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Masser–Wüstholz bound for reducibility of Galois
representations for Drinfeld modules of arbitrary rank

by

Chien-Hua Chen (Taipei)

Abstract. We give an explicit bound on the irreducibility of the mod-l Galois rep-
resentation for Drinfeld modules of arbitrary rank without complex multiplication. This
is a function field analogue of the Masser–Wüstholz bound on irreducibility of the mod-ℓ
Galois representation for elliptic curves over a number field.

1. Introduction. In 1993, Masser and Wüstholz [MW93b] proved a
famous result on existence of isogeny, with degree bounded by an explicit
formula, between two isogenous elliptic curves. Building upon this, they es-
tablished an explicit bound on the irreducibility of the mod-ℓ Galois repre-
sentation associated to elliptic curves over number fields without complex
multiplication (CM). This bound was then used to deduce a bound on the
surjectivity of the mod-ℓGalois representation for elliptic curves over number
fields without CM.

Analogous to the elliptic curve theory, David and Denis [DD99] intro-
duced an isogeny estimation applicable to Anderson t-modules. In partic-
ular, they deduced an isogeny estimation for Drinfeld Fq[T ]-modules over
a global function field; see Theorem 2.12 for more details. This naturally
prompts the query of whether the strategy employed by Masser–Wüstholz
can be adapted to deduce an irreducibility limit for the mod-l Galois rep-
resentations concerning rank-r Drinfeld modules without CM. However, the
Masser–Wüstholz strategy cannot be applied directly to the context of Drin-
feld modules. The main reason is that when one computes the degree of an
isogeny between Drinfeld modules, the degree is always a power of q, which is
not a prime number. Thus the computational trick in [MW93a, Lemma 3.1]
does not work for Drinfeld modules.
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Nevertheless, the fundamental concept underlying the Masser–Wüstholz
approach has inspired us to produce a similar method. By combining this
concept with the height estimate on isogenous Drinfeld modules, as estab-
lished by Breuer, Pazuki, and Razafinjatovo (as detailed in Theorem 2.13),
we are able to deduce our main result: an explicit bound on the irreducibil-
ity of the mod-l Galois representation for Drinfeld modules of any rank,
without CM.

Theorem 1.1. Let q = pe be a prime power, A := Fq[T ], and K a finite
extension of F := Fq(T ) of degree d. Let ϕ be a rank-r Drinfeld A-module
over K of generic characteristic and assume that EndK̄(ϕ) = A. Let l = (ℓ)
be a prime ideal of A, and consider the mod-l Galois representation

ρ̄ϕ,l : Gal(K̄/K) → Aut(ϕ[l]) ∼= GLr(A/l).

If ρ̄ϕ,l is reducible, then either

(1) degT ℓ−Nd log degT ℓ ⩽ logC +Nd{log d+ r + log[hG(ϕ) + 2]},
or

(2) degT ℓ ⩽ logC +Nd[log d · h(ϕ)].
Here C is a computable constant depending on q and r, and Nd = 10(d+1)7.
Furthermore, h(ϕ) denotes the naive height of the Drinfeld module, while
hG(ϕ) is its graded height (see Definition 2.5).

As a corollary, we deduce a sufficient condition on degT ℓ for the mod-l
Galois representation ρ̄ϕ,l to be irreducible. See Corollary 4.2 for details.

Regarding the specialized scenario of “rank-2 Drinfeld modules over
Fq(T )”, a more nuanced estimation concerning the irreducibility of the mod-l
Galois representation has been advanced by Chen and Lee [CL19]. However,
their strategy uses the fact that a power of a 1-dimensional group represen-
tation is again a group representation (see [CL19, proof of Proposition 7.1]).
In rank-2 scenarios, the reducibility of the mod-l Galois representation al-
ways contributes a 1-dimensional subrepresentation. But this is not true for
higher rank Drinfeld modules.

On the other hand, Chen and Lee [CL19] gave an explicit bound on sur-
jectivity of mod-l Galois representations for rank-2 Drinfeld modules over
Fq(T ) without CM. Such an explicit bound is still unknown for higher rank
Drinfeld modules. The main difficulty is the classification of maximal sub-
groups (up to conjugacy classes) in GLr over a finite field, which is much
more complicated than in the GL2 case, where one only needs to take care
of the Borel and Cartan cases.

2. Preliminaries. Let A = Fq[T ] be the polynomial ring over a finite
field with q = pe an odd prime power, F = Fq(T ) be the fractional field of A,
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and K be a finite extension of F . Throughout this paper, “log” refers to the
logarithm to base q.

2.1. Drinfeld modules

Definition 2.1. Let K⟨x⟩ := {
∑n

i=0 cix
qi | ci ∈ K}. Define (K⟨x⟩,+, ◦)

to be the ring of twisted q-polynomials with the usual addition, and with
multiplication defined to be the composition of q-polynomials.

Definition 2.2. A Drinfeld A-module of rank r over K of generic char-
acteristic is a ring homomorphism

ϕ : A→ K⟨x⟩, a 7→ ϕa(x),

determined by
ϕT (x) = Tx+ g1x

q + · · ·+ grx
qr .

For an ideal a = ⟨a⟩ of A, we may define the a-torsion of the Drinfeld
module ϕ over K.

Definition 2.3. The a-torsion of a Drinfeld module ϕ over K is defined
to be

ϕ[a] := {zeros of ϕa(x) in K̄} ⊂ K̄.

Now we define the A-module structure on K̄. For any b ∈ A and α ∈ K̄,
we define the A-action of b on α via

b · α := ϕb(α).

This gives K̄ an A-module structure, which is inherited by ϕ[a]. As our
Drinfeld module ϕ over K has generic characteristic, we have the following
proposition.

Proposition 2.4. ϕ[a] is a free A/a-module of rank r.

Proof. See [Gos96, Proposition 4.5.3].

Let l be a prime ideal of A. Then the l-torsion ϕ[l] of the Drinfeld module
ϕ is an r-dimensional A/l-vector space. Applying the action of the absolute
Galois group Gal(K̄/K) on ϕ[l], we obtain the so-called mod-l Galois repre-
sentation

ρ̄ϕ,l : Gal(K̄/K) → Aut(ϕ[l]) ∼= GLr(A/l)

for the Drinfeld module ϕ over K.
Now we proceed to define various heights associated to Drinfeld modules.

Let MK be the set of all places of K including places above ∞. For each place
ν ∈ MK , we define nν := [Kν : Fν ], the degree of the local field extension
Kν/Fν . Furthermore, we set | · |ν to be a normalized valuation of Kν .
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Definition 2.5. Let ϕ be a rank-r Drinfeld module overK determined by

ϕT (x) = Tx+ g1x
q + · · ·+ gr−1x

qr−1
+ grx

qr , where gi ∈ K and gr ∈ K∗.

(1) The naive height of ϕ is defined to be

h(ϕ) :=max {h(g1), . . . , h(gr)}, where h(gi) :=
1

[K :F ]

∑
ν∈MK

nν · log |gi|ν .

(2) The graded height of ϕ is defined to be

hG(ϕ) :=
1

[K : F ]

∑
ν∈MK

nν · logmax {|gi|1/(q
i−1)

ν | 1 ⩽ i ⩽ r}.

From the definition we obtain

Corollary 2.6.
h(ϕ) ⩽ (qr − 1) · hG(ϕ).

2.2. Isogenies

Definition 2.7. Let ϕ and ψ be two rank-r Drinfeld A-modules over K.
A morphism u : ϕ→ ψ over K is a twisted q-polynomial u ∈ K⟨x⟩ such that

uϕa = ψau for all a ∈ A.

A non-zero morphism u : ϕ→ ψ is called an isogeny. A morphism u : ϕ→ ψ
is called an isomorphism if its inverse exists.

Set HomK(ϕ, ψ) to be the group of all morphisms u : ϕ→ ψ over K. We
denote EndK(ϕ) = HomK(ϕ, ϕ). For any field extension L/K, we define

HomL(ϕ, ψ) = {u ∈ L⟨x⟩ | uϕa = ψau for all a ∈ A}.
For L = K̄, we omit subscripts and write

Hom(ϕ, ψ) := HomK̄(ϕ, ψ) and End(ϕ) := EndK̄(ϕ).

Definition 2.8. The composition of morphisms makes EndL(ϕ) a sub-
ring of L⟨x⟩, called the endomorphism ring of ϕ over L. For any rank-r
Drinfeld module ϕ over K with End(ϕ) = A, we say that ϕ does not have
complex multiplication.

Definition 2.9. Let f : ϕ → ψ be an isogeny of Drinfeld modules over
K of rank r. We define the degree of f to be

deg f := #ker(f).

Proposition 2.10. Let f : ϕ → ψ be an isogeny of Drinfeld modules
over K of rank r. There exists a dual isogeny f̂ : ψ → ϕ such that

f ◦ f̂ = ψa and f̂ ◦ f = ϕa.

Here 0 ̸= a ∈ A is an element of minimal T -degree such that ker(f) ⊂ ϕ[a].

Proof. See [Gos96, Proposition 4.7.13 and Corollary 4.7.14].
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The following corollary is immediate by counting cardinalities.

Corollary 2.11. In the setting of Proposition 2.10, we have

qr·degT (a) = (deg f) · (deg f̂).
Now we can state the key tools to derive our main result:

Theorem 2.12 ([DD99, Theorem 1.3]). Let K be a finite extension of F
with [K : F ] := d. Suppose that there are two K̄-isogenous Drinfeld modules
ϕ and ψ defined over K. Then there is an isogeny f : ϕ→ ψ such that

deg f ⩽ c2 · (dh(ϕ))10(r+1)7 .

Here c2 = c2(r, q) is an effectively computable constant that depends only on
r and q.

Theorem 2.13 ([BPR21, Theorem 3.1]). Let f : ϕ→ ψ be an isogeny of
rank-r Drinfeld modules over K̄ and suppose that ker(f) ⊂ ϕ[N ] for some
0 ̸= N ∈ A. Then

|hG(ψ)− hG(ϕ)| ⩽ degT (N) +

(
q

q − 1
− qr

qr − 1

)
.

3. Proof of Theorem 1.1. We are given a rank-r Drinfeld module ϕ
defined over K with End(ϕ) = A. Suppose the image of the mod-l Galois
representation Im ρ̄ϕ,l acting on ϕ[l] has an invariant A/l-subspace H of di-
mension 1 ⩽ k ⩽ r − 1.

By [Gos96, Proposition 4.7.11 and Remark 4.7.12], there is an isogeny

f : ϕ→ ϕ/H

with ker(f) = H. Since ϕ and f both are defined over K, one can see that
ϕ/H is a rank-r Drinfeld module defined over K as well. In addition, we
have

deg f = #H = qk·degT l.

Take a dual isogeny f̂ : ϕ/H → ϕ of f . The degree of f̂ can be computed
using Corollary 2.11. We get

deg f̂ = q(r−k)·degT l.

Moreover, from Theorem 2.12, we can find two isogenies defined over K̄
between ϕ and ϕ/H with bounded degree:

• u : ϕ→ ϕ/H with deg u ⩽ c2 · (dh(ϕ))10(d+1)7 ,
• u′ : ϕ/H → ϕ with deg u′ ⩽ c2 · (dh(ϕ/H))10(d+1)7 .

Since End(ϕ) = A, we have u′ ◦ u = ϕb for some b ∈ A.
Now we consider the composition of isogenies

u′ ◦ f ◦ f̂ ◦ u : ϕ→ ϕ/H → ϕ→ ϕ/H → ϕ.
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Since End(ϕ) = A, we can find N1 and N2 in A such that

u′ ◦ f = ϕN1 , f̂ ◦ u = ϕN2 .

Thus
u′ ◦ f ◦ f̂ ◦ u = (u′ ◦ f) ◦ (f̂ ◦ u) = ϕN1N2 .

On the other hand, we compute in different order and get

u′ ◦ f ◦ f̂ ◦ u = u′ ◦ (f ◦ f̂) ◦ u = u′ ◦ (ϕ/H)ℓ ◦ u = ϕℓ ◦ (u′ ◦ u) = ϕℓb.

Thus we get ℓb = N1N2. As ℓ is prime, we have either ℓ |N1 or ℓ |N2.

Case 1: ℓ |N1. Then N1 = ℓβ for some 0 ̸= β ∈ A. From the equality
u′ ◦ f = ϕN1 , we have

log deg u′ + k · degT ℓ = r(degT ℓ+ degT β).

Hence
log deg u′ = (r − k) degT ℓ+ r degT β.

Combining this with the bound deg u′ ⩽ c2 · (dh(ϕ/H))10(d+1)7 , we obtain

(r − k) degT ℓ ⩽ log c2 + 10(d+ 1)7 log[dh(ϕ/H)]− r degT β

⩽ log c2 + 10(d+ 1)7 log[dh(ϕ/H)].

Thus

(⋆) degT ℓ ⩽
1

r − k
·
(
log c2 + 10(d+ 1)7 log[dh(ϕ/H)]

)
⩽ log c2 + 10(d+ 1)7 log[dh(ϕ/H)].

Now from Corollary 2.6 and Theorem 2.13, we have

h(ϕ/H) ⩽ (qr−1)hG(ϕ/H) ⩽ (qr−1)·
[
hG(ϕ)+degT ℓ+

(
q

q − 1
− qr

qr − 1

)]
.

Consequently,

log h(ϕ/H) ⩽ log(qr − 1) + log

(
hG(ϕ) + degT ℓ+

(
q

q − 1
− qr

qr − 1

))
⩽ r + log degT ℓ+ log

(
hG(ϕ) + 1 +

(
q

q − 1
− qr

qr − 1

))
.

Combining this with the inequality (⋆) and the fact that
q

q − 1
− qr

qr − 1
< 1,

we obtain

degT ℓ− 10(d+ 1)7 log degT ℓ

⩽ log c2 + 10(d+ 1)7{log d+ r + log[hG(ϕ) + 2]}.
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After renaming C := c2 and Nd := 10(d + 1)7, we get the desired inequal-
ity (1).

Case 2: ℓ |N2. Then N2 = ℓβ for some 0 ̸= β ∈ A. From the equality
f̂ ◦ u = ϕN2 , we have

(r − k) degT ℓ+ log deg u = r(degT ℓ+ degT β).

Thus we get log deg u = k degT ℓ+r degT β. Together with the bound deg u ⩽
c2 · (dh(ϕ))10(d+1)7 , we achieve

k degT ℓ ⩽ log c2 + 10(d+ 1)7 log[dh(ϕ)]− r degT β ⩽ c2 · (dh(ϕ))10(d+1)7 .

Hence

degT ℓ ⩽
1

k
· (log c2 + 10(d+ 1)7[log d · h(ϕ)])

⩽ log c2 + 10(d+ 1)7[log d · h(ϕ)].
Again, relabelling C := c2 and Nd := 10(d+ 1)7 gives us inequality (2).

This completes the proof of Theorem 1.1.

4. Lower bound on irreducibility of ρ̄ϕ,l. In the setting of Theo-
rem 1.1, one may further solve inequality (1) for degT ℓ. By setting

Ωϕ := max {logC+Nd(log d+r+log[hG(ϕ)+2]), logC+Nd[log d·h(ϕ)]},
Theorem 1.1 implies that the mod-l Galois representation is irreducible when

qdegT ℓ

degT ℓ
Nd

> qΩϕ and degT ℓ > Ωϕ.

When we fix a finite extension K/F and a Drinfeld module ϕ, the num-
bers Nd and Ωϕ are fixed. Elementary calculus can tell us that the fraction
qdegT ℓ

degT ℓNd
tends to infinity as degT ℓ → ∞. Thus we can always find a real

number Cϕ,d such that degT ℓ > Cϕ,d implies qdegT ℓ

degT ℓNd
> qΩϕ . Now we try to

compute Cϕ,d explicitly:

Lemma 4.1. Let a, b, and c be positive real numbers such that c1/b · b
ln a⩾e,

where e is the Euler number and ln := loge . Then

x >
−b ·W−1

(− ln a
c1/b·b

)
ln a

is a solution to the inequality
ax

xb
> c.

Here W−1 is the negative brach of the real-valued Lambert W -function, i.e.
the inverse function of the complex-valued function f(y) = yey.
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Proof. The proof is by direct computation, hence we leave it to the reader
as an exercise.

Now we take x = degT ℓ, a = q, b = Nd, and c = qΩϕ . One can check
that

c1/b · b

ln a
⩾ e.

Therefore, Lemma 4.1 shows that

Cϕ,d =
−b ·W−1

(− ln a
c1/b·b

)
ln a

.

And we can conclude the following corollary:

Corollary 4.2. Let q = pe be a prime power, A := Fq[T ], and K a finite
extension of F := Fq(T ) of degree d. Let ϕ be a rank-r Drinfeld A-module
over K of generic characteristic and assume that EndK̄(ϕ) = A. Let l = (ℓ)
be a prime ideal of A, and consider the mod-l Galois representation

ρ̄ϕ,l : Gal(K̄/K) → Aut(ϕ[l]) ∼= GLr(A/l).

If degT ℓ > max {Cϕ,d, Ωϕ}, then ρ̄ϕ,l is irreducible. Here

Ωϕ := max {logC+Nd (log d+ r + log[hG(ϕ) + 2]) , logC+Nd[log d ·h(ϕ)]},

Cϕ,d =
−Nd ·W−1

( − ln q

q
Ωϕ/Nd ·Nd

)
ln q

,

and C = c2(r, q) is the effectively computable constant of Theorem 2.12.
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