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Chapter 1

KK-theory

1.1 C#*-algebras

Let G be a locally compact, Hausdorff, second countable (the topology of G has a countable
base) group. Examples are:

e Lie groups with mo(G) finite - SL(n,R),

e p-adic groups - SL(n,Q,),

adelic groups - SL(n, A),
e discrete groups - SL(n,Z).

For a group G we have the reduced C*-algebra of G, denoted by C*G. The problem is to
compute its K-theory K;(C;G), j =0, 1.

Conjecture 1 (P. Baum - A. Connes). For all locally compact, Hausdorff, second countable
groups G
p: K§(EG) — K;(C;6)

s an isomorphism for 7 =0, 1.
Recall some definitions:
Definition 1.1. A Banach algebra is an algebra A over C with a given norm || - ||
| A= {teR|t>0}
such that A is complete normed algebra, i.e.
o |[Aa|| = |All|lall, A € C, a € A,
o lla+0oll < llall +[|bl], a,b € A,
o [lab]l <[lal[|[bll, a,b € A,
e |la|]| =0 if and only if a = 0,
and every Cauchy sequence is convergent in A (with respect to the metric ||a — bl|).

Definition 1.2. A C*-algebra is a Banach algebra (A, || - ||) with a map x: A — A, a — a*
satisfying



o (a*)* =

(
(a+b)* =a* +b*,
o (ab)* =b*a*,

e (Ma)* = Xa*, a,be A, )\ €C,

o [laa*]| = [la]? = [la*|*.

A *-morphism is an algebra homomorphism ¢: A — B such that ¢(a*) = (p(a))* for all
ac A

Lemma 1.3. If p: A — B is a *~homomorphism then ||p(a)|| < ||a|| for all a € A.

Ezample 1.4. Let X be a locally compact Hausdorff topological space, and X+ = X U {peo}
its one-point compactification. Define

Co(X) := {a: XT — C| « is continuous, a(pes) = 0},

ladl = sup |a(p)l,  a”(p) = alp).

with operations
(a+B)(p) = alp) + A(p),
(aB)(p) = a(p)B(p),
(Aa)(p) = Aa(p), A € C.

If X is compact, then
Co(X) :=C(X) ={a: X — C| « is continuous},

Ezample 1.5. Let H be a separable Hilbert space (admits a countable or finite orthonormal
basis). Define
LH):={T:H — H|T bounded},

1Tl = sup  |[Tull, ull = v/(u, u),

weH,||lu||=1
(Tu, v) = (u, T*v) for all u,v € H.
with operations
(T + S)u =Tu+ Su,
(T'S)u = T(Su),
(AT)u = A(Tu), A € C.

Ezample 1.6. If H is a Hilbert space, then define

K(H) ={T € L(H) | T is compact operator}
={T € L(H) | dimc T(H) < oo}

with the closure in operator norm. Then K(H) is a sub-C*-algebra of £(H) and an ideal in
L(H).



Ezample 1.7. Let G be a locally compact Hausdorff second countable topological group. Fix
a left-invariant Haar measure dg for G, that is for all continuous f: G — C with compact

support
/ f(vg)dg = / f(g)dg
G G
for all v € G.

Let L2G be the following Hilbert space

L*G ={u: G - C| /G|u(g)\2dg < oo}

(u, v) = /Gu(gv(g)dg, u,v € L*G.
Let £(L?G) be the C*-algebra of all bounded operators T: L2G — L?G. Let
C.G ={f: G— C| f is continuous, and has compact support}.
Then C.G is an algebra
(Af)g=Afg), AeC,geC
(f+h)g=fg+hg
*hgo—/f h(g~'go)dg, go€G.

There is an injection of algebras
0 — C.G — L(L*G)
given by f i+ Ty, Tf(u) = f xu, u € LG,
f*ugo—/f u(g~'g0)dg, go € G.

Define the reduced C*-algebra C}G of G as the closure of C.G C L(L?G) in the operator
norm. C*G is a sub-C*-algebra of L(L%G).
Definition 1.8. A subalgebra A of £(H) is a C*-algebra of operators if and only if

1. A is closed with respect to the operator norm.

2. If T € A, then the adjoint operator T* € A.

Theorem 1.9 (I. Gelfand, V. Naimark). Any C*-algebra is isomorphic, as a C*-algebra, to
a C*-algebra of operators.

Theorem 1.10. Let A be a commutative C*-algebra. Then A is (canonically) isomorphic to
Co(X) where X is the space of mazimal ideals of A.

Thus a non-commutative C*-algebra can be viewed as a "noncommutative locally compact
Hausdorff topological space”.
We have an equivalence of the following categories

e Commutative C*-algebras with *-homomorphisms,

e Locally compact Hausdorff topological spaces with morphisms from X to Y being a
continuous maps f: XT — YT with f(pso) = Goo-



1.2 K-theory

Let A be a C*-algebra with unit 14,
Ko(A) = Kglg (A) = Grothendieck group of finitely generated
(left) projective A-modules

In the definition of Ky(A) we can forget about || - || and *. In the definition of K;(A) we
cannot forget about that.
Take a topological groups GL(n, A) and embeddings GL(n, A) — GL(n + 1, A)

aily ... Qip 0
a1 ... Qip
.
i a apl +-- Qpp O
Lot T 0 ... 0 14
Then GL(A) = lim GL(n, A) with the direct limit topology. Define the K-theory groups

n—oo

K;(A) :=7mj—1(GL(A4)), j=1,2,3,....
Bott periodicity states that Q2 GL(A) ~ GL(A), so K;(A) ~ Kj;2(A) for j = 0,1,2,....
Thus in fact we have two groups Ko(A4) and K;(A).
If A is not unital, then we can adjoin a unit,
0-A—A—-C—0
and define

Ko(A) := ker(Ko(A) — Ko(C)),

Ki(4) :=K;(A).

If op: A — B is a *-homomorphism, then there is an induced homomorphism of abelian groups
K5(4) — K;(B). )
Ezample 1.11. C is a C*-algebra, ||[A|| = |\, \* = A
Theorem 1.12 (Bott).

7 j even

K;(C) = .
0 J odd

Theorem 1.13 (Bott).

0

7 (GL(n,C) = ¢ 7

Z j odd

forj=0,1,...,2n—1.
For a locally compact Hausdorff topological space one defines a topological K-theory with
compact supports (Atiyah-Hirzebruch)
KI(X) = K;(Co(X))-

If X is compact Hausdorff then KO(X ) is the Grothendieck group of complex vector bundles
on X.
There is a chern character

ch: KI(X) - PHI(X;Q), j=0,1.
l



Theorem 1.14. For any locally compact Hausdorff topological space X

ch: K/(X) — @Hg'“l(x; Q)
l

s a rational isomorphism, i.e.

ch: K/ (X) ®z Q > HHI(X; Q)
l

s an isomorphism for j =0, 1.

We can use Cech cohomology, Alexander-Spanier cohomology or representable cohomol-
ogy (all with compact supports).

1.3 Representations

Definition 1.15. A representation of C*-algebra A is a *-homomorphism
p: A— L(H),

where H is a Hilbert space.

The myth: for a reduced C*-algebra C*G of G there exists a locally compact Hausdorff
topological space ér. The space ér has one point for each distinct (i.e. non-equivalent)
irreducible unitary representation of G which is weakly contained in the (left) regular repre-
sentation of G. (?r is known as the support of the Plancherel measure or the reduced unitary
dual of G. The K-theory K. (C!@G) is the topological K-theory (with compact supports of
G).

Ezample 1.16. For G = SL(2,R) we have G,

1.4 K-homology

Let A be a separable C*-algebra (A has o countable dense subset). We will define generalized
elliptic operators over A in the odd and even case.

Definition 1.17 (odd case). A generalized odd elliptic operator over A is a triple
(H,4,T) such that

1. H is a separable Hilbert space,
2. ¢¥: A — L(H) is a *~homomorphisms,

3. TeL(H)



and

T=T% (T —-Tya)eKH), pa)(l-T?%) eK(H)

for all a € A.
We will denote the set of such triples by £1(A). If ¢: A — B is a *-homomorphism then
there is an induced map

0" E1(B) = EN(A), @' (M, T) = (M, op,T).
Example 1.18. St := {(t1,t2) ER |3 + 13 =1}, A= C(S!), ¥: C(S') — L(L?(S1))
Y(a)(u) = a(u), aeC(Sh), ue L*(Sh),
(au)(N) = a(Mu(N), e St
The Dirac operator D of S! is —i%. If we take a basis {€"},,cz of L?(S'), then
D(eme) _ <_2886> (einO) _ neinH.
1
Set T'=D(I + DD) 2. Then

T(ema) — n ein07

V14 n?
and (L2(S1),+,T) € EY(C(SY)).
We will define odd K-homology of A by
K'(4) :=€'(4)/ ~ (= KK(4,0)),
where the relation ~ is homotopy, which is defined below.

Definition 1.19. Let ¢ = (H,4,T), n = (H',4',T") be elements of £'(A). We say that ¢ is
isomorphic to 7, £ ~ n if there exists a unitary operator U: H — H' with commutativity
in the diagrams

H—L=n H—=n
Ti lT/ w(a)l J{W(a)
H o H H I H

for all a € A.

Definition 1.20. We say that ¢ = (H,4,T),n = (H',¢',T") € £(A) are strictly homo-
topic if there exists a continuous function [0, 1] — L(H), ¢ — T} such that

1. Ty =T,
2. for all t € [0,1], (H,v,T}) € EL(A),
3. (H,,T1) ~ (K, ¢, T").

Definition 1.21. We say that a generalized elliptic operator (H,,T) € £'(A) is degener-
ate if and only if

V()T — T(a) =0, (a)(I—-T%* =0, forallac A.



Definition 1.22. We say that £ = (H,,T),n = (H',¢/,T") € £'(A) are homotopic, ¢ ~ 7,
if and only if there exists degenerate generalized elliptic operators &, 17 with £ @ & strictly
homotopic to n ® 7.

Definition 1.23. Odd K-homology of a C*-algebra A is defined as the group of homotopy
classes of generalized odd elliptic operators,

K'(A) :=&YA)/ ~.
It is an abelian group with respect to
(H,,T)+ (H ¢\ T =HeH oy, TeT)

with inverse defined by
_(Hv ¢7 T) = (Ha 17/)7 _T)

If o: A — B is a *~homomorphism, then there is an induced map
o*: K(B) = K'(A), ¢*"(H,¢,T) = (H, b0, T).
Now we will define even elliptic operators and K°(A).

Definition 1.24 (even case). A generalized even elliptic operator over A is a triple
(H,,T) such that

1. H is a separable Hilbert space,
2. ¢¥: A — L(H) is a *~homomorphisms,
3. T e L(H)
and
b(a)T — T(a) € K(H), la)(1 - TT*) € K(H), (a)(1 - T*T) € K(H)

for all a € A.
We will denote the set of such triples by £°(A).

Definition 1.25. Even K-homology of a C*-algebra A is defined as the group of homotopy
classes of generalized even elliptic operators,

K%(A) :=£%A)/ ~.
It is an abelian group with respect to
(H, 0, T)+ (H ¢\ T =HeH ey, TeT)

with inverse defined by
_(H7 ¢7 T) = (Ha 17/)7 _T)

If o: A — B is a *~homomorphism, then there is an induced map

¢*: KO(B) = K°(A), ¢*(H,¢,T) = (H,p0p,T).



1.5 Equivariant K-homology

Let G be a locally compact Hausdorff second countable group, and H a separable Hilbert
space. Denote the set of unitary operators on H by

UH) :={U € L(H) | UU* = U*U = I}

Definition 1.26. A unitary representation of G is a group homomorphism 7: G — U(H)
such that for each v € H the map G — H, g — m(g)v is a continuous map from G to H.

Definition 1.27. A G-C*-algebra is a C*-algebra A with a given continuous action
GxA— A
by automorphisms.
Ezample 1.28. Let X be a locally compact G-space. Then G acts on Cp(X) by
(ga)(z) = a(g tz), g€ G, a € Cy(X), z € X.

This makes Cy(X) a G-C*-algebra.
Let A be a (separable) G-C*-algebra.

Definition 1.29. A covariant representation of A is a triple (H, v, ) such that
e H is a separable Hilbert space,
e : A— L(H) is a *~homomorphism,
e m: G — U(H) is a unitary representation of G,

e and
¥(ga) = m(g)y(a)m(g™)
for all g € G, a € A.

Definition 1.30. Equivariant odd K-homology K} (A) of a G-C*-algebra A is the group
of homotopy classes of quadriples (H,, T, w), where (H,1, ) is a covariant representation
of A, and T' € L(H) is such that

T =T"n(g)T —Tr(g) € K(H), @(a)T —T(a) € K(H), (a)(l-T?) € K(H)

forall g € G, a € A.
K&(A) = {(H, 4,7, T)}/ ~

Ezample 1.31. Let G = Z, X =R, A = Cy(R). Consider the action by translations
ZxR—R, (nt)—n+t.
Let H = L%*(R). Define ¢: A — L(H) by
Y(a)u = au, ou(t) =at)u(t), oc Cy(R), uc L*(R), t € R.
The representation 7: Z — U(L*(R)) is defined by

(m(n)u)(t) := u(t —n).

10



As an operator on L?(R) we take —i%. It is not a bounded operator on L?(R), but we

can“normalize” it to obtain a bounded operator T'. Since —i% is self-adjoint ther is functional
x

. . o i
calculus, and T can be taken to be the function T applied to —i 4,

x d
T = <> iy,
V1+ 22 dx
Equivalently, T' can be constructed using Fourier transform. Let M, be the operator of
“multiplication by x”

M f)(z) =z f(x).
Fourier transform converts —i% to M; i.e. there is a commutativity in the diagram

L2(R) —5> L2(R)
—id My

[2(R) —7 [*(R)

where F denotes the Fourier transform. Let M__= _ be the operator of “multiplication by

1422
L7 Then
V1+az?

(M) @) = 2y ),

and M% is a bounded operator
1+ax

M_=_: L*(R) — L*(R).
Vita?
Now, T is the unique bounded operator T': L?(R) — L?(R) such that there is commutativity

in the diagram
f

L?(R) — L*(R)
T M vV 1?—12

L*(R) —"> L*(R)

Then
(L*(R), ¥, m,T) € E4(R).

Definition 1.32. Equivariant even K-homology K% (A) of a G-C*-algebra A is the group
of homotopy classes of quadriples (H,, T, w), where (H,1, ) is a covariant representation
of A, and T' € L(H) is such that

m(g)T-Tn(g) € K(H), ¢(a)T-Ty(a) € K(H), ¢(a)A-T"T) e K(H), (a)(1-TT") e K(H)
forall g € G, a € A.
K&(A) = {(H, ¢, m, T)}/ ~
If A, B are G-C*-algebras, and ¢: A — B is a G-equivariant *-homomorphism, then
©*: EL(B) — EL(A) for j = 0,1 is given by

o (H,p, 7, T) — (H,ipo o, m,T).
Addition in K (A) is direct sum
(H, ¢, 7, T) + (H ¢, 7, T =HoH vy o, meor,ToT),

and the inverse is

_(Hu ¢7 , T) - (Ha ¢7 T, _T)

11



1.6 Hilbert modules

Let A be a C*-algebra. Recall that an element a € A is positive (notation: a > 0) if and only
if there exists b € A such that b*b = a.

Definition 1.33. A pre-Hilbert A-module is a right A-module H with a given A-valuead
inner product (—, —) such that

(u, v1 +v2) = (u, v1) + (u, ve)
(u, va) = (u, v)a
(u, v) = (v, u)*
(u,uy >0 Yue A
(u,u) =0=u=0

for u,v1,v1,v € H, a € A.

Definition 1.34. A Hilbert A-module is a pre-Hilbert A-module H which is complete in
the norm

1
[[ull = [[{u, w2

Ezample 1.35. A Hilbert C-module is a Hilbert space (viewed as a right C-module).
If ‘H is a Hilbert A-module, and A has unit 14, then H is a C-vector space with

ul =u(Aly), XeC.

Moreover, even if A does not have a unit, then by using approximate identity in A, it is a
C-vector space.

Example 1.36. Let A be C*-algebra. We define a Hilbert A-module structure on H = A™ by
(aty...,an) 4+ (b1,...,by) = (a1 + b1, ..., an + by),

(a1,...,an)a = (a1a,...,ana),
((a1,...,an), (b1,...,by)) = ajby + azba + ...a)by.
Ezxample 1.37. Let

oo
H = {(a1,az2,...) | Z aja; is norm-convergent in A}
j=1
with the operations

(al,ag, .. ) + (bl,bz, .. ) = (a1 +b1,a2 + bQ, .. .),

(a1,a2,...)a = (a1a,aza,...),
((a1,az,...), (b1,ba,...)) = ajb;.
j=1
Then H is a Hilbert A-module.

12



Ezample 1.38. Let G be a locally compact Hausdorff second countable topological group. Fix
a left-invariant Haar measure dg for G. Let A be a G-C*-algebra. Denote

LX(G A) = {f:G—A| /Gg_lf(g)*f(g)dg is norm-convergent in A}.

Then L?(G, A) is a Hilbert A-module with operations

(f+h)g= f(g) +N(g),
(fa)(g) = f(g)lgal,
1

) =
(f, by = /G 6 1(9)"h(g)dg.

Definition 1.39. An A-module map T': H — H is adjointable if there exists an A-module
map 1T™: H — 'H with
(Tu, v) = (u, Tv)

for all u,v € 'H.
If T exists, then it is unique, and supyj, =1 [|[T'ul| < co. Set
L(H):={T: A— A|||T is adjointable}.
Then L£(H) is a C*-algebra with operations

(T+ S)u=Tu+ Su
(ST)(u) = S(Tu)
(TANu = (Tu)A
1T} = sup [ Tull

lJul|=1

foru e H, A € C.

1.7 Reduced crossed product
Let A be a G-C*-algebra. Denote
C.(G,A)={f: G— A f is continuous and has compact support}

Then C.(G, A) is an algebra with operations

(f +h)(g) = f(g) + h(g)
(fN)(9) = fg9)A

(f * h)(go) = /G F(9)lgh(g~ g0))dg

for g,g90 € G, A € C. The operation * is the twisted convolution. There is an injection of
algebras C.(G, A) — L(L?*(G, A)).

f=Tp Te(u) = f*u

(f * u)(g0) = /G F(9)(gulg " g0))dy.

13



Definition 1.40. The reduced crossed product C*-algebra C,(G, A) is the completion
of Ce(G, A) in L(L*(G, A)) with respect to the norm || f| = ||TY|.

Ezample 1.41. Let G be a finite group and A a G-C*-algebra. Assume that each g € G has
mass 1. Then

CHG,A) ={d_ a1 | ay € 4}
yel’

with the following operations

Z%[’Y] + vahl :Z(av"‘bw)m

vyerl’ vyel’ ~yel’

(a7 [V]) (bs[B]) = aa(abs)[af]

*

dahl] =) (v ey

yel’ yel’
> al] | A=) (@]
~veT veG

forye G, A € C.
Let X be a locally compact G-space. Then Cy(X) is a G-C*-algebra with

(gf)(x) = f(g7tz), ,feCy(X), geq, zcX.

We will denote C (G, Co(X)) by Cr(G, X). We ask about the K-theory of this C*-algebra.
If G is compact, then K;(C(G, X)) is the Atiyah-Segal group K (X), j = 0,1. Hence for G
non-compact K;(C;(G, X)) is the natural extension of the Atiyah-Segal theory to the case
when G is non-compact.

We say that the G-space is G-compact if and only if the quotient space X/G is compact.
If X is a proper G-compact G-space, then an equivariant C-vector bundle £ on X determines
an element [E] € Ko(C} (G, X)).

Theorem 1.42 (W. Liick, B. Oliver). If T is a (countable) discrete group and X is a proper
I'-compact T'-space, then Ko(Cx(I', X)) is the Grothendieck group of I'-equivariant C-vector
bundles on X.

1.8 Topological K-theory of I

Consider pairs (M, E) such that M is a C° manifold without boundary, with a given smooth
proper co-compact action of I' and a given I'-equivariant Spin®-structure, and F is a I'-
equivariant vector bundle on M. We introduce an equivalence relation on such pairs, which
is generated by three elementary steps

e Bordism
e Direct sum - disjoint union

e Vector bundle modification

14



Then we define topological K-theory of I' as
Ko”(I) @ Ky”(T) = {(M, E)}/ ~.
Addition will be disjoint sum
(M,E)+(M',E'Y=(MUM',EUE").
The main result of this section is:
Theorem 1.43 (P. Baum, N. Higson, T. Schick). The map
7: Ki(I') — Kj (ET)

s an isomorphism for j =0, 1.

We will describe the equivalence relation ~ in details. We say that (M, F) is isomorphic
to (M', E') if and only if there exist a I'-equivariant diffeomorphism 1 : M — M’ preserving
the I'-equivariant Spin®-structures on M, M’ with ¥*E’ ~ E. The equivalence relation is

generated by three elementary steps:

e Bordism: we say that (M, Ey) is bordant to (M, E1) if and only if there exists (W, E)
such that

1. W is a C*° manifold with boundary, with a given smooth proper co-compact action
of I

2. W has a given I'-equivariant Spin®-structure
3. E is a I'-equivariant vector bundle on W

4. (OW, Elow) = (Mo, Eo) U (=M, En).
e Direct sum - disjoint union: if F/, £’ are I'-equivariant vector bundles on M, then

(M,E)U (M,E') ~ (M,E @& E').

e Vector bundle modification: let F' be a I'-equivariant Spin® vector bundle on M.
Assume that for every fiber Fj, we have dimg(F},) =0 mod 2. Take a one-dimensional
I'-equivariant trivial bundle 1 = M xR, v(p,t) = (yp,t). Let S(F&1) be the unit sphere
bundle of F & 1. F @& 1 is a I'-equivariant Spin® vector bundle with odd dimensional
fibers. Let 3 be the spinor bundle for F' ¢ 1

m: Cl(F, ®R) @ £, — X,
Decompose 7% = B4 & [_. Then

(M,E) ~ (S(F®1),5y @ 7°E).

15



1.9 KK-theory

Let A be a C*-algebra, H a Hilbert module, u,v € L(H). Denote

Ouw € LIH),  Oup(§) =u(v, §), 0, = byu.

The 6, are the rank one operators on H. A finite rank operator on H is any 7' € L(H)
such that 7' is a finite sum of 0,,.

T = 0u17v1 + 0u27v2 +.o.+ eunyvn'

The compact operators K(H) are defined as the norm closure in £(H) of the space of finite
rank operators. It is an ideal in £L(H).

We say that H is countably generated if in H there is a countable (or finite) set such
that the A-module generated by this set is dense in H.

Let A, B be C*-algebras, ¢: A — B a *-homomorphism, and H a Hilbert A-module. We
will define H® 4 B which will be a Hilbert B-module. First form the algebraic tensor product
H ®4 B. It is a right B-module

(hobt =h@bd, heH, bt € B.
Now define B-valued inner product (—, —) on H ®4 B by
(h @b, W @) = bo((h, K)V.

Set
N:={eH®aB| (€ =0}

It is a B-submodule of H ®4 B, and H ®4 B/N is a pre-Hilbert B-module.
Definition 1.44. H ® 4 B is the completion of H ®4 B/N.

Let A, B be separable C*-algebras, £'(A, B) = {(H,%,T)}, where H is a countably
generated Hilbert B-module, ¢: A — L(H) is a *-homomorphism, T' € £(H) is such that

T =Tx
d(a)(I = T?) € K(H)
Y(a)T — T(a) € K(H)

for all a € A.
We say that (Ho,o,T0), (Hi,v1,T1) € EY(A, B) are isomorphic if there exists an
isomorphism of Hilbert B-modules ®: Hy — H; with

Dihp(a) = P1(a)®, for alla € A, Ty =T1P

Let A, B, D be separable C*-algebras, ¢: B — D a *-~homomorphism. There is an induced
map
P : 61(‘47 B) - 51(A7D)a

90*(H7¢5T) = (H®B D7¢®B IvT®BI)7

where I is the identity operator of D.
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Consider two maps po, p1: C([0,1], B) — B, po(f) = f(0), p1(f) = f(1). We say that
(Ho, %o, To), (H1,11,T1) € EY(A, B) are homotopic if there exists (H, 1, T) € £EY(A, C([0,1], B))

Wlth( ) (H 1][)7 ) ( ]7w]’ )
For the even case, consider SO(A B) = {(H,v,T)}, where H is a countably generated
Hilbert B-module, ¢: A — L(H) is a *-homomorphism, and 7" € L(H) is such that

()T — Ty(a) € K(H)
Pla)(I =T"T) € K(H)
P(a)(I = TT") € K(H)

for all a € A.
Definition 1.45. We define the KK-theory of A, B as

KK°(A,B) :=&°A,B)/ ~
KK!(A,B) :=&Y(A,B)/ ~

where the relation ~ is homotopy. KK’(A, B) is an abelian group

M. T)+ (H ¢, T)=HeH va,TeT)
_(H7 ¢= T) = (Hv 1/}7 T*)

1.10 Equivariant KK-theory
Let A be a G-C*-algebra.

Definition 1.46. A G-Hilbert A-module is a Hilbert A-module H with a given continuous
action G x H — H, (g,v) — gv such that

g(u+v) = gu+gv
g(ua) = (gu)(ga)
(gu, gv) = g(u, v)

for u,v € H, g € G, a € A. Continuity here means that for each v € H, g — gu is a
continuous map G — H.

For each g € G, denote by L, the map Ly: H — H, Ly(v) = gv. Note that L, might not
be in L(H). But if T € L(H), then L,TL;" € L(H). Thus L(H) is a G-C*-algebra with
gT = LyTL;".

Example 1.47. If A isa G-C*-algebra, n positive integer. Then A™ is a G-Hilbert A-module
with g(a1,as,...,a,) = (ga1,gaz, ..., ay).

Let A, B be separable G-C*-algebras, £'(A, B) = {(H,,T)}, where H is a G-Hilbert
B-module (countably generated), ¢: A — £(B) is a *~homomorphism with

Y(ga) = g¥(a), g € G,a € A,
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and T' € L(H) is such that
T=T"
gT — T € K(H)
P(a)T = Ty(a) € K(H)
Y(a)(I —T%) € K(H)

forall g € G, a € A.
In the even case we take £°(A, B) = {(H,v,T)}, where H is a G-Hilbert B-module
(countably generated), 1: A — L(B) is a *-homomorphism with

¥(ga) = gi(a), g € G,a € A,
and T' € L(H) is such that
gT —T € K(H)
¥(a)T' = T¥(a) € K(H)
P(a)(I —=T"T) € K(H)
P(a)(I - TT") € K(H)
forall g € G, a € A.
Definition 1.48. We define the equivariant KK-theory of A, B as
KK%(A, B) :== EY(A,B)/ ~
KK, (A, B) =&Y (A, B)/ ~

where the relation ~ is homotopy. KK]é(A, B) is an abelian group

M. T)+ (H ¢, T)=HeH va TeT)
_(H7 wv T) = (Hv 1/}7 T*)

1.11 K-theory of the reduced group C*-algebra

If a compact group G acts on C by a C*-automorphisms, then it must act trivially, since C
has no nontrivial *-automorphisms. We will prove the following:

Theorem 1.49. For a compact group G there is an isomorphism
Ko(Cr(G)) ~ R(G).
The key element in the proof is the Peter Weyl theorem:

Theorem 1.50 (Peter Weyl). If G is a compact, Hausdorff, second countable unitary repre-
sentation of G, then every irreducible unitary representation of G is finite dimensional.

Proof. Let p: G — U(H) bea an irreducible representation on a separable Hilbert space H.
Choose a projection p on H, p # 0, p = p* with finitely dimensional range. Let

Tr:/Gp(g)pp(g)*dg,

where dg is a Haar measure. Then
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e T commutes with p(g) for all g € G,
o« T=T* T3>0 T#0,
e T is compact operator, T' € K(H).

The structure theorem for compact selfadjoint positive operators gives
sp(T) .= {a, € R| a, — 0},

where each a,, is an eigenvalue with finitely dimensional eigenspace. In particular any com-
pact selfadjoint operator has finite dimensional eigenspace. For T this eigenspace has to be
preserved by the group action, so p has to be finitely dimensional if it is irreducible. ]

Proof. (of Theorem 1.49) Notice that for compact group C;(G) = C*(G) (there is only one
C*-algebra for a compact group). Irreducible unitary representations of G (up to equivalence)
form a countable set. There is a C*-isomorphism

(@)~ P A,

o€lrrep(G)

where each A, is a finitelry dimensional C*-algebra, which is isomorphic to M,,(C), n = dimo.

Hence
R(G) for j =0,

KJ(C*(G)) =~ @ Kj(AU) = {0 for j=1

o€lrrep(G) K, (C)

For a compact group G we have the map
p: KE(EG)) — K;(C;(G).

The elements of K]G (EG) can be viewed as generalized elliptic operators on EG. The map
1 assigns to auch a generalized elliptic operator its index

u(H, ¢, T, 7) = ker T — coker T.

1.12 KKX(C,C)

If G is a compact group then EG = pt and Ko(C}(G)) = R(G) - the representation ring of
G. We obtain R(G) as a Grothendieck group of the category of finite dimensional (complex)
representations of G. It is a free abelian group with one generator for each distinct (i.e.
nonequivalent) irreducible representation of G.

Theorem 1.51. For a compact group G there is an isomorphism
Kg(C,C) ~ R(G).

Proof. Given (H,v,T, ) € £X(C) within the equivalence relation on £4(C) we may assume
that
Tr(g) —m(g)T =0, (1.1)



because we can average 1" over the compact group G

T = /G?T(Q)Tﬂ(g)*dg =0,

T-T=T- /GW(g)TW(g)*dg
= [~ =)Tr(ay)ag € k().

because fG T'dg =T since we normalize Haar measure.
Furthermore we can assume that

»(\) = ALd. (1.2)
Indeed, 1: C — B(H) is a *-homomorphism, and (1) is a selfadjoint projection. For all
reC
Y(A) = AY(1), pr=y(1).
H splits into pH @ (1 — p)H, and

Tp—pT € K(H), T(1—p)— (1 —p)T € K(H).

Compare T to pTp @ (1 — p)T(1 — p), to see that on (1 — p)H ¥ is 0.
The only nontrivial condition on (H,, T, ) is

I—T*T € K(H),
I —TT* € K(H).

These conditions imply that T is Fredholm, that is

dimg(ker T') < oo,
dimc(coker T') < oo.

The spaces ker T and cokerT" are finite dimensional representations of G. We have
w(H, v, T, ) =ker T — coker T € R(G).

First we will prove the surjection of K5 (C,C) — R(G). Let V' € R(G) be finitely dimensional
irreducible unitary representation. Consider countable direct sum @V and @ . Let T be
a shift

(Ul, V2, .. ) = (Ug, V3, .. )

Then ker T' =V (first copy), and coker T" = 0.

The homomorphism Kg(C,C) — R(G) is well defined and injective. Indeed, consider
irreducible representation V' € R(G). There is a canonical decomposition into isotypical
components

V=niVidnVed...n,Vs.

Then T will preserve this decomposition because it commutes with the group action. If
Ti, t € [0,1] is a homotopy of operators, then also each T; commutes with 7(g), g € G.
We can stick to (H,v,n,T) with the equivalence relation consisting only of homotopy and
isomorphism.

When T is unitary then (H,1,m, T') is degenerate. O
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