W1(X,Y ). Then

〈∂0x, y〉 = Index(T ) = Index(W1(X,Y )) = Index(V (X,Y )) = x · y,

so
〈∂0x, y〉 = −〈x, ∂1y〉.

Case 2.

Step 1. In the graded case take a short exact sequence

0 → J → A→ A/J → 0

and a graded Fredholm module (ρ,H, F ) for (A,A/J). Let u ∈ Mn(A/J) be a
unitary matrix and a ∈Mn(A) a lift of u to A. Then

X =

(
0 (1 ⊗ ρ)(a∗)

(1 ⊗ ρ)(a) 0

)
, Y =

(
1 ⊗ F 0

0 −1 ⊗ F

)

on a graded Hilbert space Cn ⊗ H ⊕ Cn ⊗ Hop form a strong Schrödinger pair.
Furthermore

(u, F ) 7→ Index(V (X,Y ))

defines a bilinear pairing K1(A/J) × K0(A,A/J) → Z denoted again by x · y.
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Step 2. For x ∈ K1(A/J), y ∈ K0(A,A/J) we have x · y = 〈x, ∂0y〉. Assume that
y = [(ρ,H, F )] is a graded relative module for K0(A,A/J). Use the descritption
of boundary map ∂0 : K0(J) → K1(A/J), so assume that (ρ,H, F ) is paritally
isometric i.e. Q := 1 − F 2 is a projection with graded components Q±. Then
∂0[y] = [Q+] − [Q−].

Assume that u is a unitary in A/J representing x. Define

X :=

(
0 ρ(a∗)

ρ(a) 0

)
, Y :=

(
F 0
0 −F

)

on H⊕Hop. Then by definition x · y = Index(V (X,Y )) = Index(V (Y,X)). Put

QY := 1 − Y2 =

(
Q 0
0 Q

)
.

The operator X0 =

(
0 1
1 0

)
is odd and commutes modulo compacts with Y 2. By

lemma (??) for W2(Y,X) := XQY +X0(1 −QY )

Index(V (Y,X)) = Index(W2(Y,X)) = 〈x, [Q+]〉 − 〈x, [Q−]〉 = 〈x, ∂0y〉.

Step 3. Assume that A is unital. Let y ∈ K0(A,A/J) be represented by a graded relative
Fredholm module (ρ,H, F ), and x ∈ K1(A/J) represented by a unitary u ∈ A/J .
Then u lifts to a partial isometry a ∈ A. Put

X :=

(
0 ρ(a∗)

ρ(a) 0

)
, Y :=

(
F 0
0 −F

)
.

Then x · y = Index(V (X,Y )), and

QX := 1 −X2 =

(
ρ(1 − a∗a) 0

0 ρ(1 − aa∗)

)

is a projection onto kerX. We have furthermore

V (X,Y ) = X + (1 −X2)Y = (1 −QX)X(1 −QX) +QXY QX ,

Index(V (X,Y )) = Index(QXY QX).

Using the boundary formula for the boundary map in K-theory

∂1x = [1 − a∗a] − [1 − aa∗] ∈ K0(J)

we get

Index(QXY QX) = 〈∂1x, y〉.
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5.5 Product of Fredholm operators

The construction of the index pairing by means of Schrödinger operators is a special case of
the Kasparov product.

Let F1, F2 be graded Fredholm operators, Fi =

(
0 U∗

i

Ui 0

)
, on a graded Hilbert spaces H1,

H2. A graded Fredholm operator F on H1⊗̂H2 (graded Hilbert space product) is aligned

with Fi if F (Fi⊗̂1) + (Fi⊗̂1)F ≥ 0 modulo compacts.

Proposition 5.21. Let Fi be graded Fredholm operator on Hi, i = 1, 2. There exist graded
Fredholm operators on H1⊗̂H2 which are simultaneously aligned with F1 and F2. Any two
such operators have the same index.

Proof. Define F ∈ B(H1) ⊗B(H2) by F := F1⊗̂1 + 1⊗̂F2. Then

F (Fi⊗̂1) + (Fi⊗̂1)F = 2(F 2
i ⊗ 1) ≥ 0,

so F is aligned with both F1, F2. Moreover

Index(F ) = Index(F1) · Index(F2),

so F is a good model for the product of Fi, but we need F 2 − 1 ∼ 0.

Lemma 5.22. Let Fi are graded Fredholm operators on Hi, and Ni a positive operators on
H1⊗̂H2 such that

1. N2
1 +N2

2 = 1,

2. [Ni, Fj⊗̂1] ∼ 0, i, j = 1, 2,

3. Ni(Fi⊗̂1)2 ∼ Ni.

Then

F := N
1
2
1 (F1⊗̂1)N

1
2
1 +N

1
2
2 (1⊗̂f2)N

1
2
2

is an odd Fredholm operator aligned with F1, F2. Moreover F 2 ∼ 1.

Let (ρi,Hi, Fi) be graded Fredholm modules over C*-algebras Ai, i = 1, 2. Define a
representation of A1 ⊗A2 on B(H), H = H1⊗̂H2:

ρ : A1 ⊗A2 → B(H1 ⊗H2), ρ(a1 ⊗ a2) := ρ1(a1)ρ2(a2).

We say that Fredholm module (ρ,H, F ) is aligned with (ρi,Hi, Fi) if

ρ(a)(F (Fi⊗̂1) + (Fi⊗̂1)F )ρ(a∗) ≥ 0 mod K(H)

for all a ∈ A1 ⊗A2, and if ρ(a)F derives K(H1) ⊗B(H2) for all a ∈ A1 ⊗A2, that is

[ρ(a)F,K1 ⊗ T2] ∈ K1(H1) ⊗B(H2), ∀K1 ⊗ T2 ∈ K(H1) ⊗B(H2).

Proposition 5.23. Let (ρi,Hi, Fi) be graded Fredholm modules over separable C*-algebras
A1 and A2. There exist Fredholm modules F which are aligned with F1 and F2. Moreover
the operator homotopy class of such an F is determined uniquely by the operator homotopy
classes of F1 and F2.

The hard part is to prove existence of such Fredholm modules.

Definition 5.24. The module F from the proposition is the product of F1 and F2.
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Chapter 6

Equivariant K-homology of spaces

Assume X is a Hausdorff space on which a discrete group Γ acts by homeomorphisms.

Definition 6.1. The action of Γ is proper if and only if for every x, y ∈ X there exist
neighbourhoods Ux, Uy such that the set

{γ ∈ Γ | γUx ∩ Uy 6= ∅}

is finite.

If Γ is discrete, this definition is equivalent to the following one:

Definition 6.2. The action of Γ is proper if and only if the quotient X/Γ is Hausdorff and
for every x ∈ X there exists (U,H, ρ) such that U is a Γ-invariant neighbourhood of x, H is
a finite subgroup of Γ, and ρ : U → Γ/H is a Γ-equivariant map.

Another definition is:

Definition 6.3. The action X × Γ → X is proper if and only if the map

X × Γ → X ×X, (x, γ) 7→ (x, xγ)

is proper (preimage of a compact set is compact).

Examples 6.4.

1. If p : X → Y is a locally trivial covering space with group Γ, then the Γ-action on X is
proper.

2. Any action by a finite group is proper.

3. If Γ acts simplicially on a simplicial complex X, then the action is proper if and only if
the vertex stabilizers are finite.

Let X be a locally compact space equipped with a proper action by a discrete group Γ.

Definition 6.5. A generalized elliptic Γ-equivariant operator on X is a triple (U, π, F )
such that

• U is a unitary representation of Γ on some Hilbert space H,
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• π is a *-representation of C0(X) by bounded operators on H which is covariant, that is

π(f ◦ γ−1) = Uγπ(f)Uγ

for all f ∈ C0(X),

• F is bounded self adjoint operator which is Γ-equivariant, that is UγF = FUγ, and

π(f)(F 2 − 1), [π(f), F ]

are compact for all f ∈ C0(X).

Definition 6.6. Two cycles α0 = (U0, π0, F0), α1 = (U1, π1, F1) are operator homotopic,
α0 ∼h α1, if and only if U0 = U1, π0 = π1 and there exists a path t 7→ Ft, t ∈ [0, 1] such that
αt = (U0, π0, Ft) is a Γ-elliptic operator.

We say that α0, α1 are equivalent, α0 ∼ α1, if and only if there exist degenerate operators
β0, β1 such that α0 ⊕ β0 ∼h α1 ⊕ β1, up to unitary equivalence.

Definition 6.7. The equivariant K-homology groups of X are defined by

• KΓ
0 (X) = equivalence classes of Z/2Z-graded Γ-elliptic operators, that is

Uγ =

(
U+

γ 0

0 U−
γ

)
, π =

(
π+ 0
0 π−

)
, F =

(
0 p∗

p 0

)
,

• KΓ
1 (X) = equivalence classes of Γ-elliptic operators.

Remark 6.8. Kasparov uses a weaker form of homotopy. He allows the representations to
vary as well, but proves that the resulting theory is isomorphic to the one defined here.

This construction is functorial with respect to Γ-equivariant proper maps between Γ-
spaces. If h : X → Y is such a map, then it induces h∗ : C0(Y ) → C0(X), h∗(f) = f ◦ h.
The induced map h∗ : KΓ

0 (X) → KΓ
0 (Y ) sends a cycle (U, π, F ) over C0(X) to the cycle

(U, π ◦ h∗, F ), so the theory is covariant.

Proposition 6.9 (Kasparov). If f, g : X → Y are proper Γ-homotopic maps, then

f∗ = g∗ : KΓ
j (X) → KΓ

j (Y ).

Example 6.10. Let X = R, Γ = Z act on X by translations (x,m) 7→ x+m. Let H = L2(R),
π a representation of C0(R) on L2(R) by pointwise multiplication. The Fourier transform
sends the unbounded operator D = −i d

dt
to the multiplication by the dual variable λ on

L1(R̂). Let G be the operator of multiplication by sign(λ) and let F be the operator obtained
by the inverse Fourier transform (Hilbert transform)

(Hf)(x) =
1

π

∫ ∞

−∞

f(t)

x− t
dt,

where the integral is considered in the sense of principal value. Then F 2 = 1, FUn = UnF
for all n ∈ Z, and [π(f), F ] is compact. This data gives a generator for KΓ

1 (X).
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Example 6.11. Let Γ = {e}, X = S1. Denote en := e2πinθ. Then

F (en) =





en n > 0,

−en n < 0,

0 n = 0,

and 1 − F 2 is a rank one projection onto the subspace of constant functions in L2(S1). Let

A = {f ∈ C(S1) | [π(f), F ] is compact}.

Then A = C(S1). Indeed, [π(e1), F ] is an operator of rank 2, so A contains the *-subalgebra
generated by e1, which is the algebra of trigonometric polynomials, and these are dense in
C(S1).

The operator F is the sign of the unbounded operator D = −i d
dθ

, D(en) = 2πnen. That
is

F = signD =
D

|D| on C⊥.

This data gives a generator for K1(S
1). There is a descent map

KZ
j (R) → Kj(S

1).

In degree one it sends the generator of KZ
1 (R) to the one just described.

Proposition 6.12. If Γ acts freely and properly then

KΓ
j (X) ≃ Kj(X/Γ)(= KK(C0(X/Γ)),C)).

Proof. (sketch) Use Green-Julg theorem to identify

KΓ
j (X) ≃ Kj(C0(X) ⋊ Γ)

which is an example of descent map. Then use freenes to prove the Morita equivalence

C0(X) ⋊ Γ ∼M C0(X/Γ).

Example 6.13. If X = pt, Γ is finite, then KΓ
0 (pt) is the additive group of the representation

ring R(Γ), KΓ
1 (pt).

[U0] − [U1] ∈ R(Γ) 7→ (U0 ⊕ U1,C, 0),

(U,C, F =

(
0 p∗

p 0

)
) 7→ IndexΓ(F ) = ker(p) − ker(p∗)

regarded as an element of R(Γ).

If Y is a topological Hausdorff space with proper Γ-action, then we define

KΓ
j := lim

−→X⊂Y
KΓ

j (X),

where the limit is taken over an inductive system of Γ-compact subsets of Y (i.e. with
compact quotient X/Γ). This is Γ-equivariant K-homology with compact supports.
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Chapter 7

KK-theory

7.1 Kasparov’s bifunctor

Definition 7.1. Let A,B be C*-algebras. An A-B-bimodule is a pair (E , π) where E is a
Z/2Z-graded Hilbert bimodule acted upon through *-homomorphism π : A → L(E) such that
for all a ∈ A, π(a) is of degree 0.

Denote by E(A,B) the set of triples (E , π, F ), where (E , π) is an (A,B)-bimodule, F ∈
L(E) is homogenous of degree 1, and for all a ∈ A

π(a)(F 2 − 1) ∈ K(E), [π(a), F ] ∈ K(E).

The triple (E , π, F ) is degenerate if for all a ∈ A π(a)(F 2 − 1) = 0, [π(a), F ] = 0. Denote
by D(A,B) the set of degenerate triples.

The addition on E(A,B) is defined by

(E , π, F ) + (E ′, π′, F ′) = (E ⊕ E ′, π ⊕ π′, F ⊕ F ′).

A homotopy in E(A,B) is an element of E(A,B[0, 1]). In some sense it is a map [0, 1] →
E(A,B). A homotopy in which the bimodule (E , π) is fixed and the operator F varies in a
norm continuous way is called an operator homotopy. It is a stronger notion then.

Let (E , π, F ) ∈ E(A,B). Denote by −E the same Hilbert module, but with opposite
grading (−E)(i) = E1−i. Then (−E , π,−F ) is the opposite element to (E , π, F ).

Definition 7.2. The group KK(A,B) is defined to be the set of homotopy classes in E(A,B)
modulo degenerate elements.

The construction is functorial in both variables, that is

• If f : A1 → A2, (E , π, F ) ∈ E(A2, B), then (E , π ◦ f, F ) ∈ E(A1, B) and this induces

f∗ : KK(A2, B) → KK(A1, B).

• If g : B1 → B2, (E , π, F ) ∈ E(A,B1), then define π ⊗ 1: A→ L(E ⊗g B2),

(π ⊗ 1)(a)(ξ ⊗ b) = π(a)ξ ⊗ b,

then (E ⊗g B2, π ⊗ 1, F ⊗ 1) ∈ E(A,B2). This induces

g∗ : KK(A,B1) → KK(A,B2).
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7.2 Equivariant KK-theory

A Γ-C*-algebra is a C*-algebra equipped with an action of Γ by *-automorphisms.

Definition 7.3. Let A, B be Γ-C*-algebras. A cycle over the pair (A,B) is a triple (U, π, F ),
where

• U is a representation of Γ on some Hilbert module E over B, which is unitary in the
sense that

〈Uγξ, Uγη〉B = γ〈ξ, η〉B
for all γ ∈ Γ, ξ, η ∈ E,

• π : A→ LB(E) is a covariant *-homomorphism

Uγπ(a)Uγ−1 = π(γ · a),

for all γ ∈ Γ, a ∈ A,

• F is a selfadjoint operator in LB(E).

We also require that the operators

π(a)(F 2 − 1), [π(a), F ], [Uγ , F ]

are compact in the sense of Hilbert modules for all a ∈ A, γ ∈ F . This is the odd cycle. For
an even cycle we assume that E is Z/2Z graded, with U , π even, F odd.

A cycle is degenerate if and only if the operators π(a)(F 2 − 1), [π(a), F ], and [Uγ , F ]
are zero for all a ∈ A, γ ∈ Γ.

By Kasparov’s stabilisation theorem (??) E can be taken to be HB = l2(N) ⊗B.

Definition 7.4. Two cycles α0 = (U0, π0, F0), α1 = (U1, π1, F1) are homotopic, α0 ∼h α1, if
and only if U0 = U1, π0 = π1 and there exists a norm continuous path Ft, t ∈ [0, 1] connecting
F0 to F1 such that for all t ∈ [0, 1], αt = (U0, π0, Ft) is a cycle.

Two cycles are equivalent, α0 ∼ α1 if and only if there exist degenerate cycles β0, β1 such
that (up to unitary equivalence) α0 ⊕ β0 ∼h α1 ⊕ β1.

We write KKΓ
j (A,B) for the set of equivalence classes of cycles over (A,B).

Again Kasparov originally used a weaker form of homotopy, where one was obliged to
provide a path joining π0 and π1.

When Γ is trivial, we get non-equivariant KK-theory.
KK(A,B) is covariant in B and contravariant in A. If α = (U, π, F ) ∈ KKΓ

j (A,B) and

• if θ : C → A then θ∗α = (U, π ◦ θ, F ) ∈ KKΓ
j (C,B)

• if θ : B → C then for a Hilbert C-module EBC we have θ∗α = (U ⊗ 1, π ⊗ 1, F ⊗ 1) ∈
KKΓ

j (A,C).

Example 7.5. If Γ is a discrete group, X is a locally compact proper Γ-space, then

KΓ
i (X) = KKΓ

i (C0(X),C).

This follows from the fact that when Γ acts properly one may assume in the definition of
KK-cycles that [Uγ , F ] = 0 for all γ ∈ Γ (Valette).
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Example 7.6. When Γ is trivial then

Ki(A) = KKi(A,C),

Kj(B) = KKj(C, B).

First equality follows from definition.
For the second one assume B is unital. Then for

• j = 0: let x = [e0] − [e1], and e0, e1 be idempotents in Mn(B). Then e0 ⊕ 0, e1 ⊕ 0 are
finite rank operators on HB = l2(N) ⊗B. For λ ∈ C define

π(λ) =

(
λ(e1 ⊕ 0) 0

0 λ(e1 ⊕ 1)

)
: HB ⊕HB → HB ⊕HB.

Take F = 0. Since π is a representation by compact operators, π(λ)(F 2 − 1) = −π(λ)
is compact. This defines a map

K0(B) → KK0(C, B)

which is an isomorphism (see Lafforgues’s thesis).

• j = 1: denote by G the group of all invertible operators V on HB such that V − 1 is
compact. Then K1(B) ≃ π0(G), where K1(B) → π0(G) is given by

s 7→
(
s 0
0 1

)
, s ∈ GLn(B).

This uses the definition Kn(A) = πn−1(GL∞(A)).

The map
KK1(C, B) → K1(B)

is defined as follows. Take F = F ∗ on E , such that F 2 − 1 is compact. By the
stabilization theorem one may assume that E = HB. Then e−iπF ∈ G which gives a
map

KK1(C, B) → π0(G) ≃ K1(B).

7.3 Kasparov product

Theorem 7.7 (Kasparov). Let A,B,C be separable Γ-C*-algebras. Then there is a biadditive
pairing for i, j ∈ Z2

KKΓ
i (A,B) × KKΓ

j (B,C) → KKΓ
i+j(A,C)

(x, y) 7→ x⊗B y.

If D is a separable Γ-C*-algebra, then there is the extension of scalars homomorphism

τD : KKΓ
i (A,B) → KKΓ

i (A⊗D,B ⊗D)

(U, π, F ) 7→ (U ⊗ 1, π ⊗ 1, F ⊗ 1).

and the descent homomorphism

jΓ : KKΓ
i (A,B) → KKi(A⋊r Γ, B ⋊r Γ).

These are functorial in all variables:
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• If α : A→ B is Γ-equivariant *-homomorphism and y ∈ KKΓ
j (B,C) then

[α] ⊗B y = α∗(y) ∈ KKΓ
j (A,C)

• If β : B → C is a Γ-equivariant *-homomorphism and x ∈ KKΓ
j (A,B), then

x⊗B [β] = β∗(x) ∈ KKΓ
j (A,C).

• If x = (U, π, F ), y = (V, ρ,G) are cycles over (A,B), (B,C) respectively. Let EB be
the underlying Hilbert B-module for x, and EC the underlying Hilbert C-module for y.
Then E = EB ⊗B EC (B acts via ρ on C) is a Hilbert C-module and

x⊗B y = (U ⊗ V, π ⊗ 1, F ⊗ 1 + 1 ⊗G).

• For x ∈ KKΓ
i (A,B), y ∈ KKΓ

0 (C,C)

τA(y) ⊗A x = x⊗B τB(y),

where
τA : KKΓ

0 (C,C) → KKΓ
0 (A,A) τB : KKΓ

0 (C,C) → KKΓ
0 (B,B)

are extensions of scalars.

• If (U, π, F ) ∈ KKΓ
i (A,B) with corresponding Hilbert B-module EB. Take Ẽ = EB ⊗

C[Γ] = C(Γ, EB), which is a Hilbert B⋊r Γ-module with B⋊r Γ-scalar product given by

〈ξ, η〉(γ) =
∑

s∈Γ

s〈ξ(s), η(s−1γ)〉B .

For a ∈ C(Γ, A), ξ ∈ Ẽ, γ ∈ Γ

(π̃(a)ξ)(γ) :=
∑

s∈Γ

π(a(s))Us(ξ(s
−1γ))

(F̃ ξ)(γ) := (Fξ)(γ).

We set
jΓ(U, π, F ) = (π̃, F̃ ).
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