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Abstract

We introduce extensions of ∆-points and Daugavet points in which slices are replaced by rel-
atively weakly open subsets (super ∆-points and super Daugavet points) or by convex combi-
nations of slices (ccs ∆-points and ccs Daugavet points). These notions represent the extreme
opposite to denting points, points of continuity, and strongly regular points. We first give a gen-
eral overview of these new concepts and provide some isometric consequences on the spaces. As
examples:

(1) If a Banach space contains a super ∆-point, then it does not admit an unconditional FDD
(in particular, unconditional basis) with suppression constant smaller than 2.

(2) If a real Banach space contains a ccs ∆-point, then it does not admit a one-unconditional
basis.

(3) If a Banach space contains a ccs Daugavet point, then every convex combination of slices of
its unit ball has diameter 2.

We next characterize the notions in some classes of Banach spaces, showing, for instance, that
all the notions coincide in L1-predual spaces and that all the notions but ccs Daugavet points
coincide in L1-spaces. We next comment on some examples which have previously appeared in
the literature, and we provide some new intriguing examples: examples of super ∆-points which
are as close as desired to strongly exposed points (hence failing to be Daugavet points in an
extreme way); an example of a super ∆-point which is strongly regular (hence failing to be a ccs
∆-point in the strongest way); a super Daugavet point which fails to be a ccs ∆-point. The
extensions of the diametral notions to points in the open unit ball and consequences on the
spaces are also studied. Lastly, we investigate the Kuratowski measure of relatively weakly open
subsets and of convex combinations of slices in the presence of super ∆-points or ccs ∆-points,
as well as for spaces enjoying diameter-two properties. We conclude the paper with some open
problems.
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1. Introduction

It is fair to say that one of the most studied properties of Banach spaces is the Radon–
Nikodým property (RNP). Indeed, the large amount of its geometric, analytic, and mea-
sure-theoretic characterizations has made it an invaluable tool in several fields of Banach
space theory such as representation of bounded linear operators, representation of dual
spaces or representation of certain tensor product spaces (see [18, 20]).

A famous geometric characterization of the Radon–Nikodým property is related to the
size of slices. Recall that a slice of a bounded non-empty subset C of a Banach space X

is simply the (non-empty) intersection of C with a half-space. A Banach space X has
RNP if and only if every non-empty closed and bounded subset of X admits slices of
arbitrarily small diameter (see e.g. [18]).

A closely related and equally important geometric property of Banach spaces is the
point of continuity property. Recall that a Banach space X has the point of continuity
property (PCP) if every non-empty closed and bounded subset of X admits non-empty
relatively weakly open subsets of arbitrarily small diameter. Let us emphasize here as
an example the striking equivalence between the Radon–Nikodým property and the weak∗

version of the point of continuity property for dual spaces, and the related characteri-
zation of Asplund spaces as preduals of RNP spaces (see e.g. [19]). In his proof of the
determination of the Radon–Nikodým property by subspaces with a finite-dimensional
decomposition (FDD) in [17], Bourgain also introduced an important weakening of the
point of continuity property, which he called property “(∗)”, and which is nowadays re-
ferred to as the convex point of continuity property. Recall that a Banach space X has
the convex point of continuity property (CPCP) if every non-empty closed, convex and
bounded subset of X admits non-empty relatively weakly open subsets of arbitrarily small
diameter.

In fact, Bourgain implicitly used in his work the notion of strong regularity, which,
as he showed, is implied by CPCP. Recall that a Banach space X is strongly regular (SR)

if every non-empty closed, convex and bounded subset of X contains convex combinations
of slices of arbitrarily small diameter. Observe that the convexity of the subset is required
in this definition in order to guarantee that it contains all the convex combinations of
its slices. It later turned out that strong regularity had important applications to the
famous (still open) question of the equivalence between the Radon–Nikodým property
and the Krein–Milman property. Recall that a Banach space X has the Krein–Milman
property (KMP) if every non-empty closed, convex and bounded subset C of X admits an
extreme point. RNP implies KMP (see e.g. [18, Theorem 3.3.6]), and it follows from [48]

[6]
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that every strongly regular space with KMP has RNP. Also recall that it was proved in
[29] RNP and KMP are equivalent in dual spaces.

From the definitions it follows that RNP⇒PCP⇒CPCP and it is also known that
CPCP⇒SR. None of the above implications can be reversed (see e.g. [49] and references
therein). In order to show that strong regularity is implied by CPCP, Bourgain made
an important geometric observation: in every non-empty bounded and convex subset of
a Banach space X, every non-empty relatively weakly open subset contains a convex
combination of slices. We will discuss this “Bourgain lemma” and its applications to the
subject of the present paper in more detail in Chapter 2.

Another classical refinement of the above characterization of the Radon–Nikodým
property is related to the notion of denting points. Recall that a point x0 of a bounded
subset C of X is a denting point of C if there are slices of C containing x0 of arbitrarily
small diameter. A Banach space X has RNP if and only if every closed, convex and
bounded subset contains a denting point. Actually, every non-empty closed, convex and
bounded subset C of a Banach space X with RNP is equal to the closure of the convex
hull of the set of its denting points (see e.g. [18, Corollary 3.5.7]).

For PCP and CPCP, a similar role is played by points of weak-to-norm continuity.
Given a bounded subset C of X, we say that a point x0 ∈ C is a point of weak-to-norm
continuity (point of continuity for short) if the identity mapping i : (C,w) → (C, τ) is
continuous at the point x0 or, equivalently, if x0 belongs to relatively weakly open subsets
of C of arbitrarily small diameter. Note that a classical result by Lin–Lin–Troyanski [39]
establishes that a point x0 ∈ C is a denting point if, and only if, x0 is simultaneously a
point of continuity and an extreme point of C. In a space with PCP every non-empty
closed and bounded subset contains a point of continuity. Moreover, the set of all points
of continuity of a given closed, convex and bounded subset C of a Banach space X with
CPCP is weakly dense in C (see e.g. [22, Theorem 1.13]).

In relation to strong regularity, a point x0 of a bounded, convex subset C of X is a
point of strong regularity if there are convex combinations of slices of C containing x0 of
arbitrarily small diameter. Then the set of all points of strong regularity of a given closed,
convex and bounded subset C of a strongly regular Banach space X is norm dense in C

(see [25, Theorem 3.6]). Observe that points of strong regularity may be in the interior
of a set, while denting points (and points of continuity in the infinite-dimensional case)
belong always to the border of the set (just observe that relatively weakly open subsets
of a bounded convex closed set always intersect the border in the infinite-dimensional
case).

In [3] the extreme opposite notion to denting point of the unit ball was introduced in
the following sense. An element x in the unit sphere of a Banach space X is a ∆-point
if we can find, in every slice of BX containing x, points which are at distance from x as
close as we wish to the maximal possible distance in the ball (distance 2). A similar yet
stronger notion appeared simultaneously in relation to another quite famous property of
Banach spaces, the Daugavet property. Recall that a Banach space X has the Daugavet
property (DPr) if the Daugavet equation

∥Id + T∥ = 1 + ∥T∥ (DE)
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holds for every rank-one operator T : X → X, where Id denotes the identity operator.
In this case, all weakly compact operators also satisfy (DE). We refer the reader to the
seminal paper [35] for the background. Recent results can be found in [42] and references
therein. The Daugavet property admits a beautiful geometric characterization involving
slices related to the notion of Daugavet points. An element x on the unit sphere of a
Banach space X is a Daugavet point if in every slice of BX (not necessarily containing
the point x) there are points which are at distance from x as close as we wish to 2. With
this definition in mind, [35, Lemma 2.1] states that X has DPr if and only if all elements
in SX are Daugavet points. Let us comment that the Daugavet property imposes severe
restrictions on a Banach space. If X is a Banach space with DPr, then it fails RNP and
it has no unconditional basis (actually, it cannot be embedded into a Banach space with
unconditional basis).

On the other hand, ∆- and Daugavet points have proved to be far more flexible than
the global properties that they define. For example:

• There exists a Banach space with RNP and a Daugavet point [51] (see Section 4.3.1).
• There exists a Banach space with a one-unconditional basis and a large subset of

Daugavet points [6] (see Section 4.3.3).
• There exists a Banach space X such that all elements in SX are ∆-points and such

that every convex combination of slices of BX intersecting SX has diameter 2, but
there are convex combinations of slices of BX with arbitrarily small diameter [2] (see
Section 4.3.2).

Nonetheless, it has recently been proved that ∆-points have some influence on the iso-
metric structure of the space. For example, it is shown in [5] that uniformly non-square
spaces do not contain ∆-points. Actually, it has been very recently proved in [37] that a
∆-point cannot be a locally uniformly non-square point. Also, combining the results from
[5] and [52], asymptotic uniformly smooth spaces and their duals do not contain ∆-points.
However, it is still an important open problem to understand whether ∆- or Daugavet
points have any influence on the isomorphic structure of the space.

In this paper, our main aim is to study natural strengthenings of the notions of
Daugavet points and ∆-points obtained by replacing slices by non-empty relatively weakly
open subsets (“super points”) or convex combination of slices (“ccs points”) in order to
provide new diametral notions which are extreme opposites to points of continuity and
to strongly regular points, respectively. See Definitions 2.5 and 2.4 for details. Our main
goal will be to understand the influence, for a given Banach space, of the existence of such
points on its geometry, and to study the different diametral notions in several families
of Banach spaces. A particular emphasis will be put on trying to distinguish between
various formally different notions.

Let us end this chapter by giving a brief description about the organization of the
paper and the main results obtained. Chapter 2 contains the necessary notation (which
is standard, anyway), needed definitions, and some preliminary results. We include in
Chapter 3 some characterizations of the new diametral point notions and some necessary
conditions on the existence of such points. In particular, we study the existence of super
∆-points and ccs ∆-points in spaces with a one-unconditional basis. We first give an
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analogue for ccs ∆-points to a result from [6] which implicitly states that such spaces
contain no super ∆-points. Second, we provide sharper and improved versions of this
super ∆ result in the context of unconditional FDDs with a small unconditional constant,
and more generally in the context of spaces in which special families of operators are
available. The chapter finishes with the study of the behaviour of super ∆-points and
super Daugavet points with respect to absolute sums somehow analogous to the known
one for ∆-points and Daugavet points. However, not all the results extend to ccs ∆-
points and ccs Daugavet points, but we also give some partial results. Chapter 4 is
devoted to examples and counterexamples. We first characterize the diametral notions
in some families of classical Banach spaces: we show that all notions are equivalent in
L1-preduals and Müntz spaces (Section 4.1); all notions but ccs Daugavet points also
coincide in L1-spaces (Section 4.2). We next give in Section 4.3 some remarks on examples
which have previously appeared in the literature, discussing the new diametral notions
on them, and showing that they may help to distinguish between the diametral notions.
The most complicated and tricky examples are produced in the last three sections of this
chapter. We present super ∆-points which are as closed as desired to strongly exposed
points (hence failing to be Daugavet points in an extreme way) in Section 4.4; super
∆-points which are strongly regular (hence failing to be ccs ∆-points in an extreme way)
in Section 4.5; and super Daugavet points which belong to convex combinations of slices
of diameter as small as desired (hence failing to be ccs ∆-points in an extreme way) in
Section 4.6. We finish this section with a summary of relations between all the diametral
notions. The idea in Chapter 5 is to generalize the diametral notions to elements of
the open unit ball, and use these notions to characterize some geometric properties.
In particular, we properly localize the result by Kadets that DSD2P is equivalent to
the Daugavet property. Chapter 6 deals with Kuratowski index of non-compactness of
slices, relatively weakly open subsets, and convex combinations of slices. We find that
every relatively weakly open subset (respectively, every convex combination of slices) in
a space with the diameter 2 property (respectively, with the strong diameter 2 property)
has Kuratowski measure 2; these results extends the analogous result for slices and the
the local diameter 2 property proved in [21, Proposition 3.1]. Also, we show that every
relatively weakly open subset that contains a super ∆-point has Kuratowski measure 2,
and a similar result is obtained with convex combinations of relatively weakly open subsets
containing a ccw ∆-point; these results extend [52, Corollary 2.2]. Finally, Chapter 7
collects some interesting open questions and some remarks on them.



2. Notation and preliminary results

We will use standard notation as in the books [8], [23], and [24], for instance. Given a Ba-
nach space X, BX (respectively, SX) stands for the closed unit ball (respectively, the unit
sphere) of X. We denote by X∗ the topological dual of X and we write JX : X → X∗∗

for the canonical injection. We denote by dent(BX) and ext(BX) the sets of all denting
points of BX and of all extreme points of BX , respectively. The set of preserved extreme
points of BX (i.e. those x ∈ BX such that JX(x) ∈ ext(BX∗∗)) is denoted by pre-ext(BX).
For Banach spaces X and Y , L(X,Y ), F(X,Y ), K(X,Y ) denote, respectively, the sets of
all (bounded linear) operators, finite-rank operators, and compact operators. The prop-
erties we are interested in only deal with the real structure of the Banach spaces involved,
but we do not restrict the study to real spaces in order to consider real or complex exam-
ples. We will use the notation K to denote either R or C, Re(z) to denote the real part
of z (which is just the identity when dealing with a real space), and T to represent the
set of scalars of modulus 1.

Given a non-empty subset C of X, we will denote by co(C) the convex hull of C and
by span(C) the linear hull of C. Also we denote by co(C) (respectively, span(C)) the
norm closure of the convex hull (respectively, of the linear hull) of C. By a slice of C we
will mean any subset of C of the form

S(x∗, δ;C) := {x ∈ C : Rex∗(x) > M − δ}

where x∗ ∈ X∗ is a continuous linear functional on X, δ > 0 is a positive real number,
and M := supx∈C Rex∗(x). For slices of the unit ball we will simply write S(x∗, δ) :=

S(x∗, δ;BX). By a relatively weakly open subset of C we mean as usual any subset of C
obtained as the (non-empty) intersection of C with an open set of X in the weak topol-
ogy.

If C is assumed to be convex we will mean by a convex combination of slices of C
(ccs of C for short) any subset of C of the form

n∑
i=1

λiSi,

where λ1, . . . , λn ∈ (0, 1] are such that
∑n

i=1 λi = 1 and Si is a slice of C for every
i ∈ {1, . . . , n}. Observe that convex combinations of slices are convex sets. We define in
the same way convex combinations of relatively weakly open subsets of C (ccw of C for
short).

The following lemma from [30] is a very useful tool when working with ∆-points.

[10]
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Lemma 2.1 ([30, Lemma 2.1]). Let X be a Banach space, and let x∗ ∈ SX∗ and α > 0.
For every x ∈ S(x∗, α) and every 0 < β < α there exists y∗ ∈ SX∗ such that

x ∈ S(y∗, β) ⊆ S(x∗, α).

We also often rely on the following result, due to Bourgain and already mentioned in
the introduction. We provide a proof below, following the one from [25, Lemma II.1], for
the sake of completeness and for further discussion.

Lemma 2.2 (Bourgain). Let X be a Banach space and let C be a bounded convex closed
subset of X. Then every non-empty relatively weakly open subset W of C contains a
convex combination of slices of C.

Proof. Assume with no loss of generality that W :=
⋂m

i=1 S(fi, αi, C), write

C̃ = JX(C)
w∗

⊂ X∗∗, and W ∗∗ :=

m⋂
i=1

S
(
JX∗(fi), αi; C̃

)
,

which is a non-empty relatively weak∗ open subset of C̃. By the Krein–Milman theorem
(see e.g. [24, Theorem 3.37]), it follows that

C̃ = cow
∗
(ext C̃), so co

(
ext C̃

)
∩W ∗∗ ̸= ∅.

Pick a convex combination
∑n

i=1 λie
∗∗
i of extreme points contained in W ∗∗. By the con-

tinuity of the sum we can find, for every 1 ⩽ i ⩽ n, a weak∗ open subset W ∗∗
i with

e∗∗i ∈ W ∗∗
i and such that

∑n
i=1 λiW

∗∗
i ⊂ W ∗∗.

Since each e∗∗i is an extreme point of C̃, by Choquet’s lemma (see [24, Lemma 3.40],
for instance) there are weak∗ slices S

(
JX∗(gi), βi; C̃

)
with e∗∗i ∈ S

(
JX∗(gi), βi; C̃

)
⊆ W ∗∗

i

for every i ∈ {1, . . . , n}. Hence
n∑

i=1

λiS
(
JX∗(gi), βi; C̃

)
⊆

n∑
i=1

λiW
∗∗
i ⊆ W ∗∗.

Now, if we take

U :=

n∑
i=1

λiS(gi, βi, C)

it is not difficult to prove that U ⊆ W , as desired.

Remark 2.3. Observe that, in general, it is unclear from the above proof whether or
not, if we fix x ∈ W , we can guarantee that there exists a convex combination of slices
U of C such that x ∈ U ⊆ W .

On the other hand, the result holds true if x ∈ W ∩ co(pre-ext(C)) in view of the
above proof. Indeed, in that situation, if we write x =

∑n
i=1 λixi ∈ W with x1, . . . , xn ∈

pre-ext(C) and λ1, . . . , λn ∈ (0, 1] with
∑n

i=1 λi = 1, by the weak continuity of the
sum, we can find, for every 1 ⩽ i ⩽ n, a non-empty relatively weakly open subset Vi

with xi ∈ Vi for every i and such that x =
∑n

i=1 λixi ∈
∑n

i=1 λiVi ⊆ W (in fact, let
Y := (Xn, ∥ · ∥∞) and consider the map T : Y → X given by T (y1, . . . , yn) :=

∑n
i=1 λiyi.

Then T is clearly linear and continuous, hence weak-to-weak continuous. Furthermore,
T (BY ) ⊂ BX , so the restriction of T to BY defines a continuous map from BY into BX

with respect to the corresponding relative weak topologies. In particular, there exists
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a neighborhood V of x̃ := (x1, . . . , xn) for the relative weak topology of BY such that
T (V ) ⊂ W . Without loss of generality, V is of the form

V := {y ∈ BY : |φj(x̃− y)| < ε for every j ∈ {1, . . . ,m}}

for some m ∈ N, φ1, . . . φm ∈ Y ∗ and ε > 0. For every j ∈ {1, . . . ,m}, write φj :=

(y∗j,1, . . . , y
∗
j,n) with y∗j,1, . . . , y

∗
j,n ∈ X∗. Then, for every i ∈ {1, . . . , n}, let

Vi := {z ∈ BX :
∣∣y∗j,i(xi − z)

∣∣ < ε/n for every j ∈ {1, . . . ,m}}.

On the one hand, Vi is a relatively weakly open neigborhood of xi in BX , and on the other
hand,

∏n
i=1 Vi ⊂ V . Hence,

∑n
i=1 λiVi = T (

∏n
i=1 Vi) ⊂ W , and we have constructed the

desired sets). Now, observe that, since each xi is a preserved extreme point of C, slices
of C containing xi are a neighbourhood basis for xi in the weak topology. Hence, we can
find, for 1 ⩽ i ⩽ n, a slice Si of C with xi ∈ Si ⊆ Vi, and so x =

∑n
i=1 λixi ∈

∑n
i=1 λiSi ⊆∑n

i=1 λiVi ⊆ W , so U :=
∑n

i=1 λiSi is the desired convex combination of slices.

Throughout the text, we will often be discussing various “diameter-two properties”.
We use the notation introduced in [7]. A Banach space X has the local or slice diameter-
two property (LD2P) if every slice of BX has diameter 2; X has the diameter-two property
(D2P) if every non-empty relatively weakly open subset of BX has diameter 2; finally, X
has the strong diameter-two property (SD2P) whenever every ccs of BX has diameter 2
(and then every ccw has diameter 2 due to Lemma 2.2). For definitions and examples
concerning those properties, we refer to [2, 14, 15, 45]. In particular, let us comment
that the three properties are different, a result which was not easy to show [14]. Our
paper is closely related to the diametral versions of those properties which have been
implicitly studied for a long time in the literature, but whose formal definitions and
names were fixed in [13]. A Banach space X has the diametral local diameter-two property
(DLD2P) if for every slice S of BX and every x ∈ S ∩ SX , supy∈S ∥x − y∥ = 2. If
slices are replaced by non-empty relatively weakly open subsets of BX , we obtain the
diametral diameter-two property (DD2P). It is immediate that these properties are not
satisfied by any finite-dimensional space. Clearly, DLD2P implies LD2P, DD2P implies
D2P (and none of these implications reverses, e.g. X = c0), and DD2P implies DLD2P.
It is unknown whether DLD2P and DD2P are equivalent. In fact, it is even unknown
whether DLD2P implies D2P. For the analogous definition using ccs, we have to discuss
a little bit more. Even for an infinite-dimensional space X, it is not true that every ccs of
BX intersects SX . Actually, this happens if and only if X has a property stronger than
SD2P (see [41, Theorem 3.4]). Thus, the definition of the diametral strong diameter-two
property (DSD2P) given in [13] deals with all points in BX as follows: for every ccs C

and every x ∈ C, supy∈C ∥x − y∥ = ∥x∥ + 1. This definition allows us to show that
DSD2P implies SD2P. But, actually, it has recently been shown by V. Kadets [34] that
DSD2P is equivalent to the Daugavet property. We will discuss this in detail in Chapter 5.
On the other hand, we will use the following property which is weaker than DSD2P: a
Banach space X has the restricted DSD2P if for every ccs C and every x ∈ C ∩ SX ,
supy∈C ∥x− y∥ = 2. This property is strictly weaker than DSD2P; see Section 4.3.2.

Let us now introduce all notions of diametral points that we will consider in the text.
Let us start with the more closely related ones to the definitions above.
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ccs Daugavet ccs ∆

super Daugavet super ∆ ∆

Daugavet

Figure 1. Relations between the diametral notions

Definition 2.4. Let X be a Banach space and let x ∈ SX . We say that

(1) ([3]) x is a ∆-point if supy∈S ∥x− y∥ = 2 for every slice S of BX containing x,
(2) x is a super ∆-point if supy∈V ∥x − y∥ = 2 for every non-empty relatively weakly

open subset V of BX containing x,
(3) x is a ccs ∆-point if supy∈C ∥x− y∥ = 2 for every slice ccs C of BX containing x.

∆-points were introduced in [3] as a natural localization of DLD2P (i.e. X has DLD2P
if and only if every element of SX is a ∆-point). The other two definitions are new. Clearly,
super ∆-points are the natural localization of DD2P, that is, X has DD2P if and only if
every element of SX is a super ∆-point. Moreover, ccs ∆-points are the localization of
restricted DSD2P, as X has restricted DSD2P if and only if every element of SX is a ccs
∆-point.

In relation to the Daugavet property, we have the following notions for points.

Definition 2.5. Let X be a Banach space and let x ∈ SX . We say that

(1) ([3]) x is a Daugavet point if supy∈S ∥x− y∥ = 2 for every slice S of BX ,
(2) x is a super Daugavet point if supy∈V ∥x − y∥ = 2 for every non-empty relatively

weakly open subset V of BX ,
(3) x is a ccs Daugavet point if supy∈C ∥x− y∥ = 2 for every ccs C of BX .

Let us recall that Daugavet points were introduced in [3] as a natural localization of
the Daugavet property in the sense that a Banach space X has the Daugavet property if
and only if every point in SX is a Daugavet point [35, Lemma 2.1]. From the geometric
characterization given in [50, Lemma 3] and the implicit result contained in its proof,
it follows that super Daugavet points as well as ccs Daugavet points are also natural
localizations of the Daugavet property.

Since every slice of BX is relatively weakly open, and since by Bourgain’s lemma (see
Lemma 2.2) every non-empty relatively weakly open subset of BX contains a ccs of BX ,
we clearly have the diagram of Figure 1.

We will show throughout the text that none of the above implications reverses: there
are Daugavet points which are not super ∆-points, super Daugavet points which are not
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ccs ∆-points, and so on. We refer to Section 4.7 for a description of all the relations and
counterexamples. However, let us point out right away that we do not know whether there
exist ccs ∆-points which are not super ∆. In view of Remark 2.3 such examples may exist
since Bourgain’s lemma is not localizable. Also, it follows again from Bourgain’s lemma
that a ccs Daugavet point x ∈ SX also satisfies supy∈D ∥x − y∥ = 2 for every convex
combination of relatively weakly open subsets (ccw for short) D of BX . Again this is not
clear for ccs ∆-points and we could thus naturally distinguish between ccs ∆-points and
a formally stronger notion of “ccw ∆-points” where arbitrary ccw of the unit ball would
be involved instead of only ccs. Since we do not have concrete examples at hand that
allow distinguishing between these two notions, we will focus on convex combinations of
slices and specifically point out any available ccw behavior throughout the text.

Let us also comment that it is clear that if every ccs of the unit ball of a given Banach
space is weakly open (respectively, has non-empty relative weak interior), then every
super ∆-point (respectively, every super Daugavet point) in this space is a ccs ∆-point
(respectively, a ccs Daugavet point). Several properties of this kind were introduced and
studied in [1, 4, 41]. We refer to those papers for some background and for examples.

Remark 2.6. There are natural weak∗ versions in dual spaces of all the notions of
diametral points introduced in the present chapter where slices and relatively weakly
open subsets are respectively replaced with weak∗ slices (i.e. slices defined by elements of
the predual) and relatively weak∗ open subsets. With obvious terminology, it then follows
from [35, Lemma 2.1] and from [50, Lemma 3] that a Banach space X has the Daugavet
property if and only if every element in SX∗ is a weak∗ Daugavet point if and only if
every element in SX∗ is a weak∗ ccs Daugavet point. It also follows from [2, Theorem 3.6]
that X has DLD2P if and only if every point in SX∗ is a weak∗ ∆-point. However, the
relationship between DD2P in X and weak∗ super ∆-points in SX∗ is currently unknown.

Observe that a direct consequence of those results is that weak∗ diametral points and
their weak counterparts might differ in a very strong way since, for instance, the unit ball
of the space C[0, 1]∗ admits denting points. Yet clearly all the results from the following
chapters concerning the different notions of diametral points admit obvious analogues
for their weak∗ counterparts. We leave the details to the reader to avoid unnecessary
repetitions, but let us still point out that it follows from Goldstine’s theorem and from
the lower weak∗ semicontinuity of the norm in dual spaces that there is a natural cor-
respondence between diametral properties of points in SX and weak∗ properties of their
image in the bidual under the canonical embedding JX . Namely:

(1) x ∈ SX is a Daugavet point (respectively, a ccs Daugavet point) if and only if JX(x)

is a weak∗ Daugavet point (respectively, a weak∗ ccs Daugavet point).
(2) x ∈ SX is a super Daugavet point if and only if JX(x) is a weak∗ super Daugavet

point if and only if for every y ∈ BX there exists a net (y∗∗s ) in BX∗∗ which converges
to JX(y) in the weak∗ topology and such that ∥πX(x)− y∗∗s ∥ → 2 (see Chapter 3).

(3) x ∈ SX is a ∆-point (respectively, a super ∆-point) if and only if JX(x) is a ∆-point
(respectively, a super ∆-point).

(4) x ∈ SX is a ccs ∆-point if and only if JX(x) is a weak∗ ccs ∆-point.
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Let us point out that (3) essentially follows from the obvious fact that ∆-points and super
∆-points naturally pass to superspaces, that is, if Y is a subspace of X and if x ∈ SY if
a ∆-point (respectively, a super ∆-point) in Y , then x is a ∆-point (respectively, a super
∆-point) in X. This property is unclear for ccs ∆-points, so assertion (4) is not analogous
to assertion (3).



3. Characterizations of diametral notions and implications on the
geometry of the ambient space

In view of the definitions of diametral points, it is natural to expect that the presence of
any kind of Daugavet element or ∆-element in a given Banach space will affect, by the
severe restrictions it inflicts on the nature of the point considered, its global isometric
geometry or even its topological structure. However, previous studies in this context have
shown that the situation is much more complicated than one could expect at first sight.
For example, a Banach space X with RNP and admitting a Daugavet point, and a Banach
space with a one-unconditional basis and admitting a weakly dense subset of Daugavet
points, were respectively constructed in [51] and in [6]. In this chapter, we provide useful
characterizations of the new diametral notions, and investigate the immediate effect of
the presence of such points on the geometry of the space considered.

We start with an intuitive but not completely trivial observation.

Observation 3.1. By definition, it is clear that super ∆-points do not exist in finite-
dimensional spaces because the weak and norm topology coincide in this context. Also,
it was proved in [5, Theorem 4.4] that finite-dimensional spaces also fail to contain
∆-points (hence ccs ∆-points). In fact, they fail to contain them in a stronger way
[5, Corollary 6.10]. Consequently, the study of diametral notions only makes sense in
infinite dimension, and from now on we will assume unless otherwise stated that all the
Banach spaces we consider are infinite-dimensional.

Let us next prove a bunch of characterizations for super Daugavet points and super
∆-points.

Let X be a Banach space. For every x ∈ SX and for every ε > 0, define

∆ε(x) := {y ∈ BX : ∥x− y∥ > 2− ε}.
We recall the following characterization of Daugavet points and ∆-points from [3].

Lemma 3.2 ([3, Lemmas 2.1 and 2.2]). Let X be a Banach space.

(1) An element x ∈ SX is a Daugavet point if and only if BX = co∆ε(x) for every ε > 0.
(2) An element x ∈ SX is a ∆-point if and only if x ∈ co∆ε(x) for every ε > 0.

We have similar characterizations for super points.

Lemma 3.3. Let X be a Banach space.

(1) An element x ∈ SX is a super Daugavet point if and only if BX = ∆ε(x)
w

for every
ε > 0.

(2) An element x ∈ SX is a super ∆-point if and only if x ∈ ∆ε(x)
w

for every ε > 0.

[16]
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Proof. Observe that for given x ∈ SX , y ∈ BX , and ε > 0, the point y belongs to the
weak closure of the set ∆ε(x) if and only if ∆ε(x) has non-empty intersection with any
neighborhood of y in the relative weak topology of BX . Thus y belongs to ∆ε(x)

w
for

every ε > 0 if and only if supz∈V ∥x − z∥ = 2 for every relatively weakly open subset V

of BX containing y. The conclusion easily follows.

For any given x ∈ BX , we denote by V(x) the set of all neighborhoods of x for the
relative weak topology of BX . We can provide characterizations of super points using
nets, which is just a localization of [13, Proposition 2.5].

Proposition 3.4. Let X be an infinite-dimensional Banach space.

(1) An element x ∈ SX is a super Daugavet point if and only if for every y ∈ BX there
exists a net (ys) in BX which converges weakly to y and such that ∥x− ys∥ → 2.

(2) An element x ∈ SX is a super ∆-point if and only if there exists a net (xs) in BX

which converges weakly to x and such that ∥x− xs∥ → 2.

In both cases we can moreover force the nets to be in SX .

Proof. Let us fix x ∈ SX . Given any y ∈ BX , it is clear that if there exists a net (ys)

in BX which converges weakly to y and such that ∥x − ys∥ → 2, then y belongs to the
weak closure of ∆ε(x) for every ε > 0. Conversely, let us pick y ∈ BX satisfying this
property. We turn S := V(y)× (0,∞) into a directed set by (V, ε) ⩽ (V ′, ε′) if and only
if V ′ ⊂ V and ε′ ⩽ ε. By the assumptions, V ∩∆ε(x) is a non-empty subset of BX for
every couple s := (V, ε) in S. Picking any ys in this set will then provide the desired
net.

Finally, observe that for x ∈ BX and ε > 0, the set BX\∆ε(x) = {y ∈ BX : ∥x− y∥ ⩽
2 − ε} is weakly closed by the lower semicontinuity of the norm, so that ∆ε(x) is a
relatively weakly open subset of BX . Thus V ∩∆ε(x) is a non-empty relatively weakly
open subset of BX for every couple s := (V, ε) in S. Since X is infinite-dimensional, this
set has to intersect SX , and we can actually pick ys in V ∩∆ε(x) ∩ SX .

Remark 3.5. In [36] an example of a Banach space satisfying simultaneously the Dau-
gavet property and the Schur property was provided. The example shows that there is
no hope to get a version of the above result involving sequences.

Observe that the following result, similar to [32, Lemmas 2.1 and 2.2], is included in
the preceding proof.

Proposition 3.6. Let X be a Banach space and let x ∈ SX .

(1) If x is a super Daugavet point, then for every ε > 0 and every non-empty relatively
weakly open subset V of BX we can find a non-empty relatively weakly open subset
U of BX which is contained in V and such that ∥x− y∥ > 2− ε for every y ∈ U .

(2) If x is a super ∆-point, then for every ε > 0 and every non-empty relatively weakly
open subset V of BX containing x we can find a non-empty relatively weakly open
subset U of BX which is contained in V and such that ∥x − y∥ > 2 − ε for every
y ∈ U .
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Proof. Fix any x ∈ SX and any y ∈ BX which belongs to the weak closure of ∆ε(x) for
every ε > 0. Then, for every V ∈ V(y) and every ε > 0, the set U := V ∩ ∆ε(x) is a
non-empty relatively weakly open subset of BX .

It is clear from the definition that denting points of BX cannot be ∆-points. Also it
was first observed in [32, Proposition 3.1] that every Daugavet point in a Banach space
X has to be at distance 2 from every denting point of the unit ball of X. This elementary
observation turned out to play an important role in the study of Daugavet points in
Lipschitz-free spaces in [32] and [51]. We have similar observations for super points.

Lemma 3.7. Let X be a Banach space and let x ∈ SX . If x is a super ∆-point, then x

cannot be a point of continuity. If, moreover, x is a super Daugavet point, then x has to
be at distance 2 from every point of continuity of BX .

Proof. If an element y of BX is a point of continuity, then it is contained in relatively
weakly open subsets of BX of arbitrarily small diameter. Clearly no super ∆-point can
have this property, and any super Daugavet point has to be at distance 2 from any such
points.

This lemma provides quite a few examples of Banach spaces which fail to contain super
points. Following [26] let us recall that X has the Kadets property if the norm topology
and the weak topology coincide on SX , and that X has the Kadets–Klee property if
weakly convergent sequences in SX are norm convergent. Let us also recall that any LUR
space has the Kadets–Klee property, and that any space with the Kadets–Klee property
which fails to contain ℓ1 has the Kadets property. By Proposition 3.4 we clearly have the
following result.

Proposition 3.8. If X has the Kadets property, then X fails to contain super ∆-points.

As a corollary we obtain the following. Recall that a Banach space is asymptotic
uniformly convex (AUC for short) [31] if its modulus of asymptotic uniform convexity

δX(t) := inf
x∈SX

sup
dimX/Y <∞

inf
y∈SY

∥x+ ty∥ − 1

is strictly positive for every t > 0.

Corollary 3.9. Let X be AUC. Then X fails to contain super ∆-points.

Proof. In an AUC space, every element of the unit sphere is a point of continuity of BX

(see [31, Proposition 2.6]).

Remark 3.10. It was proved in [5, Theorem 3.4] that any reflexive AUC space fails
to contain ∆-points. Also, combining the observations from [5, end of Section 4] about
weak∗ quasi-denting points in the unit ball of AUC∗ duals and [52, Corollary 2.4] about
the maximality of the Kuratowski index of weak∗ slices containing weak∗ ∆-points, we
find that every AUC∗ dual space fails to contain weak∗ ∆-points. However, it is currently
unknown whether non-reflexive AUC spaces (and, in particular, whether the dual of the
James tree spaces JT∗) may contain Daugavet points or ∆-points.

It turns out that Daugavet points are characterized by their distances to denting
points in RNP spaces (because the unit ball of an RNP space X can be written as the
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closed convex hull of the set of its denting points) as well as in Lipschitz-free spaces ([32,
Theorem 3.2] for compact metric spaces and [51, Theorem 2.1] for a general statement).
In the same way we can characterize super Daugavet points in terms of their distances
to points of continuity of BX in spaces with CPCP.

Proposition 3.11. If a Banach space X has CPCP, then a point x ∈ SX is a super
Daugavet point if and only if it is at distance 2 from any point of continuity of BX .

Proof. If X has CPCP, then the set of all points of continuity of BX is weakly dense
in BX (see for example [22, Proposition 3.9]), that is, every non-empty relatively weakly
open subset of BX contains a point of continuity. The conclusion follows easily.

For ccs points, the situation is quite different. Indeed, although clearly ccs ∆-points
may not be points of strong regularity, from [41, Theorem 3.1] we know that X has
SD2P if and only if every convex combination of slices of BX contains elements of norm
arbitrarily close to 1. It readily follows that any space X which contains a ccs Daugavet
point satisfies SD2P, so it is very far from being strongly regular. We will provide more
details on this topic in Chapter 5, but for later reference let us state the following.

Proposition 3.12. Let X be a Banach space. If X contains a ccs Daugavet point, then
it has SD2P (it fails to be strongly regular).

Next, we show that extreme points have a nice behaviour with respect to diametral
notions.

Proposition 3.13. Let X be a Banach space and let x ∈ SX .

(1) If x ∈ pre-ext(BX) and it is a ∆-point, then x is a super ∆-point.
(2) If x ∈ ext(BX) and it is a super ∆-point, then x is a ccs ∆-point.
(3) In particular, if x ∈ pre-ext(BX) is a ∆-point, then x is a super ∆-point as well as

a ccs ∆-point.

Proof. It follows from Choquet’s lemma (see for example [23, Lemma 3.69]) that slices
form neighborhood bases in the relative weak topology of the unit ball of a Banach space
for its preserved extreme points, so (1) immediately follows. For (2), if x is extreme and
belongs to a ccs C :=

∑n
i=1 λiSi of BX then x ∈

⋂n
i=1 Si, which is a relatively weakly

open subset of BX .

Remark 3.14. Observe that, in fact, any extreme super ∆-point is “ccw ∆-point” as we
discussed in Chapter 2. Also, Choquet’s lemma implies that every extreme weak∗ ∆-point
in a dual space is a weak∗ ccw ∆-point.

3.1. Spaces with a one-unconditional basis and beyond. In [6], it was proved that
no real Banach space with a subsymmetric basis contains a ∆-point. On the other hand,
an example of a Banach space with a one-unconditional basis that contains a ∆-point
was provided, and a more involved example of a Banach space with a one-unconditional
basis that contains many Daugavet points was constructed. We will discuss this second
example in detail in Section 4.3.3.

In the process, it was also implicitly shown that real Banach spaces with a one-
unconditional basis cannot contain super ∆-points. In the present section, we prove that
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the same holds for ccs ∆-points. Also, we provide sharper and more general versions of
[6, Proposition 2.12]. In the first part of this chapter, we follow [6] and restrict ourselves
to real Banach spaces.

Let X be a real Banach space with a Schauder basis (ei)i⩾1. We denote by (e∗i )i⩾1

the corresponding sequence of biorthogonal functionals. Recall that (ei)i⩾1 is said to be
unconditional if the series

∑
i⩾1 e

∗
i (x)ei converges unconditionally for every x ∈ X. Also,

recall that an unconditional basis (ei)i⩾1 is said to be one-unconditional if∥∥∥∑
i⩾1

θie
∗
i (x)ei

∥∥∥ =
∥∥∥∑

i⩾1

e∗i (x)ei

∥∥∥
for every (θi)i⩾1 ∈ {−1, 1}N and for every x ∈ X. Moreover, if∥∥∥∑

i⩾1

θie
∗
i (x)eni

∥∥∥ =
∥∥∥∑

i⩾1

e∗i (x)ei

∥∥∥
for every (θi)i⩾1 ∈ {−1, 1}N, for every x ∈ X, and for every strictly increasing sequence
(ni)i⩾1 in N, then the basis is called subsymmetric.

Observe that for spaces with a one-unconditional basis, it is enough, in order to study
the various Daugavet and ∆-notions, to work in the positive sphere

S+
X := {x ∈ SX : e∗i (x) ⩾ 0 ∀i}

of the space X. Also, the following result is well known.

Lemma 3.15. Let X be a real Banach space with a one-unconditional basis (ei)i⩾1, and
let (ai)i⩾1 and (bi)i⩾1 be sequences of real numbers. If the series

∑
i⩾1 biei converges,

and if |ai| ⩽ |bi| for every i, then
∑

i⩾1 aiei converges as well, and we have∥∥∥∑
i⩾1

aiei

∥∥∥ ⩽
∥∥∥∑

i⩾1

biei

∥∥∥.
Let us now recall some notation and preliminary results from [6]. Let X be a real

Banach space with a normalized one-unconditional basis (ei)i⩾1. For every subset A of
N, we denote by PA the projection on span {ei : i ∈ A}. Then for every x ∈ X, we define

M(x) := {A ⊂ N : ∥PA(x)∥ = ∥x∥, and ∥PA(x)− e∗j (x)ej∥ < ∥x∥ ∀j ∈ A}.

The set M(x) can be seen as the set of all minimal norm-giving subsets of the support
of x. We denote respectively by MF (x) and M∞(x) the subsets of all finite and infinite
elements of M(x). It follows from [6, Lemma 2.7] that the set M(x) is never empty,
and from [6, Proposition 2.15] that no element x ∈ SX satisfying M∞(x) = ∅ can be a
∆-point.

For every non-empty ordered subset A := {a1 < a2 < · · · } of N, and for every n ∈ N
smaller than or equal to |A|, we denote by A(n) := {a1, . . . , an} the subset consisting of
the n first elements of A. We will implicitly assume in the following that the elements
of M(x) are ordered subsets of N. The next two results were proved in [6, Lemmas 2.8
and 2.11].
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Lemma 3.16. Let X be a real Banach space with a normalized one-unconditional basis
(ei)i⩾1 and let x ∈ SX . For every n ∈ N, the sets{

A ∈ M(x) : |A| ⩽ n
}

and
{
A(n) : A ∈ M(x), |A| > n

}
are both finite.

Lemma 3.17. Let X be a real Banach space with a normalized one-unconditional basis
and let x ∈ SX . For every subset E of N such that E ∩ A ̸= ∅ for every A ∈ M(x), we
have ∥x− PE(x)∥ < 1.

With those tools at hand, we can now prove an analogue to [6, Proposition 2.13] for
convex combinations of slices.

Proposition 3.18. Let X be a Banach space with a normalized one-unconditional ba-
sis and x ∈ S+

X . Then there exists δ > 0 and a ccs C of BX containing x such that
supy∈C ∥x− y∥ ⩽ 2− δ.

Proof. Let x ∈ S+
X , and define E =

⋃
A∈M(x) A(1). From Lemmas 3.16 and 3.17, we know

that E is a finite subset of N and ∥x−PE(x)∥ < 1. In particular, there exists γ > 0 such
that ∥x− PE(x)∥ ⩽ 1− γ. For every i ∈ E, we define

Si := S

(
e∗i , 1−

e∗i (x)

2

)
.

Then we consider the ccs

C :=
1

|E|
∑
i∈E

Si.

Since x ∈ S+
X , it is clear that x ∈

⋂
i∈E Si and in particular x ∈ C.

So let us pick y := 1
|E|

∑
i∈E yi in C with yi ∈ Si. Then e∗i (y

i) > e∗i (x)/2 for every i. In
particular, e∗i (yi) ⩾ 0, and

∣∣e∗i (yi)− e∗i (x)
∣∣ ⩽ e∗i (y

i). Indeed, for any given non-negative
real numbers α and β with β ⩾ α/2, we have

|β − α| = β − α ⩽ β

if β ⩾ α, and

|β − α| = α− β ⩽ α− α

2
=

α

2
⩽ β

if β ⩽ α. So in either case, |β − α| ⩽ β as desired.
It then follows from Lemma 3.15 that ∥yi − e∗i (x)ei∥ ⩽ ∥yi∥ ⩽ 1, and finally

∥x− y∥ ⩽

∥∥∥∥x− x

|E|

∥∥∥∥+

∥∥∥∥ x

|E|
− PE(x)

|E|

∥∥∥∥+

∥∥∥∥PE(x)

|E|
− y

∥∥∥∥
⩽ 1− 1

|E|
+

1− γ

|E|
+

1

|E|
∑
i∈E

∥e∗i (x)ei − yi∥ ⩽ 2− γ

|E|
.

The conclusion follows with δ := γ/ |E|. In particular, since x belongs to the relatively
weakly open set

⋂
i∈E Si ⊂ C, we also find that x is not super ∆, recovering the result

from [6].
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So combining [6, Proposition 2.13] and Proposition 3.18, we immediately see that
spaces with a normalized one-unconditional basis fail to contain super ∆-points and ccs
∆-points. So let us state the following result here for future reference.

Theorem 3.19. Let X be a real Banach space with a normalized one-unconditional basis.
Then X does not contain super ∆-points, and X does not contain ccs ∆-points.

In the rest of the section, we aim at providing sharper and improved versions of [6,
Proposition 2.13]. In particular, we will go back to working with either real or complex
Banach spaces. The main result of this study is the following proposition.

Proposition 3.20. Let X be a Banach space, and assume that there exists a subset
A ⊆ F(X,X) such that sup {∥Id−T∥ : T ∈ A} < 2 and for every ε > 0 and every x ∈ X,
there exists T ∈ A such that ∥x− Tx∥ < ε. Then X contains no super ∆-point.

Let us provide a lemma which is a localization of the above result from which its proof
is immediate.

Lemma 3.21. Let X be a Banach space, and let x ∈ SX . If there exists a finite-rank
operator T on X such that ∥x− Tx∥+ ∥Id− T∥ < 2, then x is not a super ∆-point.

Proof. Consider ε > 0 such that K := ∥x − Tx∥ + ∥Id − T∥ + ε < 2. Since T has finite
rank, we can find N ⩾ 1, w1, . . . , wN ∈ SX and f1, . . . , fN ∈ X∗ such that T (z) =∑N

n=1 fn(z)wn for every z ∈ X. Let

W :=

{
y ∈ BX : |fn(x− y)| < ε

2n+1
∀n ∈ {1, . . . , N}

}
.

It is a neighborhood of x in the relative weak topology of BX , and for every y ∈ W , we
have

∥x− y∥ ⩽ ∥x− Tx∥+ ∥Tx− Ty∥+ ∥y − Ty∥

⩽ ∥x− Tx∥+ ∥Id− T∥+
N∑

n=1

|fn(x− y)| ∥wn∥

⩽ ∥x− Tx∥+ ∥Id− T∥+ ε

N∑
n=1

1

2n+1
⩽ K < 2.

Remark 3.22. It is unclear whether an analogue to Lemma 3.21 can be given for ccs
∆-points. So we do not know whether Proposition 3.20 extends to this notion.

As particular cases of Proposition 3.20, we have the following ones. Recall that a
sequence (En)n⩾1 of finite-dimensional subspaces of a given Banach space X is called a
finite-dimensional decomposition (FDD) for X if every element x ∈ X can be represented
in a unique way as a series x :=

∑
n⩾1 xn with xn ∈ En for every n ⩾ 1. An FDD is

said to be unconditional if the above series converges unconditionally for every x ∈ X.
In this case, it is well known that the family (PA)A⊂N, where PA is the projection given
by PA(x) :=

∑
n∈A xn, is uniformly bounded, and the constant KS := supA⊂N ∥PA∥ is

called the suppression-unconditional constant of the FDD. We refer to [40, Section 1.g]
for the details and to [8, Section 3.1] for the particular case of unconditional bases.
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Corollary 3.23. A Banach space X fails to have super ∆-points provided one of the
following conditions is satisfied:

(1) There exists a family A ⊆ F(X,X) such that sup {∥Id − T∥ : T ∈ A} < 2 and the
identity mapping belongs to the strong operator topology (SOT ) closure of F .

(2) There exists a family {Pλ}λ∈Λ of finite-rank projections on X such that
⋃

λ∈Λ Pλ(X)

= X and supλ∈Λ ∥Id− Pλ∥ < 2.
(3) The space X admits an FDD with suppression-unconditional constant less than 2. In

particular, X admits an unconditional basis with suppression-unconditional constant
less than 2.

Observe that the value 2 in the above results is sharp in several ways.

Remark 3.24. (1) The space C[0, 1] admits a monotone Schauder basis, so there exists a
sequence {Pn}n⩾1 of norm-one finite-rank projections on this space which converges
to Id in SOT topology. As C[0, 1] has the Daugavet property, all elements in SX are
super Daugavet points. Observe that ∥Id− Pn∥ = 2 for every n ⩾ 1 by DPr.

(2) Let X be an arbitrary Banach space. For every x ∈ SX choose fx ∈ SX∗ such that
fx(x) = 1, and define Px(z) = fx(z)x for every z ∈ X. Then {Px : x ∈ SX} is a family
of norm-one rank-one projections on X, X =

⋃
x∈SX

Px(X), and ∥Id − Px∥ ⩽ 2 for
every x ∈ SX .

(3) The space c admits ccs Daugavet points (hence super Daugavet points) (see The-
orem 4.2), but it is easy to check that its usual basis is 3-unconditional and 2-
suppression-unconditional.

(4) It is shown in [30] that a Banach space has DLD2P if and only if ∥Id−P∥ ⩾ 2 for every
rank-one projection P . It follows that the suppression constant of an unconditional
basis on a Banach space with DLD2P has to be greater than or equal to 2. Let
us mention here that there is no local version of this result, as there are Banach
spaces with one-unconditional basis and containing many Daugavet points [6] (see
Section 4.3.3).

3.2. Absolute sums. In this section we look at the transfer of the diametral points
through absolute sums of Banach spaces. Let us first recall the following definition.

Definition 3.25. A norm N on R2 is absolute if N(a, b) = N(|a| , |b|) for every (a, b) ∈
R2, and normalized if N(0, 1) = N(1, 0) = 1.

If X and Y are Banach spaces, and if N is an absolute normalized norm on R2,
we denote by X ⊕N Y the product space X × Y endowed with the norm ∥(x, y)∥ =

N(∥x∥, ∥y∥). It is easy to check that X ⊕N Y is a Banach space, and that its dual can be
expressed as (X⊕NY )∗ ≡ X∗⊕N∗Y ∗ where N∗ is the absolute norm given by the formula
N∗(c, d) = maxN(a,b)=1 |ac| + |bd|. Classical examples of absolute normalized norms on
R2 are the ℓp norms for p ∈ [1,∞], and more generally any ℓφ Orlicz norms. Information
on absolute norms can be found in [16, §21] and [43] and references therein, for instance.
Let us recall that for every absolute normalized sum N , given non-negative a, b, c, d in R
with a ⩽ b and c ⩽ d we have N(a, b) ⩽ N(c, d). In particular, ∥ · ∥∞ ⩽ N ⩽ ∥ · ∥1.
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Similar to DD2P (see [13, Theorem 2.11]) and to ∆-points [28], super ∆-points transfer
very well through absolute sums.

Proposition 3.26. Let X and Y be Banach spaces, and let N be an absolute normalized
norm.

(1) If x ∈ SX and y ∈ SY are super ∆-points, then (ax, by) is a super ∆-point in X⊕N Y

for every (a, b) ∈ R2 with N(a, b) = 1.
(2) If x ∈ SX is a super ∆-point, then (x, 0) is a super ∆-point in X ⊕N Y . If y ∈ SY is

a super ∆-point, then (0, y) is a super ∆-point in X ⊕N Y .

Proof. (1) We can find two nets (xs)s∈S and (yt)t∈T respectively in SX and SY such
that xs

w−→ x, yt
w−→ y, and ∥x − xs∥, ∥y − yt∥ → 2. Now, if we take (a, b) ∈ R2 with

N(a, b) = 1 we clearly have (axs, byt)
w−−−−−−−→

(s,t)∈S×T
(ax, by) and ∥(ax, by) − (axs, byt)∥ =

N(a∥x− xs∥, b∥y − yt∥) → 2N(a, b) = 2, so (ax, by) is a super ∆-point in X ⊕N Y .
(2) Just repeat the previous proof with a = 1 and b = 0 or with a = 0 and b = 1, and

so only one of the points has to be a super ∆-point.

For super Daugavet points the situation is more complicated and we need to distin-
guish between different kinds of absolute norms. The following definitions can be found,
for instance, in [28].

Definition 3.27. Let N be an absolute normalized norm on R2.

(1) N has property (α) if for all a, b ∈ R+ with N(a, b) = 1 we can find a neighborhood
W of (a, b) in R2 with sup(c,d)∈W c < 1 or sup(c,d)∈W d < 1 and such that any couple
(c, d) ∈ R2

+ satisfying N(c, d) = 1 and N((a, b) + (c, d)) = 2 belongs to W .
(2) N is A-octahedral if there are a, b ∈ R+ with N(a, b) = 1 such that N((a, b) + (c, d))

= 2 for

c = max {e ∈ R+ : N(e, 1) = 1} and d = max {f ∈ R+ : N(1, f) = 1}.

(3) N is positively octahedral if there exist a, b ∈ R+ such that N(a, b) = 1 and

N((a, b) + (0, 1)) = N((a, b) + (1, 0)) = 2.

Positively octahedral norms were introduced in [27] in order to characterize the abso-
lute norms for which the corresponding absolute sum is octahedral. It is clear that property
(α) and A-octhaedrality exclude each other and that every positively octahedral absolute
normalized norm is A-octahedral (while there clearly exist absolute A-octahedral norms
which are not positively octahedral). Moreover, it was proved in [28, Proposition 2.5] that
every absolute normalized norm on R2 either has property (α) or is A-octahedral. For
ℓp-norms, ∥ · ∥1 and ∥ · ∥∞ are both positively octahedral, and ∥ · ∥p has property (α) for
every p ∈ (1,∞).

Observe that if an absolute normalized norm N on R2 is positively octahedral, and if
(a, b) is as in the above definition, then the intersection of the unit sphere of N with
the positive quadrant of R2 is equal to the union of the segments [(1, 0), (a, b)] and
[(0, 1), (a, b)] (see [45, Section 3.3.1] for pictures). In particular, it follows that N((a, b)+

(c, d)) = 2 for any non-negative c, d with N(c, d) = 1. Similar to the results from [3,
Section 4] concerning Daugavet points, we have the following.
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Proposition 3.28. Let X and Y be Banach spaces, and let N be an absolute normalized
norm.

(1) ([3, Proposition 4.6]) If N has property (α), then X ⊕N Y has no Daugavet point
(hence in particular no super Daugavet points).

(2) If N is positively octahedral and if x ∈ SX and y ∈ SY are super Daugavet points,
then (ax, by) is a super Daugavet point in X ⊕N Y for every (a, b) ∈ R2

+ as in the
above definition.

Proof. (2) Assume that N is positively octahedral, take (a, b) ∈ R2
+ as in the defini-

tion, and let x ∈ SX and y ∈ SY be super Daugavet points. For any given (u, v) ∈
X ⊕N Y of norm ∥(u, v)∥ = 1 we can find two nets (us)s∈S and (vt)t∈T respectively
in SX and SY such that ∥u∥us

w−→ u, ∥v∥vt
w−→ v, and ∥x − us∥, ∥y − vt∥ → 2. Then

(∥u∥us, ∥v∥vt)
w−−−−−−−→

(s,t)∈S×T
(u, v). Since

∥ax− ∥u∥us∥ = ∥(x− us)− [(1− a)x− (1− ∥u∥)us]∥
⩾ ∥x− us∥ − (1− a+ 1− ∥u∥),
= a+ ∥u∥ − (2− ∥x− us∥),

and, in the same way,

∥by − ∥v∥vt∥ ⩾ b+ ∥v∥ − (2− ∥y − vt∥),

we have

∥(ax− ∥u∥us, by − ∥v∥vt)∥ = N(∥ax− ∥u∥us∥, ∥by − ∥v∥vt∥)
⩾ N(a+ ∥u∥ − (2− ∥x− us∥), b+ ∥v∥ − (2− ∥y − vt∥))
→ N((a+ ∥u∥, b+ ∥v∥) = 2.

This shows that (ax, by) is a super Daugavet point in X ⊕N Y .

Remark 3.29. Note that if (a, b) = (1, 0) (respectively, (a, b) = (0, 1)) in the previous
statement (for example, when N = ∥ · ∥1), then we only need to assume that x (respec-
tively, y) is super Daugavet in order to deduce that (x, 0) (respectively, (0, y)) is super
Daugavet in X ⊕N Y . Also, if N = ∥ · ∥∞, then we only need to assume that x (respec-
tively, y) is super Daugavet in order to find that (x, βy) (respectively, (αx, y)) is super
Daugavet in X ⊕N Y for every β ∈ [0, 1] (respectively, α ∈ [0, 1]).

In [28, Theorem 2.2] it is proved that regular Daugavet points also transfer through
A-octahedral sums. We do not know if a similar result can be obtained for super Dau-
gavet points. Indeed, observe that if N is an A-octahedral norm, and if c, d, and (a, b)

are as in the above definition, then the intersection of the unit sphere of N with the
positive quadrant of R2 is equal to the union of the segments [(1, 0), (1, d)], [(1, d), (a, b)],
[(0, 1), (c, 1)] and [(c, 1), (a, b)]. In particular, N((a, b)+ (e, f)) = 2 for every couple (e, f)

on the segments [(1, d), (a, b)] and [(c, 1), (a, b)], but this is no longer true on the seg-
ments [(1, 0), (1, d)] and [(0, 1), (c, 1)] and the argument in the above proof does not work
anymore.
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The situation for ccs ∆-points and ccs Daugavet point is not clear and the proofs of
the above results do not seem to admit easy extensions. For instance, it follows from the
next result that Remark 3.29 is not valid for ccs Daugavet points.

Proposition 3.30. Let X be an arbitrary Banach space, let Y be a Banach space con-
taining a strongly exposed point y0 ∈ SY , and let E := X ⊕1 Y . Then there are convex
combinations of slices of BE around 0 of arbitrarily small diameter. In particular, E fails
to contain ccs Daugavet points and also fails to have SD2P.

Proof. Let y∗0 ∈ SY ∗ strongly exposes y0. Given ε > 0, there is 0 < δ < ε such that
∥y− y0∥ < ε whenever y ∈ BY satisfies Re y∗0(y) > 1− δ. Consider f = (0, y∗0) ∈ SE∗ and
write

C := 1
2 (S(f, δ;BE) + S(−f, δ, BE))

Take u := 1
2 (u1 + u2) ∈ C with u1 ∈ S(f, δ;BE) and u2 ∈ S(−f, δ;BE). So if write

u1 := (x1, y1) and u2 := (x2, y2), we have

Re y∗0(y1) = Re f(x1, y1) > 1− δ and Re y∗0(y2) = Re f(x2, y2) < −1 + δ.

On the one hand, it follows that ∥y1 − y0∥ < ε and ∥y2 + y0∥ < ε. On the other hand,
∥y1∥, ∥y2∥ > 1− δ, hence ∥x1∥ < δ < ε and ∥x2∥ < δ < ε. Summarizing, we have

∥u∥ = 1
2

(
∥x1 + x2∥+ ∥y1 + y2∥

)
⩽ 1

2 (2ε+ 2ε) = 2ε.

Remark 3.31. It is straightforward to adapt the previous proof to ℓp-sums for 1 < p < ∞.

However, note that the situation is very different for ℓ∞-sums.

Theorem 3.32. Let X and Y be Banach spaces, and let E := X ⊕∞ Y . If x ∈ SX is a
ccs Daugavet point, then (x, y) ∈ SE is a ccs Daugavet point for every y ∈ BY .

Proof. Let C :=
∑n

i=1 λiSi be a ccs of BE . For every i ∈ {1, . . . , n}, we can write
Si := S(fi, δi) with fi := (x∗

i , y
∗
i ) ∈ SE∗ satisfying 1 = ∥fi∥ = ∥x∗

i ∥ + ∥y∗i ∥. Consider on
the one hand

S̃i := {s ∈ BX : Rex∗
i (s) > ∥x∗

i ∥ − δi/2},
and pick on the other hand any ti ∈ BY such that Re y∗i (ti) > ∥y∗i ∥ − δi

2 . Since C̃ :=∑n
i=1 λiS̃i is a ccs of BX , we can find for every ε > 0 an element s :=

∑n
i=1 λisi in C̃

such that ∥x− s∥ > 2− ε. Then, if we let t :=
∑n

i=1 λiti, we get (si, ti) ∈ BE and

Re fi(si, ti) = Rex∗
i (si) + y∗i (ti) > ∥x∗

i ∥+ ∥y∗i ∥ − δi = 1− δi

for every i, so that (si, ti) ∈ Si, and (s, t) =
∑n

i=1 λi(si, ti) ∈ C. Finally,

∥(x, y)− (s, t)∥ ⩾ ∥x− s∥ > 2− ε,

so (x, y) is a ccs Daugavet point as stated.



4. Examples and counterexamples of diametral elements

In this chapter we give a number of examples and counterexamples of diametral elements
on the unit spheres of Banach spaces. We first characterize the notion in some spaces
which have natural relations with the Daugavet property, such as L1-predual spaces,
Müntz spaces, and L1-spaces. Next, we comment on some examples which have previously
appeared in the literature, including some improvements in some cases (as for Lipschitz
free spaces). Finally, we include some complicated examples which will be needed to
see that no implication in Figure 1 on page 13 reverses and also to negate some other
possible implications between the relevant notions. A summary of all the relations between
properties will be included in Section 4.7.

4.1. Characterization in C(K)-spaces, L1-preduals, and Müntz spaces. It was
shown in [3, Theorems 3.4 and 3.7] that the notions of ∆-point and Daugavet point
coincide for L1-preduals. The authors first characterize the ∆-points in C(K)-spaces and
then get the result for L1-preduals by using the principle of local reflexivity. Later on, a
characterization of ∆-points (equivalently, Daugavet points) of L1-preduals was provided
in [42, Theorem 3.2], which implicitly proved that actually ∆-points and super Daugavet
points coincide in this setting. Let us state this result here for further reference. Observe
that the authors of [3] work with real Banach spaces, but it is immediate that the proof
of [3, Theorems 3.4] works in the complex case as well; the paper [42] works in both the
real and the complex cases.

Proposition 4.1 ([3, Theorems 3.4 and 3.7], [42, Theorem 3.2]). Let X be an L1-pre-
dual and let x ∈ SX . The following assertions are equivalent:

(1) x is a Daugavet point.
(2) x is a ∆-point.
(3) For every δ > 0, the weak∗ slice S(JX(x), δ;BX∗) contains infinitely many linearly

independent extreme points of BX∗ .
(4) For every y ∈ BX , there exists a sequence (x∗∗

n ) in BX∗∗ with ∥x− x∗∗
n ∥ → 2 and∥∥∥∑

n⩾1

an(y − x∗∗
n )

∥∥∥ ⩽ 2∥a∥∞

for every a := (an) ∈ c00.
(5) For every element y ∈ BX , there exists a sequence (x∗∗

n ) in BX∗∗ which converges
weak∗ to y and satisfies ∥x− x∗∗

n ∥ → 2.

[27]
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If X = C(K) for a Hausdorff topological space K, the above is also equivalent to:

(6) x attains its norm at an accumulation point of K.

We will show that, in fact, ∆-points also coincide with the ccs versions for L1-preduals.
Our approach will be analogous to the one used in [3] for ∆-points and Daugavet points.
We first prove the result for C(K)-spaces and then deduce it for all L1-preduals using the
fact that the bidual of an L1-predual is a C(K)-space. For C(K)-spaces, we first prove a
sufficient condition for ccs Daugavet points which, for the same price, can be proved for
vector-valued spaces. Recall that given a compact Hausdorff topological space K and a
Banach space X, C(K,X) denotes the Banach space of continuous functions from K to
X endowed with the supremum norm.

Theorem 4.2. Let K be a compact Hausdorff topological space, X a Banach space, and
let t0 be an accumulation point of K. If a function f ∈ SC(K,X) satisfies ∥f(t0)∥ = 1,
then f is a ccs Daugavet point.

Proof. Pick x∗ ∈ SX∗ such that Rex∗(f(t0)) = ∥f(t0)∥ = 1. Let C :=
∑L

i=1 λiSi be a
convex combination of slices of BC(K). For every i ∈ {1, . . . , L}, pick a function gi ∈ Si.
Since K is compact and t0 is an accumulation point of K we have the following.

Claim. There exists a sequence (Un)n⩾0 of open neighborhoods of t0 such that

(1) U0 = K,
(2) Un+1 is a proper subset of Un for every n ⩾ 0,
(3) Re(x∗ ◦f)|Un

⩾ 1−1/n and ∥gi|Un
−gi(t0)∥ ⩽ 1/n for every i ∈ {1, . . . , L} and every

n ⩾ 1.

Indeed, we construct the sequence inductively. Let U0 := K and assume U0, . . . , Un

have been constructed for some n ⩾ 0. Since K is normal, we can find an open subset
U of Un such that t0 ∈ U ⊂ U ⊂ Un. Also since t0 is an accumulation point of K and
since K is Hausdorff, we can find an open subset V of U such that V is a proper subset
of U (pick any point in U distinct from t0 and separate the two points with open sets).
By continuity of f and of the finitely many gi’s, we can then find an open subset W of
V such that

Re(x∗ ◦ f)|W > 1− 1

n+ 1
and ∥gi|W − gi(t0)∥ <

1

n+ 1

for every i ∈ {1, . . . , L}. The set Un+1 := W does the job.
Now, pick (Un)n⩾0 as in the claim and define Fn := Un\Un+1 for every n ⩾ 0. By

construction, the Fn’s are closed non-empty subsets of K and cover K \
⋂

n⩾0 Un, and
each Fn can only intersect its neighbors Fn−1 and Fn+1. By Urysohn’s lemma, for every
n ⩾ 1 we can find a function pn ∈ C(K) satisfying

(1) 0 ⩽ pn ⩽ 1,
(2) pn|Fn+1

= 1,
(3) pn|F0∪···∪Fn−1∪Un+3

= 0.

The sequence (pn) is normalized and converges pointwise to 0, so it converges weakly
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to 0. Moreover, observe that

∥gi − (1 + gi(t0))pn∥∞ ⩽ 1 +
1

n

for every i ∈ {1, . . . , L} since ∥gi|Un
− gi(t0)∥ ⩽ 1

n and pn|(K\Un)
= 0 by construction. So

all the functions
gi,n :=

n

n+ 1
(gi − (1 + gi(t0))pn)

belong to BC(K) and the sequences (gi,n)n∈N converge weakly to gi for all i ∈ {1, . . . , L}.
Since the finitely many Si’s are all weakly open, we may thus find some N ⩾ 1 such that
gi,n ∈ Si for every i and every n ⩾ N . In particular, the function

gn :=

L∑
i=1

λigi,n

belongs to C for every n ⩾ N . To conclude, fix t ∈ Fn+1 ⊂ Un+1 ⊂ Un and observe that

Rex∗f(t) ⩾ 1− 1

n

and that

Rex∗gi,n(t) =
n

n+ 1
Rex∗(gi(t)− (1 + gi(t0))

⩽
n

n+ 1
Rex∗

(
gi(t0) +

1

n
− (1 + gi(t0))

)
= −1 +

2

n+ 1

for every i ∈ {1, . . . L}. Hence,

∥f − gn∥∞ ⩾ Rex∗
(
f(t)−

L∑
i=1

λi Re(gi,n(t))
)
⩾ 2− 1

n
− 2

n+ 1
.

Combining the previous result with Proposition 4.1, we get the promised characteri-
zation of diametral points in C(K)-spaces.

Corollary 4.3. Let K be a Hausdorff topological compact space. Then the six concepts
of diametral points are equivalent in C(K).

For vector-valued spaces, the situation is not that easy, but we can still provide some
results. Observe that, clearly, if t0 is an isolated point of a compact Hausdorff topological
space K and X is a Banach space, then C(K,X) = C(K \ {t0}, X)⊕∞ X.

Remark 4.4. Let K be a Hausdorff topological compact space, let X be a Banach space.
and let f ∈ C(K,X) be a function with ∥f∥ = 1.

(1) If f ∈ C(K,X) with ∥f∥ = 1 attains its norm at an accumulation point of K, then
f is a ccs Daugavet point (by Theorem 4.2), and hence f satisfies the six diametral
notions.

(2) If f ∈ C(K,X) with ∥f∥ = 1 attains its norm at an isolated point t0 and f(t0) is a
Daugavet (respectively, super Daugavet, ccs Daugavet) point, then f is a Daugavet
(respectively, super Daugavet, ccs Daugavet) point (by [3, Section 4], Remark 3.29,
and Theorem 3.32, respectively).
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(3) Suppose that K contains an isolated point t0, let x0 ∈ SX , and let f ∈ C(K,X) be
given by f(t0) = x0 and f(t) = 0 for every t ∈ K \ {t0}. Then:

(3.1) If x0 is a ∆- (respectively, super ∆-) point of X, then f is a ∆- (respectively,
super ∆-) point of C(K,X) (by [3, Section 4] and Proposition 3.26, respec-
tively).

(3.2) If x0 is a Daugavet (respectively, super Daugavet, ccs Daugavet) point of X,
then f is a Daugavet (respectively, super Daugavet, ccs Daugavet) point of
C(K,X) (by [45, Proposition 3.3.11], Remark 3.29 Theorem 3.32, respectively).

(3.3) If f is a ∆- (respectively, Daugavet) point of C(K,X), then x0 is a ∆- (re-
spectively, Daugavet) point of X (by [45, Theorem 3.4.4], [45, Theorem 3.3.13],
respectively).

(4) It is now easy to show that the six diametral notions do not coincide in C(K,X)-
spaces. Indeed, let K be a compact Hausdorff topological space containing an isolated
point t0, let X be a Banach space containing a ∆-point x0 which is not a Daugavet
point (e.g. any x0 in the unit sphere of X = C[0, 1]⊕2 C[0, 1]; see Propositions 3.26
and 3.28), and consider the function f ∈ C(K,X) given by f(t0) = x0 and f(t) = 0

for every t ∈ K \ {t0}. Then f is a ∆-point by (3.1) but it is not a Daugavet point
by (3.3).

We are now ready to extend Corollary 4.3 to general L1-predual spaces.

Corollary 4.5. Let X be an L1-predual and let x ∈ SX be a ∆-point. Then x is a ccs
Daugavet point. Hence the six diametral notions are equivalent for L1-preduals.

Proof. If x is a ∆-point in X, then as mentioned in Remark 2.6(3), JX(x) is a ∆-point
in X∗∗. Now, X∗∗ is isometric to a C(K)-space so Theorem 4.2 implies that JX(x) is a
ccs Daugavet point in X∗∗. Then, using now Remark 2.6(4) (or using a straightforward
argument based on the principle of local reflexivity as in [3, Theorem 3.7]), we conclude
that x is a ccs Daugavet point in X.

Observe that the proof of Theorem 4.2 also works for Müntz spaces (by using [3,
Lemma 3.10] to provide suitable replacements for the functions pn). We recall that given
an increasing sequence Λ = (λn)

∞
n=0 of non-negative real numbers with λ0 = 0 such that∑∞

i=1
1
λi

< ∞, the real Banach space

M(Λ) := span {pn : n ⩾ 0} ⊆ C[0, 1]

given as the closure in C[0, 1] of the linear span of the power functions pn : t 7→ tλn ,
t ∈ [0, 1], is called the Müntz space associated with Λ. Excluding the constant functions
from M(Λ), we have the subspace M0(Λ) := span {pn : n ⩾ 1} of M(Λ).

So, adapting the proof of Theorem 4.2 to Müntz spaces (for real-valued functions
attaining their norm at 1 ∈ [0, 1]) and also using [3, Proposition 3.12], we get the following
result analogous to Corollaries 4.3 and 4.5.

Corollary 4.6. Let X = M(Λ) or X = M0(Λ) for an increasing sequence Λ of non-
negative real numbers with λ0 = 0 such that

∑∞
i=1

1
λi

< ∞. Then every ∆-point of X is
a ccs Daugavet point (and hence the six diametral notions are equivalent).
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4.2. Characterization in L1-spaces. In [3, Theorem 3.1] the equivalence between the
notions of Daugavet point and ∆-point was obtained for elements of σ-finite L1-spaces in
the real case. Actually, it is not complicated to extend the results to arbitrary measures
and also to the complex case.

Proposition 4.7 ([3, Theorem 3.1] for the σ-finite real case). Let (Ω,Σ, µ) be a measure
space, and let f be a norm-one element in L1(µ). Then the following assertions are
equivalent:

(1) f is a Daugavet point.
(2) f is a ∆-point.
(3) The support of f contains no atom.

Observe that (1)⇒(2) is immediate. For (2)⇒(3), suppose that f is a ∆-point and
let A be an atom of finite measure (the only ones that can be contained in the support
of an integrable function). Then clearly L1(µ) = L1(µ|Ω\A)⊕1 K (as integrable functions
are constant on atoms), and we may write f = (f1, c) for suitable f1 ∈ L1(µ|Ω\A) and
c = f(A) ∈ K. If c ̸= 0, then ∥f1∥ ≠ 1 and it follows from [45, Theorem 3.4.4] that 1 ∈ K
is a ∆-point, a contradiction. This shows that the support of f contains no atom.

To show that (3)⇒(1), we actually prove the following more general result. Recall
that given a measure space (Ω,Σ, µ) and a Banach space X, L1(µ,X) denotes the Banach
space of all Böchner-integrable functions from Ω to X (see [20, p. 49] for the definition
and background).

Theorem 4.8. Let (Ω,Σ, µ) be a measure space, let X be a Banach space, and let f be a
norm-one element in L1(µ,X). If the support of the function f contains no atom, then
f is a super Daugavet point.

Proof. Let S := supp f , which contains no atom by assumption. Let us first prove that
f is a super Daugavet point. Since S contains no atoms, L1(µ|S , X) has the Daugavet
property (see e.g. [54, Example in p. 81]). In particular, f is a super Daugavet point in
this space. Since L1(µ,X) = L1(µ|S , X) ⊕1 L1(µ|Σ\S , X), we conclude that f is a super
Daugavet point in L1(µ,X) by the transfer results from Section 3.2 (see Remark 3.29).

Our next goal is to discuss the relationship to the ccs diametral notions. For real L1(µ)-
spaces, and using a result from [1], we may actually deduce that real-valued integrable
functions with atomless support are ccs ∆-points.

Proposition 4.9. Let (Ω,Σ, µ) be a measure space and let f be a norm-one element in
the real space L1(µ). If supp f contains no atom, then f is a ccs ∆-point.

Proof. Take ε > 0 and D :=
∑n

i=1 λiSi a ccs of BL1(µ) containing f , with λi ∈ (0, 1) and∑n
i=1 λi = 1. Write f :=

∑n
i=1 λigi with gi ∈ Si for every i. Consider the measurable

subset S̃ := supp f ∪
⋃n

i=1 supp gi of Ω and let µ̃ be the σ-finite measure µ̃ := µ|S̃ on
(S̃,Σ|S̃). Then D induces a ccs D̃ of BL1(µ̃) by restriction of the support which contains
the function f̃ which is just f viewed as an element of L1(µ̃), and hence supp f̃ contains
no toms. Since f̃ belongs to the unit sphere of the real space L1(µ̃), from [1, Theorem
5.5] we know that f̃ is an interior point of D̃ for the relative weak topology of BL1(µ̃).
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As we have already shown that f̃ is a super Daugavet point in Theorem 4.8 (and hence
a super ∆-point), we can find g̃ ∈ D̃ such that

∥∥f̃ − g̃
∥∥ > 2− ε. By just considering the

extension g of g̃ to the whole Ω by 0, we get g ∈ D and ∥f − g∥ =
∥∥f̃ − g̃

∥∥ > 2− ε.

Let us comment that it is not clear whether ccs ∆-points transfer through absolute
sums, but we have used specific geometric properties of L1-spaces in the previous proof.

Remark 4.10. Since [1, Theorem 5.5] is also valid for convex combinations of relatively
weakly open subsets of BL1(µ), in fact every ∆-point in a real L1(µ)-space is a ccw
∆-point.

Putting together Proposition 4.7, Theorem 4.8, and Proposition 4.9, we get the fol-
lowing corollary.

Corollary 4.11. Let (Ω,Σ, µ) be a measure space and let f be a norm-one element in
L1(µ). Then the following notions are equivalent for f : ∆-point, Daugavet point, super
∆-point, and super Daugavet point. Moreover, in the real case, the four notions are also
equivalent to ccs ∆-point.

We now deal with ccs Daugavet points in L1(µ)-spaces. Observe that if Ω admits
an atom A of finite measure, then L1(µ) ≡ L1(µ|Ω\A) ⊕1 K. In particular, in this case
L1(µ) fails to have ccs Daugavet points by Proposition 3.30. We then have the following
characterization of the presence of a ccs Daugavet point in an L1-space.

Proposition 4.12. Let (Ω,Σ, µ) be a measure space. Then the following assertions are
equivalent:

(1) L1(µ) has the Daugavet property.
(2) L1(µ) contains a ccs Daugavet point.
(3) L1(µ) has SD2P.
(4) µ admits no atom of finite measure.

Proof. (1)⇔(4) is well known (see [54, Section 2, Example (b)]); (1)⇒(2) is also known;
(2)⇒(3) is contained in Proposition 3.12. Finally, (3)⇒(4) follows from Proposition 3.30
and the comment before the statement of this proposition.

4.3. Remarks on some examples from the literature

4.3.1. Lipschitz-free spaces. In [51], Veeorg constructed a surprising example of a
space satisfying the Radon–Nikodým property and containing a Daugavet point. We
slightly improve this result by showing that this point is also a ccs ∆-point by proving
a general fact about extreme ∆-molecules in Lipschitz-free spaces. For the necessary
definitions we refer to the cited paper [51] and to [9, 10, 32]. In particular, we will denote
by F(M) the Lipschitz-free space over M (that is, the natural predual of the space of
Lipschtiz functions on M). For further background on Lipschitz-free spaces, we refer to
the book [53].

We start by recalling the following characterization of molecules which are ∆-points
on Lipschitz-free spaces from [32].
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Proposition 4.13 ([32, Theorem 4.7]). Let M be a pointed metric space and let x ̸= y ∈
M . Then the molecule mx,y is a ∆-point if and only if every slice S of BF(M) containing
mx,y also contains for every ε > 0 a molecule mu,v with u ̸= v ∈ M satisfying d(u, v) < ε.

When the molecule is an extreme point, we have the following improved result.

Theorem 4.14. Let M be a pointed metric space, and let x ̸= y ∈ M . If the molecule
mx,y is an extreme point and a ∆-point, then mx,y is a ccs ∆-point.

Observe that this result cannot be obtained from Proposition 3.13: molecules of
Lipschitz-free spaces which are preserved extreme points are denting points, hence very
far from being ∆-points.

To prove the theorem, we need a result which is just an equivalent reformulation of a
result in [32].

Lemma 4.15 ([32, Theorem 2.6]). Let M be a pointed metric space, and let µ ∈ SF(M).
For every ε > 0, there exists δ > 0 such that given u ̸= v ∈ M with d(u, v) < δ we have
∥µ±mu,v∥ > 2− ε.

Using this result and a homogeneity argument similar to that for [15, Lemma 2.3], we
can provide the pending proof.

Proof of Theorem 4.14. Let C :=
∑n

i=1 λiSi be a ccs of BF(M) containing mx,y and let
ε > 0. Since mx,y is extreme, we see that mx,y ∈

⋂n
i=1 Si, and by Proposition 4.13 every

Si contains molecules of F(M) supported at arbitrarily close points. Using Lemma 4.15,
we construct inductively for every η > 0 a finite sequence (mui,vi)

n
i=1 of molecules in

F(M) such that

(1) mui,vi ∈ Si for every i,
(2) ∥mx,y −

∑k
i=1 λimui,vi∥ > 1 +

∑k
i=1 λi − kε

n for every k ⩽ n.

Indeed, since S1 contains molecules of F(M) supported at arbitrarily close points, we can
find by Lemma 4.15 u1 ̸= v1 ∈ M such that mu1,v1 ∈ S1 and ∥mx,y −mu1,v1

∥ > 2− ε
n . It

follows that ∥mx,y − λ1mu1,v1∥ ⩾ ∥mx,y −mu1,v1
∥ − (1− λ1) > 1 + λ1 − ε

n . Assume that
mu1,v1 , . . . ,muk,vk are constructed as desired for a given k ∈ {1, . . . , n − 1}. Since Sk+1

contains molecules of F(M) supported at arbitrarily close points, we can find by Lemma
4.15 uk+1 ̸= vk+1 ∈ M such that muk+1,vk+1

∈ Sk+1 and∥∥∥∥ mx,y −
∑k

i=1 λimui,vi

∥mx,y −
∑k

i=1 λimui,vi∥
−muk+1,vk+1

∥∥∥∥ > 2− ε

n∥mx,y −
∑k

i=1 λimui,vi
∥
.

Then∥∥∥∥ mx,y −
∑k+1

i=1 λimui,vi

∥mx,y −
∑k

i=1 λimui,vi∥

∥∥∥∥ ⩾

∥∥∥∥ mx,y −
∑k

i=1 λimui,vi

∥mx,y −
∑k

i=1 λimui,vi∥
−muk+1,vk+1

∥∥∥∥
−
(
1− λk+1

∥mx,y −
∑k

i=1 λimui,vi∥

)
> 1 +

λk+1

∥mx,y −
∑k

i=1 λimui,vi∥
− ε

n∥mx,y −
∑k

i=1 λimui,vi∥
.
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By the assumption,∥∥∥mx,y −
k+1∑
i=1

λimui,vi

∥∥∥ > ∥mx,y −
k∑

i=1

λimui,vi∥+ λk+1 −
ε

n
> 1 +

k+1∑
i=1

λi −
(k + 1)ε

n
.

As a consequence, µ :=
∑n

i=1 λimui,vi belongs to C and satisfies ∥mx,y − µ∥ > 2− ε.

In particular, as announced, the molecule mx,y in the example from [51] is a ccs ∆-
point. Note that it cannot be a ccs Daugavet point by Proposition 3.12 since the space
has RNP, but we do not know whether it is a super ∆-point or even a super Daugavet
point. Let us state the result for further reference.

Example 4.16. Let M be the metric space constructed in [51, Example 3.1] and let x, y
be the points described there. Then F(M) has RNP, the molecule mx,y is an extreme
point of the unit ball of F(M) which is a Daugavet point. Hence, by our Theorem 4.14,
mx,y is a ccs-∆-point.

Let us finally remark that the space F(M) of Example 4.16 has RNP, so in partic-
ular it is strongly regular. Since then strongly regular points of its unit ball are norm
dense, both examples have ccs ∆-points. They cannot contain ccs Daugavet points by
Proposition 3.12.

Let us also comment that the use of Theorem 4.14 above cannot be omitted, as the
molecule m0,q is not a preserved extreme point, hence Proposition 3.13 is again not
applicable.

4.3.2. An example of a Banach space with DD2P, restricted DSD2P, but
containing ccs of arbitrarily small diameter. In [2, Theorem 2.12], Abrahamsen,
Hájek, Nygaard, Talponen, and Troyanski constructed a space X which has DLD2P,
which is midpoint locally uniformly rotund (in particular, pre-ext(BX) = SX), and such
that BX contains convex combinations of slices of arbitrarily small diameter. It then
follows from Proposition 3.13 that every element of SX is actually a super ∆-point and
a ccs ∆-point (that is, X has DD2P and restricted DSD2P). But since X contains ccs
of arbitrarily small diameter, it fails SD2P in an extreme way. The obvious explanation
for the failure of SD2P and the fact that every element in the unit sphere is a ccs ∆-
point is that none of the convex combinations of slices of diameter strictly smaller than
2 intersects the unit sphere. On the other hand, the space X is constructed as the ℓ2-
sum of spaces, and so X does not contain Daugavet points by [3, Proposition 4.6] (see
Proposition 3.28).

Observe further that X has restricted DSD2P and DD2P, but fails DSD2P (which is
equivalent to the Daugavet property by [34]).

4.3.3. An example in a space with one-unconditional basis. Abrahamsen, Lima,
Martiny, and Troyanski constructed in [6, Section 4] a Banach space XM with one-
unconditional basis which contains a subset DB ⊆ SXM

satisfying

• every element in DB is both a Daugavet point and a point of continuity,
• BXM

= co(DB),
• DB is weakly dense in the unit ball.
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Observe that no element of DB is a super ∆-point (it is exactly the opposite!). By
Theorem 3.19, no element of DB is a ccs ∆-point.

4.4. A super ∆-point which fails to be a Daugavet point in an extreme way.
In order to put into a context the following result, let us recall that Daugavet points are
at distance 2 from any denting point (see [32, Proposition 3.1]). With this in mind, the
following result can be interpreted as the existence of super ∆-points which fail to be
Daugavet points in an extreme way.

Theorem 4.17. Let X be a Banach space with the Daugavet property. Then, for every
ε > 0, there exists an equivalent norm | · | and two points x, y ∈ B(X,|·|) such that

(1) y is a super ∆-point,
(2) x is strongly exposed,
(3) |x− y| < ε.

Proof. Take a subspace Y ⊆ X with dim(X/Y ) = 1. Observe that Y has the Daugavet
property (see e.g. [50, Theorem 6(a)]). Take x ∈ SX with 0 < d(x, Y ) < ε (this can be
settled taking a non-zero element v ∈ X/Y with quotient norm smaller than ε). Now, we
can find an element y ∈ SY such that ∥x − y∥ < ε. By the Hahn–Banach theorem, we
can take f ∈ SX∗ with Re f(x) > 0 and f = 0 on Y . This means that x belongs to the
slice T := {z ∈ BX : Re f(z) > α} for some α > 0. Take δ > 0 such that ∥x−y∥

1−δ < ε. By
Lemma 2.1 we can find x∗ ∈ SX∗ such that x ∈ S(x∗, δ;BX) ⊆ T . By the above inclusion
we conclude that S(x∗, δ;BX) ∩ BY = ∅ or, in other words, that Rex∗(z) ⩽ 1 − δ for
every z ∈ BY . Set

B := co(BY ∪ (1− δ)BX ∪ {±x}).

Then B is the unit ball of an equivalent norm | · | which satisfies, in view of the inclusions
(1− δ)BX ⊆ B ⊆ BX ,

∥x∥ ⩽ |x| ⩽ 1

1− δ
∥x∥

for every x ∈ X. Let us prove that | · |, x and y satisfy our requirements. First, observe
that

|x− y| ⩽ ∥x− y∥
1− δ

< ε.

Next, we claim that y is a super ∆ point. Indeed, since Y has the Daugavet property
we can find a net {ys} ⊆ BY with ys → y weakly and ∥y − ys∥ → 2. Notice that the
weak convergence ys → y is still guaranteed on X because i : (Y, ∥ · ∥) → (X, | · |) is
weak-to-weak continuous as ∥ · ∥ and | · | are equivalent. Moreover, ys ∈ BY ⊆ B for every
s, so |ys| ⩽ 1 for every s. Finally,

|ys − y| ⩾ ∥ys − y∥ → 2,

and since y ∈ BY ⊆ B, we conclude |ys − y| → 2. Hence y is clearly a super ∆-point for
the norm | · |.

It remains to prove that x is strongly exposed. Indeed, we will prove that Rex∗

strongly exposes B at x, for which it is enough to prove that Rex∗ strongly exposes
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co(BY ∪ (1− δ)BX ∪ {±x}) at x. Take

z := αu+ β(1− δ)v + (γ − ω)x ∈ co
(
BY ∪ (1− δ)BX ∪ {±x}

)
with α+β+γ+ω = 1. Observe that 1− δ < Rex∗(x) ⩽ |x∗| ⩽ ∥x∗∥ due to the inclusion
B ⊆ BX . Taking into account that Rex∗(u) ⩽ 1−δ since u ∈ BY as BY ∩S(x∗, δ;BX) = ∅,
we conclude

Rex∗(z) ⩽ (1− δ)(α+ β) + (γ − ω)Rex∗(x).

Since Rex∗(x) > 1−δ, we get sup
{
Rex∗(z) : z ∈ co(BY ∪(1−δ)BX∪{±x})

}
= Rex∗(x).

If we take a sequence

zn := αnun + βn(1− δ)vn + (γn − ωn)x ∈ co(BY ∪ (1− δ)BX ∪ {±x})

with αn +βn + γn +ωn = 1 such that Rex∗(zn) → Rex∗(x), it follows from the previous
argument that αn → 0, βn → 0, ωn → 0 and γn → 1, which means zn → x in norm.

Remark 4.18. Using the previous theorem and Proposition 3.26 it is easy to construct
(considering ℓ2-sums, for instance) a Banach space X containing a sequence of super ∆-
points (yn) such that the distance from yn to the set of strongly exposed points is going
to zero.

4.5. A super ∆-point which is a strongly regular point. In the present section,
as well as in the next one, we aim to distinguish the super and ccs notions of ∆- and
Daugavet points. The following result shows that there are plenty of examples of spaces
containing super ∆-points which are strongly regular points (hence far from being ccs
∆-points). We do the construction in real spaces for simplicity.

Theorem 4.19. Every real Banach space with the Daugavet property can be equivalently
renormed so that the new unit ball has a point which is simultaneously super-∆ and a
point of strong regularity (hence, far away of being ccs ∆-point).

We will use the following immediate result which follows from the fact that a convex
combination of ccs is again a ccs.

Lemma 4.20. Let X be a Banach space and let C be a closed, convex, bounded subset of
X. Then the set of strongly regular points of C is a convex set.

Proof of Theorem 4.19. Let X be a Banach space with the Daugavet property. Take a
one-codimensional subspace Y of X. Since Y is complemented in X then X = Y ⊕R, so
we will see X in such way. Take r > 0, y0 ∈ SY and f ∈ SX∗ such that f(y0) = 1, and
consider on X = Y ⊕ R the equivalent norm | · | whose unit ball is

B := co
(
BY × {0} ∪ {±(y0, r)} ∪ {±(y0,−r)}

)
.

It follows that | · | agrees with the original norm ∥ · ∥ on the elements of the form (y, 0).
We claim that (y0, 0) satisfies our requirements. First of all, let us prove that (y0, 0)

is a super-∆ point. Since Y is one-codimensional, it has the Daugavet property (see e.g.
[50, Theorem 6(a)]). Consequently, there exists a net ys → y0 weakly in BY such that
∥y0 − ys∥ → 2. Then (ys, 0) → (y0, 0) weakly in (X, | · |). Moreover, it is clear that
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(ys, 0) ∈ B for every s. Finally,

|(ys, 0)− (y0, 0)| = |(ys − y0, 0)| = ∥ys − y0∥ → 2.

Let us now prove that (y0, 0) is a point of strong regularity. To do so, it is enough, in
view of Lemma 4.20, to show that (y0,±r) is a strongly exposed point (we will prove that
for (y0, r), the other case being completely analogous). Let us prove that (f, 1) strongly
exposes (y0, r) in the set BY ×{0}∪ {±(y0, r)}∪ {±(y0,−r)}. On the one hand, we have

(f, 1)(y0, r) = f(y0) + r = 1 + r.

On the other hand, given (y, 0) ∈ BY × 0 we have (f, 1)(y, 0) = f(y) ⩽ 1 < 1 + r.
Moreover, (f, 1)(y0,−r) = 1− r and (f, 1)(−y0,±r) = −1± r < 1 + r. Consequently,

sup {(f, 1)(a, b) : (a, b) ∈ BY × {0} ∪ {±(y0, r)} ∪ {±(y0,−r)}, (a, b) ̸= (y0, r)}
⩽ 1 < 1 + r = (f, 1)(y0, r).

This is enough to guarantee that (f, 1) strongly exposes (y0, r) in B, so we are done.

4.6. A super Daugavet point which is not a ccs ∆-point. The previous example
shows that we can distinguish the notion of super ∆-point and the one of ccs ∆-point. It
seems natural then that we should be able to distinguish the notions of super Daugavet
point and the one of ccs ∆-point. In order to do so, we need to consider an involved
construction but, as a consequence, we will prove that there are super Daugavet points
which are contained in convex combinations of slices of small diameter. The construction
will be very similar to that of [14, Theorem 2.4], with a slight variation which makes the
resulting norm with a stronger Daugavet flavour. As in the previous section, we will only
work with real spaces here.

Let us recall a construction from Argyros, Odell, and Rosenthal [11]. Pick a nonin-
creasing null sequence {εn} in R+. We construct an increasing sequence {Kn} of closed,
bounded and convex subsets in the real space c0 and a sequence {gn} in c0 as follows: First
define K1 = {e1}, g1 = e1 and K2 = co(e1, e1 + e2). Choose l2 > 1 and g2, . . . , gl2 ∈ K2

an ε2-net in K2. Assume that n ⩾ 2 and that mn, ln, Kn, and {g1, . . . , gln} have been
constructed, with Kn ⊆ Bspan{e1,...,emn} and gi ∈ Kn for every 1 ⩽ i ⩽ ln. Define Kn+1

as
Kn+1 = co(Kn ∪ {gi + emn+i : 1 ⩽ i ⩽ ln}).

Consider mn+1 = mn + ln and choose {gln+1, . . . , gln+1
} ∈ Kn+1 so that {g1, . . . , gln+1

}
is an εn+1-net in Kn+1. Finally, we define K0 = ∪nKn. Then it follows that K0 is a
non-empty closed, bounded and convex subset of c0 such that x(n) ⩾ 0 for every n ∈ N
and ∥x∥∞ ⩽ 1 for every x ∈ K0 and so diam(K0) ⩽ 1.

Now, for a fixed i, we see from the construction that {gi + emn+i}n is a sequence in
K0 (for n large enough) which is weakly convergent to gi, and ∥(gi − emn+i) − gi∥ =

∥emn+i∥ = 1 holds for every n. Then diam(K0) = 1. We will freely use the set K0 and
the above construction throughout the section. Observe that, by the above construction,

K0 = {gi : i ∈ N}
w
= {gi : i ∈ N}.

Observe finally that, by the inductive construction, gi has finite support for every i ∈ N.
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By [11, Theorem 1.2], K0 contains convex combinations of slices of arbitrarily small
diameter. However, all the points in K0 are “super Daugavet points” in the following
sense.

Proposition 4.21. For every x0 ∈ K0, every ε > 0, and every non-empty weakly open
subset W of K0, there exists y ∈ W such that ∥x0 − y∥ > 1− ε = diam(K0)− ε.

Proof. Take ε > 0 and a non-empty relatively weakly open subset of K0. By a density
argument, we can find i ∈ N such that ∥x0 − gi∥ < ε. Again by a density argument there
exists gk ∈ W for certain k ∈ N.

As explained above, by the definition of K0, we have gk + emn+k ∈ K0 for every
n ∈ N. Since (gk + emn+k)n∈N → gk weakly, we can find n ∈ N large enough so that
gk + emn+k ∈ W and mn + k /∈ supp(gi)∪ supp(gk) (this is possible because the previous
set is finite). So taking y = gk + emn+k, we get y(mm + k) = 1 and so

∥gi − y∥ ⩾ y(mn + k)− gi(mn + k) = 1− 0 = 1.

As a consequence, ∥x0 − y∥ ⩾ ∥gi − y∥ − ∥gi − x0∥ > 1− ε, and the proof is finished.

It is time to construct the announced renorming of C[0, 1]. Take an infinite sequence
of non-empty pairwise disjoint open subsets Vn of [0, 1] such that 0 /∈

⋃
n∈N Vn. By

Urysohn lemma, we can find, for every n ∈ N, a function hn ∈ SC[0,1] with 0 ⩽ hn ⩽ 1

and such that supp(hn) ⊆ Vn. If we consider Z := span {hn : n ∈ N}, we find that Z

is lattice isometrically isomorphic to c0 (indeed, the mapping en 7→ hn is an isometric
Banach lattice isomorphism). Consequently, we can consider the set K0 constructed in Z,
finding that K0 ⊆ BC[0,1] is a set of positive functions (because the latter linear isometry
preserves the lattice structure) which contains convex combination of slices of arbitrarily
small diameter but enjoying the property exhibited in Proposition 4.21. Moreover, by the
construction of the functions hn, f(0) = 0 for every f ∈ Z, so in particular f(0) = 0 for
every f ∈ K0.

Now, take 0 < ε < 1 and write

Bε := co

(
2

(
K0 −

1

2

)
∪ 2

(
−K0 +

1

2

)
∪ ((1− ε)BC[0,1] + εBker(δ0))

)
,

where 1 stands for the constant function 1 in C[0, 1] and δ0 is the evaluation functional
at the point 0.

Consider ∥ · ∥ε the norm on (the real version of) C[0, 1] whose unit ball is Bε. As we
have indicated, the renorming technique follows the scheme of the renorming given in
[14, Theorem 2.4] with the difference that we use Bker(δ0) instead of Bc0 in the last term
because ker(δ0) has the Daugavet property (as it is one-codimensional in C[0, 1] and we
may use [35, Theorem 2.14]).

We have the following result.

Theorem 4.22. The space (X, ∥ · ∥ε) has the following properties:

(1) Every element of 2(K0 − 1
2 ) is a super Daugavet point.
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(2) For every η > 0 there exists a convex combination of slices D of Bε with diam(D) < η

and such that D ∩ 2(K0 − 1
2 ) ̸= ∅.

In particular, there are super Daugavet points which are not ccs-∆ points.

Proof. (1). Take a ∈ K0, and let us prove that 2a−1 is a super Daugavet point. In order
to do so, pick a non-empty relatively weakly open subset W of Bε. Write

A := 2(K0 − 1
2 ) and B := (1− ε)BC[0,1] + εBker(δ0).

Since Bε = co(A ∪ −A ∪ B) we see that W has non-empty intersection with the set
co(A ∪ −A ∪B). Now, observe that A−A

2 = K0 −K0 ⊆ Bker(δ0) ⊆ B so that

co(A ∪ −A ∪B) = co(A ∪B) ∪ co(−A ∪B)

by [14, Lemma 2.4]. Consequently, either W ∩co(A∪B) or W ∩co(−A∪B) is non-empty.
Let us distinguish several cases.

Assume first that W∩co(A∪B) is non-empty, so pick a′ ∈ K0, f ∈ BC[0,1], g ∈ Bker(δ0),
and α, β ∈ [0, 1] with α+ β = 1 such that

α(2a′ − 1) + β((1− ε)f + εg) ∈ W.

Take η > 0. By Proposition 4.21, there exists a net as → a′ weakly with as ∈ K0 for
every s and ∥a− as∥ → 1. Since (2as − 1) → 2a′ − 1 weakly, we can find s large enough
so that

α(2as − 1) + β((1− ε)f + εg) ∈ W

and

∥(2a− 1)− (2as − 1)∥ = 2∥a− as∥ > 2− η.

Observe that 2a−1 and 2as−1 are functions in BC[0,1] since a, as are positive functions
of norm at most 1. Since ∥(2a − 1) − (2as − 1)∥ > 2 − η, there exists t0 ∈ [0, 1] and
θ ∈ {−1, 1} such that θ(2a − 1)(t0) > 1 − η and θ(2as − 1)(t0) < −1 + η (observe that
t0 ̸= 0 since a(t0) = as(t0) = 0 by construction). Consequently, the set

U := {t ∈ [0, 1] : θ(2a− 1)(t) > 1− η and θ(2as − 1)(t) < −1 + η}

is a non-empty open subset of [0, 1], and we can construct a sequence of non-empty
pairwise disjoint open sets Wn ⊆ U . Observe that 0 /∈

⋃
n∈N Wn since 0 /∈ U . Take

pn ∈ Wn for every n ∈ N. We can construct, for every n ∈ N, two functions fn and
gn in the unit ball of C[0, 1] satisfying fn = f and gn = g in [0, 1] \ Wn and fn(pn) =

gn(pn) = −θ. The functions f − fn have pairwise disjoint supports, so f − fn → 0 weakly
or, in other words, fn → f weakly. A similar argument shows that gn → g weakly. Notice
also that, given n ∈ N, since 0 /∈ Wn then gn(0) = g(0) = 0, so (gn) ⊆ ker(δ0). Hence
α(2as − 1) + β((1 − ε)fn + εgn) is a sequence in Bε which converges in n weakly to
α(2as − 1) + β((1− ε)f + εg) ∈ W . Consequently, we can find n large enough such that
α(2as − 1) + β((1 − ε)fn + εgn) ∈ W . Finally, the inclusion Bε ⊆ BC[0,1] implies that
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∥z∥ ⩽ ∥z∥ε, so∥∥(2a− 1)− α(2as − 1)− β((1− ε)fn + εgn)
∥∥
ε

⩾
∥∥(2a− 1)− α(2as − 1)− β((1− ε)fn + εgn)

∥∥
⩾ θ((2a− 1)− α(2as − 1)− β((1− ε)fn)(pn)

= θ(2a− 1)(pn)− θα(2as − 1)(pn)

− θβ((1− ε)fn(pn) + θεgn(pn))

> 1− η − α(−1 + η)− β(−1)

= 1 + α+ β − (1 + α)η = 2− 2η.

Since η > 0 was arbitrary, this finishes the case W ∩ co(A ∪B) ̸= ∅.
If W ∩ co(−A ∪B) ̸= ∅, find a′ ∈ K0, f ∈ BC[0,1], g ∈ Bker(δ0), and α, β ∈ [0, 1] with

α+ β = 1 such that
α(−2a′ + 1) + β((1− ε)f + εg) ∈ W.

This case is simpler because ∥(2a − 1) − (−2a′ + 1)∥ ⩾ (2a − 1) − (−2a′ + 1)(0) = 2.
Now, an approximation argument for fn and gn similar to that of the above case (working
on a non-empty open subset of (0, 1) in order to get gn(0) = 0) finishes this case , and
consequently the proof of (1).

(2). The first part of the proof is a repetition of the argument of [14, Theorem 2.4].
Fix γ > 0. From [11, Theorem 1.2] there exist slices S1, . . . , Sn of K0 such that

diam

(
1

n

n∑
i=1

Si

)
<

1

4
(1− ε)γ.

We can assume that Si = {x ∈ K0 : x
∗
i (x) > 1 − δ̃} where 0 < δ̃ < 1, x∗

i ∈ C[0, 1]∗ and
supx∗

i (K0) = 1 holds for every i = 1, . . . , n. It is clear that

supx∗
i

(
2

(
K0 −

1

2

))
= 2

(
1− x∗

i

(
1

2

))
,

for all i = 1, . . . , n. We put ρ, δ > 0 such that 1
2ρ∥x

∗
i ∥ + δ < δ̃, 2ρ < ε, ρ∥x∗

i ∥ < 4δ, and
(7−2ε)ρ
(1−ε) < γ, for all i = 1, . . . , n. We consider the relatively weakly open set of Bε given

by

Ui :=

{
x ∈ Bε : x

∗
i (x) > 2

(
1− δ − x∗

i

(
1

2

))
+

1

2
ρ∥x∗

i ∥, x(0) = δ0(x) < −1 + ρ2
}

for every i = 1, . . . , n. It is clear that ∥x∗
i ∥ε ⩽ ∥x∗

i ∥ for every i = 1, . . . , n and ∥δ0∥ε =

∥δ0∥ = 1.
Since ρ∥x∗

i ∥ < 4δ, we have 2
(
1− x∗

i

(
1
2

))
> 2

(
1− δ− x∗

i

(
1
2

))
+ 1

2ρ∥x
∗
i ∥. Now, we have

supx∗
i

(
2
(
K0 − 1

2

))
= 2

(
1− x∗

i

(
1
2

))
, so there exists x ∈ K0 such that

x∗
i

(
2

(
x− 1

2

))
> 2

(
1−δ−x∗

i

(
1

2

))
+
1

2
ρ∥x∗

i ∥ and δ0

(
2

(
x− 1

2

))
= −1 < −1+ρ2.

This implies that Ui ̸= ∅ for every i = 1, . . . , n. In order to estimate the diameter of
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1
n

∑n
i=1 Ui, it is enough to compute the diameter of

1

n

n∑
i=1

Ui ∩ co

(
2

(
K0 −

1

2

)
∪ −2

(
K0 −

1

2

)
∪ [(1− ε)BX + εBker(δ0)]

)
.

Since 2(K0− 1
2 ) and (1− ε)BC[0,1]+ εBker(δ0) are convex subsets of Bε, given x ∈ Bε, we

can assume that

x = λ12

(
a− 1

2

)
+ λ22

(
−b+

1

2

)
+ λ3[(1− ε)x0 + εy0],

where λi ∈ [0, 1] with
∑3

i=1 λi = 1 and a, b ∈ K0, x0 ∈ BC[0,1], and y0 ∈ Bker(δ0).

So given x, y ∈ 1
n

∑n
i=1 Ui, for i = 1, . . . , n, there exist ai, a′i, bi, b′i ∈ K0, λ(i,j), λ

′
(i,j) ∈

[0, 1] with j = 1, 2, 3 and, xi, x
′
i ∈ BC[0,1], and yi, y

′
i ∈ BKer(δ0), such that

ui := 2λ(i,1)

(
ai −

1

2

)
+ 2λ(i,2)

(
−bi +

1

2

)
+ λ(i,3)[(1− ε)xi + εyi],

u′
i := 2λ′

(i,1)

(
a′i −

1

2

)
+ 2λ′

(i,2)

(
−b′i +

1

2

)
+ λ′

(i,3)[(1− ε)x′
i + εy′i]

belong to Ui for every i ∈ {1, . . . , n}, and such that

x =
1

n

n∑
i=1

ui and y =
1

n

n∑
i=1

u′
i.

For i ∈ {1, . . . , n} we have ui ∈ Ui so

δ0(ui) = δ0

(
2λ(i,1)

(
ai −

1

2

)
+ 2λ(i,2)

(
− bi +

1

2

)
+ λ(i,3)[(1− ε)xi + εyi]

)
< −1 + ρ2.

Observe that, by construction,

δ0

(
ai−

1

2

)
= −1

2
, δ0

(
−bi+

1

2

)
=

1

2
and δ0((1−ε)xi+εyi) = δ0((1−ε)xi) ⩾ −(1−ε).

This implies that

2λ(i,2) + λ(i,3)ε− 1 = −λ(i,1) + λ(i,2) − λ(i,3)(1− ε) < −1 + ρ2.

Since 2ρ < ε, we deduce that λ(i,2) + λ(i,3) <
1
2ρ. As a consequence,

λ(i,1) > 1− 1

2
ρ, (4.1)

and similarly

λ′
(i,1) > 1− 1

2
ρ (4.2)



42 M. Martín, Y. Perreau, and A. Rueda Zoca

for every i = 1, . . . , n. Now, the previous inequalities imply that

∥x− y∥ε ⩽
1

n

∥∥∥∥ n∑
i=1

2λ(i,1)

(
ai −

1

2

)
− 2λ′

(i,1)

(
a′i −

1

2

)∥∥∥∥
ε

+
1

n

n∑
i=1

∥∥∥∥2λ(i,2)

(
−bi +

1

2

)∥∥∥∥
ε

+
1

n

n∑
i=1

∥∥∥∥2λ′
(i,2)

(
−b′i +

1

2

)∥∥∥∥
ε

+
1

n

n∑
i=1

∥λ(i,3)[(1− ε)xi + εyi]∥ε +
1

n

n∑
i=1

∥λ′
(i,3)[(1− ε)x′

i + εy′i]∥ε

⩽
1

n

∥∥∥∥ n∑
i=1

2λ(i,1)

(
ai −

1

2

)
− 2λ′

(i,1)

(
a′i −

1

2

)∥∥∥∥
ε

+
1

n

n∑
i=1

(λ(i,2) + λ(i,3)) +
1

n

n∑
i=1

(λ′
(i,2) + λ′

(i,3))

and, by using (4.1),(4.2),

⩽
1

n

∥∥∥∥ n∑
i=1

2λ(i,1)

(
ai −

1

2

)
− 2λ′

(i,1)

(
a′i −

1

2

)∥∥∥∥
ε

+ ρ

⩽
2

n

∥∥∥ n∑
i=1

λ(i,1)ai − λ′
(i,1)a

′
i

∥∥∥
ε
+

1

n

n∑
i=1

|λ(i,1) − λ′
(i,1)| ∥1∥ε + ρ

⩽
2

n

∥∥∥ n∑
i=1

λ(i,1)ai − λ′
(i,1)a

′
i

∥∥∥
ε
+

(3− 2ε)

2(1− ε)
ρ.

Now,

∥∥∥ n∑
i=1

λ(i,1)ai − λ′
(i,1)a

′
i

∥∥∥
ε

⩽
∥∥∥ n∑

i=1

(λ(i,1) − 1)ai

∥∥∥
ε
+
∥∥∥ n∑

i=1

ai − a′i

∥∥∥
ε
+

∥∥∥ n∑
i=1

(λ′
(i,1) − 1)a′i

∥∥∥
ε

⩽
1

1− ε

∥∥∥ n∑
i=1

ai − a′i

∥∥∥+

n∑
i=1

1

1− ε
|λ(i,1) − 1| ∥ai∥+

n∑
i=1

1

1− ε
|λ′

(i,1) − 1| ∥a′i∥

⩽
1

1− ε

∥∥∥ n∑
i=1

ai − a′i

∥∥∥+
1

1− ε
nρ.

(In the previous estimate observe that ∥ai∥ ⩽ 1 and ∥a′i∥ ⩽ 1 since ai, a
′
i ∈ K0 ⊆

Bker(δ0) ⊆ Bε). Hence,

∥x− y∥ε ⩽
2

1− ε

∥∥∥∥ 1n
n∑

i=1

ai − a′i

∥∥∥∥+
7− 2ε

2(1− ε)
ρ. (4.3)

Now, in order to prove that the previous norm is small, we will prove that both elements
1
n

∑n
i=1 ai,

1
n

∑n
i=1 a

′
i belong to the set 1

n

∑n
i=1 Si, which has small diameter. To this end,
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note that

x∗
i

(
2λ(i,1)

(
ai −

1

2

)
+ 2λ(i,2)

(
− bi +

1

2

)
+ λ(i,3)[(1− ε)xi + εyi]

)
> 2

(
1− δ − x∗

i

(
1

2

))
+

ρ

2
∥x∗

i ∥,

for every i ∈ {1, . . . , n}. Then

x∗
i

(
2λ(i,1)

(
ai −

1

2

))
+

1

2
ρ∥x∗

i ∥ ⩾ x∗
i

(
2λ(i,1)

(
ai −

1

2

))
+ λ(i,2)∥x∗

i ∥+ λ(i,3)∥x∗
i ∥

⩾ x∗
i

(
2λ(i,1)

(
ai −

1

2

))
+ λ(i,2)∥x∗

i ∥ε + λ(i,3)∥x∗
i ∥ε

⩾ x∗
i

(
2λ(i,1)

(
ai −

1

2

)
+ 2λ(i,2)

(
− bi +

1

2

)
+ λ(i,3)[(1− ε)xi + εyi]

)
.

We have

x∗
i

(
2λ(i,1)

(
ai −

1

2

))
> 2

(
1− δ − x∗

i

(
1

2

))
,

and hence

x∗
i (λ(i,1)ai) > 1− δ − (1− λ(i,1))x

∗
i

(
1

2

)
⩾ 1− δ − 1

2
ρ∥x∗

i ∥.

We recall that δ + 1
2ρ∥x

∗
i ∥ < δ̃, so x∗

i (λ(i,1)ai) > 1 − δ̃. It follows that x∗
i (ai) > 1 − δ̃.

Then ai ∈ K0 ∩ Si and, similarly, we get a′i ∈ K0 ∩ Si for every i = 1, . . . , n. Therefore,

1

n

n∑
i=1

ai,
1

n

n∑
i=1

a′i ∈
1

n

n∑
i=1

Si.

Since the diameter of 1
n

∑n
i=1 Si is less than 1

4 (1−ε)γ, we deduce that 1
n∥

∑n
i=1 ai−a′i∥ <

1
4 (1 − ε)γ. Finally, we conclude from (4.3) and the above estimate that ∥x − y∥ε ⩽ γ.
Hence, the set C := 1

n

∑n
i=1 Ui has diameter at most γ for the norm ∥ · ∥ε.

Now, Bourgain’s lemma (see Lemma 2.2) ensures the existence of a convex combina-
tion of slices

∑pi

j=1 αijTij ⊆ Ui for every 1 ⩽ i ⩽ n. Using this fact, we will find a convex

combination of slices of B of diameter smaller than γ+ 4ρ2

(1− ρ2

ε )ε
and such that every slice

contains points of 2(K0 − 1
2 ). Since ρ and γ can be taken as small as we wish, we will be

done. In order to do so, fix 1 ⩽ i ⩽ n and define

Ai :=

{
j ∈ {1, . . . , pi} : Tij ∩

(
2K0 −

1

2

)
= ∅

}
, Bi := {1, . . . , pi} \Ai.

Given xij ∈ Tij we find that, for j ∈ Ai, δ0(xij) ⩾ −1 + ε by the definition of the unit
ball Bε. Since

∑pi

j=1 αijxij ∈
∑pi

j=1 αijTij ⊆ Ui we derive −1 + ρ2 > δ0(
∑pi

j=1 αijxij).
Hence

−1+ρ2 >
∑
j∈Ai

αijδ0(xij)+
∑
i∈Bi

αijδ0(xij) ⩾ (−1+ε)
∑
j∈Ai

αij−
∑
j∈Bi

αij = −1+ε
∑
j∈Ai

αij .
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From the above inequality we infer that
∑

j∈Ai
αij < ρ2/ε for every 1 ⩽ i ⩽ n. Now, we

set Λi :=
∑

j∈Bi
λij , which belongs to the interval [1− ρ2/ε, 1] for 1 ⩽ i ⩽ n and set

D :=
1

n

n∑
i=1

∑
j∈Bi

αij

ΛI
Tij .

Observe that D is a convex combination of slices of Bε since every Tij is a slice of Bε

and since
1

n

n∑
i=1

∑
j∈BI

αij

Λi
αij = 1.

We claim that D ⊆ C + 2

1− ρ2

ε

ρ2

ε Bε. This is enough to finish the proof because the above

condition implies that

diam(D) ⩽ diam(C) +
4

1− ρ2

ε

ρ2

ε
⩽ γ +

4

1− ρ2

ε

ρ2

ε
.

So let us prove the above inclusion. Take z := 1
n

∑n
i=1

∑
j∈Bi

αij

Λi
xij ∈ D for certain

xij ∈ Tij . Write z′ := 1
n

∑n
i=1

∑
j∈Bi

αijxij . Then

|z − z′| ⩽ 1

n

n∑
i=1

∑
j∈Bij

∣∣∣∣1− 1

Λi

∣∣∣∣αij |xij | <
1

1− ρ2

ε

ρ2

ε
.

On the other hand, for 1 ⩽ i ⩽ n and j ∈ Ai take xij ∈ Tij . Define

z′′ :=
1

n

n∑
i=1

pi∑
j=1

αijxij ∈
1

n

n∑
i=1

pi∑
j=1

αijTij ⊆
1

n

n∑
i=1

Ui = C.

Moreover, we have

|z′ − z′′| ⩽ 1

n

n∑
i=1

∑
j∈Ai

αij <
ρ2

ε
.

Consequently z = z′′ + (z − z′′) ∈ C + 2

1− ρ2

ε

ρ2

ε Bε since

|z − z′′| ⩽ |z − z′|+ |z′ − z′′| < 1

1− ρ2

ε

ρ2

ε
+

ρ2

ε
<

2

1− ρ2

ε

ρ2

ε
.

4.7. A summary of relations between the properties. Figure 2 below is a scheme
which complements Figure 1 with the counterexamples following from known results and
from the results in this chapter.

Let us list the corresponding counterexamples.

(a) The example in Section 4.6.
(b) The example in Section 4.5 negates this implication in the strongest possible way.
(c) Any of the elements in DB in Section 4.3.3. They also show directly that ∆-points

are not necessarily ccs ∆-points.
(d) Every element of the unit sphere of the space X given in Section 4.3.2 is a ccs ∆-point

but not Daugavet point.
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ccs Daugavet ccs ∆

super Daugavet super ∆ ∆

Daugavet

?

/ (d)

/(a)

/(b)

/(e)

/
(c)

/ (f)

Figure 2. Scheme of all relations between the diametral notions

(e) In X = C[0, 1]⊕2C[0, 1], every element in the unit sphere is a super ∆-point (Proposi-
tion 3.26); but X contains no Daugavet point (Proposition 3.28). Also, every element
of the unit sphere of the space X given in Section 4.3.2 is a super ∆-point but not
a Daugavet point.

(f) Any of the elements in DB in Section 4.3.3.



5. Diametral properties for elements of the open unit ball

As mentioned in Chapter 2, DSD2P is equivalent to the Daugavet property by [34], but
the ccs ∆-points on the unit sphere of a Banach space do not characterize DSD2P, but
restricted DSD2P, which is not equivalent to the Daugavet property (see Section 4.3.2).
Actually, the elements in the open unit ball play a decisive role in the proof in [34]
of the equivalence between DSD2P and the Daugavet property. Our objective here is
to introduce and study the diametral notions for interior points, providing interesting
applications, and to investigate the behavior of Daugavet elements and ∆-elements on
rays in the unit ball of a given Banach space.

The definition of the Daugavet notions for elements in the open unit ball is the natural
extension of the definitions for elements of norm one given in Definition 2.5.

Definition 5.1. Let X be a Banach space and let x ∈ BX . We say that

(1) x is a Daugavet point if supy∈S ∥x− y∥ = ∥x∥+ 1 for every slice S of BX ,
(2) x is a super Daugavet point if supy∈V ∥x−y∥ = ∥x∥+1 for every non-empty relatively

weakly open subset V of BX ,
(3) x is a ccs Daugavet point if supy∈C ∥x− y∥ = ∥x∥+ 1 for every ccs C of BX .

It turns out that the existence of a non-zero Daugavet kind element actually forces
the whole ray to which it belongs to be composed of similar elements.

Proposition 5.2. Let X be a Banach space, and let x ∈ SX . The following assertions
are equivalent:

(1) x is a Daugavet (resp. super Daugavet, resp. ccs Daugavet) point.
(2) rx is a Daugavet (resp. super Daugavet, resp. ccs Daugavet) point for every r ∈ [0, 1].
(3) rx is a Daugavet (resp. super Daugavet, resp. ccs Daugavet) point for some r ∈ (0, 1).

Let us recall the following elementary but very useful result from [34] due to Kadets.

Lemma 5.3 ([34, Lemma 2.2]). Let X be a normed space. If x, y ∈ X and ε > 0 satisfies
that

∥x+ y∥ > ∥x∥+ ∥y∥ − ε,

then for every a, b > 0,

∥ax+ by∥ > a∥x∥+ b∥y∥ −max {a, b}ε.

Proof of Proposition 5.2. We will only do the proof for Daugavet points, the other cases
being completely analogous. So let us first assume that x is a Daugavet point. Take

[46]
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r ∈ [0, 1], ε > 0, and S a slice of BX . Then there exists y ∈ S such that ∥x− y∥ > 2− ε.
In particular, ∥y∥ > 1− ε. As ∥y∥ ⩽ 1,

∥x− y∥ > 2− ε ⩾ ∥x∥+ ∥y∥ − ε.

It follows from Lemma 5.3 that

∥rx− y∥ > ∥rx∥+ ∥y∥ − ε > ∥rx∥+ 1− 2ε.

Hence, rx is also a Daugavet point.
Now, let us assume that rx is a Daugavet point for some r ∈ (0, 1). Again take ε > 0

and S slice of BX , and pick y ∈ S such that ∥rx − y∥ > ∥rx∥ + 1 − rε. In particular,
∥y∥ > 1− rε. As ∥y∥ ⩽ 1, we have

∥rx− y∥ > ∥rx∥+ ∥y∥ − rε.

Hence, by Lemma 5.3, we get

∥x− y∥ > ∥x∥+ ∥y∥ − ε > 2− (1 + r)ε

and so x is a Daugavet point.

As mentioned in the discussion preceding Proposition 3.12, the presence of a ccs
Daugavet point in a given Banach space forces the space to satisfy SD2P. This can now
be viewed as a consequence of the previous proposition and the following immediate
reformulation of [41, Theorem 3.1].

Proposition 5.4 ([41, Theorem 3.1]). Let X be a Banach space. Then X has SD2P if
and only if 0 is a ccs Daugavet point.

Note that c0 has SD2P but has no non-zero Daugavet points (use Proposition 4.1, for
instance).

Compare Proposition 5.4 with the following obvious remark.

Remark 5.5. A Banach space X is infinite-dimensional if and only if 0 is a super Dau-
gavet point.

We also mention that 0 is always a Daugavet point (in finite or infinite dimension),
as every slice of the unit ball has to intersect the unit sphere.

Let us also point out that [41, Theorem 3.1] admits the following scaled version.

Proposition 5.6. Let X be a Banach space, and let r ∈ (0, 1]. Then the following
assertions are equivalent:

(1) Every ccs of BX has diameter greater than or equal to 2r.
(2) sup {∥x∥ : x ∈ C} ⩾ r for every ccs C of BX .
(3) sup {∥x∥ : x ∈ D} ⩾ r for every symmetric ccs D of BX (so containing 0).

Proof. Suppose (1) holds. Then, for any given ccs C of BX , and for any fixed ε > 0, there
exist x, y ∈ C such that ∥x − y∥ > 2r − 2ε. In particular, ∥x∥ > r − ε or ∥y∥ > r − ε,
giving (2).

(2)⇒(3) is immediate.
Suppose that (1) fails, that is, there exists a ccs C of BX and ε > 0 such that

diam(C) ⩽ 2r − 2ε. We consider the ccs D of BX given by D := 1
2 (C − C). Then D is
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symmetric, and for every u := x−y
2 and u′ := x′−y′

2 in D we have ∥u−u′∥ = ∥x+y′

2 − x′+y
2 ∥.

Now, x, x′, y, y′ belong to C, and C is convex, so x+y′

2 and x′+y
2 also belong to C, so

∥u− u′∥ ⩽ 2r− 2ε. As D is symmetric, it implies that D ⊂ (r− ε)BX , hence (3) fails.

The following is a nice consequence of the proposition above outside the diametral
notions.

Corollary 5.7. Let X be a Banach space. Then BX contains ccs of arbitrarily small
diameter if and only if 0 is a strongly regular point of BX .

Now let us consider the ∆ notions for points of the open unit ball which are just the
adaptation of the notions given in Definition 2.4.

Definition 5.8. Let X be a Banach space and let x ∈ BX . We say that

(1) x is a ∆-point if supy∈S ∥x− y∥ = ∥x∥+ 1 for every slice S of BX containing x,
(2) x is a super ∆-point if supy∈V ∥x − y∥ = ∥x∥ + 1 for every non-empty relatively

weakly open subset V of BX containing x,
(3) x is a ccs ∆-point if supy∈C ∥x− y∥ = ∥x∥+1 for every slice ccs C of BX containing

x.

With this definitions in hand, we may get an improvement of Proposition 5.4 from
Proposition 5.6.

Corollary 5.9. Let X be a Banach space. Then X has SD2P if and only if 0 is ccs
∆-point.

Compare the previous corollary with the following obvious remark which is analogous
to Remark 5.5.

Remark 5.10. A Banach space X is infinite-dimensional if and only if 0 is a super
∆-point.

Observe that the definition of ccs ∆-points for elements in BX gives a localization of
DSD2P, that is, X has DSD2P (and hence the Daugavet property [34]) if and only if all
the elements of BX are ccs ∆-points. Recall that DSD2P is not equivalent to restricted
DSD2P (meaning that all points in SX are ccs ∆-points); see Section 4.3.2.

The following result is a localization of Kadets’ theorem [34] on the equivalence of
DSD2P and DPr.

Theorem 5.11. Let X be a Banach space and let x ∈ SX . If rx is a ccs ∆-point for
every r ∈ (0, 1), then x is a ccs Daugavet point. Moreover, it is enough to assume that
inf {r ∈ (0, 1) : rx is a ccs ∆-point} = 0.

Proof. Fix a ccs C of BX and ε > 0. Since C̃ := 1
2 (C − C) is also a ccs of BX and since

0 ∈ C̃ is a norm interior point of C̃ by [41, Proposition 2.1], we find that rx belongs to
C̃ for every r ∈ (0, δ) for some δ > 0. By hypothesis, there is r > 0 such that rx is a ccs
∆-point and rx ∈ C̃. So there exists y ∈ C̃ such that ∥rx− y∥ > r + 1− rε. Then if we
write y := y1−y2 with y1, y2 ∈ C, we have ∥rx−y1∥ > r+1−rε or ∥rx−y2∥ > r+1−rε

by the triangle inequality; in particular, ∥y1∥ > 1− rε and ∥y2∥ > 1− rε. In both cases,
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there is y ∈ C such that ∥rx− y∥ > r∥x∥+ ∥y∥ − rε and it follows from Lemma 5.3 that

∥x− y∥ > ∥x∥+ ∥y∥ − ε > 2− (1 + r)ε > 2− 2ε.

At this point, it is natural to ask whether an equivalent formulation of Proposition
5.2 is valid for some of the various ∆-notions. For ccs ∆-points, the answer is negative
as follows from Theorem 5.11 and, for instance, the example in Section 4.3.2. Another,
maybe simpler example is the following one.

Example 5.12. Assume that a positive measure µ admits an atom of finite measure
and also has a non-empty non-atomic part. Then the real space L1(µ) contains no ccs
Daugavet point by Proposition 4.12. However, it contains elements in the unit sphere
which are ccs ∆-points and super Daugavet points by Theorem 4.8 and Proposition 4.9.
In particular, as a consequence of Theorem 5.11 and of Proposition 5.2, there must exist
f in the unit sphere which is a ccs ∆-point and t ∈ (0, 1) such that tf is not a ccs ∆-point
but it is a super ∆-point.

For ∆-points, we have the following result.

Proposition 5.13. Let X be a Banach space, and let x ∈ SX . If x is a ∆-point, then rx

is a ∆-point for every r ∈ (0, 1).

Proof. Assume that x is a ∆-point and fix r ∈ (0, 1). Take ε > 0 and a slice S of BX

containing rx. Now, either x ∈ S or −x ∈ S. In the first case, we can find y ∈ S such
that ∥x − y∥ ⩾ 2 − ε, and using Lemma 5.3, we get ∥rx − y∥ ⩾ ∥rx∥ + 1 − 2ε. Else,
∥rx− (−x)∥ = r + 1 = ∥rx∥+ 1 and we are done.

For super ∆-points, it is currently quite obscure whether they behave like ∆-points
up on rays.



6. Kuratowski measure and large diameters

Let M be a metric space. The Kuratowski measure of non-compactness α(A) of a non-
empty bounded subset A of M is defined as the infimum of all real numbers ε > 0 such
that A can be covered by a finite number of subsets of M of diameter ≤ ε.

From the definition, we clearly have α(A) = 0 if and only if A is totally bounded (or
precompact). It follows that every complete subset A of M with α-measure 0 is compact,
and in particular if M is a complete metric space, that α(A) = 0 if and only if A is
compact, where A stands for the closure of the set A. The α-measure can thus be seen as
a way to measure how far a given (non-empty) bounded and closed subset of M is from
being a compact space. It was introduced by K. Kuratowski [38] in order to provide a
generalization of the famous intersection theorem of Cantor. A general theory of measures
of non-compactness was later developed, and it turned out to provide important results
in metric fixed point theory, and in particular to have applications in functional equations
or optimal control. We refer e.g. to [12] for an introduction to the topic and for more
precise applications.

Observe that A ⊆ B implies α(A) ⩽ α(B), and that α(A) = α(A). Also note that
α(A ∪ B) = max {α(A), α(B)} for any non-empty bounded subsets A,B of M . Further-
more, if M = X is a normed space, then α is known to enjoy additional useful properties:
it is symmetric, translation invariant, positively homogeneous, sub-additive, and satisfies
α(coA) = α(A). The α-measure has proved to be a powerful tool for the study of the ge-
ometry of Banach spaces and we refer e.g. to [46, 47, 44] in connection with property (α),
the drop property, and the isomorphic characterization of reflexive Banach spaces.

From the definition it is clear that the Kuratowski measure of A is smaller than or
equal to its diameter. Obviously, equality does not always hold, but a fruitful relationship
between the notion of ∆-points and the Kuratowski measure of slices was discovered
in [5] and completed in [52]. In particular, the following result was obtained (see [52,
Corollary 2.2]).

Theorem 6.1. Let X be a Banach space and let x ∈ SX . If x is a ∆-point, then α(S) = 2

for every slice S of BX containing x. Moreover, α(S(x, δ;BX∗)) = 2 in BX∗ for every
δ > 0.

Observe that the converse does not hold in general, as the following example shows.

Example 6.2. Consider X := L1([0, 1])⊕∞ℓ1. It follows that both X and X∗ enjoy SD2P
[15, Remark 2.6], so Theorem 6.3 below implies that given any slice S = S(x∗, δ;BX) we
have α(S) = 2, and the same holds for the slices in the dual. However, there are points
which are not ∆-points because X fails DLD2P [30, Theorem 3.2] since ℓ1 does, so it

[50]
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remains to take any point x ∈ SX which is not a ∆-point to get the desired counterex-
ample.

The connection between having big slices in diameter and having big slices in Kura-
towski index goes beyond Theorem 6.1. The following result was first pointed out in [21].

Theorem 6.3 ([21, Proposition 3.1]). Let X be a Banach space and let β ∈ (0, 2]. The
following assertions are equivalent:

(1) Every slice of BX has diameter greater than or equal to β.
(2) Every slice of BX has Kuratowski measure greater than or equal to β.

In this chapter, we aim to prove analogues to this result for relatively weakly open
subsets, as well as for convex combinations of slices or of weakly open sets, and to extend
Veeorg’s result to super ∆-points and ccw ∆-points.

6.1. Kuratowski measure and diameter-two properties. The analogue to Theorem
6.3 for non-empty weakly open subsets is the following.

Theorem 6.4. Let X be a Banach space and let β ∈ (0, 2]. The following assertions are
equivalent:

(1) Every non-empty relatively weakly open subset of BX has diameter at least β.
(2) Every non-empty relatively weakly open subset of BX has Kuratowski measure at

least β.

Proof. (2)⇒(1) is immediate, so let us prove (1)⇒(2). To this end, fix β ∈ (0, 2] and
assume that every non-empty relatively weakly open subset of BX has diameter at least β.
Then pick ε > 0, and let us prove by induction on n that for every non-empty relatively
weakly open subset W of BX and for every finite collection C1, . . . , Cn of subsets of X
with diam(Ci) ⩽ β − ε for every i, we have W ̸⊂

⋃n
i=1 Ci.

For n = 1, this is clear since by assumption diam(W ) ⩾ β > β−ε for every non-empty
relatively weakly open subset W of BX .

So assume that the result is true for every non-empty relatively weakly open subset
W of BX and for every collection of n sets, and let us prove the result for collections of
n + 1 sets. To this end, consider subsets C1, . . . , Cn, Cn+1 of X with diam(Ci) ⩽ β − ε

for every i. Observe that diam(Ci) = diam(Ci
w
) ⩽ β − ε by w-lower semicontinuity of

the norm of X, so that we may and do assume that Ci is weakly closed for every i.
Observe that by the case n = 1 we have W ̸⊂ Cn+1, which means that W \ Cn+1

is non-empty. Moreover, it is a weakly open subset of BX since Cn+1 is assumed to be
weakly closed, and by induction hypothesis we conclude that W\Cn+1 ̸⊂

⋃n
i=1 Ci. In

particular, W ̸⊂
⋃n+1

i=1 Ci and the theorem is proved.

Next, let us establish the analogue of Theorem 6.3 for convex combinations of slices. To
this end, observe that by the Bourgain lemma (see Lemma 2.2) every convex combination
of non-empty relatively weakly open subsets of BX contains a convex combination of slices
of BX . This assertion yields the following lemma which allows us to focus on convex
combinations of weakly open subsets.
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Lemma 6.5. Let X be a Banach space and r > 0.

(1) The following are equivalent:

(a) Every convex combination of slices of BX has diameter at least r.
(b) Every convex combination of non-empty relatively weakly open subsets of BX has

diameter at least r.

(2) The following are equivalent:

(a) α(C) ⩾ r for every convex combination C of slices of BX .
(b) α(D) ⩾ r for every convex combination D of non-empty relatively weakly open

subsets of BX .

Now we are able to give the following result.

Theorem 6.6. Let X be a Banach space and let β ∈ (0, 2]. The following assertions are
equivalent:

(1) Every convex combination of slices of BX has diameter at least β.
(2) Every convex combination of slices of BX has Kuratowski measure at least β.

Proof. (2)⇒(1) is immediate, so let us prove (1)⇒(2). To this end, fix β ∈ (0, 2] and
assume that every convex combination of non-empty relatively weakly open subsets of
BX has diameter at least β. Then pick ε > 0, and let us prove by induction on n that
for every convex combination D of non-empty relatively weakly open subsets of BX and
for every finite collection C1, . . . , Cn of subsets of X with diam(Ci) ⩽ β − ε for every i,
we have D ̸⊂

⋃n
i=1 Ci.

For n = 1 it is clear since by assumption diam(D) ⩾ β > β − ε for every convex
combination of non-empty relatively weakly open subsets of D of BX .

Assume by inductive step that the result stands for n.
Now pick a convex combination D of non-empty relatively weakly open subsets of BX

and a finite collection C1, . . . , Cn+1 of subsets of X with diam(Ci) ⩽ β − ε for every i.
We can assume as in the proof of Theorem 6.4 that every Ci is weakly closed. Write
D =

∑k
i=1 λiWi. Observe that by the case n = 1 we have D ̸⊆ Cn+1, so there exists

z ∈ D \ Cn+1. Since z ∈ D we can write z =
∑k

i=1 λixi where xi ∈ Wi holds for every
1 ⩽ i ⩽ k. Moreover, since z =

∑k
i=1 λixi /∈ Cn+1, this means that z =

∑k
i=1 λixi ∈

X \ Cn+1, and the latter is a weakly open set. By a weak-continuity argument for the
sum we can find weakly open subsets Vi of BX , with xi ∈ Vi for every 1 ⩽ i ⩽ k, such
that z =

∑k
i=1 λixi ∈

∑n
i=1 λiVi ⊆ X \ Cn+1. Up to taking smaller Vi, we can assume

Vi ⊆ Wi for every i. Now set D̃ :=
∑k

i=1 λiVi, which is a convex combination of weakly
open subsets of BX . By the inductive step, D̃ ̸⊆

⋃n
j=1 Cj , so there exists y ∈ D̃ with

y /∈ Cj for 1 ⩽ j ⩽ n. Observe that the condition Vi ⊆ Wi implies D̃ ⊆ D, so y ∈ D

indeed. Moreover, D̃ ⊆ X \ Cn+1 implies in particular y /∈ Cn+1. This implies that
y ∈ D \

⋃n+1
i=1 Ci, which is precisely what we wanted to prove.

6.2. Kuratowski measure and ∆-notions. We now prove an analogue to Theorem
6.1 for super ∆-points.
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Theorem 6.7. Let X be a Banach space and let x ∈ SX be a super ∆-point. Then every
non-empty relatively weakly open subset W of BX containing x has α(W ) = 2.

The proof will be an obvious consequence of the following result.

Proposition 6.8. Let X be a Banach space, x ∈ SX be a super ∆ point, and W be a
weakly open subset of BX such that x ∈ W . Then, for every ε > 0, there exists a sequence
{xn} ⊆ W such that ∥xi − xj∥ > 2− ε for every i ̸= j.

Proof. Set ε > 0. Let us construct by induction a sequence {xn} such that ∥x − xi∥ >

2− ε/2 and ∥xi − xj∥ > 2− ε for i ̸= j.
Since x is a super ∆ point, select, by the definition of super ∆, a point x1 ∈ W with

∥x− x1∥ > 2− ε/2.
Now, assume that x1, . . . , xn have been constructed and let us construct xn+1. By the

properties defining the sequence observe that, given 1 ⩽ i ⩽ n, we have ∥x−xi∥ > 2−ε/2,
so we can find gi ∈ SX∗ with Re gi(x − xi) > 2 − ε/2, which implies Re gi(x) > 1 − ε/2

and Re gi(xi) < −1 + ε/2. Consequently,

x ∈ V := W ∩
n⋂

i=1

S(gi, ε/2),

which is a weakly open set. Since x is super ∆ we can find xn+1 ∈ V such that ∥x−xn+1∥ >

2−ε/2. In order to finish the construction we only have to prove that ∥xi−xn+1∥ > 2−ε

for every 1 ⩽ i ⩽ n. But this is clear because, given 1 ⩽ i ⩽ n, the condition xn+1 ∈ V

implies that Re gi(xn+1) > 1− ε/2, so

∥xn+1 − xi∥ ⩾ Re gi(xn+1 − xi) > 1− ε/2 + 1− ε/2 = 2− ε,

and the proof is finished.

Note that a similar statement to Theorem 6.7 can be established for ccw ∆ points.

Theorem 6.9. Let X be a Banach space and let x ∈ SX be a ccw ∆-point. Then every
non-empty convex combination D of relatively weakly open subsets of BX containing x

has α(D) = 2.

As in the previous case, the proof follows directly from the next result.

Proposition 6.10. Let X be a Banach space, x ∈ SX be a ccw ∆ point, and D a ccw of
BX such that x ∈ D. Then, for every ε > 0, there exists a sequence {xn} ⊆ D such that
∥xi − xj∥ > 2− ε for every i ̸= j.

Proof. Set ε > 0. Write D :=
∑k

i=1 λiWi with λi ̸= 0 for every i. Set δ := ε
2min1⩽i⩽k λi

.
Let us construct by induction a sequence {xn} ⊆ D such that ∥x − xi∥ > 2 − δ and
∥xi − xj∥ > 2− ε for i ̸= j. Since x is a ccw ∆ point select, by the definition of ccw ∆, a
point x1 ∈ D with ∥x− x1∥ > 2− δ.

Now assume that x1, . . . , xn have been constructed and let us construct xn+1. We can
write x =

∑k
j=1 λjxj and xi :=

∑k
j=1 λjx

i
j as elements of D.
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By the properties defining the sequence, observe that given 1 ⩽ i ⩽ n we have
∥x− xi∥ > 2− δ, so we can find gi ∈ SX∗ with

Re gi(x− xi) =

k∑
j=1

λj Re gi(xj − xi
j) > 2− δ = 2− ε/2 min

1⩽j⩽n
λj .

A convexity argument implies that Re gi(xj − xi
j) > 2 − ε/2 for every 1 ⩽ j ⩽ k, which

implies that
Re gi(xj) > 1− ε/2 and Re gi(x

i
j) < −1 + ε/2.

Observe that

xj ∈ Vi := Wi ∩
n⋂

i=1

S(gi, ε/2),

which is a weakly open set. Since x is a ccw ∆-point and x ∈
∑k

j=1 λjVj , we can find a
point xn+1 =

∑k
j=1 λjzj ∈

∑k
j=1 λjVj ⊆ D such that ∥x − xn+1∥ > 2 − δ. In order to

finish the construction we only have to prove that ∥xi − xn+1∥ > 2 − ε holds for every
1 ⩽ i ⩽ n. Given 1 ⩽ j ⩽ k, the condition zj ∈ Vj implies Re gi(zj) > 1 − ε/2. On the
other hand, Re gi(xi

j) < −1 + ε/2, so

∥xn+1 − xi∥ ⩾ Re gi(x− xi) =

k∑
j=1

λj Re gi(zj − xi
j) > (2− ε)

k∑
j=1

λj = 2− ε,

and the proof is finished.



7. Commented open questions

The only implication between properties which is still unclear is the following one (see
Figure 2 on page 45).

Question 7.1. Let X be a Banach space and let x ∈ SX be a ccs ∆-point. Is x a super
∆-point?

Let us give some comments on this question. On the one hand, it may seem that
the answer is positive by Bourgain’s lemma (Lemma 2.2), but this lemma does not say
that, in general, given an element x of a relative weak open subset W of BX , there is a
convex combination of slices of BX contained in W and containing x. The latter happens
when x ∈ co(pre-ext(BX)) (see Remark 2.3), so the answer to Question 7.1 is positive
in this case. On the other hand, a possible counterexample to this problem could be the
molecule in Example 4.16, which is known to be a ccs ∆-point and it is an extreme point
but not a preserved extreme point (hence it does not belong to the convex hull of the
set of preserved extreme points). A way to show that this molecule is not super ∆-point
would be to investigate whether RNP spaces may contain super ∆-points.

Moreover, we do not know whether the global properties related to super ∆-points and
ccs ∆-points (i.e. DD2P and restricted DSD2P) are equivalent, or even whether any of
the implications holds. Actually, it is not known whether restricted DSD2P implies D2P.

Question 7.2. Does restricted DSD2P imply DD2P or even D2P? Does DD2P imply
restricted DSD2P?

Theorem 3.19 states that real Banach spaces with a one-unconditional basis contain
neither super ∆-points nor ccs ∆-points. It is likely that this result also holds true in
the complex setting since we believe that the preliminary results from [6] are also valid
for complex scalars, provided that one works with a suitable notion of one-unconditional
basis (for which [6, Proposition 2.3] holds). Also, we also expect that the results there
can be easily extended to one-uncondional FDDs. Yet, since a sharper version of this
result was obtained in Proposition 3.20 for super ∆-points in a very general setting, it
is natural to ask whether improved results could be simultaneously obtained in both
directions for ccs ∆-points by proving an analogue to Proposition 3.20. So let us ask the
following.

Question 7.3. Let X be a Banach space, and assume that there exists a subset A ⊆
F(X,X) such that sup {∥Id − T∥ : T ∈ A} < 2 and for every ε > 0 and every x ∈ X,
there exists T ∈ A such that ∥x− Tx∥ < ε. Can X contain a ccs ∆-point?

[55]
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A negative answer to this question would be interesting, since it would provide an
example of a ccs ∆-point that is not a super ∆-point, hence a negative answer to Ques-
tion 7.1.

Another interesting question could be if a point of continuity could be a ccs ∆-point.
Let us formalize the questions.

Question 7.4. Let X be a Banach space.

(1) Does X fail RNP (or even CPCP) if X contains a super ∆-point or a super Daugavet
point?

(2) Is it possible for a point of continuity to be a ccs ∆-point?

The surprising examples given in Chapter 4 show that the mere existence of some
diametral notions (but ccs Daugavet points) on a Banach space does not imply that
the whole space has any diameter-two property or the Daugavet property. Our question
here is how many diametral points a Banach space has to contain in order to have any
diameter-two property or the Daugavet property or fail to have RNP or one-unconditional
basis.

Question 7.5. How big can be the set of Daugavet points, super Daugavet points, ∆-
points, super ∆-points, or ccs ∆-points in a Banach space with the Radon–Nikodým
property, or with CPCP, or being strongly regular, or having one-unconditional basis?

Concerning isometric consequences of the existence of diametral points, there are
some recent results showing that a Banach space containing a ∆-point cannot be uni-
formly non-square [5] or even locally uniformly non-square [37], or asymptotic uniformly
smooth [5, 52]. Also, a Banach space having an unconditional basis with suppression-
unconditional constant less than 2 cannot contain super ∆-points and a Banach space
containing a ccs Daugavet point has SD2P. Taking into account that it is not known if
there exists a strictly convex Banach space with the Daugavet property (see [33, Sec-
tion 5]), the following question makes sense. Recall that Section 4.3.2 gives an example of
a strictly convex Banach space in which every norm-one element is a ccs ∆-point and a
super ∆-point, but it does not contain any Daugavet point by the way it is constructed.

Question 7.6. Is there a strictly convex Banach space containing a Daugavet point?

In view of Proposition 3.13 and of Theorem 4.14, the following question makes sense.

Question 7.7. Let X be a Banach space. Suppose that x ∈ ext(BX) is a ∆-point; does
this imply that x is a ccs ∆-point or a super ∆-point?

By now, the only isomorphic restriction which is known for a Banach space to contain
∆-points or even Daugavet points is that it cannot be finite-dimensional. It would be
interesting to find some more.

Question 7.8. Find isomorphic restrictions for a Banach space to contain ∆-points
or any of the other diametral notions. In particular, is it possible for a reflexive or even
super-reflexive Banach space to contain ∆-, super ∆-, ccs ∆-, Daugavet or super Daugavet
points?
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The results about absolute sums in Section 3.2 are not complete in the case of super
Daugavet points and they are even less clear in the case of ccs notions. Here are two
possible questions.

Question 7.9. Let X, Y be Banach spaces and let N be an absolute sum.

(1) If N is A-octahedral, x ∈ SX and y ∈ SY are super Daugavet points, is (ax, by) a
super Daugavet point in X ⊕N Y when a, b satisfy the conditions in the definition of
A-octahedrality?

(2) If N is the ℓ∞-sum, x ∈ SX and y ∈ SY are ccs ∆-points, are the elements of the
form (ax, by) ccs ∆-points in X ⊕∞ Y for a, b ∈ [0, 1] with max {a, b} = 1?

It would also be desirable to study the reversed results to those in Section 3.2 as it is
done in [45] for ∆-points and Daugavet points (see [45, tables on pp. 86–87]).

Question 7.10. Let X, Y be Banach spaces, let N be an absolute sum, x ∈ SX , y ∈ SY ,
and a, b ⩾ 0 such that N(a, b) = 1. Discuss what happens if (ax, by) satisfies any of the
six diametral notions.

It may be the case that some of the arguments in Sections 4.1 and 4.2 can be adapted
to other classes of Banach spaces. We propose some possibilities.

Question 7.11. Characterize the six diametral notions in uniform algebras, in Lorentz
spaces and their isometric preduals, and in some vector-valued function spaces, like
C(K,X), L1(µ,X) or L∞(µ,X)-spaces.

The relations between the weak∗ versions of the diametral points (see Remark 2.6)
are not yet clear. For instance, the following questions arise.

Question 7.12. Let X be a Banach space and x ∈ SX .

(1) Is JX(x) a ccs ∆-point in X∗∗ if x is a ccs ∆-point?
(2) Is there any relationship between DD2P in X and weak∗ super ∆-points in SX∗?

As commented in Remark 4.18, there is a Banach space X containing a sequence (yn)

of super ∆-points such that the distance of yn to the set of strongly exposed points of
BX tends to zero. But the following question remains open.

Question 7.13. Can a super ∆-point (or even a ∆-point) belong to the closure of the
set of denting points?

The answer to the next question on the behaviour of ∆- and super ∆-points in rays
is still unknown, as we commented in Chapter 5.

Question 7.14. Let X be a Banach space and let x ∈ SX .

(1) If rx is a ∆-point for some 0 < r < 1, does this imply that x is a ∆-point?
(2) If rx is a super ∆-point for some 0 < r < 1, does this imply that x is a auper ∆-point?
(3) If x is a super ∆-point, does this imply that rx is a super ∆-point for all 0 < r < 1?

As we proved in Chapter 6, every relatively weakly open subset which contains a
super ∆-point (respectively, a ccw ∆-point) has Kuratowski measure 2. Our proofs do
not seem to work for convex combination of slices, so let us ask the following.
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Question 7.15. If a ccs of the unit ball contains a ccs ∆-point, does it necessarily have
maximal Kuratowski measure?
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