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Systems of bihomogeneous forms of small bidegree

by

Leonhard Hochfilzer (University Park, PA)

Abstract. We use the circle method to count the number of integer solutions to
systems of bihomogeneous equations of bidegree (1, 1) and (2, 1) of bounded height in
lopsided boxes. Previously, adjusting Birch’s techniques to the bihomogeneous setting,
Schindler showed an asymptotic formula provided the number of variables grows at least
quadratically with the number of equations considered. Based on recent methods by Rydin
Myerson we weaken this assumption and show that the number of variables only needs to
satisfy a linear bound in terms of the number of equations.
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1. Introduction. Studying the number of rational solutions of bounded
height to a system of equations is a fundamental tool in order to understand
the distribution of rational points on varieties. A longstanding result by
Birch [3] establishes an asymptotic formula for the number of integer points
of bounded height that are solutions to a system of homogeneous forms of
the same degree in a general setting, provided the number of variables is
sufficiently large relative to the singular locus of the variety defined by the
system of equations. This was recently improved upon by Rydin Myerson [22,
23] whenever the degree is 2 or 3. These results may be used in order to
prove Manin’s conjecture for certain Fano varieties, which arise as complete
intersections in projective space.
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Analogous to Birch’s result, Schindler [24] studied systems of bihomoge-
neous forms. Using the hyperbola method, Schindler [26] established Manin’s
conjecture for certain bihomogeneous varieties as a result. The aim of this
paper is to improve Schindler’s result by applying the ideas of Rydin My-
erson to the bihomogeneous setting. While the results presented only hold
for bidegree (1, 1) and (2, 1), they follow from Theorem 2.1, which deals
with general bidegree. This theorem could in principle be used to improve
Schindler’s result for general bidegree. However, one would run into problems
that are very similar to the ones appearing in [21].

Consider a system of bihomogeneous forms

F (x,y) = (F1(x,y), . . . , FR(x,y))

with integer coefficients in variables x = (x1, . . . , xn1) and y = (y1, . . . , yn2).
We assume that all of the forms have the same bidegree, which we denote by
(d1, d2) for non-negative integers d1, d2. By this we mean that for any scalars
λ, µ ∈ C we have

Fi(λx, µy) = λd1µd2Fi(x,y), i = 1, . . . , R.

This system defines a biprojective variety V ⊂ Pn1−1
Q × Pn2−1

Q . One can also
interpret the system in the affine variables (x1, . . . , xn1 , y1, . . . , yn2) and thus
F (x,y) also defines an affine variety which we will denote by V0 ⊂ An1+n2

Q .
We are interested in studying the set of integer solutions to this system of
bihomogeneous equations. Consider two boxes Bi ⊂ [−1, 1]ni where each
edge is of side length at most 1 and they are all parallel to the coordinate
axes. In order to study the questions from an analytic point of view, for
P1, P2 > 1 we define the following counting function:

N(P1, P2) = #{(x,y) ∈ Zn1 × Zn2 : x/P1 ∈ B1, y/P2 ∈ B2, F (x,y) = 0}.

Generalising the work of Birch [3], Schindler [24] used the circle method to
achieve an asymptotic formula for N(P1, P2) as P1, P2 → ∞ provided certain
conditions on the number of variables are satisfied, to be described below.
Before we can state Schindler’s result, consider the varieties V ∗

1 and V ∗
2 in

An1+n2
Q to be defined by

rank

(
∂Fi

∂xj

)
i,j

< R and rank

(
∂Fi

∂yj

)
i,j

< R

respectively. Assume that V0 is a complete intersection, which means that
dimV0 = n1 + n2 −R. Write b = max

{ log(P1)
log(P2)

, 1
}

and u = max
{ log(P2)
log(P1)

, 1
}
.

If ni > R for i = 1, 2 and

(1.1) n1+n2−dimV ∗
i > 2d1+d2−2max {R(R+1)(d1+d2−1), R(bd1+ud2)}
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is satisfied, then Schindler showed the asymptotic formula
(1.2)

N(P1, P2) = σPn1−Rd1
1 Pn2−Rd2

2 +O(Pn1−Rd1
1 Pn2−Rd2

2 min {P1, P2}−δ),

for some δ > 0 and where σ is positive if the system F (x,y) = 0 has a
smooth p-adic zero for all primes p, and the variety V0 has a smooth real
zero in B1×B2. In the case when the equations F1(x,y), . . . , FR(x,y) define
a smooth complete intersection V , and the bidegree is (1, 1) or (2, 1), the goal
of this paper is to improve the restriction on the number of variables (1.1)
and still show the asymptotic formula (1.2). In particular, if the bidegree is
(1, 1) or (2, 1) we will show that if

bd1 + ud2 <
R+ 1

2
,

our result will require fewer variables.
The result by Schindler generalises a well-known result by Birch [3], which

deals with systems of homogeneous equations: Let B ⊂ [−1, 1]n be a box con-
taining the origin with side lengths at most 1 and edges parallel to the coor-
dinate axes. Given homogeneous equations G1(x), . . . , GR(x) with rational
coefficients of common degree d > 1 define the counting function

N(P ) = #{x ∈ Zn : x/P ∈ B, G1(x) = · · · = GR(x) = 0}.

Write V ∗ ⊂ An
Q for the variety defined by

rank

(
∂Gi

∂xj

)
i,j

< R,

commonly referred to as the Birch singular locus. Assuming that G1, . . . , GR

define a complete intersection X ⊂ Pn−1
Q and that the number of variables

satisfies

(1.3) n− dimV ∗ > R(R+ 1)(d− 1)2d−1,

Birch showed

(1.4) N(P ) = σ̃Pn−dR +O(Pn−dR−ε),

where σ̃ > 0 if the system G(x) has a smooth p-adic zero for all primes p
and the variety X has a smooth real zero in B.

Building on the ideas of Müller [16, 17] on quadratic Diophantine inequal-
ities, Rydin Myerson improved Birch’s theorem. He weakened the assumption
on the number of variables in the cases d = 2, 3 (see [22, 23]) whenever R is
reasonably large. Assuming that X ⊂ Pn−1

Q defines a complete intersection,
he was able to replace the condition in (1.3) by

(1.5) n− σR > d2dR,
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where
σR = 1 + max

β∈RR\{0}
dimSingV(β ·G),

and where V(β ·G) is the pencil defined by
∑R

i=1 βiG(x) in Pn−1
Q . We note at

this point that several other authors have replaced the Birch singular locus
condition with weaker assumptions, such as Schindler [25] and Dietmann [9],
who also considered dimensions of pencils, and very recently Yamagishi [31],
who replaced the Birch singular locus with a condition regarding the Hessian
of the system. Returning to Rydin Myerson’s result, if X is non-singular then
one can show

σR ≤ R− 1

and in this case if n ≥ (d2d + 1)R then one obtains the desired asymptotic.
Notably, the work of Rydin Myerson showed the number of variables n thus
only has to grow linearly in the number of equations R, whereas R appeared
quadratically in Birch’s work. If d ≥ 4 he showed that for generic systems
of forms it suffices to assume (1.5) for the asymptotic (1.4) to hold. Generic
here means that the set of coefficients is required to lie in some non-empty
Zariski open subset of the parameter space of coefficients of the equations.

Our goal in this paper is to generalise the results obtained by Rydin
Myerson to the case of bihomogeneous varieties whenever the bidegree of
the forms is (1, 1) or (2, 1). Those two cases correspond to degrees 2 and 3 in
the homogeneous case, respectively. We call a bihomogeneous form bilinear
if the bidegree is (1, 1). Given a bilinear form Fi(x,y) we may write it as

Fi(x,y) = yTAix,

for some n2×n1-dimensional matrices Ai with rational entries. Given β ∈ RR

write

Aβ =

R∑
i=1

βiAi.

Regarding Aβ as a map Rn1 → Rn2 and and AT
β as a map Rn2 → Rn1 we

define the quantities

σ
(1)
R := max

β∈RR\{0}
dimker(Aβ) and σ

(2)
R := max

β∈RR\{0}
dimker(AT

β).

We state our first theorem for systems of bilinear forms. Since the situation is
completely symmetric with respect to the x and y variables if the forms are
bilinear, we may without loss of generality assume P1 ≥ P2 in the counting
function, and still obtain the full result.

Theorem 1.1. Let F1(x,y), . . . , FR(x,y) be bilinear forms with integer
coefficients such that the biprojective variety V(F1, . . . , FR) ⊂ Pn1−1

Q ×Pn2−1
Q

is a complete intersection. Let P1 ≥ P2 > 1, write b = log(P1)
log(P2)

and assume



Systems of bihomogeneous forms of small bidegree 5

further that

(1.6) ni − σ
(i)
R > (2b+ 2)R

for i = 1, 2. Then there exists some δ > 0 depending at most on b, F , R and
ni such that

N(P1, P2) = σPn1−R
1 Pn2−R

2 +O(Pn1−R
1 Pn2−R−δ

2 ),

where σ > 0 if the system F (x,y) = 0 has a smooth p-adic zero for all
primes p and if the variety V0 has a smooth real zero in B1 × B2.

Moreover, if we assume V(F1, . . . , FR) ⊂ Pn1−1
Q ×Pn2−1

Q to be smooth the
same conclusions hold if we assume

min {n1, n2} > (2b+ 2)R and n1 + n2 > (4b+ 5)R

instead of (1.6).

We now move on to systems of forms F1(x,y), . . . , FR(x,y) of bidegree
(2, 1). We may write such a form Fi(x,y) as

Fi(x,y) = xTHi(y)x,

where Hi(y) is a symmetric n1×n1 matrix whose entries are linear forms in
the variables y = (y1, . . . , yn2). Similarly to above, given β ∈ RR we write

Hβ(y) =
R∑
i=1

βiHi(y).

Given ℓ ∈ {1, . . . , n2} write eℓ ∈ Rn2 for the standard unit basis vectors.
Write

V(xTHβ(eℓ)x)ℓ=1,...,n2 = V(xTHβ(e1)x, . . . ,x
THβ(en2)x) ⊂ Pn1−1

Q

for this intersection of zero loci, and define

(1.7) s
(1)
R := 1 + max

β∈RR\{0}
dimV(xTHβ(eℓ)x)ℓ=1,...,n2 .

Further write V(Hβ(y)x) for the biprojective variety defined by the system
of equations

V(Hβ(y)x) = V((Hβ(y)x)1, . . . , (Hβ(y)x)n1) ⊂ Pn1−1
Q × Pn2−1

Q

and define

(1.8) s
(2)
R :=

⌊
maxβ∈RR\{0} dimV(Hβ(y)x)

2

⌋
+ 1,

where ⌊x⌋ denotes the largest integer m such that m ≤ x.

Theorem 1.2. Let F1(x,y), . . . , FR(x,y) be bihomogeneous forms with
integer coefficients of bidegree (2, 1) such that the biprojective variety
V(F1, . . . , FR) ⊂ Pn1−1

Q ×Pn2−1
Q is a complete intersection. Let P1, P2 > 1 be
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real numbers. Write b = max
{ log(P1)
log(P2)

, 1
}

and u = max
{ log(P2)
log(P1)

, 1
}
. Assume

further that

(1.9) n1 − s
(1)
R > (8b+ 4u)R and

n1 + n2

2
− s

(2)
R > (8b+ 4u)R.

Then there exists some δ > 0 depending at most on b, u, R, ni and F such
that

(1.10) N(P1, P2) = σPn1−2R
1 Pn2−R

2 +O(Pn1−2R
1 Pn2−R

2 min {P1, P2}−δ),

where σ > 0 if the system F (x,y) = 0 has a smooth p-adic zero for all
primes p, and if the variety V0 has a smooth real zero in B1 × B2.

If we assume that V(F1, . . . , FR) ⊂ Pn1−1
Q × Pn2−1

Q is smooth, then the
same conclusions hold if we assume

(1.11) n1 > (16b+ 8u+ 1)R and n2 > (8b+ 4u+ 1)R

instead of (1.9).

Both of the results above are a consequence of Theorem 2.1. This theorem
states that if one is able to estimate the number of solutions to an associated
multilinear counting problem then one obtains the asymptotic formula (1.2).
However, whenever d1 + d2 > 3 the associated multilinear problem becomes
very difficult and one encounters problems as in [21].

We remark that we preferred to give conditions in terms of the geometry
of the variety regarded as a biprojective variety, as opposed to an affine
variety. The reason for this is the potential application of this result to
proving Manin’s conjecture for this variety, which will be addressed in due
course.

Compared to the result by Schindler we thus basically remove the as-
sumption that the number of variables needs to grow at least quadratically
in R. In particular, our results require fewer variables than Schindler’s if

(1.12) bd1 + ud2 <
R+ 1

2
is satisfied, in the cases (d1, d2) = (1, 1) or (2, 1). To see this, note firstly
that (1.12) implies that Schindler’s condition on the number of variables
becomes

n1 + n2 − dimV ∗
i > 2d1+d2−2R(R+ 1)(d1 + d2 − 1).

Further, similarly to [22, Lemma 1.1] one may show

dimV ∗
1 ≥

{
n2 + σ

(R)
1 if (d1, d2) = (1, 1),

n2 + s
(R)
1 if (d1, d2) = (2, 1),

and

dimV ∗
2 ≥

{
n1 + σ

(R)
2 if (d1, d2) = (1, 1),

2s
(R)
2 if (d1, d2) = (2, 1).
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Comparing Schindler’s condition with the conditions on the number of vari-
ables appearing in Theorems 1.1 and 1.2 the claim now transpires.

In particular, if R is large this means our result provides significantly
more flexibility in the choice of u and b.

One cannot hope to achieve the asymptotic formula (1.2) in general where
a condition of the shape ni > R(bd1 + ud2) is not present. To see this, note
that the counting function satisfies

N(P1, P2) ≫ Pn1
1 + Pn2

2 ,

coming from the solutions when x1 = · · · = xn1 = 0 and y1 = · · · = yn2 = 0.
The asymptotic formula (1.2) thus implies

Pni
i ≪ Pn1−d1R

1 Pn2−d2R
2

for i = 1, 2. Noting that P u
1 = P2 if u > 1 and P b

2 = P1 if b > 1 and
comparing the exponents one necessarily finds that ni > R(bd1 + ud2).

If the forms are diagonal then one can take boxes Bi which avoid the
coordinate axes in order to remedy this obstruction. In fact, this is the ap-
proach taken by Blomer and Brüdern [4] and they proved an asymptotic
formula of a system of multihomogeneous equations without a restriction on
the number of variables similar to the type described above.

If the forms are not diagonal the problem still persists, even if one were
to take boxes avoiding the coordinate axes. In general there may be ‘bad’
vectors y away from the coordinate axes such that

#{x ∈ Zn1 : F (x,y) = 0, |x| ≤ P1} ≫ Pn1−a
1 ,

where a < d1R for example. This is in contrast to the diagonal case, where
the only vectors y where this occurs lie on at least one coordinate axis.
It would be interesting to consider a modified counting function where one
excludes such vectors y, and analogously ‘bad’ vectors x. In a general setting
it seems difficult to control the set of such vectors. In particular, it is not
clear how one would deal with the Weyl differencing step if one were to
consider such a counting function.

1.1. Manin’s conjecture. Let V ⊂ Pn1−1
Q × Pn2−1

Q be a non-singular
complete intersection defined by a system of forms Fi(x,y), i = 1, . . . , R,
of common bidegree (d1, d2). Assume ni > diR so that V is a Fano variety,
which means that the inverse of the canonical bundle in the Picard group,
the anticanonical bundle, is very ample. For a field K, write V (K) for the
set of K-rational points of V . In the context of Manin’s conjecture we define
this to be the set of K-morphisms

Spec(K) → VK ,
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where VK denotes the base change of V to the field K. For a subset U(Q) ⊂
V (Q) and P ≥ 1 consider the counting function

NU (P ) = #{(x,y) ∈ U(Q) : H(x,y) ≤ P},
where H(·, ·) is the anticanonical height induced by the anticanonical bundle
and a choice of global sections. In our case one such height may be explicitly
given as follows. If (x,y) ∈ U(Q) we may pick representatives x ∈ Zn1 and
y ∈ Zn2 such that (x1, . . . , xn1) = (y1, . . . , yn2) = 1 and we define

H(x,y) =
(
max

i
|xi|
)n1−Rd1(

max
i

|yi|
)n2−Rd2

.

Manin’s Conjecture in this context states that, provided V is a Fano variety
such that V (Q) ⊂ V is Zariski dense, there exists a subset U(Q) ⊂ V (Q)
where (V \ U)(Q) is a thin set such that

NU (P ) ∼ cP (logP )ρ−1,

where ρ is the Picard rank of the variety V and c is a constant as predicted
and interpreted by Peyre [18]. We briefly recall the definition of a thin set,
according to Serre [28]. First recall a set A ⊂ V (K) is of type
(C1) if A ⊆ W (K), where W ⊊ V is Zariski closed,
(C2) if A ⊆ π(V ′(K)), where V ′ is irreducible such that dimV = dimV ′,

where π : V ′ → V is a generically finite morphism of degree at least 2.
Now a subset of the K-rational points of V is thin if it is a finite union of sets
of type (C1) or (C2). Originally Batyrev–Manin [1] conjectured that it suffices
to assume that V \ U is Zariski closed, but there have been found various
counterexamples to this, the first one being due to Batyrev–Tschinkel [2].

In [26] Schindler showed an asymptotic formula of the shape above, if V is
smooth and d1, d2 ≥ 2 and

ni > 3 · 2d1+d2d1d2R
3 +R

is satisfied for i = 1, 2. If R = 1 she moreover verified that the constant
obtained agrees with the one predicted by Peyre, and thus proved Manin’s
conjecture for bihomogeneous hypersurfaces when the conditions above are
met. The proof uses the asymptotic (1.2) established in [24] along with uni-
form counting results on fibres. That is, for a vector y ∈ Zn2 one may
consider the counting function

Ny(P ) = #{x ∈ Zn1 : F (x,y) = 0, |x| ≤ P},
and to understand its asymptotic behaviour uniformly means to understand
the dependence of y on the constant in the error term. Similarly she con-
sidered Nx(P ) for ‘good’ x and combined the three resulting estimates to
obtain an asymptotic formula for the number of solutions Ñ(P1, P2) to the
system F (x,y) = 0, where |x| ≤ P1, |y| ≤ P2 and x,y are ‘good’. Con-
sidering only ‘good’ tuples essentially removes a closed subset from V , and



Systems of bihomogeneous forms of small bidegree 9

thus, after an application of a slight modification of the hyperbola method
developed as in [4] she obtained an asymptotic formula for NU (P ) of the
desired shape.

In forthcoming work the result established in Theorem 1.2 will be used
in verifying Manin’s Conjecture for V , when (d1, d2) = (2, 1) in fewer vari-
ables than would be expected using Schindler’s method as described above.
Further, since the Picard rank of V is strictly greater than 1, it would be
interesting to consider the all heights approach as suggested by Peyre [19,
Question V.4.8]. As noted by Peyre himself, in the case when a variety has
Picard rank 1, the answer to his Question V.4.8 follows provided one can
prove Manin’s conjecture with respect to the height function induced by the
anticanonical bundle.

Schindler’s results have been improved upon in a few special cases. Brown-
ing and Hu [6] showed Manin’s conjecture in the case of smooth biquadratic
hypersurfaces in Pn−1

Q × Pn−1
Q if the number of variables satisfies n > 35. If

the bidegree is (2, 1) then Hu [13] showed that n > 25 suffices in order to
obtain Manin’s conjecture. Systems of bilinear varieties are flag varieties and
thus Manin’s conjecture follows from the result for flag varieties, which was
proven by Franke, Manin and Tschinkel [10] using the theory of Eisenstein
series. The same result was later proven by Thunder [30] using arguments
from the geometry of numbers. In the special case when the variety is defined
by
∑s

i=0 xiyi = 0, Robbiani [20] showed how one may use the circle method
to establish Manin’s conjecture if s ≥ 3, which was later improved to s ≥ 2
by Spencer [29].

Building up on Schindler’s papers, Teddy Mignot proved Manin’s con-
jecture for certain triprojective hypersurfaces [14], and he also established
Manin’s conjecture for certain hypersurfaces inside toric varieties [15]. In-
spired by Schindler’s techniques, Brandes [5] proved an asymptotic formula
for the number of lines of bounded height lying on a hypersurface of degree
at least 5 of sufficiently large dimension.

Conventions. The symbol ε > 0 is an arbitrarily small value, which
we may redefine whenever convenient, as is usual in analytic number theory.
Given forms gℓ, ℓ = 1, . . . , k, we write V(gℓ)ℓ=1,...,k or sometimes just V(gℓ)ℓ
for the intersection V(g1, . . . , gk). Further, we may sometimes consider a vec-
tor of forms h = (h1, . . . , hk) and we similarly write V(h) for the intersection
V(h1, . . . , hk).

For x ∈ R we will write e(x) = e2πix. We will use Vinogradov’s notation
O(·) and ≪.

We shall repeatedly use the convention that the dimension of the empty
set is −1.



10 L. Hochfilzer

2. Multilinear forms. Both Theorems 1.1 and 1.2 follow from a more
general result. If we have control over the number of ‘small’ solutions to the
associated linearised forms then we can show that the asymptotic (1.2) holds.
More explicitly, given a bihomogeneous form F (x,y) with integer coefficients
of bidegree (d1, d2) for positive integers d1, d2, we may write it as

F (x,y) =
∑
j

∑
k

Fj,kxj1 · · ·xjd1yk1 · · · ykd2 ,

where the coefficients Fj,k ∈ Q are symmetric in j and k. We define the
associated multilinear form

ΓF (x̃, ỹ) := d1!d2!
∑
j

∑
k

Fj,kx
(1)
j1

· · ·x(d1)jd1
y
(1)
k1

· · · y(d2)kd2
,

where x̃ = (x(1), . . . ,x(d1)) and ỹ = (y(1), . . . ,y(d2)) for vectors x(i) of n1

variables and vectors y(i) of n2 variables. Write further x̂=(x(1), . . . ,x(d1−1))
and ŷ = (y(1), . . . ,y(d2−1)). Given β ∈ RR we define the auxiliary count-
ing function Naux

1 (β;B) to be the number of integer vectors satisfying x̂ ∈
(−B,B)(d1−1)n1 and ỹ ∈ (−B,B)d2n2 such that

|Γβ·F (x̂, eℓ, ỹ)| < ∥β · F ∥∞Bd1+d2−2,

for ℓ = 1, . . . , n1, where ∥β ·F ∥∞ := 1
d1!d2!

maxj,k
∣∣ ∂d1+d2 (β·F )
∂xj1

···∂xjd1
∂yk1 ···∂ykd2

∣∣. We
define Naux

2 (β;B) analogously.
The technical core of this paper is the following theorem.

Theorem 2.1. Assume that n1, n2 > (d1 + d2)R and let F (x,y) =
(F1(x,y), . . . , FR(x,y)) be a system of bihomogeneous forms with inte-
ger coefficients of common bidegree (d1, d2) such that the variety V(F ) ⊂
Pn1−1
Q × Pn2−1

Q is a complete intersection. Let P1, P2 > 1 and write b =
max {log(P1)/log(P2), 1} and u = max {log(P2)/ log(P1), 1}.

Assume there exist C0 ≥ 1 and C > (bd1 + ud2)R such that for all
β ∈ RR \ {0} and all B > 0 we have

(2.1) Naux
i (β;B) ≤ C0B

d1n1+d2n2−ni−2d1+d2−1C

for i = 1, 2. There exists some δ > 0 depending on b, u, C0, R, di and ni

such that

N(P1, P2) = σPn1−d1R
1 Pn2−d2R

2 +O(Pn1−d1R
1 Pn2−d2R

2 min {P1, P2}−δ).

The factor σ = IS is the product of the singular integral I and the singular
series S, as defined in (5.11) and (5.8), respectively. Moreover, if the system
F (x,y) = 0 has a non-singular real zero in B1×B2 and a non-singular p-adic
zero for every prime p, then σ > 0.

While showing that (2.1) holds is rather straightforward when the bide-
gree is (1, 1) it becomes significantly more difficult when the bidegree in-
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creases. In fact, in Rydin Myerson’s work a similar upper bound on a similar
auxiliary counting function needs to be shown. He was successful in doing
so when the degree is 2 or 3 and the system defines a complete intersection,
but for higher degrees he was only able to show this upper bound for generic
systems. Our strategy is as follows. We will establish Theorem 2.1 in Sec-
tions 4 and 5 and then use this to show Theorem 1.1 and in Section 6 and
Theorem 1.2 in Section 7.

3. Geometric preliminaries

Lemma 3.1 ([26, Lemma 2.2]). Let W be a smooth variety that is com-
plete over some algebraically closed field and consider a closed irreducible
subvariety Z ⊆ W such that dimZ ≥ 1. Given an effective divisor D on W
the dimension of every irreducible component of D∩Z is at least dimZ − 1.
If D is moreover ample, then D ∩ Z is non-empty.

In particular the following corollary will be very useful.

Corollary 3.2. Let V ⊆ Pn1−1
C × Pn2−1

C be a closed variety such that
dimV ≥ 1. Consider H = V(f) where f(x,y) is a polynomial of bidegree at
least (1, 1) in the variables (x,y) = (x1, . . . , xn1 , y1, . . . , yn2). Then

dim(V ∩H) ≥ dimV − 1;

in particular, V ∩H is non-empty.

Proof. Since the bidegree of f is at least (1, 1) we see that H defines an
effective and ample divisor on Pn1−1

C × Pn2−1
C . We apply Lemma 3.1 with

W = Pn1−1
C × Pn2−1

C , D = H and Z any irreducible component of V .

Lemma 3.3. Let F (x,y) be a system of R bihomogeneous equations of the
same bidegree (d1, d2) with d1, d2 ≥ 1. Assume that V(F ) ⊂ Pn1−1

C × Pn2−1
C

is a smooth complete intersection. Given β ∈ RR \ {0} we have

dimSingV(β · F ) ≤ R− 2,

where we write β · F =
∑

i βiFi.

Proof. The singular locus of V(β · F ) is given by

SingV(β · F ) = V
(
∂(β · F )

∂xj

)
j=1,...,n1

∩ V
(
∂(β · F )

∂yj

)
j=1,...,n2

.

Assume without loss of generality βR ̸= 0 so that V(F ) = V(F1, . . . , FR−1,
β · F ). We claim that

(3.1) V(F1, . . . , FR−1) ∩ SingV(β · F ) ⊆ SingV(F ).

To see this, note first that V(F1, . . . , FR−1)∩SingV(β ·F ) ⊆ V(F ). Further,
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the Jacobian matrix J(F ) of F is given by

J(F ) =

(
∂Fi

∂zj

)
ij

,

where i = 1, . . . , R and zj ranges through x1, . . . , xn1 , y1, . . . , yn2 . Now if the
equations

∂(β · F )

∂xj
=

∂(β · F )

∂yj
= 0,

are satisfied then this implies that the rows of J(F ) are linearly dependent.
Since V(F ) is a complete intersection we deduce the claim.

Assume now for a contradiction that dimSingV(β ·F ) ≥ R−1. Applying
Corollary 3.2 R− 1 times with V = SingV(β · F ), noting that the bidegree
of Fi is at least (1, 1), we find that

V(F1, . . . , FR−1) ∩ SingV(β · F ) ̸= ∅.

This contradicts (3.1) since SingV(F ) = ∅ by assumption.

Lemma 3.4. Let n1 ≤ n2 be two positive integers. For i = 1, . . . , n2 let
Ai ∈ Mn1×n1(C) be symmetric matrices. Consider the varieties V1 ⊂ Pn1−1

C
and V2 ⊂ Pn1−1

C × Pn2−1
C defined by

V1 = V(tTAit)i=1,...,n2 , V2 = V
( n2∑
i=1

yiAix
)
.

Then
dimV2 ≤ dimV1 + n2 − 1.

In particular, if V1 = ∅ then dimV2 ≤ n2 − 2.

Proof. Consider the variety V3 ⊂ Pn1−1
C × Pn1−1

C defined by

V3 = V(zTAix)i=1,...,n2 .

Further, for x = (x1, . . . , xn1)
T consider

Ax = (A1x · · ·An2x) ∈ Mn1×n2(C)[x1, . . . , xn1 ].

We may write V2 = V(Axy) and V3 = V(zTAx). Our first goal is to relate
the dimensions of the varieties above as follows:

(3.2) dimV2 ≤ dimV3 + n2 − n1.

For r = 0, . . . , n1 define the quasi-projective varieties Dr ⊂ Pn1−1
C given by

Dr = {x ∈ Pn1−1
C : rank(A(x)) = r}.

These are quasiprojective since they may be written as the intersection of
the vanishing sets of all (r+1)× (r+1) minors of Ax with the complement
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of the intersection of the vanishing sets of all r × r minors. For each r let

Dr =
⋃
i∈Ir

D(i)
r

be a decomposition into finitely many irreducible components. Since
⋃

r Dr =

Pn1−1
C we have

dimV2 = max
0≤r<n2
i∈Ir

dim((D(i)
r × Pn2−1

C ) ∩ V2).

Note that r = n2 does not play a role here, since the intersection (D
(i)
n2 ×

Pn2−1
C ) ∩ V2 is empty. Similarly we get

dimV3 = max
0≤r<n2
i∈Ir

dim((D(i)
r × Pn1−1

C ) ∩ V3).

For 0 ≤ r < n2 and i ∈ Ir consider now the surjective projection maps

π2,r,i : (D
(i)
r × Pn2−1

C ) ∩ V2 → D(i)
r , (x,y) 7→ x,

and
π3,r,i : (D

(i)
r × Pn1−1

C ) ∩ V3 → D(i)
r , (x, z) 7→ x.

We note that by the way D
(i)
r was constructed here, the fibres of both of

these projection morphisms have constant dimension for fixed r. By the
rank-nullity theorem we find that the dimensions of the fibres are related as
follows:

(3.3) dimπ−1
2,r,i(x) = dimπ−1

3,r,i(x) + n2 − n1.

We claim that the morphism π2,r,i is proper. For this note that the structure
morphism Pn1−1

C → SpecC is proper whence D
(i)
r × Pn1−1

C → D
(i)
r must be

proper too, as properness is preserved under base change. As (D(i)
r ×Pn2−1

C )

∩ V2 is closed inside D
(i)
r × Pn1−1

C , the restriction π2,r,i must also be proper.
By an analogous argument it follows π3,r,i is also proper.

Further note that the fibres of π2,r,i are irreducible since they define
linear subspaces of (D(i)

r × Pn2−1
C ) ∩ V2, and similarly the fibres of π3,r,i are

irreducible. Since D
(i)
r is irreducible by construction and all the fibres have

constant dimension, it follows that (D(i)
r ×Pn2−1

C )∩V2 is irreducible. Similarly
(D

(i)
r × Pn1−1

C ) ∩ V3 is irreducible.
Hence all the conditions of Chevalley’s upper semicontinuity theorem [11,

Théorème 13.1.3] are satisfied, so that for any x ∈ D
(i)
r we obtain

(3.4) dimπ−1
2,r,i(x) = dim((D(i)

r × Pn2−1
C ) ∩ V2)− dimD(i)

r ,

and

(3.5) dimπ−1
3,r,i(x) = dim((D(i)

r × Pn1−1
C ) ∩ V3)− dimD(i)

r .
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Hence (3.4) and (3.5) together with (3.3) yield

dim((D(i)
r × Pn2−1

C ) ∩ V2) = dim((D(i)
r × Pn1−1

C ) ∩ V3) + n2 − n1.

Choosing r and i such that dimV2 = dim((D
(i)
r × Pn2−1

C ) ∩ V2) the claim
(3.2) now follows.

Thus it is enough to find an upper bound for dimV3. To this end, consider
the affine cones Ṽ1 = V(uTAiu)i=1,...,n2 ⊂ An1

C and Ṽ3 = V(xTA(z)) ⊂
An1
C × An1

C . Note in particular that Ṽ1 ̸= ∅ even if V1 = ∅.
Write ∆̃ ⊂ An1

C ×An1
C for the diagonal given by V(xi = zi)i. Then Ṽ3∩∆̃ ∼=

Ṽ1 ̸= ∅. Thus, the affine dimension theorem [12, Proposition 7.1] yields

dim Ṽ1 ≥ dim Ṽ3 − n1.

Noting dimV1 + 1 ≥ dim Ṽ1 and dim Ṽ3 ≥ dimV3 + 2 now gives the desired
result. We remind the reader at this point that this is compatible with the
convention dim ∅ = −1.

4. The auxiliary inequality. We remind the reader of the notation
e(x) = e2πix. Starting with this section, we will often use the notation d̃ =
d1 + d2 − 2 throughout the paper. For α ∈ [0, 1]R define

S(α, P1, P2) = S(α) :=
∑

x∈P1B1

∑
y∈P2B2

e(α · F (x,y)),

where the sum ranges over x ∈ Zn1 such that x/P1 ∈ B1 and similarly for y.
Throughout this section we will assume P1 ≥ P2. Note crucially that

N(P1, P2) =
�

[0,1]R

S(α) dα.

As noted in the introduction we can rewrite the forms as

Fi(x,y) =
∑
j

∑
k

F
(i)
j,kxj1 · · ·xjd1yk1 · · · ykd2 ,

and given α ∈ RR, as in [24], we consider the multilinear forms

Γα·F (x̃, ỹ) := d1!d2!
∑
i

αi

∑
j

∑
k

F
(i)
j,kx

(1)
j1

· · ·x(d1)jd1
y
(1)
k1

· · · y(d2)kd2
.

Further we write x̂ = (x(1), . . . ,x(d1−1)) and similarly for ŷ. For any real
number λ we write ∥λ∥ = mink∈Z |λ− k|. Now define M1(α ·F ;P1, P2, P

−1)
to be the number of integral x̂ ∈ (−P1, P1)

(d1−1)n1 and ỹ ∈ (−P2, P2)
d2n2

such that for all ℓ = 1, . . . , n1 we have

∥Γα·F (x̂, eℓ, ỹ)∥ < P−1.

Similarly, we define M2(α · F ;P1, P2, P
−1) to be the number of integral

x̃ ∈ (−P1, P1)
d1n1 and ŷ ∈ (−P2, P2)

(d2−1)n2 such that for all ℓ = 1, . . . , n2
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we have
∥Γα·F (x̃, ŷ, eℓ, )∥ < P−1.

For our purposes we will need a slight generalisation of [24, Lemma 2.1] that
deals with a polynomial G(x,y), which is not necessarily bihomogeneous. If
G(x,y) has bidegree (d1, d2) write

G(x,y) =
∑

0≤r≤d1
0≤l≤d2

G(r,l)(x,y),

where G(r,l)(x,y) is homogeneous of bidegree (r, l). Using notation as above
we first show the following preliminary lemma, which is a version of Weyl’s
inequality for our context.

We remind the reader of the notation d̃ = d1 + d2 − 2.

Lemma 4.1. Let ε > 0. Let G(x,y) ∈ R[x1, . . . , xn1 , y1, . . . , yn2 ] be a
polynomial of bidegree (d1, d2) with d1, d2 ≥ 1. For the exponential sum

SG(P1, P2) =
∑

x∈P1B1

∑
x∈P2B2

e(G(x,y))

we have the following bound:

|SG(P1, P2)|2
d̃ ≪ P

n1(2d̃−d1+1)+ε
1 P

n2(2d̃−d2)
2 M1(G

(d1,d2), P1, P2, P
−1
1 ).

Proof. The proof is quite involved but follows closely the proof of [24,
Lemma 2.1], which in turn is based on ideas of Schmidt [27, Section 11] and
Davenport [7, Section 3].

Our first goal is to apply a Weyl differencing process d2 − 1 times to the
y part of G and then d1− 1 times to the x part of the resulting polynomial.
Clearly this is trivial if d2 = 1 or d1 = 1, respectively. Therefore assume for
now that d2 ≥ 2. We start by applying the Cauchy–Schwarz inequality and
the triangle inequality to find that

(4.1) |SG(P1, P2)|2
d2−1 ≪ P

n1(2d2−1−1)
1

∑
x∈P1B1

|Sx(P1, P2)|2
d2−1

,

where we define
Sx(P1, P2) =

∑
y∈P2B2

e(G(x,y)).

Now write U = P2B2, write UD = U − U for the difference set and define

U(y(1), . . . ,y(t)) =
⋂

ε1=0,1

· · ·
⋂

εt=0,1

(U − ε1y
(1) − · · · − εty

(t)).

Write F(y) = G(x,y) and set

Fd(y
(1), . . . ,y(d)) =

∑
ε1=0,1

· · ·
∑

εd=0,1

(−1)ε1+···+εdF(ε1y
(1) + · · ·+ εdy

(d)).
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Inequality (11.2) in [27] applied to our situation gives

|Sx(P1, P2)|2
d2−1 ≪ |UD|2d2−1−d2

×
∑

y(1)∈UD

· · ·
∑

y(d2−2)∈UD

∣∣∣ ∑
y(d2−1)∈U(y(1),...,y(d2−2))

e(Fd2−1(y
(1), . . . ,y(d2−1)))

∣∣∣2,
and we note that this did not require F(y) to be homogeneous in Schmidt’s
work. It is not hard to see that for z, z′ ∈ U(y(1), . . . ,y(d2−2)) we have

Fd2−1(y
(1), . . . ,z)−Fd2−1(y

(1), . . . ,z′)

= Fd2(y
(1), . . . ,y(d2−1),y(d2))−Fd2−1(y

(1), . . . ,y(d2−1)),

where y(d2−1) = z − z′ ∈ U(y(1), . . . ,y(d2−2))D and y(d2) = z′ ∈ U(y(1), . . . ,
y(d2−1)). Thus we find

(4.2) |Sx(P1, P2)|2
d2−1

≪ |UD|2d2−1−d2
∑

y(1)∈UD

· · ·
∑

y(d2−2)∈UD

∑
y(d2−1)∈U(y(1),...,y(d2−2))D

×
∑

y(d2)∈U(y(1),...,y(d2−1))

e(Fd2(y
(1), . . . ,y(d2))−Fd2−1(y

(1), . . . ,y(d2−1))).

We may write the polynomial G(x,y) as

G(x,y) =
∑

0≤r≤d1
0≤l≤d2

∑
jr,kl

G
(r,l)
jr,kl

xjrykl

for some real G(r,l)
jr,kl

. Further write F(y) = F (0)(y) + · · · + F (d2)(y), where
F (d)(y) denotes the degree d homogeneous part of F(y). Lemma 11.4(A)
in [27] states that Fd2 transpires to be the multilinear form associated to
F (d2)(y). From this we see that

(4.3) Fd2 −Fd2−1 =
∑

0≤r≤d1
0≤l≤d2

∑
jr,kl

G
(r,l)
jr,kl

xjr(1) · · ·xjr(r)hkl
(y(1), . . . ,y(d2)),

where

hkd2
(y(1), . . . ,y(d2)) = d2!y

(1)
kd2 (1)

· · · y(d2)kd2 (d2)
+ h̃kd2

(y(1), . . . ,y(d2−1))

for some polynomials h̃kd2
of degree d2 that are independent of y(d2) and

further hkl
are polynomials of degree l that are always independent of y(d2)

whenever l ≤ d2 − 1. Write ỹ = (y(1), . . . ,y(d2)). Now set

Sỹ =
∑

x∈P1B1

e
( ∑
0≤r≤d1
0≤l≤d2

∑
jr,kl

G
(r,l)
jr,kl

xjr(1) · · ·xjr(r)hkl
(ỹ)
)
.
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Now we swap the order of summation of
∑

x in (4.1) with the sums over y(i)

in (4.2). Using the Cauchy–Schwarz inequality and (4.3) we thus obtain

|SG(P1, P2)|2
d̃ ≪ P

n1(2d̃−2d1−1)
1 P

n2(2d̃−d2)
2

∑
y(1)

· · ·
∑
y(d2)

|Sỹ|2
d1−1

.

The above still holds if d2 = 1, which can be seen directly. Applying the
same differencing process to Sỹ gives
(4.4)

|SG(P1, P2)|2
d̃ ≪ P

n1(2d̃−d1)
1 P

n2(2d̃−d2)
2

∑
y(1)

· · ·
∑
y(d2)

∑
x(1)

· · ·
∣∣∣∑
x(d1)

e(γ(x̃, ỹ))
∣∣∣,

where
γ(x̃, ỹ) =

∑
0≤r≤d1
0≤l≤d2

∑
jr,kl

G
(r,l)
jr,kl

gjr(x̃)hkl
(ỹ),

and where similar to before we have

gjd1 (x̃) = d1!x
(1)
jd1 (1)

· · ·x(d1)jd1 (d1)
+ g̃jd1 (x

(1), . . . ,x(d1−1))

with g̃jd1 and gjr for r < d1 not depending on x(d1). We note that (4.4)
holds for all d1, d2 ≥ 1 and all the summations

∑
x(i) and

∑
y(j) in (4.4)

are over boxes contained in [−P1, P1]
n1 and [−P2, P2]

n2 , respectively. Write
x̂ = (x(1), . . . ,x(d1−1)) and ŷ = (y(1), . . . ,y(d2−1)). We now wish to estimate
the quantity

(4.5)
∑

(x̂, ŷ) :=
∑
y(d2)

∣∣∣∑
x(d1)

e(γ(x̃, ỹ))
∣∣∣.

Viewing
∑

a<x≤b e(βx) for b − a ≥ 1 as a geometric series we recall the
elementary estimate∣∣∣ ∑

a<x≤b

e(βx)
∣∣∣≪ min {b− a, ∥β∥−1}.

This yields ∣∣∣∑
x(d1)

e(γ(x̃, ỹ))
∣∣∣≪ n1∏

ℓ=1

min {P1, ∥γ̃(x̂, eℓ, ỹ)∥−1},

where eℓ denotes the ℓth unit vector and where

γ̃(x̃, ỹ) = d1!
∑

0≤l≤d2

∑
jd1 ,kl

G
(d1,l)
jd1 ,kl

x
(1)
jd1 (1)

· · ·x(d1)jd1 (d1)
hkl

(ỹ).

We now apply a standard argument in order to estimate this product, as in
Davenport [8, Chapter 13]. For a real number z write {z} for its fractional
part. Let r = (r1, . . . , rn1) ∈ Zn1 be such that 0 ≤ rℓ < P1 for ℓ = 1, . . . , n1.
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Define A(x̂, ŷ, r) to be the set of y(d2) in the sum in (4.5) such that

rℓP
−1
1 ≤ {γ̃(x̂, eℓ, ŷ,y(d2))} < (rℓ + 1)P−1

1

for all ℓ = 1, . . . , n1 and write A(x̂, ŷ, r) for its cardinality. We obtain the
estimate∑

(x̂, ŷ) ≪
∑
r

A(x̂, ŷ, r)

n1∏
ℓ=1

min

{
P1,max

{
P1

rℓ
,

P1

P1 − rℓ − 1

}}
,

where the sum
∑

r is over integral r with 0 ≤ rℓ < P1 for all ℓ = 1, . . . , n1.
Our next aim is to find a bound for A(x̂, ŷ, r) that is independent of r.
Given u,v ∈ A(x̂, ŷ, r) then

∥γ̃(x̂, eℓ, ŷ,u)− γ̃(x̂, eℓ, ŷ,v)∥ < P−1
1

for ℓ = 1, . . . , n1. Similar to before we now define the multilinear forms

ΓG(x̃, ỹ) := d1!d2!
∑

jd1 ,kd2

G
(d1,d2)
jd1 ,kd2

x
(1)
jd1 (1)

· · ·x(d1)jd1 (d1)
y
(1)
kd2 (1)

· · · y(d2)kd2 (d2)
,

which only depend on the (d1, d2)-degree part of G. For fixed x̂, ŷ let N(x̂, ŷ)
be the number of y ∈ (−P2, P2)

n2 such that

∥ΓG(x̂, eℓ, ŷ,y)∥ < P−1
1

for all ℓ = 1, . . . , n1. Observe now crucially

γ̃(x̂, eℓ, ŷ,u)− γ̃(x̂, eℓ, ŷ,v) = ΓG(x̂, eℓ, ŷ,u− v).

Thus we find A(x̂, ŷ, r) ≤ N(x̂, ŷ) for all r as specified above. Using this we
get ∑

y(d2)

∣∣∣∑
x(d1)

e(γ(x̃, ỹ))
∣∣∣≪ N(x̂, ŷ)(P1 logP1)

n1 .

Finally, summing over x̂ and ŷ we obtain

|SG(P1, P2)|2
d̃ ≪ P

n1(2d̃−d1+1)+ε
1 P

n2(2d̃−d2)
2 M1(G

(d1,d2), P1, P2, P
−1
1 ).

Inspecting the proof of [24, Lemma 4.1] we find that for a polynomial
G(x,y) as above given θ ∈ (0, 1] the following holds:

M1(G
(d1,d2), P1, P2, P

−1
1 ) ≪ P

n1(d1−1)
1 Pn2d2

2 P
−θ(n1d1+n2d2)
2

×max
i=1,2

{Pniθ
2 Mi(G

(d1,d2);P θ
2 , P

θ
2 , P

−d1
1 P−d2

2 P
θ(d̃+1)
2 )}.

Using this and Lemma 4.1 we deduce the next lemma.

Lemma 4.2. Let P1, P2 > 1, θ ∈ (0, 1] and α ∈ RR. Write SG =
SG(P1, P2). Using the same notation as above for one of i = 1 or i = 2



Systems of bihomogeneous forms of small bidegree 19

we have

|SG|2
d̃ ≪di,ni,ε P

n12d̃+ε
1 Pn22d̃

2 P
θni−θ(n1d1+n2d2)
2

×Mi(G
(d1,d2);P θ

2 , P
θ
2 , P

−d1
1 P−d2

2 P
θ(d̃+1)
2 ).

Using the preceding lemma and adapting the proof of [22, Lemma 3.1]
to our setting we can now show the following.

Lemma 4.3. Let ε > 0, θ ∈ (0, 1] and α,β ∈ RR. Then for i = 1 or i = 2
we have

(4.6) min

{∣∣∣∣ S(α)

Pn1+ε
1 Pn2

2

∣∣∣∣, ∣∣∣∣ S(α+ β)

Pn1+ε
1 Pn2

2

∣∣∣∣}2d̃+1

≪di,ni,ε
Mi(β · F ;P θ

2 , P
θ
2 , P

−d1
1 P−d2

2 P
θ(d̃+1)
2 )

P
θ(n1d1+n2d2)−θni

2

.

Proof. Note first that for two real numbers λ, µ > 0 we have

min {λ, µ} ≤
√

λµ.

Therefore it suffices to show∣∣∣∣S(α)S(α+ β)

P 2n1+2ε
1 P 2n2

2

∣∣∣∣2d̃ ≪di,ni,ε
Mi(β;P

θ
2 , P

θ
2 , P

−d1
1 P−d2

2 P
θ(d̃+1)
2 )

P
θ(n1d1+n2d2)−θni

2

for one of i = 1 or i = 2. Note first that

|S(α+β)S(α)| =
∣∣∣ ∑
x∈P1B1
y∈P2B2

∑
x+z∈P1B1
y+w∈P2B2

e((α+β)·F (x,y)−α·F (x+z,y+w))
∣∣∣,

so by the triangle inequality we get

|S(α+ β)S(α)| ≤
∑

∥z∥∞≤P1

∥w∥∞≤P2

∣∣∣ ∑
x∈P1Bz
y∈P2Bw

e(β · F (x,y)− gα,β,z,w(x,y))
∣∣∣,

where gα,β,z,w(x,y) is of degree at most d1 + d2 − 1 in (x,y) and we have
some boxes Bz ⊂ B1 and Bw ⊂ B2. Applying Cauchy’s inequality d̃ times
we deduce

|S(α+ β)S(α)|2d̃

≤ P
n1(2d̃−1)
1 P

n2(2d̃−1)
2

∑
∥z∥∞≤P1

∥w∥∞≤P2

∣∣∣ ∑
x∈P1Bz
y∈P2Bw

e(β · F (x,y)− gα,β,z,w(x,y))
∣∣∣2d̃ .

If we write G(x,y)=β·F (x,y)−gα,β,z,w(x,y) then note that G(d1,d2)=β·F .
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Using Lemma 4.2 we therefore obtain

|S(α+ β)S(α)|2d̃ ≪ P 2d̃+1n1+ε
1 P 2d̃+1n2

2 P
−θ(n1d1+n2d2)+θni

2

×Mi(β · F , P θ
2 , P

θ
2 , P

−d1
1 P−d2

2 P
θ(d̃+1)
2 ),

for one of i = 1 or i = 2, which readily delivers the result.

As in the introduction, for β ∈ RR we define the auxiliary counting
function Naux

1 (β;B) to be the number of integer vectors x̂ ∈ (−B,B)(d1−1)n1

and ỹ ∈ (−B,B)d2n2 such that

|Γβ·F (x̂, eℓ, ỹ)| < ∥β · F ∥∞Bd̃

for ℓ = 1, . . . , n1 where ∥f∥∞ := 1
d1!d2!

maxj,k
∣∣ ∂d1+d2f
∂xj1

···∂xjd1
∂yk1 ···∂ykd2

∣∣. We also

analogously define Naux
2 (β;B). We now formulate an analogue for [22, Propo-

sition 3.1].

Proposition 4.4. Let C0 ≥ 1 and C > 0 be such that for all β ∈ RR

and B > 0 we have, for i = 1, 2,

(4.7) Naux
i (β;B) ≤ C0B

d1n1+d2n2−ni−2d̃+1C .

Assume further that the forms Fi are linearly independent, so that there exist
M > µ > 0 such that

(4.8) µ∥β∥∞ ≤ ∥β · F ∥∞ ≤ M∥β∥∞.

Then there exists a constant C > 0 depending on C0, di, ni, µ and M such
that the following auxiliary inequality holds:

min

{∣∣∣∣ S(α)

Pn1+ε
1 Pn2

2

∣∣∣∣, ∣∣∣∣ S(α+ β)

Pn1+ε
1 Pn2

2

∣∣∣∣}
≤ Cmax {P−1

2 , P−d1
1 P−d2

2 ∥β∥−1
∞ , ∥β∥(d̃+1)−1

∞ }C

for all real numbers P1, P2 > 1.

Proof. The strategy of this proof will closely follow the proof of [22,
Proposition 3.1]. By Lemma 4.3 we know that (4.6) holds for one of i = 1 or
i = 2. Assume that there is some θ ∈ (0, 1] such that for the same i we have

(4.9) Naux
i (β;P θ

2 ) < Mi(β · F , P θ
2 , P

θ
2 , P

−d1
1 P−d2

2 P
θ(d̃+1)
2 ).

Going forward with the case i = 1, noting that the case i = 2 can be proven
completely analogously, this means that there exists a (d1 − 1)-tuple x̂ and
a d2-tuple ỹ which is counted by M1(β · F , P θ

2 , P
θ
2 , P

−d1
1 P−d2

2 P
θ(d̃+1)
2 ) but

not by Naux
1 (β;P θ

2 ). Therefore this pair of tuples satisfies

(4.10) ∥x̂(i)∥∞, ∥ỹ(j)∥∞ ≤ P θ
2 for i = 1, . . . , d1 − 1 and j = 1, . . . , d2,
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and

(4.11) ∥Γβ·F (x̂, eℓ, ỹ)∥ < P−d1
1 P−d2

2 P
θ(d̃+1)
2 for ℓ = 1, . . . , n1,

since it is counted by M1(β · F , P θ
2 , P

θ
2 , P

−d1
1 P−d2

2 P
θ(d̃+1)
2 ). On the other

hand, since it is not counted by Naux
1 (β;P θ

2 ) there exists ℓ0 ∈ {1, . . . , n1}
such that

(4.12) |Γβ·F (x̂, eℓ0 , ỹ)| ≥ ∥β · F ∥∞P d̃θ
2 .

From (4.11) we deduce that for ℓ0 we must have either

|Γβ·F (x̂, eℓ0 , ỹ)| < P−d1
1 P−d2

2 P
θ(d̃+1)
2(4.13)

or

|Γβ·F (x̂, eℓ0 , ỹ)| ≥ 1/2.(4.14)

If (4.13) holds then (4.12) implies

(4.15) ∥β · F ∥∞ <
P−d1
1 P−d2

2 P
(d̃+1)θ
2

P d̃θ
2

= P θ
2P

−d1
1 P−d2

2 .

If on the other hand (4.14) holds, then (4.10) gives

(4.16) 1/2 ≤ |Γβ·F (x̂, eℓ0 , ỹ)| ≪ ∥β · F ∥∞P
(d̃+1)θ
2 .

Since either (4.15) or (4.16) holds, then via (4.8) we deduce

(4.17) P−θ
2 ≪µ,M max

{
P−d1
1 P−d2

2 ∥β∥−1
∞ , ∥β∥(d̃+1)−1

∞
}
.

Since (4.6) holds for i = 1 and due to the assumption (4.7) we see that (4.9)
holds if there exists some C1 > 0 depending only on C0, di, ni and ε such
that

(4.18) P−θ2d̃+1C
2 ≤ C1min

{∣∣∣∣ S(α)

Pn1+ε
1 Pn2

2

∣∣∣∣, ∣∣∣∣ S(α+ β)

Pn1+ε
1 Pn2

2

∣∣∣∣}2d̃+1

.

Now define θ such that we have equality above, i.e.

(4.19) P θ
2 = C

1

2d̃+1C
1 min

{∣∣∣∣ S(α)

Pn1+ε
1 Pn2

2

∣∣∣∣, ∣∣∣∣ S(α+ β)

Pn1+ε
1 Pn2

2

∣∣∣∣}−1/C

.

If θ ∈ (0, 1] then (4.18) holds and so together with the assumption (4.7) as
argued above this implies (4.17) holds, which gives the result in this case.
But θ will always be positive; for if θ ≤ 0 then (4.19) implies

min

{∣∣∣∣ S(α)

Pn1+ε
1 Pn2

2

∣∣∣∣, ∣∣∣∣ S(α+ β)

Pn1+ε
1 Pn2

2

∣∣∣∣} ≥ C
−1/2d̃+1

1 .

However, note that clearly |S(α)| ≤ (P1 + 1)n1(P2 + 1)n2 . Without loss of
generality we may take Pi large enough, depending on ε, so that this clearly
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leads to a contradiction. Finally, if θ ≥ 1 then we find P−C θ
2 ≤ P−C

2 , and so
from (4.19) we obtain

min

{∣∣∣∣ S(α)

Pn1+ε
1 Pn2

2

∣∣∣∣, ∣∣∣∣ S(α+ β)

Pn1+ε
1 Pn2

2

∣∣∣∣}≪ P−C
2 .

This gives the result.

5. The circle method. The aim of this section is to use the auxiliary
inequality

(5.1) P−ε
1 min

{∣∣∣∣ S(α)

Pn1
1 Pn2

2

∣∣∣∣, ∣∣∣∣S(α+ β)

Pn1
1 Pn2

2

∣∣∣∣}
≤ Cmax

{
P−1
2 , P−d1

1 P−d2
2 ∥β∥−1

∞ , ∥β∥(d̃+1)−1

∞
}C

,

where C ≥ 1 and apply the circle method in order to deduce an estimate for
N(P1, P2). In this section we will use the notation P = P d1

1 P d2
2 . Write b =

max {1, logP1/logP2} and u = max {1, logP2/logP1}. If P1 ≥ P2 then b =
logP1/logP2 and thus P bd1+d2

2 = P . The main result will be the following.

Proposition 5.1. Let C > (bd1 + ud2)R, C ≥ 1 and ε > 0 be such that
the auxiliary inequality (5.1) holds for all α,β ∈ RR, all P1, P2 > 1 and
all boxes Bi ⊂ [−1, 1]ni with side lengths at most 1 and edges parallel to the
coordinate axes. There exists some δ > 0 depending on b, u, R, di and ni

such that

N(P1, P2) = σPn1−d1R
1 Pn2−d2R

2 +O(Pn1−d1R
1 Pn2−d2R

2 P−δ).

The factor σ = IS is the product of the singular integral I and the singular
series S, as defined in (5.11) and (5.8), respectively.

Note that this result holds for general bidegree, and therefore in the proof
one may assume P1 ≥ P2 throughout. For instance, if one wishes to show the
above proposition for bidegree (2, 1), the result follows from the asymmetric
results of bidegree (2, 1) and bidegree (1, 2).

5.1. The minor arcs. First we will show that the contributions from
the minor arcs do not affect the main term. For this we will prove a lemma
similar to [22, Lemma 2.1].

Lemma 5.2. Let r1, r2 : (0,∞) → (0,∞) be strictly decreasing and in-
creasing bijections, respectively, and let A > 0 be a real number. Let E0 ⊂ RR

be a hypercube of side lengths 1 whose edges are parallel to the coordinate
axes. Let E ⊆ E0 be a measurable set and let φ : E → [0,∞) be a measurable
function.

Assume that for all α,β ∈ RR such that α,α+ β ∈ E we have

(5.2) min {φ(α), φ(α+ β)} ≤ max {A, r−1
1 (∥β∥∞), r−1

2 (∥β∥∞)}.
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Then for all integers k ≤ ℓ such that A < 2k we get

�

E

φ(α) dα≪R2
k+

ℓ−1∑
i=k

2i
(

r1(2
i)

min {r2(2i), 1}

)R

+

(
r1(2

ℓ)

min {r2(2ℓ), 1}

)R

sup
α∈E

φ(α).

Note that if we take

φ(α) = C−1P−n1−ε
1 P−n2

2 |S(α)|,

r1(t) = P−d1
1 P−d2

2 t−1/C , r2(t) = t(d̃+1)/C , A = P−C
2

where C is the constant in (5.1), then the assumption (5.2) is just the aux-
iliary inequality (5.1).

Proof. The proof is very similar to the proof of [22, Lemma 2.1] so we
shall be brief. Given t ≥ 0 define the set

D(t) = {α ∈ E : φ(α) ≥ t}.

If α and α+β are both contained in D(t) then by (5.2) one of the following
must hold:

A ≥ t, ∥β∥∞ ≤ r1(t), or ∥β∥∞ ≥ r2(t).

In particular, if t > A then either ∥β∥∞ ≤ r1(t) or ∥β∥∞ ≥ r2(t). Via the
same considerations as in [22, the proof of Lemma 2.1] in this case we then
find

µ(D(t)) ≪R

(
r1(t)

min {r2(t), 1}

)R

.

Hence, if 2k > A we obtain

�

E

φ(α) dα =
�

E\D(2k)

φ(α) dα+

ℓ∑
i=k

�

D(2i)\D(2i+1)

φ(α) dα+
�

D(2ℓ)

φ(α) dα

≪R 2k +

ℓ−1∑
i=k

2i
(

r1(2
i)

min {r2(2i), 1}

)R

+

(
r1(2

ℓ)

min {r2(2ℓ), 1}

)R

sup
α∈E

φ(α).

Recall the notation P = P d1
1 P d2

2 . From now on we will assume P1 ≥ P2.
Note that the assumption in Proposition 4.4 that C > R(bd1 + ud2) is
equivalent to C > R(bd1 + d2) if P1 ≥ P2.

Lemma 5.3. Let T : RR → C be a measurable function. With notation as
in Lemma 5.2 assume that for all α,β ∈ RR and for all P1 ≥ P2 > 1, and
C > 0 we have
(5.3)

min

{∣∣∣∣ T (α)

Pn1
1 Pn2

2

∣∣∣∣, ∣∣∣∣T (α+β)

Pn1
1 Pn2

2

∣∣∣∣} ≤ max
{
P−1
2 , P−d1

1 P−d2
2 ∥β∥−1

∞ , ∥β∥(d̃+1)−1

∞
}C

.
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Write P = P d1
1 P d2

2 and assume that

(5.4) sup
α∈E

|T (α)| ≤ Pn1
1 Pn2

2 P−δ

for some δ > 0. If C > (d1 + d2)R then
�

E

T (α)

Pn1
1 Pn2

2

dα ≪C ,di,R P−R−δ(1−(d1+d2)R/C ) + P−R−δ(1−R/C ) + P−C
2 .

Proof. The proof is a straightforward modification of [22, the proof of
Lemma 2.2]. In our case it follows as an application of Lemma 5.2 by taking

φ(α) =
|T (α)|
Pn1
1 Pn2

2

, r1(t) = P−d1
1 P−d2

2 t−
1
C , r2(t) = t

d̃+1
C , A = P−C

2 .

We will finish this section by defining the major and minor arcs and
showing that the minor arcs do not contribute to the main term. For ∆ > 0
we define the major arcs to be the set given by

M(∆) :=
⋃
q∈N

q≤P∆

⋃
0≤ai≤q

(a1,...,aR,q)=1

{α ∈ [0, 1]R : 2∥qα− a∥∞ < P−d1
1 P−d2

2 P∆},

and the minor arcs to be the given by

m(∆) := [0, 1]R \M(∆).

Write further

δ0 =
mini=1,2{n1 + n2 − dimV ∗

i }
(d̃+ 1)2d̃R

.

Note that if the forms Fi are linearly independent, then V ∗
i are proper sub-

varieties of An1+n2
C so that dimV ∗

i ≤ n1 + n2 − 1 whence δ0 ≥ 1

(d̃+1)2d̃R
. To

see this for V ∗
1 note that requiring

rank

(
∂Fi

∂xj

)
i,j

< R

is equivalent to requiring all the R×R minors of
(
∂Fi
∂xj

)
i,j

vanish. This defines
a system of polynomials of degree R(d1 + d2 − 1) in (x,y) which are not all
zero unless there exists β ∈ RR \ {0} such that

R∑
i=1

βi

(
∂Fi

∂xj

)
= 0 for j = 1, . . . , n1

holds identically in (x,y). This is the same as saying that

∇x

( R∑
i=1

βiFi

)
= 0
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holds identically. From this we find that
∑R

i=1 βiFi must be a form entirely
in the y-variables. But this is a linear combination of homogeneous bidegree
(d1, d2) forms with d1 ≥ 1 and thus we must in fact have

∑R
i=1 βiFi = 0 iden-

tically, contradicting linear independence. The argument works analogously
for V ∗

2 .
The next lemma shows that the assumption (5.4) holds with E = m(∆)

and T (α) = C−1P−ε
1 S(α).

Lemma 5.4. Let 0 < ∆ ≤ R(d̃ + 1)(bd1 + d2)
−1 and let ε > 0. Then we

have the upper bound
sup

α∈m(∆)
|S(α)| ≪ Pn1

1 Pn2
2 P−∆δ0+ε.

Proof. The result follows straightforward from [24, Lemma 4.3] by setting
the parameter θ to be

θ =
∆

(d̃+ 1)R
.

If we have 0 < ∆ ≤ R(d̃ + 1)(bd1 + d2)
−1 this ensures that the assumption

0 < θ ≤ (bd1 + d2)
−1 in [24, Lemma 4.3] is satisfied.

Before we state the next proposition, recall that we assume P1 ≥ P2

throughout, as was mentioned at the beginning of this section.
Proposition 5.5. Let ε > 0 and let 0 < ∆ ≤ R(d̃ + 1)(bd1 + d2)

−1.
Under the assumptions of Proposition 5.1 we have�

m(∆)

S(α) dα ≪ Pn1−d1R
1 Pn2−d2R

2 P−∆δ0(1−(d1+d2)R/C )+ε.

Proof. We apply Lemma 5.2 with
T (α) = C−1P−εS(α), E0 = [0, 1]R, E = m(∆), and δ = ∆δ0,

where C > 0 is some real number. With these choices (5.3) follows from the
auxiliary inequality (5.1) since for any ε > 0 we have P−ε ≤ P−ε

1 . From
Lemma 5.4 we have the bound

sup
α∈E

CT (α) ≪ Pn1
1 Pn2

2 P−δ.

We may increase C if necessary so that we recover (5.4). Therefore the hy-
potheses of Lemma 5.3. Since we assume C > (bd1 + d2)R, we also note

P−C
2 = P−RPR−C (bd1+d2)−1 ≪C P−R−δ̃

for some δ̃ > 0. Therefore if we assume C > (bd1 + d2)R then Lemma 5.3
gives �

m(∆)

S(α) dα ≪ Pn1−d1R
1 Pn2−d2R

2 P−∆δ0(1−(d1+d2)R/C )+ε,

as desired.
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5.2. The major arcs. The aim of this section is to identify the main
term via integrating the exponential sum S(α) over the major arcs, and
analyse the singular integral and singular series appropriately. For a ∈ ZR

and q ∈ N consider the complete exponential sum

Sa,q := q−n1−n2
∑
x,y

e

(
a

q
· F (x,y)

)
,

where the sum
∑

x,y runs through a complete set of residues modulo q.
Further, for P ≥ 1 and ∆ > 0 we define the truncated singular series

S(P ) :=
∑

q≤P∆

∑
a

Sa,q,

where the sum
∑

a runs over a ∈ ZR such that the conditions 0 ≤ ai < q
for i = 1, . . . , R and (a1, . . . , aR, q) = 1 are satisfied. For γ ∈ RR we further
define

S∞(γ) :=
�

B1×B2

e(γ · F (u,v)) du dv,

and we define the truncated singular integral for P ≥ 1, ∆ > 0 as follows

I(P ) :=
�

∥γ∥∞≤P∆

S∞(γ) dγ.

From now on we assume that our parameter ∆ > 0 satisfies

(5.5) (bd1 + d2)
−1 > ∆(2R+ 3) + δ

for some δ > 0. Since C > R(bd1 + d2) we are always able to choose such ∆
in terms of C . Further as in [24] we now define some slightly modified major
arcs M′(∆) as

M′(∆) :=
⋃

1≤q≤P∆

⋃
0≤ai<q

(a1,...,aR,q)=1

M′
a,q(∆),

where M′
a,q(∆) =

{
α ∈ [0, 1]R :

∥∥α− a
q

∥∥
∞ < P−d1

1 P−d2
2 P∆

}
. The sets M′

a,q

are disjoint for our choice of ∆; for if there is some

α ∈ M′
a,q(∆) ∩M′

ã,q̃(∆),

where M′
ã,q̃(∆) ̸= M′

a,q(∆), then there is some i ∈ {1, . . . , R} such that

P−2∆ ≤ 1

qq̃
≤
∣∣∣∣aiq − ãi

q̃

∣∣∣∣ ≤ 2P∆−1,

which is impossible for large P , since by (5.5) we have 3∆− 1 < 0. Further
we note that clearly M′(∆) ⊇ M(∆) whence m′(∆) ⊆ m(∆) and so the
conclusions of Proposition 5.5 hold with m(∆) replaced by m′(∆).
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By following the proof of [24, Lemma 5.3] it becomes transparent that

(5.6) S(α) = Pn1
1 Pn2

2 Sa,qS∞(Pβ) +O(qPn1
1 Pn2−1

2 (1 + P∥β∥∞)).

Using (5.6) in the same way as [22, (2.20)] was derived we find that

(5.7)
�

M′(∆)

S(α) dα

= Pn1
1 Pn2

2 P−RS(P )I(P ) +O(Pn1
1 Pn2

2 P−R+∆(2R+3)−1/(bd1+d2)).

Finally, using the auxiliary inequality (5.1) and the identity (5.6), the proofs
of [22, Lemmas 2.5 and 2.6] go through mutatis mutandis.

Hence if C > (d̃+1)R and assuming that the forms Fi(x,y) are linearly
independent then the singular series

(5.8) S =
∞∑
q=1

∑
amod q

Sa,q

exists and converges absolutely, with

(5.9) |S(P )−S| ≪C,C P−∆δ1

for some δ1 > 0 depending only on C , di and R.
Similarly if C − ε′ > R then for all P > 1 we have

(5.10) |I(P )− I| ≪C ,C,ε′ P
−∆(C−ε′−R),

where I is the singular integral

(5.11) I =
�

γ∈RR

S∞(γ) dγ.

In particular, we see that I exists and converges absolutely.
Before we finish the proof of the main result we state two different ex-

pressions for the singular series and the singular integral that will be useful
later on. If C > R(d1 + d2) then I and S converge absolutely, as was shown
in the previous two lemmas. Therefore, as in [3, §7], by regarding the biho-
mogeneous forms under investigation simply as homogeneous forms we may
express the singular series as an absolutely convergent product

(5.12) S =
∏
p

Sp,

where

Sp = lim
k→∞

1

pk(n1+n2−R)
#
{
(u,v) ∈ {1, . . . , pk}n1+n2 : Fi(u,v) ≡ 0 (mod p),

i = 1, . . . , R
}
.
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Lemma 2.6 in [22] further shows that we can write the singular integral as

(5.13)

I = lim
P→∞

1

Pn1+n2−(d1+d2)R
µ
{
(t1, t2)/P ∈ B1 × B2 : |Fi(t1, t2)| ≤ 1/2,

i = 1, . . . , R
}
,

where µ(·) denotes the Lebesgue measure. We may therefore interpret the
quantities I and Sp as the real and p-adic densities, respectively, of the
system of equations F1(x,y) = · · · = FR(x,y) = 0.

5.3. Proofs of Proposition 5.1 and Theorem 2.1

Proof of Proposition 5.1. From Proposition 5.5 and the estimates (5.7),
(5.9) and (5.10), for any ε > 0 we find that

N(P1, P2)

Pn1
1 Pn2

2 P−R
−SI

≪ P−∆δ1 + P−∆δ0(1−(d1+d2)R/C )+ε + P (2R+3)∆−1/(bd1+d2) + P−∆(C−ε′−R)

for some δ1> 0 and some 1>ε′> 0. Recall we assumed C > (bd1+d2)R,
and assuming the forms Fi are linearly independent we also have δ0≥
1/(d̃+1)2d̃R. Therefore choosing suitably small ∆> 0 there exists some δ > 0
such that

N(P1, P2)

Pn1
1 Pn2

2 P−R
−SI ≪ P−δ

as desired. Finally, since we assume that the equations Fi define a complete
intersection, it is a standard fact to see that S is positive if there exists
a non-singular p-adic zero for all primes P , and similarly I is positive if
there exists a non-singular real zero within B1 ×B2. A detailed argument of
this fact using a version of Hensel’s Lemma for S and the implicit function
theorem for I can be found for example in [22, §4].

Proof of Theorem 2.1. Assume the estimate in (2.1) holds for some con-
stant C0 > 0. From Proposition 4.4 it thus follows that the auxiliary inequal-
ity (5.1) holds with a constant C > 0 depending on C0, di, ni, µ and M ,
where all of these quantities follow the same notation as in Section 4. There-
fore the assumptions of Proposition 5.1 are satisfied whence we can apply it
to obtain the desired conclusions.

6. Systems of bilinear forms. In this section we assume d1 = d2 = 1.
We can thus write our system as

Fi(x,y) = yTAix,
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where Ai are n2 × n1-dimensional matrices with integer entries. For β ∈ RR

we now have
β · F = yTAβx,

where Aβ =
∑

i βiAi. Recall that we put

σ
(1)
R = max

β∈RR\{0}
dimker(Aβ) and σ

(2)
R = max

β∈RR\{0}
dimker(AT

β).

Since the row rank of a matrix is equal to its column rank we can also define

ρR := min
β∈RR\{0}

rank(Aβ) = min
β∈RR\{0}

rank(AT
β).

Due to the rank-nullity theorem the conditions

ni − σ
(i)
R > (2b+ 2)R

for i = 1, 2 are equivalent to
ρR > (2b+ 2)R.

Lemma 6.1. Assume that V(F1, . . . , FR) ⊂ Pn1−1
C × Pn2−1

C is a smooth
complete intersection. Let b ≥ 1 be a real number. Assume further

(6.1) min {n1, n2} > (2b+ 2)R and n1 + n2 > (4b+ 5)R.

Then

(6.2) ni − σ
(i)
R > (2b+ 2)R

for i = 1, 2.

Proof. Without loss of generality assume n1 ≥ n2. Pick β ∈ RR \ {0}
such that rank(Aβ) = ρR. In particular then

dimker(Aβ) = σ
(1)
R and dimker(AT

β) = σ
(2)
R .

We proceed in distinguishing two cases. Firstly, if σ(2)
R = 0 then (6.2) follows

for i = 2 by the assumption (6.1). Further by comparing row rank and
column rank of Aβ in this case we must then have σ

(1)
R ≤ n1 − n2, and

therefore
n1 − σ

(1)
R ≥ n2 > (2b+ 2)R,

so (6.2) follows for i = 1.
Now we turn to the case σ

(2)
R > 0. Then also σ

(1)
R > 0. The singular locus

of the variety V(β · F ) ⊂ Pn1−1
C × Pn2−1

C is given by

SingV(β · F ) = V(yTAβ) ∩ V(Aβx).

Therefore
dimSingV(β · F ) = σ

(1)
R + σ

(2)
R − 2.
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Since we assumed V(F ) to be a smooth complete intersection we can apply
Lemma 3.3 to get dimSingV(β · F ) ≤ R− 2. Therefore we find

σ
(1)
R + σ

(2)
R ≤ R.

From our previous remarks we know that showing (6.2) is equivalent to
showing ρR > (2b+ 2)R. But now

ρR =
1

2
(n1 + n2 − σ

(1)
R − σ

(2)
R ) ≥ 1

2
(n1 + n2 −R) > (2b+ 2)R,

where the last inequality followed from the assumption (6.1). Therefore (6.2)
follows as desired.

Proof of Theorem 1.1. Recall the notation b = logP1

logP2
. By virtue of The-

orem 2.1 it suffices to show that assuming

ni − σ
(i)
R > (2b+ 2)R

for i = 1, 2 implies (2.1). We will show (2.1) for i = 1, the other case follows

analogously. Let C =
n2−σ

(2)
R

2 ; we note that C > (bd1 + d2)R = (b + 1)R

precisely when n2 − σ
(2)
R > (2b+ 2)R. Therefore it suffices to show that

(6.3) Naux
1 (β, B) ≪ Bσ

(2)
R

for all β ∈ RR \ {0} with the implied constant not depending on β. In our
case we have

Γ (u) = uTA(β),

where u ∈ Zn2 . Therefore Naux
1 (β, B) counts vectors u ∈ Zn2 such that

∥u∥∞ ≤ B and ∥uTA(β)∥∞ ≤ ∥A(β)∥∞ = ∥β · F ∥∞.

Precisely the same argument that leads to [22, (4.3)] now yields (6.3).

7. Systems of forms of bidegree (2, 1). We consider a system F (x,y)
of homogeneous equations of bidegree (2, 1), where x = (x1, . . . , xn1) and
y = (y1, . . . , yn2). We will first assume n1 = n2 = n, say, and then deduce
Theorem 1.2. Therefore the initial main goal is to establish the following.

Proposition 7.1. Let F1(x,y), . . . , FR(x,y) be bihomogeneous forms
of bidegree (2, 1) such that the biprojective variety V(F1, . . . , FR) ⊂ Pn−1

Q ×
Pn−1
Q is a complete intersection. Write b = max {logP1/logP2, 1} and u =

max {logP2/logP1, 1}. Assume that

(7.1) n− s
(i)
R > (8b+ 4u)R

for i = 1, 2, where s
(i)
R are as defined in (1.7) and (1.8). Then there exists

some δ > 0 depending at most on F , R, n, b and u such that

N(P1, P2) = σPn−2R
1 Pn−R

2 +O(Pn−2R
1 Pn−R

2 min {P1, P2}−δ)
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where σ > 0 if the system F (x,y) = 0 has a smooth p-adic zero for all
primes p and a smooth real zero in B1 × B2.

If we assume that V(F1, . . . , FR) ⊂ Pn−1
Q ×Pn−1

Q is smooth, then the same
conclusions hold if we assume

n > (16b+ 8u+ 1)R

instead of (7.1).

For r = 1, . . . , R we can write each form Fr(x,y) as

Fr(x,y) =
∑
i,j,k

F
(r)
ijkxixjyk,

where the coefficients F
(r)
ijk are symmetric in i and j. In particular, for any

r = 1, . . . , R we have an n×n matrix given by Hr(y) = (
∑

k F
(r)
ijkyk)ij whose

entries are linear homogeneous polynomials in y. We may thus also write
each equation in the form

Fr(x,y) = xTHr(y)x.

The strategy of the proof of Proposition 7.1 is the same as in the bilinear
case, but this time more technical arguments are required. We need to obtain
a good upper bound for the counting functions Naux

i (β;B) so that we can
apply Theorem 2.1. For β ∈ RR we consider β · F , which we can rewrite in
our case as

β · F (x,y) = xTHβ(y)x

where Hβ(y) =
∑R

i=1 βiHi(y) is a symmetric n × n matrix whose en-
tries are linear and homogeneous in y. The associated multilinear form
Γβ·F (x

(1),x(2),y) is thus given by

Γβ·F (x
(1),x(2),y) = 2(x(1))THβ(y)x

(2).

Recall Naux
1 (β, B) counts integral tuples x,y ∈ Zn satisfying ∥x∥∞, ∥y∥∞

≤ B and

∥(Γβ·F (x, e1,y), . . . , Γβ·F (x, en,y))
T ∥∞ = 2∥Hβ(y)x∥∞ ≤ ∥β · F ∥∞B.

Now Naux
2 (β, B) counts integral tuples x(1), x(2) with ∥x(1)∥∞, ∥x(2)∥∞ ≤ B

and

∥(Γβ·F (x
(1),x(2), e1), . . . , Γβ·F (x

(1),x(2), en))
T ∥∞ ≤ ∥β · F ∥∞B.

We may rewrite this as

∥x(1)Hβ(eℓ)x
(2)∥ ≤ ∥β · F ∥∞B

for ℓ = 1, . . . , n. As in the proof of Theorem 1.1 using Propositions 4.4 and
5.1 we find that for the proof of Theorem 7.1 it is enough to show that there
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exists a positive constant C0 such that for all B ≥ 1 and all β ∈ Rr \ {0} we
have

Naux
i (β;B) ≤ C0B

2n−4C

for i = 1, 2, where C > (2b+ u)R. The remainder of this section establishes
these upper bounds.

7.1. The first auxiliary counting function. This is the easier case
and the problem of finding a suitable upper bound for Naux

1 (β;B) is essen-
tially handled in [23]. Note that in [23] there is the additional symmetry
Hβ(y)x = Hβ(x)y present, however the proof of [23, Corollary 5.2] only
uses the fact that Hβ(y) is a symmetric matrix. In fact, we recover the next
lemma as a special case of Corollary 7.5.

Lemma 7.2 ([23, Corollary 5.2]). Let Hβ(y) and Naux
1 (β;B) be as above.

Let B,C ≥ 1, let β ∈ RR \ {0} and let σ ∈ {0, . . . , n− 1}. Then either

Naux
1 (β;B) ≪C,n Bn+σ(logB)n,

or there exist non-trivial linear subspaces U, V ⊆ Rn with dimU + dimV =
n+ σ + 1 such that for all v ∈ V and u1,u2 ∈ U we have

|uT
1 Hβ(v)u2|
∥β · F ∥∞

≪n C−1∥u1∥∞∥v∥∞∥u2∥∞.

Recall the quantity

s
(1)
R := 1 + max

β∈RR\{0}
dimV(xTHβ(eℓ)x)ℓ=1,...,n2 ,

where we regard V(xTHβ(eℓ)x)ℓ=1,...,n2 ⊂ Pn1−1
C as a projective variety. Note

that for this definition we do not necessarily require n1 = n2. In the same
way Proposition 1.4 in [23] is proven we therefore obtain

(7.2) Naux
1 (β;B) ≪ε B

n+s
(1)
R +ε

for all B ≥ 1, β ∈ RR \ {0} and ε > 0.
Now that we have found an upper bound in terms of the geometry of

V(F ) the next lemma shows that if F defines a non-singular variety then
s
(1)
R is not too large. For the next lemma we will not assume n1 = n2, as we

will require it later in the slightly more general context when this assumption
is not necessarily satisfied.

Lemma 7.3. Let s(1)R be defined as above and assume that F is a system
of bihomogeneous equations of bidegree (2, 1) that defines a smooth complete
intersection V(F ) ⊂ Pn1−1

C × Pn2−1
C . Then

s
(1)
R ≤ max {0, R+ n1 − n2}.
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Proof. Consider β ∈ RR \ {0} such that dimV(xTHβ(eℓ)x)ℓ=1,...,n2 =

s
(1)
R − 1. When V(xTHβ(eℓ)x)ℓ=1,...,n2 = ∅, the statement in the lemma is

trivially true. Hence we may assume that this is not the case. The singular
locus of V(β · F ) ⊆ Pn1−1

C × Pn2−1
C is given by

SingV(β · F ) = (V(xTHβ(eℓ)x)ℓ=1,...,n2 × Pn2−1
C ) ∩ V(Hβ(y)x).

From Lemma 3.3 we obtain

dimSingV(β · F ) ≤ R− 2.

Further, since V(Hβ(y)x) is a system of n1 bilinear equations, Lemma 3.1
gives

dimSingV(β · F ) ≥ s
(1)
R − 1 + n2 − 1− n1.

Combining the previous two inequalities yields

s
(1)
R ≤ R+ n1 − n2,

as desired.

We remark here that the proof of Lemma 7.3 shows that if V(F ) defines
a smooth complete intersection and if s(1)R > 0 then n2 < n1 +R.

7.2. The second auxiliary counting function. Define H̃β(x
(1)) to

be the n × n matrix with the rows given by (x(1))THβ(eℓ)/∥β · F ∥∞ for
ℓ = 1, . . . , n. Using this notation Naux

2 (β, B) counts the number of integer
tuples x(1), x(2) such that ∥x(1)∥∞, ∥x(2)∥∞ ≤ B and

∥H̃β(x
(1))x(2)∥∞ ≤ B

is satisfied. The entries of H̃β(x
(1)) are homogeneous linear polynomials in

x(1) whose coefficients do not exceed absolute value 1.
Let A be a real m × n matrix. Then ATA is a symmetric and positive

definite n × n matrix, with eigenvalues λ2
1, . . . , λ

2
n. The non-negative real

numbers {λi} are the singular values of A.

Notation. Given a matrix M = (mij) we define ∥M∥∞ := maxi,j |mij |.
For simplicity we will from now on write x instead of x(1) and y instead of
x(2). For x ∈ Rn let λβ,1(x), . . . , λβ,n(x) denote the singular values of the
real n×n matrix H̃β(x) in descending order, counted with multiplicity. Note
that λβ,i(x) are real and non-negative. Also note

λ2
β,1(x) ≤ n∥H̃β(x)

T H̃β(x)∥∞ ≤ n2∥H̃β(x)∥2∞ ≤ n4∥x∥2∞.

Taking square roots we find the following useful estimates:

λβ,1(x) ≤ n∥H̃β(x)∥∞ ≤ n2∥x∥∞.
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Let i ∈ {1, . . . , n} and write D(β,i)(x) for the vector with
(
n
i

)2 entries being
the i×i minors of H̃β(x). Note that the entries are homogeneous polynomials
in x of degree i.

Finally write JD(β,i)(x) for the Jacobian matrix of D(β,i)(x). That is,
JD(β,i)(x) is the

(
n
i

)2 × n matrix given by

(JD(β,i)(x))jk =
∂D

(β,i)
j

∂xk
.

We begin by showing a generalisation of [23, Lemma 5.1], where we need
to account for the fact that H̃β(x) is not necessarily a symmetric matrix.

Lemma 7.4. Let b ∈ {1, . . . , n−1} and x(0) ∈ Rn be such that D(β,b)(x(0))
̸= 0. Then there exist subspaces Y1, Y2 ⊆ Rn with dimY1 = dimY2 = n − b
such that for all Y1 ∈ Y1, Y2 ∈ Y2 and t ∈ Rn we have
(7.3)

Y T
1 H̃β(t)Y2 ≪n

(
∥JD(β,b+1)(x(0))t∥∞
∥D(β,b)(x(0))∥∞

+
λβ,b+1(x

(0)) · ∥t∥∞
λβ,b(x(0))

)
∥Y1∥∞∥Y2∥∞

where the implied constant only depends on n but is otherwise independent
of H̃β(t). If H̃β(t) is symmetric then we may take Y1 = Y2.

Proof. Given x ∈ Rn define y
(1)
1 (x), . . . ,y

(n−b)
1 (x) in the following way.

The jth entries are given by

(7.4) (y
(i)
1 (x))j =


(−1)n−b det

(
(H̃β(x)kℓ)k=n−b+1,...,n

ℓ=n−b+1,...,n

)
if j = i,

(−1)j det
(
(H̃β(x)kℓ)k=i,n−b+1,...,n; k ̸=j

ℓ=n−b+1,...,n

)
if j > n− b,

0 otherwise,

where k = i, n − b + 1, . . . , n; k ̸= j means that we let the index k run
over the values i, n − b + 1, . . . , n with k = j omitted. Similarly we define
y
(1)
2 (x), . . . ,y

(n−b)
2 (x) by

(y
(i)
2 (x))j =


(−1)n−b det

(
(H̃β(x)kℓ)k=n−b+1,...,n

ℓ=n−b+1,...,n

)
if j = i,

(−1)j det
(
(H̃β(x)kℓ) k=n−b+1,...,n

ℓ=i,n−b+1,...,n; ℓ̸=j

)
if j > n− b,

0 otherwise.

Note that if H̃β(x) is symmetric then y
(i)
1 = y

(i)
2 for all i = 1, . . . , n − b.

Using the Laplace expansion of a determinant along columns and rows we
thus obtain

(y
(i)
1 (x)T H̃β(x))j =

(−1)n−b det
(
(H̃β(x)kℓ)k=i,n−b+1,...,n

ℓ=j,n−b+1,...,n

)
if j ≤ n− b,

0 otherwise,
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and
(7.5)

(H̃β(x)y
(i)
2 (x))j =

(−1)n−b det
(
(H̃β(x)kℓ)k=j,n−b+1,...,n

ℓ=i,n−b+1,...,n

)
if j ≤ n− b,

0 otherwise,

respectively. It follows from (7.4)–(7.5) that there exist matrices L
(i)
1 , L(i)

2 ,
M

(i)
1 and M

(i)
2 for i = 1, . . . , n− b with entries only in {0,±1} such that

y
(i)
1 (x) = L

(i)
1 D(β,b)(x),(7.6)

y
(i)
2 (x) = L

(i)
2 D(β,b)(x),(7.7)

(y
(i)
1 (x))T H̃β(x) = [M

(i)
1 D(β,b+1)(x)]T ,(7.8)

H̃β(x)y
(i)
2 (x) = M

(i)
2 D(β,b+1)(x).(7.9)

Given t ∈ Rn we write ∂t for the directional derivative given by
∑

ti
∂
∂xi

.
Applying ∂t to both sides of (7.9) we obtain

(7.10) [∂tH̃β(x)]y
(i)
2 (x) + H̃β(x)[∂ty

(i)
2 (x)] = M

(i)
2 [∂tD

(β,b+1)(x)].

Now note

(7.11) ∂tD
(β,b+1)(x) = JD(β,b+1)(x)t and ∂tH̃β(x) = H̃β(t).

Substituting (7.11) and (7.7) into (7.10) yields

H̃β(t)y
(i)
2 (x) = M

(i)
2 JD(β,b+1)(x)t− H̃β(x)L

(i)
2 ∂tD

(β,b)(x).

If we premultiply this by y
(j)
1 (x)T and use (7.8) then we obtain

(7.12) y
(j)
1 (x)T H̃β(t)y

(i)
2 (x) = y

(j)
1 (x)TM

(i)
2 JD(β,b+1)(x)t

− [M
(j)
1 D(β,b+1)(x)]T [L

(i)
2 ∂tD

(β,b)(x)].

Lemma 3.2(i) in [23] yields the bounds

∥D(β,b+1)(x)∥∞
∥D(β,b)(x)∥∞

≪n λβ,b+1(x),(7.13)

and
∥∂tD(β,b)(x)∥∞
∥D(β,b)(x)∥∞

≪n
∥t∥∞
λβ,b(x)

.(7.14)

Now we specify x = x(0) so by assumption we have ∥D(β,b)(x(0))∥∞ > 0.
Thus define

(7.15) Y
(i)
k =

y
(i)
k (x(0))

∥D(β,b)(x(0))∥∞
for i = 1, . . . , n− b and k = 1, 2.
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Dividing (7.12) by 1/∥D(β,b)(x(0))∥2∞ and using (7.15) as well as the bounds
(7.13) and (7.14) gives

|Y (j)
1 H̃β(t)Y

(i)
2 | ≪n

∥JD(β,b+1)(x(0))t∥∞
∥D(β,b)(x(0))∥∞

+
λβ,b+1(x

(0))∥t∥∞
λβ,b(x(0))

.

We now claim that we can take the subspaces Yk ⊆ Rn to be defined as the
span of Y (1)

k , . . . ,Y
(n−b)
k for k = 1, 2 respectively, so that the lemma holds.

For this we need to show that (7.3) holds, and also that dimY1 = dimY2 =
n − b. Therefore it suffices to show the following claim: Given γ ∈ Rn−b if
we take Yk =

∑
γiY

(i)
k then ∥γ∥∞ ≪n ∥Yk∥∞, for k = 1, 2 respectively.

Assume that the b× b minor of H̃β(x
(0)) of largest absolute value lies in

the bottom right corner of H̃β(x
(0)). In other words, we assume

(7.16) ∥D(β,b)(x(0))∥∞ =
∣∣det ((H̃β(x

(0))kℓ)k=n−b+1,...,n
ℓ=n−b+1,...,n

)∣∣.
After permuting the rows and columns of H̃β(x

(0)) the identity (7.16) will
always be true. The vectors Y (i)

k depend on minors of H̃β(x
(0)). Thus we can

apply the same permutations to H̃β(x
(0)) that ensure that (7.16) holds to

the definition of these vectors. From this we see that we can always reduce
the general case to the case where (7.16) holds.

Now for k = 1, 2 we define matrices

Qk = (Y
(1)
k | · · · |Y (n−b)

k |en−b+1| · · · |en).

By the definition of Y (i)
k we see that Qk must be of the form

Qk =

(
In−b 0

Q̃k Ib

)

for some matrix Q̃k. In particular, we find detQk = 1 and so ∥Q−1
k ∥∞ ≪n 1.

Given Yk =
∑

γiY
(i)
k we thus find

∥γ∥∞ = ∥Q−1
k Yk∥∞ ≪n ∥Yk∥∞,

and so the lemma follows.

The next corollary can be deduced from Lemma 7.4 just like [23, Corol-
lary 5.2] was proven. In [23] several other results are used that we have
not stated here. The results in question are [23, Lemmas 2.2, 3.1, 3.2, 4.1,
and Corollary 2.2]. These hold in our situation upon replacing the word
eigenvalue in [23] by the word singular value. Otherwise the proofs remain
unchanged and thus we did not find it necessary to repeat the details here.



Systems of bihomogeneous forms of small bidegree 37

Corollary 7.5. Let B,C ≥ 1 and let σ ∈ {0, . . . , n − 1}. Then one of
the following alternatives is true. Either we have the bound

Naux
2 (β, B) ≪C,n Bn+σ(logB)n,

or there exist subspaces X,Y1, Y2 ⊆ Rn with dimX + dimY1 = dimX +
dimY2 = n+ σ + 1, such that

|Y T
1 H̃β(X)Y2| ≪n C−1∥Y1∥∞∥X∥∞∥Y2∥∞

for all X ∈ X,Y1 ∈ Y1,Y2 ∈ Y2. If H̃β(x) is symmetric then we may take
Y1 = Y2.

Recall the definition of the quantity

s
(2)
R :=

⌊
maxβ∈RR\{0} dimV(Hβ(y)x)

2

⌋
+ 1,

where ⌊x⌋ denotes the largest integer m such that m ≤ x. Although we have
been assuming n1 = n2 throughout, the definition of this quantity remains
valid if n1 ̸= n2. Note that we have V(Hβ(y)x) ⊊ Pn1−1

C × Pn2−1
C for all

β ∈ RR \ {0}. For if not, then the matrix Hβ(y) is identically zero for some
β ∈ RR \ {0} contradicting the fact that V(F ) is a complete intersection. In
particular this yields s

(2)
R ≤ n1+n2

2 − 1.
Before we prove the main result of this section we require another small

lemma.

Lemma 7.6. Let β ∈ R \ {0}. The system of equations

yT H̃β(eℓ)x = 0, ℓ = 1, . . . , n,

and the equation Hβ(y)x = 0 define the same variety in Pn−1
C × Pn−1

C .

Proof. Recall that by definition we have

H̃β(z) =


zTHβ(e1)

...
zTHβ(en)

 .

For ℓ ∈ {1, . . . , n} we get

yT H̃β(eℓ)x = yT


eTℓ Hβ(e1)x

...
eTℓ Hβ(en)x

 =
n∑

i=1

yie
T
ℓ Hβ(ei)x = eTℓ Hβ(y)x,

where the last line follows since the entries of Hβ(y) are linear homogeneous
in y. The result is now immediate.
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Proposition 7.7. Let s(2)R be defined as above and let B ≥ 1. Then for
all β ∈ RR \ {0} we have

Naux
2 (β, B) ≪n Bn+s

(2)
R (logB)n.

Proof. Suppose for a contradiction the result were false. Then for each
positive integer N there exists some βN such that

Naux
2 (βN , B) ≥ NBn+s

(2)
R (logB)n.

From Corollary 7.5 it follows that there are linear subspaces X(N), Y
(N)
1 , Y

(N)
2

⊂ Rn with

dimX(N) + dimY
(N)
i = n+ s

(2)
R + 1, i = 1, 2,

such that for all X ∈ X(N), Yi ∈ Y
(N)
i we get

|Y T
1 H̃βN

(X)Y2| ≤ N−1∥Y1∥∞∥X∥∞∥Y2∥∞.

Note that H̃βN
(β) is unchanged when βN is multiplied by a constant. Thus

we may assume ∥βN∥∞ = 1 and consider a converging subsequence of βNr

converging to β, say, as N → ∞. This delivers subspaces X,Y1, Y2 ⊂ Rn

with dimX + dimYi = n+ s
(2)
R + 1 for i = 1, 2 such that

Y T
1 H̃β(X)Y2 = 0 for all X ∈ X, Y1 ∈ Y1, Y2 ∈ Y2.

There exists some b ∈ {0, . . . , n − s
(2)
R − 1} such that dimX = n − b and

dimYi = s
(2)
R + b + 1. Now let x(1), . . . ,x(n) be a basis for Rn such that

x(b+1), . . . ,x(n) is a basis for X. Write [Yi] ⊂ Pn−1
C for the linear subspace of

Pn−1
C associated to Yi for i = 1, 2.

Define the biprojective variety W ⊂ [Y1]× [Y2] in the variables (y1,y2):

W = V(y1H̃β(x
(i))y2)i=1,...,b.

Since the non-trivial equations defining W have bidegree (1, 1) we can apply
Corollary 3.2 to find that

(7.17) dimW ≥ dim[Y1]× [Y2]− b = 2s
(2)
R + b.

Given (y1,y2) ∈ W we have in particular (y1,y2) ∈ [Y1]× [Y2] and so

y1H̃β(x
(i))y2 = 0 for i = b+ 1, . . . , n,

and hence y1H̃β(z)y2 = 0 for all z ∈ Rn. From Lemma 7.6 we thus see
Hβ(y1)y2 = 0 for all (y1,y2) ∈ W . Hence in particular

dimW ≤ dimV(Hβ(y)x) ≤ 2s
(2)
R − 1,

where we regard V(Hβ(y)x) as a variety in Pn−1
C × Pn−1

C in the variables
(x,y). This together with (7.17) implies b ≤ −1, which is clearly a contra-
diction.
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In the next lemma we show that s
(2)
R is small if V(F ) defines a smooth

complete intersection. For this we no longer assume n1 = n2.

Lemma 7.8. Let s
(2)
R be defined as above. If V(F ) is a smooth complete

intersection in Pn1−1
C × Pn2−1

C then

(7.18)
n2 − 1

2
≤ s

(2)
R ≤ n2 +R

2
.

Proof. Let β ∈ RR \ {0} be such that

s
(2)
R =

⌊
dimV(Hβ(y)x)

2

⌋
+ 1.

Note that then

(7.19) 2s
(2)
R − 2 ≤ dimV(Hβ(y)x) ≤ 2s

(2)
R − 1.

The variety V(Hβ(y)x) ⊂ Pn1−1
C × Pn2−1

C is defined by n1 bilinear polyno-
mials. Using Corollary 3.2 we thus find that

dimV(Hβ(y)x) ≥ n2 − 2

so the lower bound in (7.18) follows. We proceed by considering two cases.

Case 1: V(xTHβ(eℓ)x)ℓ=1,...,n2 = ∅. Note that this can only happen if
n2 ≥ n1. We can thus apply Lemma 3.4 with V1 = V(xTHβ(eℓ)x)ℓ=1,...,n2 ,
V2 = V(Hβ(y)x) and Ai = Hβ(ei) to find that

dimV(Hβ(y)x) ≤ n2 − 1 + dimV(xTHβ(eℓ)x)ℓ=1,...,n2 = n2 − 2.

From this and (7.19) the upper bound in (7.18) follows for this case.

Case 2: V(xTHβ(eℓ)x)ℓ=1,...,n2 ̸= ∅. By assumption there exists x ∈
Cn1 \ {0} such that

xTHβ(eℓ)x = 0 for all ℓ = 1, . . . , n2.

We claim that there exists y ∈ Cn2 \ {0} such that Hβ(y)x = 0. For this
define the vectors

uℓ = Hβ(eℓ)x, ℓ = 1, . . . , n2.

Note that x ∈ ⟨u1, . . . ,un2⟩⊥ so these vectors must be linearly dependent.
Thus there exist y1, . . . , yn2 ∈ C not all zero such that

Hβ(y)x =

n2∑
ℓ=1

yℓHβ(eℓ)x = 0,

where the first equality followed since the entries of Hβ(y) are linear homo-
geneous in y. The claim follows. In particular it follows from this that

(V(xTHβ(eℓ)x)ℓ=1,...,n2 × Pn2−1) ∩ V(Hβ(y)x) ̸= ∅.
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Using Lemma 3.1 and (7.19) we therefore find that

(7.20) dim[(V(xTHβ(eℓ)x)ℓ=1,...,n2 × Pn2−1) ∩ V(Hβ(y)x)]

≥ dimV(Hβ(y)x)− n2 ≥ 2s
(2)
R − n2 − 2.

Recall β · F = xTHβ(y)x so that

SingV(β · F ) = (V(xTHβ(eℓ)x)ℓ=1,...,n2 × Pn2−1) ∩ V(Hβ(y)x).

Under our assumptions we can apply Lemma 3.3 to find dimSingV(β ·F ) ≤
R− 2. The result follows from this and (7.20).

Proof of Theorem 7.1. Applying Theorem 2.1 it suffices to show

(7.21) Naux
i (β;B) ≤ C0B

2n−4C ,

for all β ∈ RR \ {0} and i = 1, 2, where C > (2b+ u)R. Let

s = max {s(1)R , s
(2)
R },

where s
(1)
R and s

(2)
R are defined as in (1.7) and (1.8), respectively. From (7.2)

and Proposition 7.7 for any ε > 0 we get

Naux
i (β;B) ≪ε B

n+s+ε,

with the implied constant not depending on β. Choose ε = n−s−(8b+4u)R
2 ,

which is a positive real number by our assumption (7.1). Taking

C =
n− s− ε

4
,

we see that from the assumption n− s
(i)
R > (8b+ 4u)R for i = 1, 2 we must

have C > (2b+u)R for this choice. Therefore (7.21) holds and the first part
of the theorem follows upon applying Theorem 2.1.

For the second part recall we assume n > (16b+ 8u+ 1)R and that the
forms Fi(x,y) define a smooth complete intersection in Pn−1

C × Pn−1
C . By

Lemma 7.3 in this case we obtain

s
(1)
R ≤ R,

and from Lemma 7.8 we get

s
(2)
R ≤ n+R

2
.

Therefore it is easily seen that n > (16b+ 8u+ 1)R implies that

n− s
(i)
R > (8b+ 4u)R

for i = 1, 2, which is what we wanted to show.
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7.3. Proof of Theorem 1.2. If n1 = n2 then the result follows imme-
diately from Proposition 7.1. We have two cases to consider and although
their strategies are very similar they are not entirely symmetric. Therefore
it is necessary to consider them individually.

Case 1: n1 > n2. We consider a new system of equations F̃i(x, ỹ) in the
variables x = (x1, . . . , xn1) and ỹ = (y1, . . . , yn2 , yn2+1, . . . , yn1) where the
forms F̃i(x, ỹ) satisfy

F̃i(x, ỹ) = F (x,y),

where y = (y1, . . . , yn2). Write Ñ(P1, P2) for the counting function associ-
ated to the system F̃ = 0 and the boxes B1 × (B2 × [0, 1]n1−n2). Note, in
particular, that if we replace F by F̃ in (5.13) and (5.12) then the expressions
for the singular series and the singular integral remain unchanged. Further
denote by s̃

(i)
R the quantities defined in (1.7) and (1.8) but with F replaced

by F̃ . Note that we have s̃
(1)
R = s

(1)
R and s̃

(2)
R ≤ s

(2)
R + n1−n2

2 . Therefore the
assumptions (1.9) imply

n1 − s̃
(i)
R > (8b+ 4u)R

for i = 1, 2. Hence we may apply Proposition 7.1 in order to obtain

Ñ(P1, P2) = ISPn1−2R
1 Pn1−R

2 +O(Pn1−2R
1 Pn1−R

2 min {P1, P2}−δ),

for some δ > 0. Finally it is easy to see that

Ñ(P1, P2) = N(P1, P2)#{t ∈ Zn1−n2 ∩ [0, P2]
n1−n2}

= N(P1, P2)(P
n1−n2
2 +O(Pn1−n2−1

2 )),

and so (1.10) follows.

Case 2: n2 > n1. We deal with this very similarly to the first case; we
define a new system of forms F̃i(x̃,y) in the variables x̃ = (x1, . . . , xn2) and
y = (y1, . . . , yn2) such that

F̃i(x, ỹ) = Fi(x,y).

As before we define a new counting function Ñ(P1, P2) with respect to the
new product of boxes (B1 × [0, 1]n2−n1)×B2, and we define s̃

(i)
R similarly to

the previous case. Note that s̃
(1)
R = s

(1)
R + n2 − n1 and s̃

(2)
R ≤ s

(2)
R + n2−n1

2 so
that (1.9) gives

n2 − s̃
(i)
R > (8b+ 4u)R,

for i=1, 2. Therefore Proposition 7.1 applies and we deduce again that (1.10)
holds as desired.
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Finally, we turn to the case when V(F ) defines a smooth complete inter-
section. Note first that by Lemma 7.8 we have

s
(2)
R ≤ n2 +R

2
,

and therefore the condition
n1 + n2

2
− s

(2)
R > (8b+ 4u)R

is satisfied if we assume n1 > (16b + 8u + 1)R. Further, by Lemma 7.3 we
have

s
(1)
R ≤ max {0, n1 +R− n2},

and so we may replace the condition n1 − s
(1)
R > (8b+ 4u)R by

n1 −max {0, n1 +R− n2} > (8b+ 4u)R.

If n2 ≥ n1 + R then this reduces to assuming n1 > (8b + 4u + 1)R, which
follows immediately since we have assumed n1 > (16b + 8u + 1)R. If n2 ≤
n1 +R on the other hand, then this is equivalent to assuming

n2 > (8b+ 4u+ 1)R.

In any case, the assumptions (1.11) imply the assumptions (1.9) as desired.

Acknowledgements. The author would like to thank Damaris Schindler
for many helpful comments and conversations regarding this project. The
author would further like to thank Christian Bernert and Simon Rydin
Myerson for helpful conversations. Finally, the author would like to thank
the anonymous reviewer for many helpful suggestions that especially improved
readability of the article.

References

[1] V. V. Batyrev et Y. I. Manin, Sur le nombre des points rationnels de hauteur bornée
des variétés algébriques, Math. Ann. 286 (1990), 27–43.

[2] V. V. Batyrev and Y. Tschinkel, Rational points on some Fano cubic bundles, C. R.
Acad. Sci. Paris Sér. I Math. 323 (1996), 41–46.

[3] B. J. Birch, Forms in many variables, Proc. Roy. Soc. London Ser. A 265 (1962),
245–263.

[4] V. Blomer and J. Brüdern, Counting in hyperbolic spikes: the Diophantine analysis of
multihomogeneous diagonal equations, J. Reine Angew. Math. 737 (2018), 255–300.

[5] J. Brandes, The density of rational lines on hypersurfaces: a bihomogeneous perspec-
tive, Monatsh. Math. 195 (2021), 191–231.

[6] T. D. Browning and L. Q. Hu, Counting rational points on biquadratic hypersurfaces,
Adv. Math. 349 (2019), 920–940.

[7] H. Davenport, Cubic forms in thirty-two variables, Philos. Trans. Roy. Soc. London
Ser. A 251 (1959), 193–232.

http://dx.doi.org/10.1007/BF01453564
http://dx.doi.org/10.1098/rspa.1962.0007
http://dx.doi.org/10.1515/crelle-2015-0037
http://dx.doi.org/10.1007/s00605-021-01528-6
http://dx.doi.org/10.1016/j.aim.2019.04.031
http://dx.doi.org/10.1098/rsta.1959.0002


Systems of bihomogeneous forms of small bidegree 43

[8] H. Davenport, Analytic Methods for Diophantine Equations and Diophantine Inequal-
ities, 2nd ed., Cambridge Math. Library, Cambridge Univ. Press, Cambridge, 2005.

[9] R. Dietmann, Weyl’s inequality and systems of forms, Quart. J. Math. 66 (2015),
no. 1, 97–110.

[10] J. Franke, Y. I. Manin, and Y. Tschinkel, Rational points of bounded height on Fano
varieties, Invent. Math. 95 (1989), 421–435.

[11] A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et
des morphismes de schémas (troisième partie), Inst. Hautes Études Sci. Publ. Math.
28 (1966), 255 pp.

[12] R. Hartshorne, Algebraic Geometry, Grad. Texts in Math. 52, Springer, 2013.
[13] L. Q. Hu, Counting rational points on biprojective hypersurfaces of bidegree (1, 2),

J. Number Theory 214 (2020), 312–325.
[14] T. Mignot, Points de hauteur bornée sur les hypersurfaces lisses de l’espace triprojec-

tif, Int. J. Number Theory 11 (2015), 945–995.
[15] T. Mignot, Points de hauteur bornée sur les hypersurfaces lisses des variétés toriques,

Acta Arith. 172 (2016), 1–97.
[16] W. Müller, Systems of quadratic Diophantine inequalities, J. Théor. Nombres Bor-

deaux 17 (2005), 217–236.
[17] W. Müller, Systems of quadratic Diophantine inequalities and the value distribution

of quadratic forms, Monatsh. Math. 153 (2008), 233–250.
[18] E. Peyre, Hauteurs et mesures de Tamagawa sur les variétés de Fano, Duke Math. J.

79 (1995), 101–218.
[19] E. Peyre and G. Rémond (eds.), Arakelov Geometry and Diophantine Applications,

Lecture Notes in Math. 2276, Springer, 2021.
[20] M. Robbiani, On the number of rational points of bounded height on smooth bilinear

hypersurfaces in biprojective space, J. London Math. Soc. (2) 63 (2001), 33–51.
[21] S. L. Rydin Myerson, Systems of forms in many variables, arXiv:1709.08917 (2017).
[22] S. L. Rydin Myerson, Quadratic forms and systems of forms in many variables, Invent.

Math. 213 (2018), 205–235.
[23] S. L. Rydin Myerson, Systems of cubic forms in many variables, J. Reine Angew.

Math. 757 (2019), 309–328.
[24] D. Schindler, Bihomogeneous forms in many variables, J. Théor. Nombres Bordeaux

26 (2014), 483–506.
[25] D. Schindler, A variant of Weyl’s inequality for systems of forms and applications, in:

Advances in the Theory of Numbers (Ottawa, ON, 2014), Fields Inst. Commun. 77,
Fields Inst. Res. Math. Sci., Toronto, ON, 2015, 207–218.

[26] D. Schindler, Manin’s conjecture for certain biprojective hypersurfaces, J. Reine Angew.
Math. 714 (2016), 209–250.

[27] W. M. Schmidt, The density of integer points on homogeneous varieties, Acta Math.
154 (1985), 243–296.

[28] J.-P. Serre, Topics in Galois Theory, 2nd ed., Research Notes Math. 1, A K Peters,
Wellesley, MA, 2008.

[29] C. V. Spencer, The Manin conjecture for x0y0 + · · · + xsys = 0, J. Number Theory
129 (2009), 1505–1521.

[30] J. L. Thunder, Asymptotic estimates for rational points of bounded height on flag
varieties, Compos. Math. 88 (1993), 155–186.

[31] S. Yamagishi, Birch’s theorem on forms in many variables with a Hessian condition,
arXiv:2304.02620 (2023).

http://dx.doi.org/10.1017/CBO9780511542893
http://dx.doi.org/10.1093/qmath/hau014
http://dx.doi.org/10.1007/BF01393904
http://www.numdam.org/item?id=PMIHES_1966__28__5_0
http://dx.doi.org/10.1016/j.jnt.2020.04.002
http://dx.doi.org/10.1142/S1793042115500529
http://dx.doi.org/10.5802/jtnb.488
http://dx.doi.org/10.1007/s00605-007-0463-7
http://dx.doi.org/10.1215/S0012-7094-95-07904-6
http://dx.doi.org/10.1007/978-3-030-57559-5
http://dx.doi.org/10.1112/S0024610700001617
http://arxiv.org/abs/1709.08917
http://dx.doi.org/10.1007/s00222-018-0789-x
http://dx.doi.org/10.1515/crelle-2017-0040
http://dx.doi.org/10.5802/jtnb.876
http://dx.doi.org/10.1515/crelle-2014-0026
http://dx.doi.org/10.1007/BF02392473
http://dx.doi.org/10.1016/j.jnt.2008.10.005
http://eudml.org/doc/90243
http://arxiv.org/abs/2304.02620


44 L. Hochfilzer

Leonhard Hochfilzer
Department of Mathematics
Penn State University
University Park, PA 16802, USA
E-mail: hochfilzer@psu.edu


	1. Introduction
	2. Multilinear forms
	3. Geometric preliminaries
	4. The auxiliary inequality
	5. The circle method
	6. Systems of bilinear forms
	7. Systems of forms of bidegree (2,1)
	References

