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Abstract. We use the circle method to count the number of integer solutions to
systems of bihomogeneous equations of bidegree (1,1) and (2,1) of bounded height in
lopsided boxes. Previously, adjusting Birch’s techniques to the bihomogeneous setting,
Schindler showed an asymptotic formula provided the number of variables grows at least
quadratically with the number of equations considered. Based on recent methods by Rydin
Myerson we weaken this assumption and show that the number of variables only needs to
satisfy a linear bound in terms of the number of equations.
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1. Introduction. Studying the number of rational solutions of bounded
height to a system of equations is a fundamental tool in order to understand
the distribution of rational points on varieties. A longstanding result by
Birch [3] establishes an asymptotic formula for the number of integer points
of bounded height that are solutions to a system of homogeneous forms of
the same degree in a general setting, provided the number of variables is
sufficiently large relative to the singular locus of the variety defined by the
system of equations. This was recently improved upon by Rydin Myerson [22]
23] whenever the degree is 2 or 3. These results may be used in order to
prove Manin’s conjecture for certain Fano varieties, which arise as complete
intersections in projective space.
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Analogous to Birch’s result, Schindler [24] studied systems of bihomoge-
neous forms. Using the hyperbola method, Schindler [26] established Manin’s
conjecture for certain bihomogeneous varieties as a result. The aim of this
paper is to improve Schindler’s result by applying the ideas of Rydin My-
erson to the bihomogeneous setting. While the results presented only hold
for bidegree (1,1) and (2,1), they follow from Theorem [2.1 which deals
with general bidegree. This theorem could in principle be used to improve
Schindler’s result for general bidegree. However, one would run into problems
that are very similar to the ones appearing in [21].

Consider a system of bihomogeneous forms

F(:c,y) = (Fl(mvy)"' . 7FR(m7y))

with integer coefficients in variables © = (z1,...,2,,) and Yy = (Y1, ..., Yn,)-
We assume that all of the forms have the same bidegree, which we denote by
(d1, ds) for non-negative integers dy, ds. By this we mean that for any scalars
A, i € C we have

Fi(\x, ny) = )\dludQFi(az,y), i=1,...,R.

This system defines a biprojective variety V C P%l_l X P&Q_l. One can also
interpret the system in the affine variables (1, ..., Zn,, Y1, - ., Yn,) and thus
F(x,y) also defines an affine variety which we will denote by V C A%1+"2.
We are interested in studying the set of integer solutions to this system of
bihomogeneous equations. Consider two boxes B; C [—1,1]™ where each
edge is of side length at most 1 and they are all parallel to the coordinate
axes. In order to study the questions from an analytic point of view, for
Py, P> > 1 we define the following counting function:

N(Py, Py) = #{(z,y) € Z™ x Z™: x/P, € By, y/ P> € By, F(z,y) = 0}.

Generalising the work of Birch [3], Schindler [24] used the circle method to
achieve an asymptotic formula for N(Py, P») as P;, P, — oo provided certain
conditions on the number of variables are satisfied, to be described below.
Before we can state Schindler’s result, consider the varieties V}* and V5" in

AZ ™™ to be defined by

OF; OF;
rank ( 1) < R and rank ( l) <R
9z; ) 5 ;) i;
respectively. Assume that V[ is a complete intersection, which means that

dim Vy = n1; + no — R. Write b = max {%Ogg %(O)EPZ 1}
If ny > Rfori=1,2 and

1} and u—max{

(1.1) ny+np—dim V;* > 28+ "2 max {R(R+1)(d1 +do— 1), R(bdy +uds)}
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is satisfied, then Schindler showed the asymptotic formula

(1.2)
N(Py, Py) = gp—fidippa=fde . o(pp—Fd pra=Fda i [y Py} =9),

for some § > 0 and where o is positive if the system F(x,y) = 0 has a
smooth p-adic zero for all primes p, and the variety Vy has a smooth real
zero in B x Ba. In the case when the equations Fi(x,y),. .., Fr(x,y) define
a smooth complete intersection V', and the bidegree is (1, 1) or (2, 1), the goal
of this paper is to improve the restriction on the number of variables
and still show the asymptotic formula . In particular, if the bidegree is
(1,1) or (2,1) we will show that if
bdy, + udy < %,

our result will require fewer variables.

The result by Schindler generalises a well-known result by Birch [3], which
deals with systems of homogeneous equations: Let B C [—1, 1]" be a box con-
taining the origin with side lengths at most 1 and edges parallel to the coor-

dinate axes. Given homogeneous equations Gi(x),...,Ggr(x) with rational
coeflicients of common degree d > 1 define the counting function
NP)=#{x €Z": xz/P e B, Gi(x) =--- = Gg(x) = 0}.

Write V* C Ag for the variety defined by

rank (aGZ) < R,
81']' i

)

commonly referred to as the Birch singular locus. Assuming that G1,...,GRr
define a complete intersection X C ]P’&f1 and that the number of variables
satisfies

(1.3) n—dimV* > R(R+1)(d — 1)2¢71,
Birch showed
(1.4) N(P) =Pt L Oo(pn—dfi=e),

where & > 0 if the system G(x) has a smooth p-adic zero for all primes p
and the variety X has a smooth real zero in B.

Building on the ideas of Miiller [16], [17] on quadratic Diophantine inequal-
ities, Rydin Myerson improved Birch’s theorem. He weakened the assumption
on the number of variables in the cases d = 2,3 (see [22, 23]) whenever R is
reasonably large. Assuming that X C IP’_l defines a complete intersection,
he was able to replace the condition in by

(1.5) n—og > d2¢R,
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where
or =1+ Be%lg\)io} dim Sing V(8 - G),
and where V(8- Q) is the pencil defined by S>% | 8,G(x) in IP’&_I. We note at
this point that several other authors have replaced the Birch singular locus
condition with weaker assumptions, such as Schindler [25] and Dietmann [9],
who also considered dimensions of pencils, and very recently Yamagishi [31],
who replaced the Birch singular locus with a condition regarding the Hessian
of the system. Returning to Rydin Myerson’s result, if X is non-singular then
one can show
or<R-1

and in this case if n > (d2¢ + 1)R then one obtains the desired asymptotic.
Notably, the work of Rydin Myerson showed the number of variables n thus
only has to grow linearly in the number of equations R, whereas R appeared
quadratically in Birch’s work. If d > 4 he showed that for generic systems
of forms it suffices to assume for the asymptotic to hold. Generic
here means that the set of coefficients is required to lie in some non-empty
Zariski open subset of the parameter space of coefficients of the equations.

Our goal in this paper is to generalise the results obtained by Rydin
Myerson to the case of bihomogeneous varieties whenever the bidegree of
the forms is (1,1) or (2,1). Those two cases correspond to degrees 2 and 3 in
the homogeneous case, respectively. We call a bihomogeneous form bilinear
if the bidegree is (1,1). Given a bilinear form Fj(x,y) we may write it as

Fi(ma y) = yTAimv

for some 1y x nq-dimensional matrices A; with rational entries. Given 8 € RE
write

R
Ag = BiA;.
=1

Regarding Ag as a map R™ — R" and and Ag as a map R™ — R™ we
define the quantities

o) = max dim ker(Ag) and a]g) = max dim ker(Ag).
BeRM\{0} BERF\{0}

We state our first theorem for systems of bilinear forms. Since the situation is

completely symmetric with respect to the  and y variables if the forms are

bilinear, we may without loss of generality assume P; > P» in the counting

function, and still obtain the full result.

THEOREM 1.1. Let Fy(x,y),...,Fr(x,y) be bilinear forms with integer
coefficients such that the biprojective variety V(Fy, ..., Fg) C P&l_l X }P’%Q_l

log(P1)
10g(P2)

is a complete intersection. Let Py > Py, > 1, write b = and assume
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further that
(1.6) ni—ol) > (2b+2)R

fori=1,2. Then there exists some § > 0 depending at most on b, F, R and
n; such that

N(Ph PQ) = O’P{LI_RPSLQ_R + O(P{%1—RP2712_R_5)7

where o > 0 if the system F(x,y) = 0 has a smooth p-adic zero for all
primes p and if the variety Vo has a smooth real zero in By X Ba.

Moreover, if we assume V(F,...,Fgr) C IF’&*l X ]P’&Tl to be smooth the
same conclusions hold if we assume

min{ni,no} > (20 +2)R and ny+ng > (4b+5)R
instead of (|1.6]).

We now move on to systems of forms Fj(x,y),..., Fr(x,y) of bidegree
(2,1). We may write such a form Fj(x,y) as

Fi(wa y) = :cTHl(y)m,

where H;(y) is a symmetric nq X ny matrix whose entries are linear forms in
the variables y = (y1,...,%n,). Similarly to above, given 8 € R® we write

R
Hga(y) = Z BiHi(y).
i=1

Given ¢ € {1,...,n2} write e, € R™ for the standard unit basis vectors.
Write

e

for this intersection of zero loci, and define

1) . . T
1.7 s’ =14+ max dimV(xz® Hg(ep)x)r=1.. no-
o K 5ERR\)§O} ( B(e0)T)i=1,..n

Further write V(Hg(y)x) for the biprojective variety defined by the system
of equations

V(Hg(y)az) = V((Hg(y)il})l, ce (Hﬁ(y)l')nl) C Pal—l v ]P)&2_1
and define

(1.8) SI(R2) — \\maXBe]RR\{O} dzlmV(Hﬁ(y)zc)J i

where |x| denotes the largest integer m such that m < x.

THEOREM 1.2. Let Fi(x,y),..., Fr(x,y) be bihomogeneous forms with
integer coefficients of bidegree (2,1) such that the biprojective variety
V(Fy,...,Fgr) C P&rl X IP’?Q?*1 is a complete intersection. Let Py, Py > 1 be
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log/(P;
log(P:

1} and u = max{log(PQ) 1} Assume

real numbers. Write b = max { Tog(Py)

further that

mtne sg) > (8b + 4u)R.

(1.9) ny — SI(R) > (8b+4u)R and

Then there exists some § > 0 depending at most on b, u, R, n; and F such
that

(1.10) N(Py, Py) = oPm 2B ppe=B L o(pm—2Rpra=f min (P Py} 79,

where o > 0 if the system F(x,y) = 0 has a smooth p-adic zero for all
primes p, and if the variety Vo has a smooth real zero in By X Bs.

If we assume that V(Fy,...,Fg) C P&rl X P&Tl is smooth, then the
same conclusions hold if we assume

(1.11) ny > (16b+8u+1)R and ng > (8b+4u+1)R

instead of (1.9).

Both of the results above are a consequence of Theorem 2.1} This theorem
states that if one is able to estimate the number of solutions to an associated
multilinear counting problem then one obtains the asymptotic formula .
However, whenever dj + ds > 3 the associated multilinear problem becomes
very difficult and one encounters problems as in [21].

We remark that we preferred to give conditions in terms of the geometry
of the variety regarded as a biprojective variety, as opposed to an affine
variety. The reason for this is the potential application of this result to
proving Manin’s conjecture for this variety, which will be addressed in due
course.

Compared to the result by Schindler we thus basically remove the as-
sumption that the number of variables needs to grow at least quadratically

in R. In particular, our results require fewer variables than Schindler’s if
R+1

(1.12) bdy + udy < 5

is satisfied, in the cases (di,d2) = (1,1) or (2,1). To see this, note firstly
that (1.12) implies that Schindler’s condition on the number of variables
becomes

ni +ng —dim V;* > 2072 2R(R 4 1)(d; + dy — 1).
Further, similarly to [22, Lemma 1.1| one may show
®) S (dy, do) = (1,1
d1mV1*2 n2+o-(1R) 1 ( 1 2) ( ) ))
ng + Eh if (dl,dg) = (2, 1),

and
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Comparing Schindler’s condition with the conditions on the number of vari-
ables appearing in Theorems [I.1] and [T.2] the claim now transpires.

In particular, if R is large this means our result provides significantly
more flexibility in the choice of u and b.

One cannot hope to achieve the asymptotic formula in general where
a condition of the shape n; > R(bd; 4+ uds) is not present. To see this, note
that the counting function satisfies

N(Py, Py) > P'" + P2,

coming from the solutions when 1 =---=z,, =0and y; =--- =yp, =0.
The asymptotic formula ([1.2)) thus implies

N n1—di R pno—da R
Pl < P| P}

for i = 1,2. Noting that P = Py if u > 1 and P} = Py if b > 1 and
comparing the exponents one necessarily finds that n; > R(bdy + uds).

If the forms are diagonal then one can take boxes B; which avoid the
coordinate axes in order to remedy this obstruction. In fact, this is the ap-
proach taken by Blomer and Briidern [4] and they proved an asymptotic
formula of a system of multihomogeneous equations without a restriction on
the number of variables similar to the type described above.

If the forms are not diagonal the problem still persists, even if one were
to take boxes avoiding the coordinate axes. In general there may be ‘bad’
vectors y away from the coordinate axes such that

#{xeZ": F(x,y)=0, |z| <P} >P" Y

where a < di R for example. This is in contrast to the diagonal case, where
the only vectors y where this occurs lie on at least one coordinate axis.
It would be interesting to consider a modified counting function where one
excludes such vectors y, and analogously ‘bad’ vectors x. In a general setting
it seems difficult to control the set of such vectors. In particular, it is not
clear how one would deal with the Weyl differencing step if one were to
consider such a counting function.

1.1. Manin’s conjecture. Let V C P! x P&Zfl be a non-singular
complete intersection defined by a system of forms F;(x,y), i = 1,..., R,
of common bidegree (di,dy). Assume n; > d; R so that V is a Fano variety,
which means that the inverse of the canonical bundle in the Picard group,
the anticanonical bundle, is very ample. For a field K, write V(K) for the
set of K-rational points of V. In the context of Manin’s conjecture we define
this to be the set of K-morphisms

Spec(K) — Vk,
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where Vg denotes the base change of V' to the field K. For a subset U(Q) C
V(Q) and P > 1 consider the counting function

NU(P) = #{(:B,y) € U(Q) H(mvy) < P}v
where H (-, -) is the anticanonical height induced by the anticanonical bundle
and a choice of global sections. In our case one such height may be explicitly
given as follows. If (z,y) € U(Q) we may pick representatives € Z™ and
y € Z™ such that (x1,...,2n,) = (Y1,...,Yn,) = 1 and we define

n1—Rd1 no—Rda
H(z,y) = (max|zi] )" (max]yi]

Manin’s Conjecture in this context states that, provided V is a Fano variety
such that V(Q) C V is Zariski dense, there exists a subset U(Q) C V(Q)
where (V' \ U)(Q) is a thin set such that

Ny (P) ~ cP(log ),

where p is the Picard rank of the variety V and c is a constant as predicted
and interpreted by Peyre [18]. We briefly recall the definition of a thin set,
according to Serre [28]. First recall a set A C V(K) is of type

(C1) if AC W(K), where W C V is Zariski closed,
(Cy) if A C 7(V/(K)), where V' is irreducible such that dimV = dim V",

where 7: V/ — V is a generically finite morphism of degree at least 2.

Now a subset of the K-rational points of V' is thin if it is a finite union of sets
of type (C1) or (C2). Originally Batyrev—Manin [I] conjectured that it suffices
to assume that V \ U is Zariski closed, but there have been found various
counterexamples to this, the first one being due to Batyrev—Tschinkel [2].

In |26] Schindler showed an asymptotic formula of the shape above, if V' is
smooth and di,ds > 2 and

n;>3-20tq LR+ R

is satisfied for ¢ = 1,2. If R = 1 she moreover verified that the constant
obtained agrees with the one predicted by Peyre, and thus proved Manin’s
conjecture for bihomogeneous hypersurfaces when the conditions above are
met. The proof uses the asymptotic established in [24] along with uni-
form counting results on fibres. That is, for a vector y € Z"2 one may
consider the counting function

Ny(P)=#{xe€Z™: F(x,y) =0, || < P},
and to understand its asymptotic behaviour uniformly means to understand
the dependence of y on the constant in the error term. Similarly she con-
sidered Ng(P) for ‘good’ & and combined the three resulting estimates to
obtain an asymptotic formula for the number of solutions N (Py, Py) to the
system F(x,y) = 0, where |x| < P, |y| < P and x,y are ‘good’. Con-
sidering only ‘good’ tuples essentially removes a closed subset from V', and
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thus, after an application of a slight modification of the hyperbola method
developed as in [4] she obtained an asymptotic formula for Ny (P) of the
desired shape.

In forthcoming work the result established in Theorem will be used
in verifying Manin’s Conjecture for V, when (di,d2) = (2,1) in fewer vari-
ables than would be expected using Schindler’s method as described above.
Further, since the Picard rank of V is strictly greater than 1, it would be
interesting to consider the all heights approach as suggested by Peyre [19,
Question V.4.8]. As noted by Peyre himself, in the case when a variety has
Picard rank 1, the answer to his Question V.4.8 follows provided one can
prove Manin’s conjecture with respect to the height function induced by the
anticanonical bundle.

Schindler’s results have been improved upon in a few special cases. Brown-
ing and Hu [6] showed Manin’s conjecture in the case of smooth biquadratic
hypersurfaces in P?~! x P21 if the number of variables satisfies n > 35. If
the bidegree is (2,1) then Hu [I3] showed that n > 25 suffices in order to
obtain Manin’s conjecture. Systems of bilinear varieties are flag varieties and
thus Manin’s conjecture follows from the result for flag varieties, which was
proven by Franke, Manin and Tschinkel [I0] using the theory of Eisenstein
series. The same result was later proven by Thunder [30] using arguments
from the geometry of numbers. In the special case when the variety is defined
by 7, xiy; = 0, Robbiani [20] showed how one may use the circle method
to establish Manin’s conjecture if s > 3, which was later improved to s > 2
by Spencer [29)].

Building up on Schindler’s papers, Teddy Mignot proved Manin’s con-
jecture for certain triprojective hypersurfaces [14], and he also established
Manin’s conjecture for certain hypersurfaces inside toric varieties [15]. In-
spired by Schindler’s techniques, Brandes [5] proved an asymptotic formula
for the number of lines of bounded height lying on a hypersurface of degree
at least 5 of sufficiently large dimension.

Conventions. The symbol € > 0 is an arbitrarily small value, which
we may redefine whenever convenient, as is usual in analytic number theory.

Given forms gg, £ = 1,. .., k, we write V(g¢)¢=1,.. x or sometimes just V(ge)e
for the intersection V(gy, ..., gx). Further, we may sometimes consider a vec-
tor of forms h = (hq, ..., h;) and we similarly write V(h) for the intersection
V(h1,..., hg).

For x € R we will write e(x) = €2™@. We will use Vinogradov’s notation
O(+) and <.

We shall repeatedly use the convention that the dimension of the empty
set is —1.
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2. Multilinear forms. Both Theorems [[.1] and follow from a more
general result. If we have control over the number of ‘small’ solutions to the
associated linearised forms then we can show that the asymptotic holds.
More explicitly, given a bihomogeneous form F'(x,y) with integer coefficients
of bidegree (dy,ds) for positive integers dy, d2, we may write it as

F(.’.l?,y) = ZZFj,kle o 'xjdly/ﬂ o 'ydea
i k

where the coefficients F}j € Q are symmetric in j and k. We define the
associated multilinear form

I'e(z,y) = di!dy! ZZFj,kQZ‘g) e fvgi)y,(gll) - 'y;ijz)a
ik

where = (z,...,2(@) and g = (y,...,y®)) for vectors ) of ny
variables and vectors y(?) of ny variables. Write further = (™), ... z(@-1)
and g = (yW,...,y®=D) Given B € R we define the auxiliary count-
ing function N{"*(8; B) to be the number of integer vectors satisfying & €

(=B, B){"=Ym and g € (—B, B)%" such that
5.7 (2. e0,9)| < |8+ Flloc BN 72,

oh1td2(B-F)
05y OYky - OYky,

‘.We

for ¢ =1,...,n1, where |8 F||oo = m man’k|8xj1.
define N3"*(8; B) analogously.
The technical core of this paper is the following theorem.

THEOREM 2.1. Assume that ni,ny > (di + d2)R and let F(x,y) =
(Fy1(x,y),...,Fr(x,y)) be a system of bihomogeneous forms with inte-
ger coefficients of common bidegree (dy,ds2) such that the variety V(F) C
Pt x P27 s o complete intersection. Let Py, Py > 1 and write b =
max {log(P1)/log(P2),1} and u = max {log(P)/log(P;),1}.

Assume there exist Cy > 1 and € > (bdy + uds)R such that for all
B € RE\ {0} and all B > 0 we have

(2.1) N2™(B; B) < CoBhmitdana—ni—20 e
. 7 ) >~
for i = 1,2. There exists some § > 0 depending on b, u, Cy, R, d; and n;
such that
N(Py, Py) = gpm— B pra=deit o o(pri=dili pra=d:B i, (p) Py},

The factor o0 = JG is the product of the singular integral J and the singular
series ©, as defined in and , respectively. Moreover, if the system
F(x,y) = 0 has a non-singular real zero in By X By and a non-singular p-adic
zero for every prime p, then o > 0.

While showing that (2.1]) holds is rather straightforward when the bide-
gree is (1,1) it becomes significantly more difficult when the bidegree in-
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creases. In fact, in Rydin Myerson’s work a similar upper bound on a similar
auxiliary counting function needs to be shown. He was successful in doing
so when the degree is 2 or 3 and the system defines a complete intersection,
but for higher degrees he was only able to show this upper bound for generic
systems. Our strategy is as follows. We will establish Theorem in Sec-
tions [ and [ and then use this to show Theorem [[.1] and in Section [B and
Theorem in Section

3. Geometric preliminaries

LEMMA 3.1 (|26l Lemma 2.2|). Let W be a smooth variety that is com-
plete over some algebraically closed field and consider a closed irreducible
subvariety Z C W such that dim Z > 1. Given an effective divisor D on W
the dimension of every irreducible component of DN Z is at least dim Z — 1.
If D is moreover ample, then D N Z is non-empty.

In particular the following corollary will be very useful.

COROLLARY 3.2. Let V C ]P’grl X P@Tl be a closed variety such that
dimV > 1. Consider H = V(f) where f(x,y) is a polynomial of bidegree at
least (1,1) in the variables (X, y) = (T1,. -, Tny, Yly- -« Yny)- Then

dim(VNH)>dimV -1,
in particular, V-0 H s non-empty.

Proof. Since the bidegree of f is at least (1,1) we see that H defines an
effective and ample divisor on Pgl_l X P%Q_l. We apply Lemma with
W = Pgrl X Pgrl, D = H and Z any irreducible component of V. m

LEMMA 3.3. Let F(x,y) be a system of R bihomogeneous equations of the
same bidegree (dyi,ds) with di,dy > 1. Assume that V(F) C PE~1 x sz—l
is a smooth complete intersection. Given B € R\ {0} we have

dimSing V(8- F) < R — 2,
where we write B - F =Y. B F;.
Proof. The singular locus of V(8 - F') is given by

wev(p- ) —v(28F)) (20-1)
Sing V(8 F)_V< Oz; j:l,...,mnv Wi ) =t

Assume without loss of generality Sr # 0 so that V(F') = V(F},..., Fr_1,
B - F). We claim that

(3.1) V(Fy, ..., Fr_1) N Sing V(8 - F) C Sing V(F).
To see this, note first that V(Fi,..., Fr_1)NSing V(8- F) C V(F). Further,
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the Jacobian matrix J(F') of F is given by

(),

where 7 = 1,..., R and z; ranges through x1,...,2,,,91,...,Yn,. Now if the
equations

dB-F) _0(B-F)_
8.%‘ N Byj o

are satisfied then this implies that the rows of J(F') are linearly dependent.
Since V(F') is a complete intersection we deduce the claim.

Assume now for a contradiction that dim Sing V(3-F') > R—1. Applying
Corollary R — 1 times with V = Sing V(8 - F'), noting that the bidegree
of F; is at least (1,1), we find that

V(F1,...,Fr—1)NSingV(3- F) # 0.
This contradicts (3.1]) since Sing V(F') = () by assumption. m

LEMMA 3.4. Let ny < no be two positive integers. For 1 = 1,... ,no let
A; € My, xn, (C) be symmetric matrices. Consider the varieties Vi C Pgl_l
and Vo C PR x P21 defined by

Vi =Vt Ait)iz1. nyy, Vo= V(i yzAﬂ)
i=1
Then
dim Vo < dim Vi +no — 1.
In particular, if Vi = () then dim Vo < ngy — 2.
Proof. Consider the variety V3 C Pgl_l X }P’gl_l defined by
V3 = V(zTAiw)i:L_._m.
Further, for & = (1,...,2,,)7 consider
Az = (A1 -+ Apy) € My, 5y (C)[n, - .o @y .

We may write Vo = V(A,y) and V3 = V(2T A,). Our first goal is to relate
the dimensions of the varieties above as follows:

(3.2) dim V5 < dim V3 + ng — ny.
For r = 0,...,n; define the quasi-projective varieties D, C Pgl_l given by
D, = {x € P! rank(A(z)) = r}.

These are quasiprojective since they may be written as the intersection of
the vanishing sets of all (r + 1) x (r 4+ 1) minors of A, with the complement
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of the intersection of the vanishing sets of all r x r minors. For each 7 let

D, =) DY
i€l
be a decomposition into finitely many irreducible components. Since |, D, =
Pgl_l we have
dim Vs = dim((D{ x P27 N Va).
m Vs = max dim(DY) x P01 V3)
i€l
Note that r = no does not play a role here, since the intersection (foz) X
]P)grl) N V4 is empty. Similarly we get
dim V3 = max dim((DY x P21 N V3).
imVs = max dim((D,” xPc' )N Vs)
iel,
For 0 < r < ng and ¢ € I, consider now the surjective projection maps
it (DY) X BNV —» DY, (z,y) =

and ‘ ‘
mari: (DD x PR YNV = DO (x,2) > .

We note that by the way DEZ’) was constructed here, the fibres of both of
these projection morphisms have constant dimension for fixed r. By the
rank-nullity theorem we find that the dimensions of the fibres are related as
follows:

(3.3) dim 7['2_,}2(5!3) = dim wgiz(w) + ng — ny.

We claim that the morphism o ,; is proper. For this note that the structure
morphism Pgrl — Spec C is proper whence D,(~Z) X P(%l*l — Dq(nz) must be
proper too, as properness is preserved under base change. As (fo) X IP’g_l)

N V4 is closed inside DT(«i) X Pgrl, the restriction s ,; must also be proper.
By an analogous argument it follows 73 ,.; is also proper.
Further note that the fibres of m,; are irreducible since they define

linear subspaces of ( DY Pg_l) N Va, and similarly the fibres of 73 ,.; are

irreducible. Since Dﬁi) is irreducible by construction and all the fibres have
constant dimension, it follows that (D,(ni) X P@Q‘l)m/g is irreducible. Similarly
(Dﬁi) x P21 NV is irreducible.

Hence all the conditions of Chevalley’s upper semicontinuity theorem [1T,

Théoréme 13.1.3] are satisfied, so that for any x € DS})

(3.4) dim, ) (z) = dim((D{ x P~") N14) — dim DY,

i

we obtain

and
(3.5) dimmy ), (@) = dim((D{Y x P ~") N V3) — dim D{V.
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Hence ([3.4)) and (3.5]) together with (3.3) yield

dim((D x P27 N V,) = dim((DY) x P N V) 4 ng — ny.

Choosing r and ¢ such that dimV, = dim((Dﬁi) % Pgrl) A 13) the claim
(3.2) now follows.

Thus it is enough to find an upper bound for dim V3. To this end, consider
the affine cones V; = V(u" Ajw)iz1,.. .y, C AZ and Vs = V(zTA(z)) C
A7 x A¢'. Note in particular that Vi £ () even if Vi = 0.

Write A C Ag' x Ag! for the diagonal given by V(z; = 2;);. Then VaNA =
Vi # (). Thus, the affine dimension theorem [12], Proposition 7.1| yields

dim 171 > dim ‘73 —nj.

Noting dim V; +1 > dim‘N/l and dimffg > dim V3 4 2 now gives the desired
result. We remind the reader at this point that this is compatible with the
convention dim) = —1. m

4. The auxiliary inequality. We remind the reader of the notation
e(z) = e?™®_ Starting with this section, we will often use the notation d =
d1 + ds — 2 throughout the paper. For a € [0, 1]% define

S(a, Py, ) = = > ) ela F(zy)),
xcP1B1 ycPaB2

where the sum ranges over & € Z™ such that /P, € By and similarly for y.
Throughout this section we will assume P; > P». Note crucially that

NP, P) = | S(a)da.
[0,1] R

As noted in the introduction we can rewrite the forms as

> D T
and given a € RE, as in [24] we consider the multilinear forms

1 ) (1 d
Tap(Z,9) _dlldzlz ZZ 0z 51) . ]di)yl(ﬂ),..y’(gdz).

Further we write & = (:13(1), . ,m(dlfl)) and similarly for y. For any real
number \ we write ||A|| = mingez |\ — k|. Now define M; (- F; Py, Py, P~1)
to be the number of integral Z € (—Pp, P)({A =D and § € (—Py, Py)%"
such that for all £ =1,...,n1; we have

HFaF(/m\’ eﬁvlg)H < P_l'

Similarly, we define My(«x - F; Py, P, P~1) to be the number of integral
€ (=P, P)m™ and gy € (—PQ,PQ)(dZ_l)nQ such that for all £ = 1,...,no
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we have
||FOLF(&57 '!//\7 €y, )H < Pil'
For our purposes we will need a slight generalisation of [24, Lemma 2.1| that

deals with a polynomial G(«,y), which is not necessarily bihomogeneous. If
G(x,y) has bidegree (dy,ds) write

Gz, y)= > G"I(z,y),
0<r<d;
0<i<ds

where G (z, y) is homogeneous of bidegree (r,1). Using notation as above
we first show the following preliminary lemma, which is a version of Weyl’s

inequality for our context. 3
We remind the reader of the notation d = d; + dy — 2.

LEMMA 4.1. Let ¢ > 0. Let G(x,y) € R[z1,...,Zn,, Y1, -, Yny] be a
polynomial of bidegree (dy,da) with dy,da > 1. For the exponential sum

S = Y Y o
xEP1B1 xEP>B2

we have the following bound:

|Sg(P1,P2)|2J < Plnl(2d*d1+1)+€P2nQ(2d*d2)Ml(G(dl,dQ)’Pl’P%Plfl)'

Proof. The proof is quite involved but follows closely the proof of [24]
Lemma 2.1|, which in turn is based on ideas of Schmidt [27), Section 11| and
Davenport [7, Section 3].

Our first goal is to apply a Weyl differencing process do — 1 times to the
y part of G and then d; — 1 times to the x part of the resulting polynomial.
Clearly this is trivial if do = 1 or d; = 1, respectively. Therefore assume for
now that do > 2. We start by applying the Cauchy—Schwarz inequality and
the triangle inequality to find that

(41)  [Sa(Pr )P < PIETTTY ST sy (P R
xe P By
where we define

Se(P1,P2) = Y e(G(z,y)).

yePB;
Now write U = Png, write UP = U — U for the difference set and define
Uy, .. ﬂ m — eyt c—ey).
€1=0,1 e¢=0,1
Write F(y) = G(x,y) and set

FaW, oy Dy =" o Y ()t F ey gy @),
€1=0,1 eq=0,1
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Inequality (11.2) in [27] applied to our situation gives

[Sa(Pr, o) < PP
2
< S Y ‘ 3 e(Fay1(y D, ...,y
yWeul  yld2=2eyb yld2=Der(y™,... y(42=2)

and we note that this did not require F(y) to be homogeneous in Schmidt’s
work. It is not hard to see that for z, 2’ € L{(y(l), .. ,y(d2*2)) we have

]:d2—1(y(1), ce ,Z) — ]:d2_1(y(1)’ L ,Z/)
= ‘Fd2 (y(l)a R y(d271)7y(d2)) - FdQ*l(y(l), ey y(d2*1))7
Where y(d271) =Z- Z/ € u<y(1)7 o 7y(d272))D and y(d2) = 2,’/ = U(y(l), ey
y(drl)). Thus we find

(4.2)  |Su(P, P2

<uPpPETee 3 Y 3

yDeUD  y(da=2) gD ylda—D gy (y(D), . yy(d2=2))D
x >, e(Fan(y ™M,y ™)) = Fopa(yV, .y =),
Y@ €U(y (). y(d2—=1)
We may write the polynomial G(xz,y) as

= > > Gy

0<r<d; jr,k;
0<I<dsy

for some real Gg.:’l,il. Further write F(y) = FO(y) + --- + F@)(y), where

F@ (y) denotes the degree d homogeneous part of F(y). Lemma 11.4(A)
in [27] states that Fgy, transpires to be the multilinear form associated to
F(2) (4. From this we see that

(43) ng — ‘Fd271 = Z Z G_’(j::llzzlxjr(l) e ij(T‘)hkl (y(l)’ e y(dQ))7

0<r<dy jr,k;
0<1<dy
where
1 d ~ B
iy, (yD, ...yl = dQ!ylE:d)Q(l) . yédz)(dﬂ + i, (WD, yleD)

for some polynomials Ay, ds of degree dy that are independent of y(42) and

further hy, are polynomials of degree [ that are always independent of y(d2)
whenever [ < dy — 1. Write g = (y™, ..., y(%)). Now set

= > o X Y e mmh@).

xzeP1B1  0<r<di jr.ki
0<i<ds
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Now we swap the order of summation of 3°_ in (1)) with the sums over y(®)
in (4.2)). Using the Cauchy—Schwarz inequality and (4.3)) we thus obtain
i d_ogdy—1 d_ -
N R Y D DD DIk
gy yld)

The above still holds if do = 1, which can be seen directly. Applying the
same differencing process to Sy gives

(4.4)
i d_ d_ ~ ~
|Sa(Pr, Py)2" < Pt ) ppe@d § N Z‘Z 6(7(w,y))),
y1) y(dz) (1) 2(d1)
where
= > Y G @) he ).
0<r<dy jr,ky
0<i<ds
and where similar to before we have
(1) (d1) ~ 1 di—1
gﬂdl( z) = dl'x]d (n- xjdl(dﬂ T Yia, (zc( )’ T ,:13( ' ))

with g;, and gj, for 7 < di not depending on (4 We note that 1-)
holds for all di,dy > 1 and all the summations }_ ) and ), ) in
are over boxes contained in [Py, P;|"! and [—P, Pg]”z, respectively. Write
z=(zW,. . 2@ Dyand g = (yW,...,y"). We now wish to estimate
the quantity

(4.5) > @9 =Y |> @ m)|.
y(d2) g(d1)

Viewing » .., e(Bx) for b —a > 1 as a geometric series we recall the
elementary estimate

| e(a)| < min{b—a. 8] 7'},

a<x<b
This yields

‘ Z e(y(x, g))‘ < Hmin {Pr,|[¥(@, e, 9]},
=1

w<d1>
where e; denotes the fth unit vector and where
Glavh @) (d) ~
(@,9) = di! Z Z Jdy Jt Jay (1) :I;jdl (dl)hkl (©)-
0<I<ds> Jdl ki

We now apply a standard argument in order to estimate this product, as in
Davenport [8 Chapter 13|. For a real number z write {z} for its fractional
part. Let r = (r1,...,7n,) € Z™ be such that 0 <ry < P, for £ =1,...,n;.
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Define A(Z, g, 7) to be the set of y(®) in the sum in (&.5) such that
rPrt < {F(@, e, 5,9} < (re+ 1) P!

for all ¢ = 1,...,ny and write A(Z,y,r) for its cardinality. We obtain the
estimate

P P,
Z(:L'y <<2Awy, Hmln{Pl,maX{W Pl—rg—l}}

where the sum ) . is over integral r» with 0 <r, < P, forall ¢ =1,...,n;.
Our next aim is to find a bound for A(Z,y,r) that is independent of r.
Given u,v € A(Z,y,r) then

||§(£7 ef?fjv U) - ﬁ({v\a efvi]a”)” < Pl_l

for £=1,...,nq. Similar to before we now define the multilinear forms
(d1,d2) (1) (d1) (1) (d2)
FG(m y - dl'd2 Z do17k:d2 ]dl ) o xjdl (dl)ykdg (1) o ykdg (d2)7
Jdl 7kd2

which only depend on the (dy, d2)-degree part of G. For fixed Z, y let N(Z, y)
be the number of y € (=P, P»)" such that

1T, ey, y)| < Py
forall £ =1,...,ny. Observe now crucially
Y(Z, ey, u) — V(T e, y,v) = (T, ey, u —v).

Thus we find A(Z,y,r) < N(&,y) for all 7 as specified above. Using this we
get

> ‘ > e(v(iﬂ))\ < N(Z,9) (P log P)™

y(dQ) m(dl)
Finally, summing over Z and y we obtain
i i i
IS(;(Pl,PQ)Fd < le(z d1+1)+sP2n2(2 dQ)Ml(G(dl,dg)’Pl’PQ’Pfl). .

Inspecting the proof of |24, Lemma 4.1] we find that for a polynomial
G(x,y) as above given 0 € (0, 1] the following holds:

My (G%) Py, Py, P < Py (Y proc p0mditnads)
X {E?}g{P;ieMi(G(dl,dﬁ; P297 p29’ Pfdlpgd?Pg(d'H))}_
Using this and Lemma [4.1] we deduce the next lemma.

LEMMA 4.2. Let PP, > 1, 0 € (0,1] and o € RE. Write Sq¢ =
Sa(P1, P2). Using the same notation as above for one of i = 1 or i = 2
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we have
2J n 2J+E n QJ On;—0(n1di1+nado
1Sal™ Kdimie P17 TP Py ( :
((diydz). pf pb p—di p—do pfld+1)
x My;(G\hd2); pd pY priprdz pllatly

Using the preceding lemma and adapting the proof of [22, Lemma 3.1]
to our setting we can now show the following.

LEMMA 4.3. Lete >0, 0 € (0,1] and o, 3 € RE. Then fori=1 ori =2
S(a+ B3)

we have
ni1-+€ pno }
Pl P2

MZ(B ) F; P207Pg> Plid1P27d2P20(d+1))

<<di:ni7€ 0(n1d1+n2d2)79ni
PQ

2(§+1

S(a)
Plnl +6P2712

I

(4.6)  min {’

Proof. Note first that for two real numbers A, u > 0 we have

min {\, u} </ Ap.

Therefore it suffices to show

_ _ 0(d
S(a)S(a + B) | - M;(B; P, PY, P py 2 plldth))
P12n1+25P22n2 di,nie P9(n1d1+n2d2)*9"i
2
for one of 2 =1 or 7 = 2. Note first that
Sa+BS@ =] Y Y el(@tB) F@,y)-a-Fa+zy+tw)

x€P1B) ¢+zeP1 By
yEP> B2 y+weP B

so by the triangle inequality we get

Sat+@S@I< Y | Y elB-F@y) - gapew(@y)|

[[2]lcc<P1 xEP1B2
llo <P> YEP2Buw

where ga.g.zw (T, y) is of degree at most diy +da — 1 in (x,y) and we have
some boxes B, C B and B,, C By. Applying Cauchy’s inequality d times
we deduce

1S(ex + B)S ()"

2d_1 2d 1
< pPCTURRETD N ST o8- F(@,y) - gapsw(@y))
|z]lcc<P1 xEP1B2
[wllw<P, YEPBu

od

If we write G(x,y)=08-F (%, Y)—ga,8,2w (T, y) then note that Gldd) —3.F.
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Using Lemma [£.2] we therefore obtain
R e
x My(8 - F, PY, P§, Pr oy YY),
for one of ¢ = 1 or ¢ = 2, which readily delivers the result. =

As in the introduction, for 3 € R we define the auxiliary counting
function N2™(8; B) to be the number of integer vectors & € (—B, B)(@—1m
and y € (—B, B)%" such that

1T (@, e0,9)] < |8 FlloB

8d1 +d2f
--Bacjdl OYpey -+
analogously define N3"(3; B). We now formulate an analogue for [22, Propo-
sition 3.1].

PROPOSITION 4.4. Let Co > 1 and € > 0 be such that for all B € RE
and B > 0 we have, fori=1,2,

for £ =1,...,n1 where || f||c == mmaxmk‘a%. Pur, |. We also
2

(4.7) N2(8; B) < CoBni+dana—ni=201%

Assume further that the forms F; are linearly independent, so that there exist
M > p >0 such that

(4.8) pllBlloe < 1B - Flloo < M{|Bl|oo-

Then there exists a constant C' > 0 depending on Cy, d;, n;, u and M such
that the following auxiliary inequality holds:

min{ S(a) S(a+p) }

le +5P2nz le +6P2nz
for all real numbers Py, P, > 1.

)

— — — _ 7 -1, ¢
< Cmax {Py ', PL Py Bl 1B1EFY Y

Proof. The strategy of this proof will closely follow the proof of [22
Proposition 3.1]. By Lemma [4.3] we know that (4.6)) holds for one of i =1 or
i = 2. Assume that there is some 6 € (0, 1] such that for the same i we have
(4.9) N2™(B; PY) < My(B - F, P{, PY, Py py 2 pllth)y
Going forward with the case ¢ = 1, noting that the case ¢ = 2 can be proven
completely analogously, this means that there exists a (d; — 1)-tuple Z and
a do-tuple gy which is counted by M;(8 - F, P, Pg,Pfle;dQPg(dH)) but
not by N#(3; PY). Therefore this pair of tuples satisfies

(410) 12D oo, 179 |loo < P¢ fori=1,....dy—1land j=1,...,ds,
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and
(4.11) ITar(@ e §)| < Prap; 2Pl foro=1,.. m,
since it is counted by M;(8 - F,Po,Pg,Pfle{dQPg(dH)). On the other

hand, since it is not counted by N™(3; PY) there exists ¢y € {1,...,n1}
such that

(4.12) To.p(@ e, 9)| = 18- FlloPs".
From we deduce that for £5 we must have either
(4.13) T.p(E, e, §)| < Py Py pYEHD
or

(4.14) I5.r(Z, eq,y)| > 1/2.

If (4.13) holds then (4.12) implies

pyh pyda p{tthe

0 p—di1 p—d
(4.15) I8 Fll < B2 — PP,
2
If on the other hand (4.14]) holds, then (4.10) gives
(4.16) 1/2 < | T (@ e, ) < 18- Fllo Py,
Since either (4.15]) or (4.16) holds, then via (4.8) we deduce
(4.17) Py ® <y max { PP P2 B 181D

Since (4.6) holds for ¢ = 1 and due to the assumption (4.7]) we see that (4.9)
holds if there exists some C; > 0 depending only on Cy, d;, n; and € such

that
2d~+1
—p2dti : S(a) S(a+B)

(4.18) P, < C1min {‘P{““Pg” | e pre .
Now define 0 such that we have equality above, i.e.

1 -1/%¢

7 . S(a) Sla+B)
0 d+1

(4~19) P2 - 012 “ min { Pln1+sP2nz ’ P{lﬁrspgz :

If 0 € (0,1] then (4.18) holds and so together with the assumption (4.7)) as
argued above this implies (4.17) holds, which gives the result in this case.
But 0 will always be positive; for if # < 0 then (4.19) implies

min S(a) S(a+B) > 01—1/2d+1'
Plnl +€P2n2 P{h +€P2712

However, note that clearly |S(a)| < (Pp + 1)" (P + 1)"2. Without loss of
generality we may take P; large enough, depending on ¢, so that this clearly

)
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leads to a contradiction. Finally, if § > 1 then we find PQ_C":G <Py Cg, and so

from (4.19) we obtain
{7
min

ni+e pne
Pl P2

S(a+ B)
PITL1+€P2M

)

} < Py,

This gives the result. =

5. The circle method. The aim of this section is to use the auxiliary
S(a) ‘ S+ B)

inequality
v oeal
1 p—di p—d - I+1)-1\ ¢
< Cmax {Py !, Propy |81 1811,

where C' > 1 and apply the circle method in order to deduce an estimate for
N(Py, Py). In this section we will use the notation P = P PJ2. Write b =
max {1,log P, /log P} and v = max{1,log P»/log P }. If P, > P, then b =
log P; /log P> and thus PdelJ“d2 = P. The main result will be the following.

PROPOSITION 5.1. Let € > (bd; + ud2)R, C > 1 and € > 0 be such that
the auziliary inequality holds for all a, 3 € RE, all P, Py > 1 and
all boxes B; C [—1,1]™ with side lengths at most 1 and edges parallel to the
coordinate azes. There exists some & > 0 depending on b, u, R, d; and n;
such that

N(Py, Py) = gp-hfippe=dl  o(pm-dili pra=dk p=o)
The factor o0 = JG is the product of the singular integral J and the singular

series &, as defined in (5.11) and (5.8]), respectively.

Note that this result holds for general bidegree, and therefore in the proof
one may assume P; > P, throughout. For instance, if one wishes to show the
above proposition for bidegree (2,1), the result follows from the asymmetric
results of bidegree (2,1) and bidegree (1,2).

(5.1) P[® min{

5.1. The minor arcs. First we will show that the contributions from
the minor arcs do not affect the main term. For this we will prove a lemma
similar to [22, Lemma 2.1|.

LEMMA 5.2. Let r1,r2: (0,00) — (0,00) be strictly decreasing and in-
creasing bijections, respectively, and let A > 0 be a real number. Let Ey C RE
be a hypercube of side lengths 1 whose edges are parallel to the coordinate
azes. Let E C Ey be a measurable set and let p: E — [0,00) be a measurable
function.

Assume that for all o, B € RE such that o, + B € E we have

(5.2) min {p(a), p(a+ B)} < max {4, 77 (18]l), 2" (118ll0)}-
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Then for all integers k < £ such that A < 2F we get

-1 i R 14 R
k i r1(2°) 71(2°)
etz 2 (o) (i) mpee

E ack
Note that if we take
pla)=CTIPTM o R ™S (a),
ri(t) = PyUpy e () = (@D 4= P
where C' is the constant in , then the assumption is just the aux-
iliary inequality .

Proof. The proof is very similar to the proof of [22, Lemma 2.1] so we
shall be brief. Given t > 0 define the set

D(t) ={a € E: p(a) > t}.
If & and @+ B3 are both contained in D(t) then by one of the following
must hold:
Azt |Bllo <7i(t), or |[Bllec = r2(t).
In particular, if t > A then either ||B]|cc < 71(t) or ||B||coc = 72(t). Via the

same considerations as in [22] the proof of Lemma 2.1] in this case we then

find n
r1(t)
w(D(t)) <gr < ] 1}> )

min {ro(t

Hence, if 2 > A we obtain

‘
S ola)da = S o(a) do + Z S o(a) da + S o(a) da
E E\D(2) i=k D(2i)\D(2i+1) D(2t)
-1

(o me) ) n@)  \"
<n2+)2 () * (aaensy) smete) s

Recall the notation P = P1d1P2d2. From now on we will assume P} > Ps.
Note that the assumption in Proposition that € > R(bdy + uds) is
equivalent to € > R(bdy + dg) if P, > Ps.

LEMMA 5.3. Let T: RE — C be a measurable function. With notation as
in Lemma assume that for all o, 3 € R and for all P, > Py > 1, and
% > 0 we have

(5.3)

] T()
min PP

T(a+pP)

€
n1 pn2 .
Pl P2

)

} < max { P!, Py Pyt g2, 189D )
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Write P = Pld1 PZd2 and assume that
(5.4) sup |T(a)| < P Py2p~°
acl

for some 6 > 0. If € > (di + d2)R then

S PZI(C;LQ dow < g, g P00t B/6) | p-R—3(0—R/%) | p-t
PREEE

Proof. The proof is a straightforward modification of [22 the proof of

Lemma 2.2|. In our case it follows as an application of Lemma by taking
T(c)]

@(a) = PlTLlpénQ?

We will finish this section by defining the major and minor arcs and

showing that the minor arcs do not contribute to the main term. For A > 0
we define the major arcs to be the set given by

mA) = J U  {ee0,1%: 2o - allo < Py Py 2P2Y,

qeN 0<a;<q
q<PA (a1,...,ar,q)=1

d+1
3

r(t)= PPy, rot)=te, A=P;%. a

and the minor arcs to be the given by
m(A) == [0,1]%\ Mm(A).

Write further
minizl,g{nl + ny — dim Vz*}

0o = - _
(d+1)24R
Note that if the forms F; are linearly independent, then V;* are proper sub-
varieties of Agﬁm so that dim V;* < n; + ng — 1 whence §p > 1 To

(d+1)2¢R"
see this for V* note that requiring

rank (8FZ> <R
c%rj i

is equivalent to requiring all the R x R minors of (gf; )Z ; vanish. This defines

a system of polynomials of degree R(d; 4+ d2 — 1) in (z,y) which are not all
zero unless there exists 3 € R\ {0} such that

R
Zﬁz<8FZ> =0 forj=1,...,m
pa ox;

J

holds identically in (z,y). This is the same as saying that

Va (XRI BiF) =0
i=1
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holds identically. From this we find that Zfil B F; must be a form entirely
in the y-variables. But this is a linear combination of homogeneous bidegree
(d1,dg) forms with d; > 1 and thus we must in fact have Zf: 1 BiF; = 0 iden-
tically, contradicting linear independence. The argument works analogously
for V5.

The next lemma shows that the assumption holds with £ = m(A)
and T(a) = C71P°S(a).

LEMMA 5.4. Let 0 < A < R(d + 1)(bdy + do)~" and let € > 0. Then we
have the upper bound

sup |S(a)| < P/ P2 p-Adote,
acm(A)

Proof. The result follows straightforward from [24, Lemma 4.3] by setting

the parameter 6 to be A

(d+ 1R
If we have 0 < A < R(cf%— 1)(bdy + d2)~! this ensures that the assumption
0 <6 < (bdy +do)~ ! in [24, Lemma 4.3] is satisfied. m

Before we state the next proposition, recall that we assume P; > P,

throughout, as was mentioned at the beginning of this section.

PROPOSITION 5.5. Let ¢ > 0 and let 0 < A < R(d + 1)(bdy + da)~".
Under the assumptions of Proposition [5.1] we have

S S(a) der < PR ppa—daR p=Ado(1—(di-+2) R/ 4
m(A4)
Proof. We apply Lemma [5.2] with
T(a) =C7'PS(e), Ep=1[0,1]", E=m(A), and = Ady,

where C' > 0 is some real number. With these choices (/5.3 follows from the
auxiliary inequality (5.1) since for any ¢ > 0 we have P~¢ < P °. From
Lemma [5.4] we have the bound

sup CT(a) < P Py2P~°.
ackE

We may increase C' if necessary so that we recover ([5.4]). Therefore the hy-
potheses of Lemma [5.3] Since we assume ¢ > (bd; + d2) R, we also note
P2—(g _ P—RPR—%”(bdri—dg)*l <<<§ P—R—(5

for some & > 0. Therefore if we assume € > (bdy + d2)R then Lemma
ives
& S S(a) do < Plnl*dlRp;z*dzRP—Ado(1—(d1+d2)R/‘€)+€’

m(A)

as desired. =
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5.2. The major arcs. The aim of this section is to identify the main
term via integrating the exponential sum S(a) over the major arcs, and
analyse the singular integral and singular series appropriately. For a € Z%
and g € N consider the complete exponential sum

a
Sagi= Yo% Play),

w?y

where the sum Zmy runs through a complete set of residues modulo gq.
Further, for P > 1 and A > 0 we define the truncated singular series

S(P)= > Sag

g<pP4 a

where the sum > runs over a € Zf such that the conditions 0 < a; < ¢
fori=1,...,R and (ay,...,ag,q) = 1 are satisfied. For v € Rf we further
define

Soo(y) = S e(v- F(u,v))dudv,
81 XBQ
and we define the truncated singular integral for P > 1, A > 0 as follows
P = | Se(mdn.
[Ylloo<P2

From now on we assume that our parameter A > 0 satisfies
(5.5) (bdy +d2)™' > AQR +3) + 6

for some 6 > 0. Since ¢ > R(bd; + d2) we are always able to choose such A

in terms of ¢. Further as in [24] we now define some slightly modified major
arcs M (A) as

m'(4) = |J U o),

1<g<P4  0<a;<q
(a1,.ar,q)=1

where Mg, (A) = {a € [0,1]%: |la— 2| < PPy PA}. The sets MY, ,
are disjoint for our choice of A; for if there is some

o< Dﬁ;,q(A) N S)ﬁ:'i,(j(A):
where I -(A) # My, ,(A), then there is some i € {1,..., R} such that

P24 < i < | _ %

qq q q

which is impossible for large P, since by we have 3A — 1 < 0. Further
we note that clearly 9V (A) O M(A) whence m'(A) € m(A) and so the

conclusions of Proposition hold with m(A) replaced by m/(A).

<2pA~l
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By following the proof of [24] Lemma 5.3| it becomes transparent that
(5.6) S(a) = Pl" Py?Sa,4S00(PB) + O(qP" Py~ (1 + P|B]|0))-
Using (5.6 in the same way as [22], (2.20)] was derived we find that
(5.7) | S(@)da

m'(4)
— Plnl P2712 P*RG(P)fJ(P) + O(Plnl PQnQ P*R+A(2R+3)fl/(bd1+d2)).
Finally, using the auxiliary inequality (5.1)) and the identity ([5.6]), the proofs
of |22, Lemmas 2.5 and 2.6] go through mutatis mutandis.

Hence if € > (d+ 1)R and assuming that the forms Fj(x,y) are linearly
independent then the singular series

[e.e]

(5.8) =2 > Saq
g=1 amodq

exists and converges absolutely, with

(5.9) 6(P) - 6| <y P72

for some d; > 0 depending only on %, d; and R.
Similarly if € — &’ > R then for all P > 1 we have

(5.10) 13(P) — 3| <y o P~AE— 1)
where J is the singular integral
(5.11) I= | Sw(y)dy.

YERE

In particular, we see that J exists and converges absolutely.

Before we finish the proof of the main result we state two different ex-
pressions for the singular series and the singular integral that will be useful
later on. If € > R(d; + d2) then J and & converge absolutely, as was shown
in the previous two lemmas. Therefore, as in [3, §7], by regarding the biho-
mogeneous forms under investigation simply as homogeneous forms we may
express the singular series as an absolutely convergent product

(5.12) e =]]s,
p
where

1 k +ng . _
6p = kli)f{.lo Zm#{ u, ’U c {1 ., P }nl n2. F’L‘('U,,’U) =0 (mod p),

i=1,...,R}.
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Lemma 2.6 in [22] further shows that we can write the singular integral as

(5.13)

J= ph_r>n00 Pn1+n2—(d1+d2)R'u{(

tl,tQ)/P € 81 X 82: ’Fi(tl,tg)‘ < 1/2,
i=1,...,R},

where p(-) denotes the Lebesgue measure. We may therefore interpret the
quantities J and &, as the real and p-adic densities, respectively, of the
system of equations Fi(x,y) = --- = Fr(zx,y) = 0.

5.3. Proofs of Proposition and Theorem

Proof of Proposition . From Proposition and the estimates (5.7)),
(5.9) and (5.10)), for any € > 0 we find that

N(Py, P)
prprrp-R
< P*A(ﬁ + P*Aﬁg(l*(d1+d2)R/%)+E + P(2R+3)A71/(bd1+d2) + P*A(%*E’*R)

- &7

for some 07 >0 and some 1>&’ >0. Recall we assumed € > (bd;+d2)R,
and assuming the forms F; are linearly independent we also have do >
1/(d41)2?R. Therefore choosing suitably small A > 0 there exists some § >0
such that

N(P, P)

o -5

as desired. Finally, since we assume that the equations F; define a complete
intersection, it is a standard fact to see that & is positive if there exists
a non-singular p-adic zero for all primes P, and similarly J is positive if
there exists a non-singular real zero within By x Bs. A detailed argument of
this fact using a version of Hensel’s Lemma for & and the implicit function
theorem for J can be found for example in [22] §4|. =

Proof of Theorem . Assume the estimate in holds for some con-
stant Cp > 0. From Proposition [4.4]it thus follows that the auxiliary inequal-
ity holds with a constant C' > 0 depending on Cjy, d;, n;, p and M,
where all of these quantities follow the same notation as in Section [l There-
fore the assumptions of Proposition [5.1] are satisfied whence we can apply it
to obtain the desired conclusions. =

6. Systems of bilinear forms. In this section we assume d; = do = 1.
We can thus write our system as

Fi(ma y) = yTAiwv
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where A; are ny X nj-dimensional matrices with integer entries. For 8 € RE
we now have

/6 F = yTABa:’
where Ag = )", 5;A;. Recall that we put
1) . ) . T
= ax dimker(A d = ax dimker(Ag).
o ,BeflgRi({O} imker(Ag) and op BeI]lgRif{O} im ker(Ag)

Since the row rank of a matrix is equal to its column rank we can also define

= i k(Ag) = i k(AZL).
7 i ) = gl )

Due to the rank-nullity theorem the conditions
ni—ol) > (2b+2)R
for i = 1,2 are equivalent to

pr > (20 + 2)R.

LEMMA 6.1. Assume that V(F,...,FRr) C Pgl_l X sz—l 18 a smooth
complete intersection. Let b > 1 be a real number. Assume further

(6.1) min{ni,ne} > (20 +2)R and ny+mng > (4b+5)R.
Then

(6.2) ni— ol > (2b+2)R

fori=1,2.

Proof. Without loss of generality assume n; > ns. Pick 3 € R\ {0}
such that rank(Ag) = pr. In particular then

dimker(Ag) = O']g) and dim ker(Az;) = ag).

We proceed in distinguishing two cases. Firstly, if U]g) = 0 then ([6.2) follows
for i = 2 by the assumption (6.1]). Further by comparing row rank and

column rank of Ag in this case we must then have UI(Rl) < nj — no, and
therefore

ny — a]g) >ng > (2b+ 2)R,
so (6.2)) follows for ¢ = 1.
1)

Now we turn to the case ag) > 0. Then also 0]% > 0. The singular locus
of the variety V(3 - F) C PL~ ! x P22~ is given by

Sing V(8- F) = V(y” Ag) N V(Agz).

Therefore
dimSing V(8- F) = O']g) + ag) -2
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Since we assumed V(F') to be a smooth complete intersection we can apply
Lemma 3.3 to get dim Sing V(3 - F') < R — 2. Therefore we find
a]g) + U]g) < R.

From our previous remarks we know that showing (6.2)) is equivalent to
showing pr > (2b+ 2)R. But now

1 1
PR = 5(711 +ng — a]g) - Ué&z)) > i(m +n2 — R) > (2b+ 2)R,

where the last inequality followed from the assumption (6.1]). Therefore (6.2])
follows as desired. m

Proof of Theorem . Recall the notation b = ﬁg 1}%. By virtue of The-
orem [2.1] it suffices to show that assuming
ni — o) > (2b+ 2)R
for ¢ = 1,2 implies . We will show for i = 1, the other case follows
analogously. Let ¢ = m;oﬂ% ; we note that € > (bd; + d2)R = (b+ 1)R
precisely when ny — a]g) > (2b + 2)R. Therefore it suffices to show that

(2)
(63) NI"(8, B) < B
for all 3 € R\ {0} with the implied constant not depending on 3. In our
case we have
I(u) = u" A(B),
where u € Z"2. Therefore Ni"*(8, B) counts vectors u € Z"? such that

luloc < B and  [lu’ A(B)llso < [[A(B)lloc = 18- Floc-
Precisely the same argument that leads to [22] (4.3)] now yields (6.3]). =

7. Systems of forms of bidegree (2,1). We consider a system F(x,y)
of homogeneous equations of bidegree (2,1), where = (z1,...,2,,) and
Y = (Y1,---,Yny). We will first assume n; = ny = n, say, and then deduce
Theorem [I.2] Therefore the initial main goal is to establish the following.

PROPOSITION 7.1. Let Fi(x,y),...,Fr(x,y) be bihomogeneous forms
of bidegree (2,1) such that the biprojective variety V(Fy, ..., Fr) C P&_l X
P21 s a complete intersection. Write b = max {log Py /log P»,1} and u =
max {log Py /log Py, 1}. Assume that
(7.1) n—s@ > (8b+ 4u)R
for i = 1,2, where SI(Ri) are as defined in (1.7)) and (1.8). Then there exists
some § > 0 depending at most on F, R, n, b and u such that

N(Py, Py) = o PP 2Rpp—R L O(Pr=2Rpp—E min { P, P} %)
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where o > 0 if the system F(x,y) = 0 has a smooth p-adic zero for all
primes p and a smooth real zero in By X Bs.

If we assume that V(F,...,Fg) C ]P’&_1 X P%_l is smooth, then the same
conclusions hold if we assume

n > (160 +8u + 1)R
instead of ([7.1]).

For r =1,..., R we can write each form F,(x,y) as
i7j7k

(r)

where the coefficients F./ are symmetric in 4 and j. In particular, for any

]
r=1,..., R we have an n X n matrix given by H,(y) = (D, FZ(]leyk)Z] whose
entries are linear homogeneous polynomials in y. We may thus also write
each equation in the form

F(z,y) = =" Ho(y).

The strategy of the proof of Proposition is the same as in the bilinear
case, but this time more technical arguments are required. We need to obtain
a good upper bound for the counting functions N*"*(3; B) so that we can
apply Theorem For B € R® we consider B - F, which we can rewrite in
our case as

B-F(x,y) = :BTH,@(y):L'

where Hg(y) = EZI'L B:H;(y) is a symmetric n X n matrix whose en-
tries are linear and homogeneous in y. The associated multilinear form
Fﬁ.F(iL'(l), x?) y) is thus given by

Iar(W, 2® y) = 22T Hg(y)z®@.

Recall N (3, B) counts integral tuples @,y € Z" satisfying ||| oo, ||¥|lco
< B and

Now N&"%(3, B) counts integral tuples (1), ) with |||, [|[2? || < B
and

[(Tp.r@h, 2, e1),..., Tgp@", 2%, ) o < 18- FllooB.
We may rewrite this as
Iz Hg(e)z?| < |18 - FllB

for £ =1,...,n. As in the proof of Theorem using Propositions [4.4] and
we find that for the proof of Theorem [7.1]it is enough to show that there
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exists a positive constant Cj such that for all B > 1 and all 8 € R"\ {0} we
have

N™(B: B) < CoB* =4

for i = 1,2, where ¥ > (2b+ u)R. The remainder of this section establishes
these upper bounds.

7.1. The first auxiliary counting function. This is the easier case
and the problem of finding a suitable upper bound for N{"*(3; B) is essen-
tially handled in [23]. Note that in [23] there is the additional symmetry
Hg(y)xr = Hg(x)y present, however the proof of [23, Corollary 5.2| only
uses the fact that Hg(y) is a symmetric matrix. In fact, we recover the next
lemma as a special case of Corollary

LEMMA 7.2 (|23, Corollary 5.2|). Let Hg(y) and N (8; B) be as above.
Let B,C > 1, let B € RE\ {0} and let o € {0,...,n — 1}. Then either

N{™(B; B) <cm B""?(log B)",
or there exist non-trivial linear subspaces U,V C R™ with dimU + dimV =
n+ o+ 1 such that for allv € V and ui,us € U we have
|ui Hp(v)us|
18 Flloo
Recall the quantity

< O w1 || oo || o [| 2] -

1) . : T
sn’ =14+ max dimV(x" Hg(ep))x)y—1 . n.,
R BERR\ {0} ( ,3( Z) )é 1,...,m2
where we regard V(zT Hg(eg)x)=1,..n, C Pgl_l as a projective variety. Note
that for this definition we do not necessarily require n; = ns. In the same
way Proposition 1.4 in [23] is proven we therefore obtain

(1)
(7.2) N{™(8; B) <. BH5+

for all B> 1, 8 € RF\ {0} and ¢ > 0.

Now that we have found an upper bound in terms of the geometry of
V(F') the next lemma shows that if F' defines a non-singular variety then
s]g ) is not too large. For the next lemma we will not assume ny = ng, as we
will require it later in the slightly more general context when this assumption

is not necessarily satisfied.

LEMMA 7.3. Let SI(Rl) be defined as above and assume that F' is a system

of bihomogeneous equations of bidegree (2,1) that defines a smooth complete
intersection V(F) C Pgrl X Pgrl. Then

sﬁg) < max {0, R+ n; —na}.
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Proof. Consider B € R®\ {0} such that dim V(T Hg(e/))r=1, n, =
SI(Rl) — 1. When V(:cTHg(eg)w)g:Lm,nz = (), the statement in the lemma is
trivially true. Hence we may assume that this is not the case. The singular
locus of V(8- F) C PR 1 x P22~ is given by

SingV(3- F) = (V(a:TH,g(eg)zc)g:L_”m X IP’%Q_I) NV(Hg(y)x).
From Lemma [3.3] we obtain
dimSingV(3 - F) < R — 2.
Further, since V(Hg(y)x) is a system of n; bilinear equations, Lemma
gives
dim Sing V(3 - F) > s]g) —1+ny—1-—ny.

Combining the previous two inequalities yields

sg) < R+ny—no,
as desired. =

We remark here that the proof of Lemma shows that if V(F') defines
a smooth complete intersection and if SI(Ril ) > 0 then ny < n1 + R.

7.2. The second auxiliary counting function. Define ﬁ@(ﬂ?(l)) to
be the n x n matrix with the rows given by ()" Hg(e,)/||B - F|ls for
¢ =1,...,n. Using this notation N3"*(3, B) counts the number of integer
tuples (1), 22 such that ||| s, |2 < B and

|Hg(xM)z® | < B

is satisfied. The entries of H, B(m(l)) are homogeneous linear polynomials in
() whose coefficients do not exceed absolute value 1.

Let A be a real m x n matrix. Then AT A is a symmetric and positive
definite n x n matrix, with eigenvalues A\?,...,A\2. The non-negative real
numbers {\;} are the singular values of A.

NOTATION. Given a matrix M = (m;;) we define | M|/ := max; ; [m;;|.
For simplicity we will from now on write & instead of 1) and vy instead of
x?). For x € R" let A\g1(z), ..., \gn(x) denote the singular values of the

real n x n matrix Hg(x) in descending order, counted with multiplicity. Note
that Ag;(x) are real and non-negative. Also note

Noi(®) < nlHp(@)" Hp (@)oo < n*||Hp(@)|3 < n'llz|5.
Taking square roots we find the following useful estimates:

Ao (@) < nllHp(@)l|o < 0[] oo
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Let i € {1,...,n} and write D3 (x) for the vector with (?)2 entries being

the i x4 minors of Hg(x). Note that the entries are homogeneous polynomials
in x of degree 1.
Finally write Jps.: () for the Jacobian matrix of D39 (zx). That is,

Jps.i(x) is the (7;)2 X n matrix given by

(B5)
oD i

(Jpw.o(T))jx = B,

We begin by showing a generalisation of |23 Lemma 5.1|, where we need
to account for the fact that Hg(x) is not necessarily a symmetric matrix.

LEMMA 7.4. Letb € {1,...,n—1} and (¥ € R™ be such that D) (x(0))

% 0. Then there exist subspaces Y1,Ys C R™ with dimY; = dimYs =n—10
such that for all’ Y1 € Y1, Yo € Yy and t € R™ we have
(7.3) o

T e ()t | Agpr1(®?) - [It]
¥ Batos < (BT Aso(@)
where the implied constant only depends on n but is otherwise independent
of f[g(t). If I:T[g(t) is symmetric then we may take Y1 = Ys.

Proof. Given & € R™ define y%l)(m), e y%nib)(az) in the following way.

The jth entries are given by
(=)t det (Ha(@)ke)kmn—bi1,..0) 15 =1,
(0) ' N {=n—b+1,....n
(7.4) (y; (m))] =4 (1)’ det ((H,B(w)kf)kzi,n—b+l7...,n; k:;éj) if j>n-—0,
l=n—b+1,....,m
0 otherwise,

Mmmmwm

where k = i,n — b+ 1,...,n; k # j means that we let the index k run
over the values i,n — b+ 1,...,n with £k = j omitted. Similarly we define

y (@), ...y (@) by

(—1)" b det ((Ha(2)ke)kmn—bs1..n)  if 5 =1,
l=n—b+1,....,n

5 (x)); = { (—1)7 det (Hg(x)ke)  kmn—bt1,m ) ifj>n—b,
b=i,n—b+1,....,n; {#j

0 otherwise.
Note that if flg(az) is symmetric then yY) = yg) foralli =1,...,n —b.
Using the Laplace expansion of a determinant along columns and rows we
thus obtain
: ~ (1) det ((Hg()ke)k=in—bt1,..n) if j <1 —b,
(0l @) lp(a); = i1,
otherwise,
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and
(7.5)
77 ] (_1)n_b det (ﬁﬁ(w)kf)k: jn—b+1,...,n if j <n-—»,
(Hﬁ(w)yé” (w))g = ( fzg,n—b+1,...,n)
0 otherwise,

respectively. It follows from (7.4)—(7.5) that there exist matrices Lgi), Lg),
Ml(z) and MQ(Z) for i =1,...,n — b with entries only in {0,41} such that

(7.6) (@) = LY DB (),
(7.7) (@) = L’)D(ﬁb)()
(7.8) (v (2 >> Ha(x) = [M{) DD ()],
(7.9) Hp(z)ys (x) = ’>Df“’“>< ).

Given t € R™ we write J; for the directional derivative given by Ztia%i'
Applying 0 to both sides of (7.9 we obtain

(7.10)  [Hp(x)|ys () + Ha(x)[0wyy ()] = My [0, DB ()],
Now note
(7.11) 8 DPY () = Jp s (x)t and Oy Hg(x) = Hg(t).
Substituting (7.11) and (7.7)) into (7.10) yields

Hat)y) (z) = M Tppain (2)t — Ha(x) LS 0, DB ().
If we premultiply this by y(] )( )" and use (7.8) then we obtain
(7.12)  y (@) Hat)yl () = 4 ()" MY Tpanin ()t

— M DB (@) (LY 5, DB ()],

Lemma 3.2(i) in [23] yields the bounds

IDEH (@) oo
DB ()|

(7.13) <n Agpr1(T),

and

8D(ﬁ’b) . tOO
0P @) t]

(7.14) IDBY(x)]o " Agp(x)

Now we specify = x(©) so by assumption we have ||[D®?) (x(0)|,, > 0.
Thus define

Y (@)
|DB) (2(0) |5

(715) YW= fori=1,...,n—band k=1,2.
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Dividing (7.12) by 1/|[ D@ (2()||2. and using (7.15) as well as the bounds
(7.13) and (7.14) gives

YO Hy ) ¥, < [ Tperin (@)t Agprt (@ )|t

1D (2(0)]|o Ag.p(@0)

We now claim that we can take the subspaces Y, C R™ to be defined as the

span of Yk(l), cee Yk(n_b) for k = 1,2 respectively, so that the lemma holds.
For this we need to show that ([7.3]) holds, and also that dimY; = dimYs =
n — b. Therefore it suffices to show the following claim: Given v € R"~? if

we take Yy = Z%Yk(i) then [|7v]co <n || Yk|loo, for k& = 1,2 respectively.
Assume that the b x b minor of H 5(z(?) of largest absolute value lies in
the bottom right corner of Hg(x®). In other words, we assume
(7.16) |DBD ()| = |det (Hg(® ) ko) bmn—br1,..n) -
l=n—b+1,....,m
After permuting the rows and columns of H 5(x() the identity (7.16) will

always be true. The vectors Yk(i) depend on minors of H, 5(:8(0)). Thus we can

apply the same permutations to flﬂ(m(o)) that ensure that ([7.16) holds to
the definition of these vectors. From this we see that we can always reduce
the general case to the case where ([7.16|) holds.

Now for k = 1,2 we define matrices
—b
Q= 1B eyl -+ lew).

By the definition of Yk(i) we see that @ must be of the form

(L, 0
Q= <C~2k Ib)

for some matrix Q. In particular, we find det Q) = 1 and so 1Q oo <n 1.
Given Y, = > *ink(l) we thus find

1Vlloo = Q% Yiclloo < | Ylloo,

and so the lemma follows. =

The next corollary can be deduced from Lemma just like |23, Corol-
lary 5.2] was proven. In [23] several other results are used that we have
not stated here. The results in question are |23, Lemmas 2.2, 3.1, 3.2, 4.1,
and Corollary 2.2]. These hold in our situation upon replacing the word
eigenvalue in [23] by the word singular value. Otherwise the proofs remain
unchanged and thus we did not find it necessary to repeat the details here.



Systems of bihomogeneous forms of small bidegree 37
COROLLARY 7.5. Let B,C > 1 and let 0 € {0,...,n — 1}. Then one of
the following alternatives is true. Fither we have the bound
N3™(B, B) <cm B"'7(log B)",

or there exist subspaces X,Y1,Yo C R™ with dim X + dimY; = dim X +
dimYs =n+ o+ 1, such that

Y Hp(X)¥a| < O Yool X [ ¥ o

foral X €e X, Y17 e V1,2 € Yo. If ﬁ[g(m) is symmetric then we may take
Y =Ys.

Recall the definition of the quantity

a , dimV(H, T
NOp {m XgerR\(0) 21111 (Hp(y) )J i

where |z | denotes the largest integer m such that m < x. Although we have
been assuming n1 = no throughout, the definition of this quantity remains
valid if n1 # n2. Note that we have V(Hg(y)z) ¢ P&~ x P21 for all
B € R\ {0}. For if not, then the matrix Hg(y) is identically zero for some
B € RE\ {0} contradicting the fact that V(F') is a complete intersection. In
particular this yields sg) < WT"Q —1.

Before we prove the main result of this section we require another small
lemma.

LEMMA 7.6. Let B8 € R\ {0}. The system of equations
nyIﬁ(eg)m =0, ¢£=1,....,n,
and the equation Hg(y)x = 0 define the same variety in }P’g_l X P%_l.

Proof. Recall that by definition we have

2T Hg(e1)
Hg(z) = :
ZTHﬂ(en)
For ¢ € {1,...,n} we get
ej Hg(e1)z n
y Hg(e))z = y” : = yiel Ha(e;)x = ef Ha(y)a,
ezHB(en)m =

where the last line follows since the entries of Hg(y) are linear homogeneous
in y. The result is now immediate. m
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PROPOSITION 7.7. Let sg) be defined as above and let B > 1. Then for

all B € RE\ {0} we have
NZ™(8, B) <, B™*% (log B)".
Proof. Suppose for a contradiction the result were false. Then for each
positive integer N there exists some By such that
N§™(By. B) > NB"* (log BY".
(N)

From Corollaryit follows that there are linear subspaces X (V) YI(N), Y,
C R™ with

(N)

dim XN 4+ dim YY) =n+ P 41, i=1,2,

such that for all X € XV Y; € Yi(N) we get
Yy Hpy (X)Y2| < N7Y|Yiloo| X [loo | Y2l oc-

Note that H 8y (B) is unchanged when By is multiplied by a constant. Thus
we may assume ||Bxn||cc = 1 and consider a converging subsequence of By,
converging to 3, say, as N — oo. This delivers subspaces X, Y7,Ys C R”

with dim X 4+ dimY; = n + s + 1 for i = 1,2 such that

Y/ Hg(X)Ya=0 forall X e X, Y€V}, Ys € Vs
There exists some b € {0,...,n — sg) — 1} such that dim X = n — b and
dimY; = sg) + b+ 1. Now let &1, ..., 2™ be a basis for R™ such that
2D 2 is a basis for X. Write [V;] C IP’?CZ_I for the linear subspace of

Pg_l associated to Y; for i = 1, 2.
Define the biprojective variety W C [Y1] x [Y2] in the variables (y1,y2):

W =V(y1Hp(x")ys)iz1,.. 5.

Since the non-trivial equations defining W have bidegree (1, 1) we can apply
Corollary [3.2] to find that

(7.17) dim W > dim[Y3] x [Va] — b = 252 +b.
Given (y1,y2) € W we have in particular (y1,ys2) € [Y1] x [Y2] and so
ylﬁg(m(i))yz =0 fori=b+1,...,n,
and hence ylflﬁ(z)yz = 0 for all z € R". From Lemma E we thus see
Hg(y1)y2 = 0 for all (y1,y2) € W. Hence in particular
dim W < dim V(Hg(y)z) < 258 — 1,

where we regard V(Hg(y)z) as a variety in PE~! x PE™! in the variables
(z,y). This together with ((7.17) implies b < —1, which is clearly a contra-
diction. m
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In the next lemma we show that sg ) is small if V(F') defines a smooth
complete intersection. For this we no longer assume n; = na.

LEMMA 7.8. Let SI(RQ) be defined as above. If V(F') is a smooth complete
intersection in Pgl_l x PP then
no — 1 2 no + R
7S <5
Proof. Let 3 € RE\ {0} be such that
dim V(H,
(@ _ { im V( B(y)ic)J 41

(7.18)

R 2
Note that then
(7.19) 252 — 2 < dim V(Hg(y)x) < 25 — 1.
The variety V(Hg(y)z) C Pgl_l X IP’%Q_l is defined by n; bilinear polyno-
mials. Using Corollary [3.2] we thus find that
dimV(Hg(y)x) > ng — 2

so the lower bound in ([7.18]) follows. We proceed by considering two cases.

CASE 1: V(:I}THg(eg)x)g:17_”7n2 = (). Note that this can only happen if
ng > nq. We can thus apply Lemma with V] = V(:cTHg(eg)w)g:17,,,7n2,
Vo = V(Hg(y)x) and A; = Hg(e;) to find that

dim V(Hg(y)x) < ng — 1+ dim V(z" Hg(er)x) =1, ny, = n2 — 2.

From this and ((7.19)) the upper bound in (|7.18)) follows for this case.

Case 2: V(zTHg(er)x)o=1,. n, # 0. By assumption there exists = €
C™ \ {0} such that

xTHg(ep)x =0 forall £=1,...,no.

We claim that there exists y € C" \ {0} such that Hg(y)x = 0. For this
define the vectors

Uy = Hﬁ(eg)a:, {= 1, ..., N9

Note that & € (u1,...,u,,)" so these vectors must be linearly dependent.
Thus there exist y1,...,yn, € C not all zero such that

n2

Ha(y)w =Y yeHg(er)z =0,
=1

where the first equality followed since the entries of Hg(y) are linear homo-
geneous in y. The claim follows. In particular it follows from this that

(V(@" Ha(e)®)emt,..nn X P~ N V(Hp(y)w) £ 0.



40 L. Hochfilzer

Using Lemma and we therefore find that
(7.20)  dim[(V(z" Hg(er)x)o=1....n, x P27 NV (Hg(y)z)]
> dim V(Hg(y)z) — ng > 25 — ng — 2.
Recall 8- F = zT Hg(y)z so that
Sing V(8- F) = (V(z" Hg(e))x)i=1...n, x P27 NV(Hg(y)x).

Under our assumptions we can apply Lemma to find dim Sing V(3 F) <
R — 2. The result follows from this and (|7.20]). =

Proof of Theorem[7.1 Applying Theorem [2.1] it suffices to show
(7.21) N(8; B) < CoB¥ 17,
for all B € R\ {0} and i = 1,2, where ¢ > (2b+ u)R. Let
(1) (2)}’

s =max {sp’, sp

where sﬁg ) and sg ) are defined as in (1.7) and (1.8]), respectively. From ([7.2)
and Proposition for any € > 0 we get

N (85 B) <. BT,
n—s—(8b+4u)R

)

with the implied constant not depending on 3. Choose € =
which is a positive real number by our assumption ([7.1]). Taking
n—s—e

€=,

we see that from the assumption n — s]gé) > (8b+ 4u)R for i = 1,2 we must
have ¢ > (2b+ u)R for this choice. Therefore holds and the first part
of the theorem follows upon applying Theorem

For the second part recall we assume n > (160 + 8u + 1)R and that the
forms Fj(x,y) define a smooth complete intersection in P%fl X P%fl. By

Lemma in this case we obtain

and from Lemma [7.8| we get
R
s]g ) < n—|2— .

Therefore it is easily seen that n > (16b + 8u + 1) R implies that

n— sﬁg) > (8b+4u)R

for ¢ = 1,2, which is what we wanted to show. m
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7.3. Proof of Theorem If n1 = ng then the result follows imme-
diately from Proposition [7.I} We have two cases to consider and although
their strategies are very similar they are not entirely symmetric. Therefore
it is necessary to consider them individually.

CASE 1: n; > ng. We consider a new system of equations ﬁz(w, y) in the
variables © = (z1,...,2n,) and § = (Y1, .-+, Yngs Yno+1s - - - , Yny ) Where the
forms F;(x,y) satisfy

Fi(wv g) = F(ZI}, y)7
where y = (y1,...,Yn,). Write N(Py, Py) for the counting function associ-
ated to the system F' = 0 and the boxes By x (By x [0,1]"17"2). Note, in

particular, that if we replace F' by Fin (5.13) and ([5.12)) then the expressions
for the singular series and the singular integral remain unchanged. Further

denote by s]%) the quantities defined in . ) and ( . ) but with F' replaced
by F'. Note that we have s]%{) = 8(1) and 5( ) < 5(2) 572 Therefore the

assumptions ([1.9) imply
ny — 5]% > (8b+4u)R
for i = 1,2. Hence we may apply Proposition [7.1] in order to obtain
N(Py, Py) =36 P/ 2Rpp=R L o(Pp 2Ry min {Py, Py} %),
for some & > 0. Finally it is easy to see that
N(Py, Py) = N(Py, P)#{t € Z" ™ N[0, Po]" ™}
= N(PL B) (P + O(B ),

and so ([1.10]) follows.

CASE 2: nz > n1. We deal with this very similarly to the first case; we
define a new system of forms F;(&,y) in the variables & = (x1,...,%,,) and
Yy = (y1,-.-,Yny) such that

Fi(z,9) = Fy(z,y).

As before we define a new counting function N (Py, P») with respect to the
new product of boxes (B x [0,1]"27"1) x By, and we define §I(Rf) similarly to

the previous case. Note that 5%) = S%) +ng —nq and 5]%2) < sg) + 25 50

that (1.9) gives

ny — 59 > (8b + 4u)R,

for i =1, 2. Therefore Proposition [7.1{applies and we deduce again that (|1.10))
holds as desired.
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Finally, we turn to the case when V(F') defines a smooth complete inter-
section. Note first that by Lemma [7.8| we have
(2 o net Rt
SRS T
and therefore the condition
w — s > (8b+ 4u)R
is satisfied if we assume n; > (16b + 8u + 1)R. Further, by Lemma we
have

s]g) < max{0,n1 + R — na},

and so we may replace the condition nq — sg ) > (80 + 4u)R by
ny —max{0,n; + R —na} > (8b+ 4u)R.

If ng > ny + R then this reduces to assuming ny > (86 + 4u + 1) R, which
follows immediately since we have assumed n; > (16b + 8u + 1)R. If ny <
n1 + R on the other hand, then this is equivalent to assuming

ng > (80 +4u + 1)R.
In any case, the assumptions ([1.11]) imply the assumptions (1.9)) as desired.
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