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Masser—Wiistholz bound for reducibility of Galois
representations for Drinfeld modules of arbitrary rank

by

CHIEN-HUA CHEN (Taipei)

Abstract. We give an explicit bound on the irreducibility of the mod-[ Galois rep-
resentation for Drinfeld modules of arbitrary rank without complex multiplication. This
is a function field analogue of the Masser—Wiistholz bound on irreducibility of the mod-¢
Galois representation for elliptic curves over a number field.

1. Introduction. In 1993, Masser and Wiistholz [MW93b| proved a
famous result on existence of isogeny, with degree bounded by an explicit
formula, between two isogenous elliptic curves. Building upon this, they es-
tablished an explicit bound on the irreducibility of the mod-¢ Galois repre-
sentation associated to elliptic curves over number fields without complex
multiplication (CM). This bound was then used to deduce a bound on the
surjectivity of the mod-£ Galois representation for elliptic curves over number
fields without CM.

Analogous to the elliptic curve theory, David and Denis [DD99] intro-
duced an isogeny estimation applicable to Anderson t-modules. In partic-
ular, they deduced an isogeny estimation for Drinfeld Fy[T]-modules over
a global function field; see Theorem for more details. This naturally
prompts the query of whether the strategy employed by Masser—Wiistholz
can be adapted to deduce an irreducibility limit for the mod-I Galois rep-
resentations concerning rank-r Drinfeld modules without CM. However, the
Masser—Wiistholz strategy cannot be applied directly to the context of Drin-
feld modules. The main reason is that when one computes the degree of an
isogeny between Drinfeld modules, the degree is always a power of ¢, which is
not a prime number. Thus the computational trick in [MW93al Lemma 3.1]
does not work for Drinfeld modules.
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Nevertheless, the fundamental concept underlying the Masser—Wiistholz
approach has inspired us to produce a similar method. By combining this
concept with the height estimate on isogenous Drinfeld modules, as estab-
lished by Breuer, Pazuki, and Razafinjatovo (as detailed in Theorem ,
we are able to deduce our main result: an explicit bound on the irreducibil-
ity of the mod-I Galois representation for Drinfeld modules of any rank,
without CM.

THEOREM 1.1. Let ¢ = p° be a prime power, A :=F4[T], and K a finite
extension of F := Fy(T') of degree d. Let ¢ be a rank-r Drinfeld A-module
over K of generic characteristic and assume that End i (¢) = A. Let | = (¢)
be a prime ideal of A, and consider the mod-l Galois representation

por: Gal(K/K) — Aut(¢[l]) = GL,(A/1).
If py 1 is reducible, then either
(1)  degpl — Nglogdegy ¢ < log C + Ng{logd + r + log[ha(4) + 2]},
or
(2) degy ¢ < log C + Ny[logd - h(¢)].

Here C' is a computable constant depending on q and r, and Ng = 10(d+ 1)7.
Furthermore, h(¢) denotes the naive height of the Drinfeld module, while
ha(¢) is its graded height (see Definition ,

As a corollary, we deduce a sufficient condition on degy ¢ for the mod-I[
Galois representation pg to be irreducible. See Corollary @ for details.

Regarding the specialized scenario of ‘rank-2 Drinfeld modules over
F,(T)”, a more nuanced estimation concerning the irreducibility of the mod-[
Galois representation has been advanced by Chen and Lee [CL19]. However,
their strategy uses the fact that a power of a 1-dimensional group represen-
tation is again a group representation (see [CL19, proof of Proposition 7.1]).
In rank-2 scenarios, the reducibility of the mod-[ Galois representation al-
ways contributes a 1-dimensional subrepresentation. But this is not true for
higher rank Drinfeld modules.

On the other hand, Chen and Lee [CL19] gave an explicit bound on sur-
jectivity of mod-I Galois representations for rank-2 Drinfeld modules over
F,(T') without CM. Such an explicit bound is still unknown for higher rank
Drinfeld modules. The main difficulty is the classification of maximal sub-
groups (up to conjugacy classes) in GL, over a finite field, which is much
more complicated than in the GLy case, where one only needs to take care
of the Borel and Cartan cases.

2. Preliminaries. Let A = F,[T] be the polynomial ring over a finite
field with ¢ = p® an odd prime power, F' = F,(T") be the fractional field of A,
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and K be a finite extension of F. Throughout this paper, “log” refers to the
logarithm to base gq.

2.1. Drinfeld modules

DEFINITION 2.1. Let K(z) :={>_"", cix? | ¢; € K}. Define (K (x), +,0)
to be the ring of twisted ¢-polynomials with the usual addition, and with
multiplication defined to be the composition of g-polynomials.

DEFINITION 2.2. A Drinfeld A-module of rank r over K of generic char-
acteristic is a ring homomorphism

¢ A= K(x), ar ¢q(x),
determined by
¢r(z) =Tz + gat+ - + gpa? .

For an ideal a = (a) of A, we may define the a-torsion of the Drinfeld
module ¢ over K.

DEFINITION 2.3. The a-torsion of a Drinfeld module ¢ over K is defined
to be

dla] := {zeros of ¢,(x) in K} C K.

Now we define the A-module structure on K. For any b € A and a € K,
we define the A-action of b on « via

b-a:= ¢gp(a).

This gives K an A-module structure, which is inherited by ¢[a]. As our
Drinfeld module ¢ over K has generic characteristic, we have the following
proposition.

PROPOSITION 2.4. ¢[a] is a free A/a-module of rank r.
Proof. See |Gos96, Proposition 4.5.3]. =

Let [ be a prime ideal of A. Then the [-torsion ¢[l] of the Drinfeld module
¢ is an r-dimensional A/l-vector space. Applying the action of the absolute
Galois group Gal(K /K) on ¢[l], we obtain the so-called mod-I Galois repre-
sentation

por: Gal(K/K) — Aut(¢[l]) = GL,(A/I)

for the Drinfeld module ¢ over K.

Now we proceed to define various heights associated to Drinfeld modules.
Let Mg be the set of all places of K including places above co. For each place
v € Mg, we define n, := [K, : F,], the degree of the local field extension
K, /F,. Furthermore, we set | - |, to be a normalized valuation of K.
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DEFINITION 2.5. Let ¢ be a rank-r Drinfeld module over K determined by
or(x)=Tr+ ga?+---+ gT,lqul + gyz? , where g; € K and ¢, € K*.
(1) The naive height of ¢ is defined to be

h(o):=max {h(g)....hlar)}h. whete h(g):= e 3 my-loglai.
veEMg

(2) The graded height of ¢ is defined to be
1

— ) JY@ =D 11 <4 <)
ha(9) 7[KF] EZM: ny - logmax {|g:|, |1<i<r}
vEMK

From the definition we obtain
COROLLARY 2.6.

h(¢) < (¢" = 1) - ha(9).
2.2. Isogenies

DEFINITION 2.7. Let ¢ and % be two rank-r Drinfeld A-modules over K.
A morphism u : ¢ — 1 over K is a twisted g-polynomial v € K(zx) such that

upg = You  for all a € A.

A non-zero morphism u : ¢ — ) is called an isogeny. A morphism u : ¢ — ¥
is called an isomorphism if its inverse exists.

Set Homg (¢, ) to be the group of all morphisms u : ¢ — 1 over K. We
denote Endg (¢) = Hompg (¢, ¢). For any field extension L/K, we define

Homyp (¢, v) = {u € L(z) | upy = Pqu for all a € A}.
For L = K, we omit subscripts and write

Hom(¢, ) = Homg(6,) and End(¢) i= End (6).

DEFINITION 2.8. The composition of morphisms makes Endy (¢) a sub-
ring of L(z), called the endomorphism ring of ¢ over L. For any rank-r
Drinfeld module ¢ over K with End(¢) = A, we say that ¢ does not have
complex multiplication.

DEFINITION 2.9. Let f : ¢ — 1 be an isogeny of Drinfeld modules over
K of rank r. We define the degree of f to be

deg f := #ker(f).
PROPOSITION 2.10. Let f : ¢ — ¢ be an isogeny of Drinfeld modules
over K of rank r. There exists a dual isogeny f : ¥ — ¢ such that

fof=va and fof=¢a
Here 0 # a € A is an element of minimal T-degree such that ker(f) C ¢lal.
Proof. See [Gos96l, Proposition 4.7.13 and Corollary 4.7.14|. =
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The following corollary is immediate by counting cardinalities.

COROLLARY 2.11. In the setting of Proposition [2.10] we have
g 1) = (deg f) - (deg f).

Now we can state the key tools to derive our main result:

THEOREM 2.12 (|[DD99, Theorem 1.3]). Let K be a finite extension of F
with [K : F)] := d. Suppose that there are two K-isogenous Drinfeld modules
¢ and Y defined over K. Then there is an isogeny f : ¢ — 1 such that

deg f < ez - (dh(¢))" ",

Here co = ca(r, q) is an effectively computable constant that depends only on
r and q.

THEOREM 2.13 ([BPR21, Theorem 3.1|). Let f : ¢ — 4 be an isogeny of
rank-r Drinfeld modules over K and suppose that ker(f) C ¢[N] for some
0# N € A. Then

Iha (@) — ha(6)] < degp(N) + (q _ )

qg—1 ¢ -1

3. Proof of Theorem We are given a rank-r Drinfeld module ¢
defined over K with End(¢) = A. Suppose the image of the mod-I Galois
representation Im py( acting on ¢[l] has an invariant A/l-subspace H of di-
mension 1 <k <r—1.

By |[Gos96, Proposition 4.7.11 and Remark 4.7.12], there is an isogeny

f:¢—o/H
with ker(f) = H. Since ¢ and f both are defined over K, one can see that
¢/H is a rank-r Drinfeld module defined over K as well. In addition, we
have
degf — #H — qudegT [.

Take a dual isogeny f :¢/H — ¢ of f. The degree of f can be computed

using Corollary We get
degf _ q(r—k)-degTI.

Moreover, from Theorem [2.12 we can find two isogenies defined over K
between ¢ and ¢/H with bounded degree:
o u:¢— ¢/H with degu < cs - (dh(¢))10@+D)T,
o v :¢/H — ¢ with degu/ < c3 - (dh(¢p/H))OW+D",
Since End(¢) = A, we have v/ o u = ¢, for some b € A.

Now we consider the composition of isogenies

u'ofofou:¢—>gb/H—>¢—>¢)/H—>¢).
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Since End(¢) = A, we can find N1 and N3 in A such that

Wof=¢n, fou=dn,
Thus
u'ofofou=(uof)o(fou)=enn,
On the other hand, we compute in different order and get
w'ofofou=uo(fof)ou=1'o(¢p/H)ou=g¢o(u ou)=dpy.
Thus we get £b = N1 Ny. As { is prime, we have either ¢| N1 or £| No.

CASE 1: £| Ny. Then Ny = {f for some 0 # § € A. From the equality
u o f = ¢n,, we have

logdegu’ + k - degp £ = r(degy £ + degy 3).
Hence
logdegu' = (r — k) degy £ + r degy 3.
Combining this with the bound degu’ < ¢z - (dh(¢/H))@D" we obtain
(r — k) degy £ < loges + 10(d + 1) log[dh(¢/H)] — r degy B
< loges 4 10(d 4 1) log[dh(¢/ H)].
Thus

(%) deg ¢ < ﬁ - (log ¢z +10(d + 1)710g[dh(¢/H)])

< log ey + 10(d + 1)  log[dh(¢/H)).
Now from Corollary 2.6 and Theorem [2.13] we have

h(6/H) < (¢"~Dha(6/H) < (¢ 1): [ha<¢>+dew+ (q‘ = )]

g—1 ¢ -1
Consequently,
-
lg (/) < Yog(y” — 1)+l () + degr 0+ (5 - L))
< r+logdegy ¢ +log| ha(o) +1+ A :
g—1 ¢ -1
Combining this with the inequality (x) and the fact that
T
L — q < 1?
g—1 q -1
we obtain

degy £ —10(d + 1)" log degy £
< log ey +10(d 4 1) {log d + r + log[hg (o) + 2]}
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After renaming C := ¢y and Ny := 10(d + 1)7, we get the desired inequal-
ity (1).

CASE 2: ¢| Na. Then Ny = {3 for some 0 # 8 € A. From the equality
fou=¢n,, we have

(r — k)degy £ + log degu = r(degy £ + degy ).

Thus we get log degu = k degy {41 degy 8. Together with the bound degu <
¢a - (dh(¢))0@HD" we achieve

kdegy ¢ < log ey + 10(d + 1)7 log[dh(¢)] — r degy B < ¢z - (dh(¢))"0@HD".
Hence
degy ¢ < — - (logca 4 10(d 4+ 1) [log d - h(¢)])
< logey +10(d + 1) [logd - k()]

Again, relabelling C := ¢y and Ny := 10(d + 1) gives us inequality (2).
This completes the proof of Theorem

S

4. Lower bound on irreducibility of py . In the setting of Theo-
rem |1.1} one may further solve inequality (1) for degs ¢. By setting

24 := max {log C+Ny(log d+r-+loglhg(¢)+2]),log C+ Ngllog d-h(4)]},
Theorem [I.T]implies that the mod-I Galois representation is irreducible when
qdegT 4
degy ¢Na

When we fix a finite extension K/F and a Drinfeld module ¢, the num-

bers Ny and {24 are fixed. Elementary calculus can tell us that the fraction
qdegTZ
deg £Nd

> ¢ and degp € > (2.

tends to infinity as degp ¢ — oo. Thus we can always find a real

qdegT e
deg £Nd

number Cy 4 such that degp ¢ > Cy 4 implies > ¢*%. Now we try to

compute Cy 4 explicitly:

LEMMA 4.1. Leta, b, and ¢ be positive real numbers such that ¢/°- ﬁ >e,
where e is the Euler number and In := log, . Then

—1
> —b- Wfl(cull},ab)
Ina
s a solution to the inequality
a(l?
E > C.

Here W_q is the negative brach of the real-valued Lambert W -function, i.e.
the inverse function of the complex-valued function f(y) = yeY.
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Proof. The proof is by direct computation, hence we leave it to the reader
as an exercise. m

Now we take z = degpl, a = q, b = Ny, and ¢ = ¢**». One can check
that

Therefore, Lemma [4.1] shows that
—b- W (G7)

Ina

Coa =
And we can conclude the following corollary:

COROLLARY 4.2. Let g = p® be a prime power, A :=T4[T|, and K a finite
extension of F' 1= Fq(T) of degree d. Let ¢ be a rank-r Drinfeld A-module
over K of generic characteristic and assume that End i (¢) = A. Let | = (£)
be a prime ideal of A, and consider the mod-I Galois representation

por: Gal(K/K) — Aut(¢[l]) = GL,.(A/1).
If degp € > max{Cy 4, 24}, then pg is irreducible. Here
24 := max {log C+ Ng (logd + r + log[hq(¢) + 2]) ,log C+ Ng[log d- h(¢)]},

—Na- Woa (o)

Ing
and C = cy(r, q) is the effectively computable constant of Theorem m

Copd =

)
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