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Abstract. Let F belong to the extended Selberg class S*. We show how a suitable
hypothesis on the analytic continuation of a certain nonlinear twist of F2, namely the
self-reciprocal twist, implies a sharp bound for the mean-square of F(1/2 + it).

1. Introduction. Let S and S* denote the Selberg and the extended
Selberg class, respectively, and let ' € S* be of degree d > 1 and conductor q.
We shall briefly recall the basic notation and results in Section 2. In our
papers |1, 4H7] we studied the analytic properties of a class of nonlinear twists
of F'. Moreover, in these and other papers, notably in [8,|9], we refined and
applied such properties to the study of the structure of the Selberg classes.

A significant role in the above research is played by the standard twist
F(s,a), a special nonlinear twist of F' defined for o > 1 by

F(s,a) = Z a(z)e(—anl/d),

n

n=1
where a(n) are the Dirichlet coefficients of F, @ > 0 and e(z) = ¢*™, The
analytic properties of F(s,a) are now rather well known (see Section 2 for
some of them), and are crucial in several problems.
In this paper we introduce a more mysterious but equally important
nonlinear twist, namely the self-reciprocal twist defined for ¢ > 1 by

= a(n 1
Fyat(s) = Z is)e(—“F”Wd)’ Kp = §dq 1/d

n=1
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and link it with a central problem in analytic number theory. Indeed, al-
though at present the analytic properties of the self-reciprocal twist are es-
sentially unknown, here we present an unexpected consequence of a seem-
ingly mild hypothesis about its analytic continuation to the left of the line
o = 1. The name of this twist comes from the fact that the general trans-
formation formula for nonlinear twists in [5] links the twists

o

a(n

F,\(s,a)zz is)e(—an)‘), A>1/d and « # 0,
n=1

to a certain combination of translates of so-called reciprocal (or dual) twists

F«(s*,a*). Here Fy:(s, ) denotes the conjugate of Fy«(s,a) and

. A « Aydr N —1/(dA—1)
= - = —1
Aot = (@ (@)
and, if 0 = 0,
d\
8*:75—’_7_
dx—1 "~

where 0 is the internal shift; see Section 2 for notation. Hence, when p = 0,
we see that
(N, a*,s") = (N, a,s) ifand only if A =2/d and o = kp.

Therefore, in this case Fy«(s*, a*) = F¢(s), hence the name.
For powers of the Riemann zeta function, i.e. F(s) = ((s)* with integer
k > 1, we simply write

G(s) = 3 o1ty
n=1

and our main result, Theorem 2 below, gives at once the following bound.

THEOREM 1. Suppose that (i(s) has holomorphic continuation to the
half-plane o > % + ﬁ, with polynomial growth on every vertical strip inside
this half-plane. Then for every € > 0 we have

T
| lc/2 +it)F at < T
-T

We expect that (x(s) has meromorphic continuation over C, and has a
pole of order k2 + 1 at s = % + ﬁ; cf. the Conjecture below.

Returning to the general case, we denote by as(n) = a * a(n) the co-
efficients of F?2. Clearly, the degree and conductor of F? are 2d and ¢2,
respectively, hence

Fs2elf(3) = Z a2(n) e(_ﬁonl/d)a RO ‘= Rp2 = dq_l/da

s
n=1
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is the self-reciprocal twist of F'2. For simplicity, in this paper we only consider
L-functions F' € S* with integer degree d and #z = 0. This is however the
most interesting case, since the classical L-functions satisfy both conditions.
Recalling that the conjugate function F has the same degree and conductor
as I’ and conjugate coefficients, we assume the following hypothesis on the
analytic continuation of the self-reciprocal twist.

5-HYPOTHESIS. Let F' € St be of integer degree d > 1 with conductor q
and 0 = 0. Moreover, let 6 > 0 be fived. Then the self-reciprocal twists
F2 () and F2s¢(s) have holomorphic continuation to the half-plane o >
5+ Q—Id + & with polynomial growth on every vertical strip contained in this
half-plane.

Interestingly, the point kg is related to the spectrum of F'; see Section 2.
Moreover, the growth condition can be somewhat relaxed, still leading to
the same conclusions in Theorem 2 below.

Turning to the applications of the self-reciprocal twist, for T > 0 suffi-
ciently large we write

T
Ip(T) = | [F(1/2+it)]dt
-T

and prove the following result.

THEOREM 2. Let F € St be of integer degree d > 1 with 0p = 0, and
suppose that the §-Hypothesis holds true. Then for every e > 0 we have

Ip(T) < Tod+e,

Finally, some remarks are in order. First note that if the J-Hypothesis
holds with § = 0, then we have the optimal bound

Ip(T) < T,

Thus, if the 0-Hypothesis holds true with F replaced by F¥ for arbitrarily
large integers k, then the Lindeléf Hypothesis holds for F. We have the
following

CONJECTURE. Let F € St be of integer degree d > 1 with 6p = 0, and
satisfy the Ramanujan Conjecture. Then the self-reciprocal twist FSQelf(s) has
meromorphic continuation to C with poles at most at the points

1 1k .
skzi—i-ﬁ—g, k > 0 wnteger,
and polynomial growth on vertical strips. Moreover, the pole at sg has order
d? + 1, while the other poles have order either d*> +1 or 0.
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Note the analogy between the conjectural polar structure of the above
self-reciprocal twist and the known polar structure of the standard twist
reported in Section 2; note also the main difference in the polar orders.

We already pointed out that at present the range of § for which the
d-Hypothesis holds, and a fortiori the above conjecture, are open problems.
However, some partial results can be obtained in this direction, and we shall
return to this problem. Trivially, the hypothesis holds with § = % — %, thus
giving

IF(T) < T(d+1)/2+s
for every F' € St. For d > 2 this is weaker than the classical bound
IF(T) < Tmax(l,d/2)+57

following from the approximate functional equation coupled with the mean-
value theorem for Dirichlet polynomials. Nevertheless, we believe that our
approach is interesting as it opens up a new attack to the moment problem
for L-functions. Moreover, our method shows that a finer heuristic conjec-
ture concerning the polar structure of the self-reciprocal twist could be used
to derive a precise asymptotics for Ip(7"). This would allow a comparison
with other conjectures on the behaviour of Ip(T') already appearing in the
literature.

2. Notation. Throughout the paper we write s = o + it, and f(s)
for f(3). The extended Selberg class S* consists of non-identically-vanishing
Dirichlet series

Fe=y 20
n=1

absolutely convergent for o > 1, such that (s — 1)™F(s) is entire of finite
order for some integer m > 0, and satisfying a functional equation of type

F(s)v(s) = wy(1 —s)F(1 = s),

where |w| = 1 and the ~-factor

T
v(s) =@ T[T (Njs + uy)
j=1
has @ > 0, 7 > 0, A; > 0 and R(p;) > 0. The Selberg class S is, roughly
speaking, the subclass of S? of the functions with a general Euler product
and satisfying the Ramanujan conjecture a(n) < n. We refer to our survey
paper [2| for further definitions, examples and the basic theory of the Selberg
class.
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The degree d, conductor ¢, root number wp and ¢-invariant &5 of F' € S*
are defined by

d=2% ), g =2n)Q* T A3V,
j=1

J=1

,
wp=w [[ A7), e = 22 —1/2) = np + idOp
j=1
with np, 0 € R; here O is the internal sh1ft of F.
We conclude this section by reporting some results on the meromorphic
structure of the standard twist F(s, a); see [6]. The spectrum of F € S* with
0r = 0 is defined as

Spec(F) ={a>0:a(n,) #0}, na=qd %4 a(ny) =0ifn, ¢N.
Then F(s,«) is entire if o € Spec(F'), while it is meromorphic over C if

a € Spec(F'). In the latter case, F'(s,«) has at most simple poles at the

points
1 1 k
=—+———-, k=0,1,...
Sk 9 + 2d d’ 07 ) )
with ress—s,F'(s,a) # 0. Moreover, in all cases F(s,«) has polynomial

growth on vertical strips.

3. Proof of Theorem 2. For T" > 0 sufficiently large we also write
[e.e]
Jp(T) = | |F(/2+it)Pe= T at.
—0o0
Clearly
Ip(T) < eJp(T).
Moreover, since by convexity F(1/2+it) < [t|* for every € > d/2 as |t| — oo,
in the opposite direction we have
Jp(T) < Ip(T+/clogT)+ O(1)
for every ¢ > 1 + d. By partial integration we also obtain
1

Jp(T) = T

| Ir()e(t/T) dt
0

where p(u) = 2ue~"". From the above relations it is easy to deduce that for

any A > 0,
Ip(T) < T — Jp(T) < T4,
Ip(T) < Tlog" T <= Jp(T) < Tlog"T.
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As a consequence, estimating Ir(7T) and Jp(T') are essentially equivalent
tasks; we shall deal with Jp(T).

3.1. Set-up. In what follows, the implicit constants in the O- and <«-
symbols may always depend on F'. The symbol ¢, with or without subscript,
denotes complex constants depending on F', whose values will not necessarily
be the same at each occurrence. Analogously, the symbol r, with or without
suffix, denotes real constants with the same properties as c¢. Such constants
¢ and r can be explicitly computed, but in this paper their value is not
relevant.

Recalling the definition of Jg(T) and F we have

hm:i&p@ﬂu@f%wm

" ar)
Then we shift the line of integration to o = 3/2, taking into account the
residue of the integrand at the possible pole of F' at s = 1. This is allowed
by the polynomial growth of F' and the exponential decay of e((s=1/2)/ T)?,
Estimating the residue we obtain

(3.1) hm:gSFUﬂbﬂ( 2 4s + 0(1).
(3/2)
Recalling the functional equation of F', from (3.1)) we deduce that
h@plfgﬂﬁ;@Lﬁ”Wm+m)
W s F(1 —s)

Moreover, on the line o = 3/2 we replace F(s)? by its Dirichlet series and
switch summation and integration, thus getting

(3.2)  Jp(T) = iZ: a:g;) _S 77(?1//2;—12)”” T2 At + 0(1).

Recalling our assumption that 6 = 0, from the Stirling expansion in
[3, equation (2.8)] we have, for fixed o and large |t|,

N

(33) IOg’y(S) = As lOgS + Bs + C]Qgs + Z Z% + O(|S|_N_1),
v=0

where NV > 0 is a given integer and

(3.4) A=d/2, B=(logq—dlog(2me))/2, C=¢p/2€R, ¢ eC.
Observing that
=Q’ H I'(Ajs + 1),

Jj=1
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we see that the values of A, B, C' computed from the data of v(s) and 7(s)
coincide. Hence from (3.3) we deduce that

v(3/2 + it)
-1z~ it)
— A(3/2 +it)log(3/2 + it) + B(3/2 + it) + C'log(3/2 + it)
+ A(1/2 +it)log(—1/2 —it) + B(1/2 +it) — Clog(—1/2 — it) + Xo(t),

(3.5)  log

where Y (t) arises from the expansion of the terms in the sum over v in (3.3)
with s = 3/2 + it and s = —1/2 — it. Recalling that the value of ¢, is not
necessarily the same at each occurrence, Yy(t) has the form

N

(3.6) Zo(t) = o+ 0.
v=0

By further expansions we get

log(3/2 + it) = log [t| + igsgn(t) +30(t),
(3.7)
log(—1/2 — it) = log |t| — igsgn(t) + 21 (t).

Here the form of X (t) is similar to (3.6), but the summation starts with
v = 1. Thus (3.4)—(3.7) give

v(3/2 + it)

S C12— i)

= dlog |t| +i(dtlog|t| + 2Bt + Dsgn(t)) + Xo(t),

where
(3.8) D =nd/4+7C € R.
Hence for large |t|, say [t| > to, we have

v(3/2 + it)
(173~ it

where X (t) is of the form (3.6) and

(3.9) = [¢|%e"® 54 (1),
6(t) = dtlog |t| + 2Bt + D sgn(t).

Recalling that d € N, choosing N = d in (3.3)), estimating trivially the
part with [t| < o of the integral over (—oo,00) and writing

fn(t) = 0(t) — tlogn + 2t /T2,
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from (3.2), (3.6) and (3.9) we obtain

(3.10)
p(r) = I 3 ) 0t 501+ 0(1)
=T 2 e ¢ € 0
d 00 [e's)
= Y03 R Oyt 4t 4 O(log T)
n
v=0 n=1 —00

Denoting the last integrand by g,(t), and observing that f,(—t) = —f,(t)
for t # 0, we have

veven = g, (—t) =g,(t) and vodd = g, (—t) = —g.(t).

Hence, writing

(3.11) Ju(n,T) = S et (B)gd—v o= (t/T)? 4
0
with
(3.12) F,(t) = dtlogt + (2B —logn + 2/T?)t

and B as in (3.4), from (3.10]) we finally deduce that

d 00
(313)  Jp(T) =€V 3 cyz‘m%(emun,ﬂ)
v=0 n=1

v even

4 e M/T? Z cy Z C:?S/Z) (e J,(n, T)) + O(log T)
v=1 n=1
vodd

with D as in (3.8).

3.2. Saddle point: preliminary reductions. Next we compute the
saddle point of the exponential integrals J,(n,T") in and then we use
a suitable saddle point technique to extract their main contribution.

Since F),(t) = dlogt — dlog(2m(n/q)"/%) +2/T?, see (3.12)), we have

(3.14) F/(t)=0 ifand only if t=t, :=2r(n/q)"/%e 2/T?)

Accordingly, we shift the integration over (0,00) in J,(n,T) in the following
way. For a fixed 0 < # < 7/4 to be chosen later on, we consider the three
lines in the complex z-plane

Ca: z=pe ™ tp: z2=pe?, l,: z=t, +pei’r/4 with p € R,
and define the two points

za=40aN¥t, and zg=4_4pN¥,
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lying in the half-plane ®(z) > 0. The functions F,(z) in (3.12) and 2977,
e~ (/1) ip (3.11)) are holomorphic for R(z) > 0. Moreover, writing z = pe'?,
we have

GiFn(2) (2/T)?

247Ve™
< ¢—P(dlog psin ¢+de cos p+(2B—log n+2/T?) sin ¢)pd_V€_(p/T)2 cos(2¢) :

thus the integrand in (3.11)) has exponential decay as p — oo uniformly for
0 < ¢ <0, i.e. in the sector between the half-lines z = p and ¢p with p > 0,
thanks to 0 < 6 < 7/4. Hence by Cauchy’s theorem we can shift the path of
integration, thus getting

ZA ZB ooet?

(3.15) J,(n,T) = ( [+ 1+ )eiFn(z)zd—ye—(z/T)2 &
0 zZA zZB
= I (0, T)+ JP (0, T) + TP (n, T),
say, where the paths of integration are along £4, ¢, and £g, respectively.

Before treating the integrals in (3.15) we compute z4 and zg. Let h,
be the distances of z4, zp from the real axis, respectively. Then

tand — h _ tan 6 i
tn, —h’ 1+tanf "’
_h tand 1 B tn
2 sinf 1+tanf sinf " sinf 4+ cosd
and hence
o—if
(3.16) A= sin@—i—cos@tn'

Arguing in a similar way we obtain

€i9
3.17 = —t,.

( ) B cosf —sinf "

In view of the definition of £4 and recalling that 0 < v < d, we have

|zal

TP, T) < | e 3Fee™) (1 4 pd) dp.

0
Moreover, from (3.4), (3.12) and (3.14]) we get
(3.18)  SFy(pe ™) = —dplog psin§ —dpf cos @ — p(2B —log n+2/T?) sin

p(q/n)l/deZ/(dT2)69 cot 6
2me

= —dpsinflog <

. ety
= dpsin 6 log<pcﬁmt9> .
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But, thanks to (3.16)), for 0 < p < |z4| we obtain

ety sin f + cos 6

_ 2
pe€C0t9 =€ efcotd _1+0+O(0 )

as 6 — 07, therefore '
SFy(pe ) > dpb? /2
for 0 < p < |z4| and 0 < 6 < 6y, where 0y > 0 is sufficiently small. As a

consequence we have
|zal

(3.19) JP,T) < | e A0+ phydp <1
0
uniformly in n,v and T, with any fixed 0 < 6 < 6y and a sufficiently small
Oy > 0.
The treatment of Jﬁg)(n, T) is similar. Thanks to (3.14])), (3.17) and (3.18)),
for p > |zp| we have

0 cot 0 e@cot@
> dpsinfl _—
ety > = Gpsim Og(e(cos@ — sin 0))’

SF,(pe) = dpsin 0 log (’0

and as 6 — 0T,

e@cot@
c(cosf —sind) =1+60+0(6%).
Hence, as before, we deduce that
J®(n,T) < OSO e*dp92/4,od dp < 1,
l2B]
thus from (3.15)) and (3.19) also that
(3.20) J,(n,T) = J¥(n,T) + O(1),

with the same uniformity and conditions stated after (3.19)).

We conclude this subsection by rewriting J,EZ)(n, T') in a more convenient

form. To this end we write z € [z4, 28] as

(3.21) z=t,(1+ue™*) with —A(f) < u < B(0)

and compute A(#) and B(0). From (3.16|) we see that A(f) satisfies
cosf —isinf ;
D e N | i /4

sin 0 4 cos ¢ (6)e™™,

hence

sin 6 : sin 6 V2
3.22) A(0)=(1+i)———e ™4t = /2 = .
( ) (0) = +Z)sin9+cos¢9e fsin@%—cos@ 1+ cotd
Similarly, from (3.17)) we get

(3.23) B(0) = (1+1)

Sin 0 6_2'7‘_/4 _ \/§

cosf —sinb cotf —1°
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Therefore, in view of (3.15) and (3.21), J,EQ)(n,T) can be rewritten as

(3.24)  JP(n,T)
B(0)
:tneiw/él S eiFn(tn(l—&—ueiw/Al))t;il—V(l_|_uem/4)d—ye_(tn/T)2(1+uem/4)2 du
—A(0)
B(9)
:tz+1*l/ei7r/4eiFn(tn) S ei(F”(tn(1+ueiﬁ/4))*Fn(tn))

% (1 4 uei™/4)d=ve=(tn/TP(14ue™/ 42 g,

where A(#) and B(#) are given by (3.22)) and (3.23)), respectively. Moreover,
0 is fixed with 0 < 6 < 0y and 6y > 0 sufficiently small. Therefore, in what
follows we assume that |u| is sufficiently small as well, since A(#), B(6) — 0
as 0 — 0T,

3.3. Saddle point: further reductions. From (3.4), (3.12) and (3.14])
we see that

(3.25) F,(z) = dzlog <€in>’
hence

Fo (b1 0™1)) = Fy(t) = din (1 -+ ™) log(1 4 ue™) — uei™/4).
But for |w| < 1/2 we have

X 1\ym+1 et _1\m
(1+w)log(1+w)—w:(1+w)zgwm—w:Z&wm,

— m = m(m — 1)

therefore for any integer M > 2 we deduce, with the obvious meaning of the
real constants r,,, that

M M+1
/4Ny _ zm7r/4 m tn‘u’
(3.26)  Fn(tn(14+ue'™?))—Fy(t,) = dt, mg T'meé +O< % .

As a consequence, from ([3.24]) we obtain

d—v

(3.27)  JPD(n,T) = t3H1-veiFnltn) g=(tn/T)? 3 (d - V) pilut )/
pu=0 H

B(6)

« S e—%dtnu idtn SSM_ rpetmm/Aym O(%

)
~A(0) (

_td+1 v 1Fn tn (tn/T § :

6—(tn /T)? (2ei”/4u+iu2) du

> ei(u+1)71'/4;~gu(n7 T),

say.
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By the substitution

(3.28) Vdtn/2u=§

we have
3.29
( ) 9 \ (w+1)/2 dtn/2 B(6) y ] |
Bl ) = <d> | e Eemeitin Taima (i e e
tn
—\/dtn /2 A(0)
w eOU5H(262/(dt)) MTHD/2) = (tn /T 6T/ [ G5 i €2) d¢

9 (ut1)/2 dtn /2 B(0) )

' —\/dta /2 A(0)

9 \ (u+1)/2

B <dt> (3“(n’T) + Ru(an))-

Here R,(n,T) is the error term arising from the replacement of

eo(%(%z/(dt"))u\“lm) by 1 inside the first integral, and

M 9 m/2 4
(3.30) X (& n) = idt, Z Tm (dt) emm/iem,
m=3 n
(3.31) g(&,n,T) = (t,/T)? <2ei”/4\/z€ + idiL§2>’
Vdtn /2 B(0)
(3.32) 3.(n,T) = | e & En—g(EnT)en g¢
—\/dtn /2 A(0)

Next we estimate the contribution to J5°) (n,T) of the error terms Ry, (n, T')

in (3.29)). Recalling (3.28]), the value of 7, in (3.26])) and the fact that |ul is
assumed to be sufficiently small (see after (3.24))), from (3.30) and (3.31) we
have that

3 2
(3.33) Z(6m) < % <€/2 and |g(¢.n,T)| < (tn/2T)

for —\/dt, /2 A(0) < £ < \/dt,/2 B(#). Then we choose M = M (n) so large
that

(3.34) <t 412,

M2M
with a sufficiently small constant ¢ > 0. Hence, recalling that A(6), B(#) are
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sufficiently small and g > 0, from (3.29)), (3.33) and (3.34)) we obtain

2\ ¥/ L r22 | 22
(3.35) e R,(n,T) < e | e d¢

n —oo

1 2
_ = Ltn/T)?)2
<<tg+1e .

Since F,(tn) € R, by (3.27)), (3.29) and (3.35)) the contribution to g (n,T)
of the error terms R, (n,T) is

(3.36) 0(1)

uniformly in v, n and T, provided 6y > 0 is sufficiently small and M satisfies

(3.34). Therefore, from (3.20]), (3.27)), (3.29) and (3.36) we deduce that
(3.37)  J,(n,T)

‘ 5 d—v d— 2 (u+1)/2
_ ean(tn)t;jl_}_l_ye—(tn/T) } : < > Z(u+1)7r/4<dt ) Ju(n,T)
1% n
u=0

+0(1)
with the same uniformity and conditions after (3.36]), where J,(n,T') is de-

fined by (]3.32]).

3.4. Saddle point: computing the main terms. Now we study the
integrals J,(n,T). We may assume that n is sufficiently large, say n > no,
since for n < ng we have J,(n,T) = O(1) and their contribution to Jr(T')
amounts to O(1). We first show that the range of integration in J,(n,T’) can
be replaced, up to a negligible quantity, by || < ¢(0) logt,, where ¢() > 0
is such that

min(y/kt, /2 A(0), \/ ktn/2 B(0)) > c(0)logt,

for every n > ng. To this end we write

c(0) log tn
(338) Iﬂ(n, T) = S 6—624‘2(5,71)—9(5,71,'1—')6# dé"
—c(0) logtn

and arguing as in , from we find that
—¢(0) log tn o
(3.39) 3.(n,T) — Lu(n,T) < ( |+ >e*f2/2+<tn/T>2/2|§y“d§
—o0 (6)log tn
< t;Ae(tn/T)2/2



14 J. Kaczorowski and A. Perelli

for every A > 0. Therefore, arguing as for (3.36]), from (3.37) and (3.39) we
get

d—v
(340)  Jy(n,T) = eFrltn)e=n/TIEN" o 4dH1=v=0et D2 (n, T) + O(1)
pn=0

with the same uniformity and conditions after (3.36), where I,(n,T') is de-

fined by (3.38)) and

~ (Wt)/2
(3.41) Gy = (d ) ”> <3) il m/A

Next we estimate the contribution of the integrals I,,(n,T) to J,(n,T)
for the values n > ng such that ¢, > Tlogt,. In this case, again thanks

to (3.33]), we have

c(0) logtn
Lun,T) < | /T2 de < eltn/ T /2100t ¢,
—c(0) logtn

Hence such a contribution is
(3.42) 0(1),

once more with the same uniformity and conditions after (3.306)).
Finally, we compute the contribution of 1, (n,T') to J,(n,T) for n > nyg

with ¢, < T'logt,. From (3.30)), (3.31) and the first estimate in (3.33]) we see
that for [¢] < ¢(0) logty,

log® t,,
Vin

provided ¢(0) is sufficiently small. Hence, given an arbitrarily large constant
A > 0, there exist integers @ = Q(A) > 0 and 0 < p,k,¢ < @, and coefhi-
cients By ¢ € C, such that for || < ¢(6)logt,, we have

2
e¥EmzolenT) — Z Z Z Bkt k/2< n) +0(t; 47,

0<p<Q 0<k<Q 0<0<Q

12(&,m)]; lg(&n, T)| <

Note that 8y0,0 = 1, while the other coefficients 3, . ¢ are computable from

the expressions in (3.30)) and (3.31)). Note also that, although M in (3.30]) now

depends on n, the integer @ is independent of n. Indeed, the contribution of
the terms in (3.30]) with m sufficiently large in terms of A is directly absorbed
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into the error term O(t,4~!). As a consequence,
(343)  L,(n,T)

t, 2¢ c(0)logtn .
Z Z Z prkf k/2< ) S e ¢ glﬂrpdg_i_O(t;LA—l).

0<p<Q 0<k<Q 0<<Q —c(0) log tn,

But for an arbitrarily large constant B > 0 we have

c(0) log trn 9)
S e—§2£u+p d¢ = S 6—52£M+p d¢ + O(t;B)
—c(0) logty —o0
- ?(‘”;“1) (1+ (—1)"7) + O£, 5).

Hence, by a suitable choice of B = B(A) and after summation over p, (3.43)
becomes

t _
(344) Z Z Vel 779 k:/2 ( 'ﬂ> + O(tnA)
0<k<Q 0<(<Q
for n > ng with ¢, < Tlog t,, where
+p+1
349 ey 5 el ()0 o),
0<p<Q

Now we fix a sufficiently small # > 0 such that all the above estimates
hold, and a sufficiently large A. Hence from the remark at the beginning of
this subsection and from equations (3.40), (3.42), (3.44) we deduce, for the
values of n such that n < ng or t, > T'logt,, that

(3.46) Ju(n,T) = O(1).

Moreover, for the values of n with n > ng and t¢,, < T logt,, we have

(3.47) d-v Q Q .
J(nTy—d&m” mﬂ‘;;g%;%5#kﬂﬂyzy(wmp(T> +0(1)

uniformly in v,n and T'. Here
(348) 6V7N7k’£ = aV7N7k9Z71U'7

where a,,,, is given by (3.41) and 7y, is as in - Note that 0, 1 ¢ are
complex numbers due to the powers of €/™/4 involved in a, and By .

3.5. Entering the self-reciprocal twist and completion of the
proof. From (3.13), (3.46)), (3.47) and a simple estimate for the terms with
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n < ng we obtain

Q Q
(3.49) Jp(T) =T 3" 6,3 3T Spe(T)

where the coefficients ¢, are as in (3.13)),

~ as\n i i d—v
(350) Spe(T)= 3 ;35/2)%(5%#71@[@Dan(tn))t T aubn/T),

tn<T log tn

d2e(€) = €%,

the coefficients 0, ,, L€ C are given by -, and D is as in . Moreover,
St (T) is similar to Sge(T'), but with the real part replaced by the imaginary
part.

Recalling the value of ¢, in we have

d—p+ 1=kt dpyihon (n Tt @ Th 1

a0 (S o))

h=0

where 7, € R are easily computed and rg = 1. Moreover, by and
(13.25) we also get

n\ Y4 & Th 1

h=0

with certain coefficients rj,. Therefore, since t,, < T log t,, implies that nl/d «
TlogT, by a further expansion of the exponential we obtain

d—v | 1=k—p
. ik —k— 7t 2d
(3-51> ean(t")tZ vt _ (27[_)d71/+1 ’; 2 (n) 6(—/43077/1/d)
q
d h ;
ni/d B
(X mfr + 07

h=0 j=0
uniformly in v, p and k, where 7, ; € C can be computed from the above
expressions and
(3.52) Ko = dg~ 4.

Plugging (3.51)) into (3.50) and then completing to oo the resulting sum
over n, thanks to the decay of the function ¢o/(t,,/T) we obtain

(3.53) Sre(T ZZ 2hSRe ) +O0(1),

h=0 5=0
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where

(3.54) Sgre(T) =)  —— 3 T Rk ge(—ron'’ ") ga(tn/T),

n=1M2

Ko is given by (3.52) and

D
wl/?u7k7£7h’j = e <

Clearly, a completely analogous expression holds for glm(T ), with the imag-
inary part in place of the real part. Therefore, inserting (3.53)) into (3.49)) we
finally obtain

Q Q d
(355)  Tr(T) =T 30 DTSN DD i ShelT)

—k—p

or)d\ T T
( ) > 6V7M7k7£77haj'

q

Q Q
+ /T ZZZZZ T%Slm ) 4 O(log T).

leu 0 k=0 £=0 h=0 j=0

Now we recall that az(n) are the coefficients of F(s)?, whose degree is 2d.
Thus the above quantities Sgre(7') and Sty (7T'), and hence also Jp(T') thanks
to , are closely related to the self-reciprocal twists Ffelf(s) and ﬁself(S).
More precisely, for ¢ > 1 and « # 0 we write

0o
as(n
(3.56)  Fis(s) := (Fself<>+Fself => ‘jf cos(—2mron'/?),
n=1
2 | = az(n) 1/d
(357) Fsm( ) = Z(Fself(sva) 5elf = ns Sln —2mkon )
n=1

Hence, writing for simplicity

a=ayuken; =RWpkens)s b=buukens = S(Wypkehn;)

and

1 1 wv—j k+p 1 1
5 = A
(3.58) 70 =590y 2d 2 2d d

say, in view of (3.54)), (3.56)), (3.57) the quantities Sgre(T") and Sy (T') are
closely related to
aFczos( ) bFSQIH( ) and chzos( ) + anm( )

respectively. But, thanks to the d-Hypothesis, the functions Fi.s(s) and
Fn(s) have holomorphic continuation to the half-plane o > 1/2+1/(2d)+9,
with polynomial growth on vertical strips. Thus we may apply a Mellin trans-
form technique to get bounds for Sge(7") and St (7).
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To this end we first compute the Mellin transform of ¢94(§), namely

~ T . 1 _[(s+20

(3.59) Guls) = § enr906 g = (252,
0
and let
1/d 1/d 1
_ T p2/ar?) 4 =

(3.60) Y = —Te o T<1 +0<T2>>,
so that by (3.14) we have
(3.61) Go0(tn/T) = dop(n*/?/Y).

Thus from (3.59), (3.61]) and the inverse Mellin transform we obtain
(3.62)
1 1 20
Sue(T) = 51 § @F2u(sfa +o0) ~ b2 G5/ + anr (252 s
(c)
with a sufficiently large constant ¢ > 0, and similarly for St (7). Let € > 0 be
arbitrarily small. Recalling the value of o in (3.58)), thanks to our hypothesis
and the decay of the I" function we can shift the integration in (3.62)) to the
line 0 =1+ dd+ j — df + €. Indeed, on this line we have

1 1 €
Rs/d+00) = 3+ o+ 3+ 2,
and hence in view of (3.56)), (3.57)), (3.60) and (3.62) we get
(3.63) Sre(T), St (T) < yHod+j—dfte o pltidtj—dfte

Finally, from (3.55)) and (3.58)) we see that the worst case in (3.63)) happens

when v <land p=k=h=7=0,s0 f =0 as well, thus
JF(T) < T1+6d+5,

and Theorem 2 follows.
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