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Abstract. This paper deals with a few, not widely known, aspects of Kottman’s constant

of a Banach space and its symmetric and finite variations. We will consider their behaviour

under ultrapowers, relations with other parameters such as Whitley’s or James’ constant, and

connection with the extension of c0-valued Lipschitz maps.

1. Kottman’s constants. This paper deals with a few, not widely known, aspects of
Kottman’s constant of a Banach space X, with unit ball BX and unit sphere SX , defined
as follows:

K(X) = sup{σ > 0 : ∃(xn)n∈N ∈ BX ∀n 6= m ‖xn − xm‖ ≥ σ}.

It was introduced and studied by Kottman in [20, 21]. It is clear that K(X) = 0 if
and only if X is finite-dimensional. A well-known, although highly non-trivial, result of
Elton and Odell [12] (see also [10, p. 241]) establishes that K(X) > 1 for every infinite-
dimensional Banach space. Kottman’s constant has been considered in several papers
and its exact calculus in different classical Banach spaces has been performed (see e.g.
[2, 7, 8, 9, 11, 14, 15, 16, 20, 21, 22, 25, 28, 31, 32, 34]).
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Variations of the Kottman constant can be defined: the finite separation constant

Kf (X) = sup{σ > 0 : ∀k ∈ N ∃{x1, . . . , xk} ⊂ BX ∀n 6= m ‖xn − xm‖ ≥ σ};

the finite symmetric separation constant, implicitly considered in [26]:

Ks
f (X) = sup{σ > 0 : ∀k ∈ N ∃{x1, . . . , xk} ⊂ BX ∀n 6= m ‖xn ± xm‖ ≥ σ};

and the symmetric separation constant :

Ks(X) = sup{σ > 0 : ∃(xn)n∈N ∈ BX ∀n 6= m ‖xn ± xm‖ ≥ σ}.

In the definition of the four above constants, we can substitute SX to BX ; also, it is
clear that 1 ≤ Ks ≤ K ≤ Kf ≤ 2 and Ks ≤ Ks

f ≤ Kf .
The equality between K and Ks holds in several classical spaces such as `p spaces,

where K(`p) = Ks(`p) = 21/p, 1 ≤ p < ∞; or c0 since Ks(c0) = 2 as the sequence
xn = en+1 −

∑n
j=1 ej shows.

The first question that arises is

Problem 1. Does the Elton-Odell theorem hold for Ks(·)? Precisely, is it always
Ks(X) > 1 for every infinite-dimensional Banach space?

A partial answer will be presented in Corollary 2.3. Recall that every infinite-
dimensional Banach space (by the Dvoretzky-Rogers theorem) contains, for every n,
almost isometric copies of `n2 . Since the elements of the canonical basis of `2 verify
‖ei ± ej‖ =

√
2 one has Kf (X) ≥ Ks

f (X) ≥
√

2 for every infinite-dimensional Banach
space X. Since Ks(`p) = K(`p) = 21/p for 1 < p < +∞, it is clear that strict inequalities
K(X) < Kf (X) and Ks(X) < Ks

f (X) are possible (see also [20]). Further examples will
be exhibited below, near the end of Section 2.

Let us affirmatively prove a conjecture of Kottman ([21, p. 24]) about the stability
of K under vector sums. This generalizes [21, Lemma 8] (where only the “`p” sum is
considered), with a much simpler proof. Recall that given a Banach space λ with uncon-
ditional basis (en), and a sequence (Xn) of Banach spaces, their λ-vector sum is defined
as

λ(Xn) =
{

(xn) ∈ `∞(Xn) : ‖(xn)‖ =
∥∥∥∑ ‖xn‖en

∥∥∥
λ
< +∞

}
.

One has

Proposition 1.1.

K(λ(Xn)) = sup{K(λ),K(Xn); n ∈ N}.

Proof. Let δ = K(λ(Xn)) − sup{K(λ),K(Xn); n ∈ N} > 0. Let (xk) be a sequence in
λ(Xn) for which we assume that ‖xk − xl‖ > K(λ(Xn)) − δ/3 for different k, l. There
is no loss of generality assuming that each of the sequences xk is finitely supported
and with its support—i.e., the set of non-zero coordinates—contained in [1, k]: indeed,∥∥∑

n ‖xkn‖en
∥∥
λ
< +∞ implies

∥∥∑
n≥N ‖xkn‖en

∥∥
λ
< ε for large N . From now on we will

denote by [1, n]x the sequence with support contained in [1, n] and whose first n coordi-
nates coincide with those of x. Let αk be an accumulation point for ‖[1, k]xl‖. Passing to
subsequences, we get a final sequence—relabelled as (xk)—for which limk ‖[1, n]xk‖ = αn
for all n.
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Case 1. αn = 0 for almost all n. This means that the sequence is formed by “blocks”,
hence their mutual distances cannot go beyond K(λ).

Case 2. Otherwise, find N such that ‖
∑
n>N αnen‖λ <

1
4δ. Thus, for large k,m one

has

K(λ(Xn)) < ‖xk − xm‖+ δ/3

=
∥∥∥∑
n≤N

‖xk(n)− xm(n)‖en
∥∥∥
λ

+
∥∥∥∑
n>N

‖xk(n)− xm(n)‖en
∥∥∥
λ

+ δ/3

≤ sup{K(λ),K(Xn); n ∈ N}+ 2δ/4 + δ/3 < K(λ(Xn)).

Therefore K(λ(Xn)) ≤ sup{K(λ),K(Xn); n ∈ N}, and then the equality.

The argument in the previous proof implies that given a norm |·| in R2 and two Banach
spaces X,Y , if we set X⊕|·| Y to mean the product space X⊕Y endowed with the norm
‖(x, y)‖ =

∣∣(‖x‖, ‖y‖)∣∣ then K(X ⊕|·| Y ) = max{K(X),K(Y )} and Kf (X ⊕|·| Y ) =
max{Kf (X),Kf (Y ),Kf ([R2, | · |])}. It is not however true that given a norm ‖ · ‖ on
X × Y one has K([X × Y, ‖ · ‖]) = max{K(X),K(Y )}: in [26, Ex. 3.1] one can find a
hyperplane H of a certain Banach space X in such a way that K(X) > K(H); it is clear
however that there is a norm ‖ · ‖ on H × R so that X is isometric to [H × R, ‖ · ‖] and
thus K(X) > K(H) = max{K(H),K(R)}. One also has (see [9, Claim 4.4] for the case
λ = 1):

Lemma 1.2. For 1 ≤ θ < 2, let Y be a θ-complemented finite-codimensional subspace
of X. Then K(X) ≤ θK(Y ).

Proof. Let p : X → Y be a norm θ-projection onto Y with finite-dimensional kernel.
Given ε > 0, let (xn) be a sequence in X such that ‖xn − xm‖ ≥ K(X) − ε. Then
(xn − p(xn)) admits a Cauchy subsequence; hence a subsequence—no need to relabel—
such that for all n,m one has ‖(xn − p(xn))− (xm − p(xm))‖ ≤ ε. Consequently (p(xn))
is a sequence in the ball of radius θ of Y such that

‖p(xn)− p(xm)‖ ≥ ‖xn − xm‖ − ‖(xn − p(xn))− (xm − p(xm))‖ ≥ K(X)− 2ε.

Consequently, K(Y ) ≥ θ−1K(X).

2. Other packing or covering constants. Kottman’s constant of a Banach space X
is related to the size of infinite sets of balls which can be packed inside the unit ball BX .
Precisely, let P (X) denote the packing constant of BX , defined as the supremum of the
r > 0 such that BX contains infinitely many non-overlapping balls of radius at least r;
then

P (X) =
K(X)

2 +K(X)
.

More interesting for us is Whitley’s constant T (X) introduced in [30] and called the
thickness of X (see also [24]):

T (X) = inf{σ > 0 : ∃{x1, . . . , xn} ⊂ S : S ⊂
⋃

i∈{1,...,n}

B(xi, σ)}.

If dim(X) = ∞, then T (X) ∈ [1, 2]. The value of T (·) in many spaces is known (see
for example [27] where connections with other constants were indicated; see also [24]
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for further results on T (·)). The paper [6] contains the connections between T (X) and
another parameter concerning coverings by sequences of balls with radii converging to 0.

Moreover, one has

Lemma 2.1. T (X) ≤ Ks(X).

Proof. Let ε > 0 and set k = Ks(X) + ε. There is no infinite k symmetrically separated
set in S; so we can take a finite maximal set A = {±xi}i∈I such that ‖xi ± xj‖ ≥ k for
i 6= j; i, j ∈ I. This means that for every x ∈ S, at least one of the distances dist(x,A) and
dist(−x,A) is less than k: therefore, either ‖x− xi‖ < k for some i ∈ I, or ‖x+ xj‖ < k,
so ‖x − (−xj)‖ < k, for some j ∈ I. This shows that A is a finite k-net for S; thus
T (X) ≤ k. Since ε > 0 is arbitrary, the result is proved.

It is a well known result that if finitely many convex closed sets cover the unit sphere of
a Banach space then they cover the entire unit ball. A more general version of this result
can be seen in [6]. A simple proof goes as follows: observe that if SX ⊂

⋃
i∈{1,...,n} Ci,

then taking the weak*-closures in X∗∗ we get BX∗∗ ⊂
⋃
i∈{1,...,n} Ci

w∗

. Now, intersection

with X yields BX ⊂
⋃
i∈{1,...,n} Ci

w∗ ∩ X: but Ci
w∗ ∩ X = Ci

weak
= Ci. From this we

get T (X∗∗) ≤ T (X).
We set the following notation: M(x, y) = max{‖x − y‖, ‖x + y‖} and m(x, y) =

min{‖x− y‖, ‖x+ y‖}. The following constants have been considered in [27, 5]:

• g(X) = infx∈S infy∈SM(x, y)
• J(X) = supx∈S supy∈Sm(x, y).

It is clear that 1 ≤ g ≤ J ≤ 2. The constant g has been considered in several papers
(see for example [27]) and is the smallest radius of a ball, centred at some x ∈ S, which
can contain an antipodal pair y,−y of S. The constant J is often called James constant
and is the infimum of all radii such that for every x ∈ S the two balls centred at x and
−x with that radius cover S. One has

Lemma 2.2. g ≤ T ≤ Ks ≤ J .

Proof. Let ε > 0 and take a finite covering of BX with balls centred at points of SX with
radius smaller than or equal to T (X) + ε. According to an old result of Ljusternik and
Šnirel’man, at least one of the balls must contain an antipodal pair (y,−y). If x is the
centre of such a ball, then max{‖x + y‖, ‖x − y‖} ≤ T (X) + ε; and since ε is arbitrary,
the inequality g ≤ T is clear. The inequality T ≤ Ks has already been proved. To show
the inequality Ks ≤ J , we can find points ±x1, . . . ,±xn such that the union of the balls
B(±xi, r), i = 1, . . . , n with r near to Ks(X) does not cover SX . So, for each of the xi’s,
min{‖xi + y‖, ‖xi − y‖} > r for some y and then sup{m(xi, y) : y ∈ SX} > r, which
implies J > r, and then J ≥ Ks.

The inequalities in the previous lemma can be strict. In fact, one has g(`1) = 1 < 2 =
T (`1); T (`∞) = 1 < 2 = Ks(`∞). Concerning Ks and J see below.

In [26], the condition Ks
f < 2 was called O-convexity, while the condition Kf < 2 is

usually called P-convexity (see also [1]).
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A Banach space X is called Uniformly Non-Square (UNS for short) if J(X) < 2. It is
clear that (UNS) implies Ks ≤ Ks

f < 2; Example 3.2 in [26] shows that it does not imply
K < 2. This also shows that Ks and K can be different and that the inequality K ≤ J

does not always hold.
The condition Kf < 2 does not imply (UNS): it is enough to consider the product

`2⊕1 `
2
∞. This also shows that Ks < J is possible (by Lemma 2.2 we know that Ks ≤ J).

By adapting Example 1.8 in [20], one can see that K < 2 does not imply Ks
f < 2. Thus,

J ≤ K is not true in general.
Example 3.3 in [26] shows that a space can be O-convex without being P-convex.

Therefore for such a space one has Ks
f < 2 = K = Kf . Thus Ks

f < 2 does not imply
K < 2; moreover, Ks

f < Kf is possible.
A partial answer to Problem 1 is the following

Corollary 2.3. For every UNS space X we have Ks(X) > 1.

Proof. Since the functions g and J are connected by the equality gJ = 2 [5], one gets
that if J(X) < 2 then 1 < g(X) ≤ Ks(X).

3. Kottman’s constants and ultrapowers. Let us briefly recall the definition and
some basic properties of ultraproducts of Banach spaces. For a detailed study of this
construction at the elementary level needed here we refer the reader to Heinrich’s survey
paper [13] or to Sims’ notes [29]. Let I be a set, U be an ultrafilter on I, and Xi a family
of Banach spaces. Then

`∞(Xi) = {(xi) : xi ∈ Xi, sup
i
‖xi‖ <∞},

endowed with the supremum norm, is a Banach space, and

cU0 (Xi) = {(xi) ∈ `∞(Xi) : lim
U(i)
‖xi‖ = 0}

is a closed subspace of `∞(Xi). The ultraproduct of the spaces Xi following U is defined
as the quotient

[Xi]U = `∞(Xi)/cU0 (Xi).

We denote by [(xi)] the element of [Xi]U which has the family (xi) as a representative.
It is not difficult to show that

‖[(xi)]‖ = lim
U(i)
‖xi‖.

In the case Xi = X for all i, we denote the ultraproduct by XU , and call it the ultrapower
of X following U .

The bidual, or any even dual, of a Banach space X is complemented in some ultra-
power of X. Indeed, take the set F of triples (F, F ∗, ε) where F is a finite-dimensional
subspace of X∗∗ and F ∗ a finite-dimensional subspace of X∗, with the order (F, F ∗ε) ≤
(G,G∗, ε′) for F ⊂ G, F ∗ ⊂ G∗ and ε′ ≤ ε. Let U be a filter refining the Fréchet filter.
The principle of local reflexivity yields for each (F, F ∗, ε) an operator TF,F∗,ε : F → X

such that TF,F∗,ε(x) = x when x ∈ X, T ∗F,F∗,εf = f for f ∈ F ∗ and ‖TF,F∗,ε‖ ≤ 1 + ε.
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An embedding τ : X∗∗ → XU is thus given by τ(x∗∗) = [TF,F∗,εx∗∗]. For this embedding

P ([xF,F∗,ε]) = weak∗ − lim
U(F,F∗,ε)

xF,F∗,ε

is a projection.

Definition 3.1. An ultrafilter U on a set I is countably incomplete if there is a decreasing
sequence (In) of subsets of I such that In ∈ U for all n, and

⋂∞
n=1 In = ∅.

It is obvious that any countably incomplete ultrafilter is non-principal (i.e., not formed
with all the sets containing a certain element), and also that every non-principal (or free)
ultrafilter on N is countably incomplete. Assuming that all free ultrafilters are count-
ably incomplete is consistent with the Zermelo-Fraenkel axioms of set theory plus the
Continuum Hypothesis, since the cardinal of a set supporting a free countably complete
ultrafilter should be measurable, hence strongly inaccessible.

In [17] it has been shown that J(X) = J(XU ). From this and the relation gJ = 2 it
immediately follows that also g(X) = g(XU ). Let us consider the stability of T,K and
Ks by ultrapowers.

Proposition 3.2.

1) There is a free countably incomplete ultrafilter U such that

K(X) ≤ K(X∗∗) ≤ K(XU )

and
Ks(X) ≤ Ks(X∗∗) ≤ Ks(XU ).

2) If U is a countably incomplete ultrafilter then for every k ∈ N one has

Kf (X) = Kf (XU ) = K(XU ) = K((X2k)U ) = Kf (X2k)

and
Ks
f (X) = Ks

f (XU ) = Ks(XU ) = Ks((X2k)U ) = Ks
f (X2k).

3) If U is a countably complete ultrafilter then

K(X) = K(XU )

and
Ks(X) = Ks(XU ).

Proof. (1) is clear since there are isometric embeddings X → X∗∗ → XU .
To show (2) one only has to prove that Kf (X) = K(XU ). To show that Kf (X) ≤

K(XU ), take for each n a finite sequence xn1 , . . . , x
n
n so that ‖xnj − xnk‖ ≥ Kf (X) − 1

n .
Since there is a decreasing sequence An of elements of U such that

⋂
nAn = ∅, we form

the following sequence of elements of XU : zk = [xik] for i ∈ Ak \Ak+1 (and 0 on the rest).
One has

‖zk − zl‖ = lim
U
‖zik − zil‖ ≥ Kf (X).

We show that K(XU ) ≤ Kf (X). Let (zk) be an infinite sequence in XU such that
‖zk − zl‖ ≥ K. If zk = [znk ], since

‖zk − zl‖ = lim
U(i)
‖zik − zil‖ ≥ K,
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with the meaning that for every ε > 0

Ak,l = {i ∈ I : ‖zik − zil‖ ≥ K − ε} ∈ U,
then, for every n ∈ N, ⋂

k<n

Ak,n ∈ U.

Thus, there must exist some i ∈ I in such a way that the distance between any two
elements of the set {zi1, . . . , zin} is at least K − ε. Now, Kf (X) ≤ Kf (X∗∗) is clear; while
Goldstine’s lemma yields Kf (X∗∗) ≤ Kf (X). Finally,

K((X2k)U ) = Kf (X2k) = Kf (X) = K(XU )

follows by iteration.
To prove (3), take a countably complete ultrafilter U and (ri)i∈I ∈ `∞(I); then

limU ri = r implies {i ∈ I : ri = r} ∈ U . Let zn = [xni ] be a sequence in XU with
‖zn − zm‖ > K. The countable family An,m = {i ∈ I : ‖xni − xmi ‖ > K} ∈ U , as well as
its intersection

⋂
n,mAn,m; which is therefore non-empty. Let j be an index in that set.

Thus ‖xnj − xmj ‖ > K for all n,m and K(X) ≥ K(XU ).
The proofs for Ks are entirely analogous.

Observe that since it is known that Kf (X) < 2 implies X reflexive, one gets that
Kf (X) < 2 implies that X is superreflexive (see [1]): indeed, Kf (X) = K(XU ) < 2
implies XU reflexive, hence X is superreflexive. Since K(XU ) = Kf (X) and it is not
hard to find spaces X for which K(X) < Kf (X)—say X = `2(`n∞)—it is clear that
in general K(X) and K(XU ) are different. This is explicitly remarked in [17] with an
example due to Prus.

For the thickness constant one has

Proposition 3.3. Let U be a free ultrafilter on N. If XU denotes the corresponding
ultrapower of X then T (XU ) ≤ T (X).

Proof. Let t > T (X) and assume, as we can, that B(X) ⊂
⋃
i∈{1,...,n}B(xi, t). Let us

show that
B(X)U ⊂

⋃
i∈{1,...,n}

B(xi, t)U .

To do this, let [zn] ∈ B(X)U . For each zn there is at least one xi(n) such that
‖zn − xi(n)‖ ≤ t. So limU ‖zn − xi(n)‖ ≤ t, which means ‖[zn] − [xi(n)]‖U ≤ t. Since
for some index 1 ≤ m ≤ n one has [xi(n)] = [xm, xm, . . . , xm, . . .] the proof concludes.

These results suggest the following questions

Problem 2.

• Does T (X∗∗) = T (X) hold for every Banach space?
• Does K(X∗∗) = K(X) hold for every Banach space?
• Does Ks(X∗∗) = Ks(X) hold for every Banach space?

Since both Ks(c0) = K(c0) = 2 = K(`1) = Ks(`1), and a Banach space containing
isomorphic copies of any of those spaces also contains an almost-isometric copy, it is clear
that a Banach space such that K(X) < K(X∗∗) (resp. Ks(X) < Ks(X∗∗)), if it exists,
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cannot contain either c0 or `1. Hence it cannot have unconditional basis. It cannot be
either an Lp-space: for 1 < p < +∞ they are reflexive; for p = 1 they contain `1; and
since the bidual of an L∞ space contains `∞, an L∞ counterexample should be an L∞
space verifying K(L∞) < 2 (resp. Ks(L∞) < 2). However, one has

Proposition 3.4. For every L∞-space X one has Ks(X) = K(X) = 2.

Proof. It is well known that a separable Banach space X has c0 as a quotient if (and
only if) X∗ contains `1 (see [23, p. 104]). Therefore every separable L∞-space has c0
as a quotient. Since a Banach space isomorphic to c0 contains an almost isometric copy
of c0 (see [23, p. 97]), one can assume that the norm induced by the quotient map
q : X → c0 is (1 + ε)-isometric to the natural sup-norm on c0. And this immediately
yields Ks(X) = K(X) = 2. Finally, every L∞-space contains a separable L∞-space.

In any case, let us remark that in the literature L∞-spaces not containing either c0
or `1 are few: the Bourgain-Delbaen second type of examples [4], which are isomorphic
preduals of `1 without copies of c0 or `1; and the Argyros-Haydon Hereditarily Indecom-
posable L∞ space [3].

4. Kottman’s constant and the extension of Lipschitz maps. For a separable
Banach space X we define the constant λ0(X) as the infimum of all λ such that for every
subspace E of X every Lipschitz map f : E → c0 admits an extension to X with Lipschitz
constant Lip(F ) ≤ λLip(f). Kalton proved in [18, Prop. 5.8] the following unexpected
result:

Proposition 4.1. K(X) = λ0(X).

The proof given there is rather awkward; we present here a proof, streamlined from
papers [19, 18], that K(X) ≤ λ0(X).

Proof. The key is to characterize the extension property of Lipschitz maps in terms of
forbidden sequences. Precisely: Let M be a metric space and let λ ≥ 1. We show that
if every c0-valued Lipschitz map with Lipschitz constant L defined on a subset E of M
admits a Lipschitz extension to M with Lipschitz constant at most λL, then given ε > 0
and a ∈M it is impossible to find a sequence (xn) in M such that for 1 ≤ j ≤ n− 1 one
has

λd(a, xn) + ε ≤ d(xj , xn).

Otherwise, assume that such a sequence (xn) in M exists; let E = {xn}n∈N and form
the Lipschitz map f : E → c0 given by

f(x) =
(

min
1≤j≤k

d(x, xj)
)
k
.

We have Lip(f) = 1; note that the same is true if we apply f to the whole space c0,
or to a bounded subset of c0, but in this case the range of f is not contained in c0 (it is
contained in `∞).

If f admits an extension to a Lipschitz map F : M → c0 with Lip(F ) ≤ λLip(f) then
set F (a) = (ξk). Fixed k ∈ N, we have

‖F (a)− F (xk+1)‖ ≤ λd(a, xk+1),
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so
min

1≤j≤k
d(xk+1, xj)− ξk ≤ λd(a, xk+1) ≤ min

1≤j≤k
d(xk+1, xj)− ε,

which means ξk ≥ ε for all k, and thus a contradiction.
Now, let X be a Banach space; for λ = K(X)− 2ε and a = 0 the choice of a sequence

(xn) such that ‖xn‖ ≤ 1, ‖xn − xm‖ ≥ K(X) − ε, makes λ + ε ≤ ‖xn − xm‖ possible.
Thus, the assertion K(X) ≤ λ0(X) holds.
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