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Abstract. Let F belong to the extended Selberg class S♯. We show how a suitable
hypothesis on the analytic continuation of a certain nonlinear twist of F 2, namely the
self-reciprocal twist, implies a sharp bound for the mean-square of F (1/2 + it).

1. Introduction. Let S and S♯ denote the Selberg and the extended
Selberg class, respectively, and let F ∈ S♯ be of degree d ≥ 1 and conductor q.
We shall briefly recall the basic notation and results in Section 2. In our
papers [1, 4–7] we studied the analytic properties of a class of nonlinear twists
of F . Moreover, in these and other papers, notably in [8, 9], we refined and
applied such properties to the study of the structure of the Selberg classes.

A significant role in the above research is played by the standard twist
F (s, α), a special nonlinear twist of F defined for σ > 1 by

F (s, α) =

∞∑
n=1

a(n)

ns
e(−αn1/d),

where a(n) are the Dirichlet coefficients of F , α > 0 and e(x) = e2πix. The
analytic properties of F (s, α) are now rather well known (see Section 2 for
some of them), and are crucial in several problems.

In this paper we introduce a more mysterious but equally important
nonlinear twist, namely the self-reciprocal twist defined for σ > 1 by

Fself(s) =
∞∑
n=1

a(n)

ns
e(−κFn

2/d), κF =
1

2
dq−1/d,
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and link it with a central problem in analytic number theory. Indeed, al-
though at present the analytic properties of the self-reciprocal twist are es-
sentially unknown, here we present an unexpected consequence of a seem-
ingly mild hypothesis about its analytic continuation to the left of the line
σ = 1. The name of this twist comes from the fact that the general trans-
formation formula for nonlinear twists in [5] links the twists

Fλ(s, α) =

∞∑
n=1

a(n)

ns
e(−αnλ), λ > 1/d and α ̸= 0,

to a certain combination of translates of so-called reciprocal (or dual) twists
Fλ∗(s∗, α∗). Here Fλ∗(s, α) denotes the conjugate of Fλ∗(s, α) and

λ∗ =
λ

dλ− 1
, α∗ = (dλ− 1)(qλλdλα)−1/(dλ−1)

and, if θF = 0,

s∗ =
s+ dλ

2 − 1

dλ− 1
,

where θF is the internal shift; see Section 2 for notation. Hence, when θF = 0,
we see that

(λ∗, α∗, s∗) = (λ, α, s) if and only if λ = 2/d and α = κF .

Therefore, in this case Fλ∗(s∗, α∗) = Fself(s), hence the name.
For powers of the Riemann zeta function, i.e. F (s) = ζ(s)k with integer

k ≥ 1, we simply write

ζk(s) =
∞∑
n=1

d2k(n)

ns
e(−kn1/k)

and our main result, Theorem 2 below, gives at once the following bound.

Theorem 1. Suppose that ζk(s) has holomorphic continuation to the
half-plane σ > 1

2 + 1
2k , with polynomial growth on every vertical strip inside

this half-plane. Then for every ε > 0 we have
T�

−T

|ζ(1/2 + it)|2k dt ≪ T 1+ε.

We expect that ζk(s) has meromorphic continuation over C, and has a
pole of order k2 + 1 at s = 1

2 + 1
2k ; cf. the Conjecture below.

Returning to the general case, we denote by a2(n) = a ∗ a(n) the co-
efficients of F 2. Clearly, the degree and conductor of F 2 are 2d and q2,
respectively, hence

F 2
self(s) =

∞∑
n=1

a2(n)

ns
e(−κ0n

1/d), κ0 := κF 2 = dq−1/d,
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is the self-reciprocal twist of F 2. For simplicity, in this paper we only consider
L-functions F ∈ S♯ with integer degree d and θF = 0. This is however the
most interesting case, since the classical L-functions satisfy both conditions.
Recalling that the conjugate function F has the same degree and conductor
as F and conjugate coefficients, we assume the following hypothesis on the
analytic continuation of the self-reciprocal twist.

δ-Hypothesis. Let F ∈ S♯ be of integer degree d ≥ 1 with conductor q
and θF = 0. Moreover, let δ ≥ 0 be fixed. Then the self-reciprocal twists
F 2
self(s) and F 2

self(s) have holomorphic continuation to the half-plane σ >
1
2 + 1

2d + δ with polynomial growth on every vertical strip contained in this
half-plane.

Interestingly, the point κ0 is related to the spectrum of F ; see Section 2.
Moreover, the growth condition can be somewhat relaxed, still leading to
the same conclusions in Theorem 2 below.

Turning to the applications of the self-reciprocal twist, for T > 0 suffi-
ciently large we write

IF (T ) =

T�

−T

|F (1/2 + it)|2 dt

and prove the following result.

Theorem 2. Let F ∈ S♯ be of integer degree d ≥ 1 with θF = 0, and
suppose that the δ-Hypothesis holds true. Then for every ε > 0 we have

IF (T ) ≪ T 1+δd+ε.

Finally, some remarks are in order. First note that if the δ-Hypothesis
holds with δ = 0, then we have the optimal bound

IF (T ) ≪ T 1+ε.

Thus, if the 0-Hypothesis holds true with F replaced by F k for arbitrarily
large integers k, then the Lindelöf Hypothesis holds for F . We have the
following

Conjecture. Let F ∈ S♯ be of integer degree d ≥ 1 with θF = 0, and
satisfy the Ramanujan Conjecture. Then the self-reciprocal twist F 2

self(s) has
meromorphic continuation to C with poles at most at the points

sk =
1

2
+

1

2d
− k

d
, k ≥ 0 integer,

and polynomial growth on vertical strips. Moreover, the pole at s0 has order
d2 + 1, while the other poles have order either d2 + 1 or 0.
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Note the analogy between the conjectural polar structure of the above
self-reciprocal twist and the known polar structure of the standard twist
reported in Section 2; note also the main difference in the polar orders.

We already pointed out that at present the range of δ for which the
δ-Hypothesis holds, and a fortiori the above conjecture, are open problems.
However, some partial results can be obtained in this direction, and we shall
return to this problem. Trivially, the hypothesis holds with δ = 1

2 −
1
2d , thus

giving
IF (T ) ≪ T (d+1)/2+ε

for every F ∈ S♯. For d ≥ 2 this is weaker than the classical bound

IF (T ) ≪ Tmax(1,d/2)+ε,

following from the approximate functional equation coupled with the mean-
value theorem for Dirichlet polynomials. Nevertheless, we believe that our
approach is interesting as it opens up a new attack to the moment problem
for L-functions. Moreover, our method shows that a finer heuristic conjec-
ture concerning the polar structure of the self-reciprocal twist could be used
to derive a precise asymptotics for IF (T ). This would allow a comparison
with other conjectures on the behaviour of IF (T ) already appearing in the
literature.

2. Notation. Throughout the paper we write s = σ + it, and f(s)
for f(s). The extended Selberg class S♯ consists of non-identically-vanishing
Dirichlet series

F (s) =

∞∑
n=1

a(n)

ns
,

absolutely convergent for σ > 1, such that (s − 1)mF (s) is entire of finite
order for some integer m ≥ 0, and satisfying a functional equation of type

F (s)γ(s) = ωγ(1− s)F (1− s),

where |ω| = 1 and the γ-factor

γ(s) = Qs
r∏

j=1

Γ (λjs+ µj)

has Q > 0, r ≥ 0, λj > 0 and ℜ(µj) ≥ 0. The Selberg class S is, roughly
speaking, the subclass of S♯ of the functions with a general Euler product
and satisfying the Ramanujan conjecture a(n) ≪ nε. We refer to our survey
paper [2] for further definitions, examples and the basic theory of the Selberg
class.
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The degree d, conductor q, root number ωF and ξ-invariant ξF of F ∈ S♯

are defined by

d = 2

r∑
j=1

λj , q = (2π)dQ2
r∏

j=1

λ
2λj

j ,

ωF = ω

r∏
j=1

λ
−2iℑ(µj)
j , ξF = 2

r∑
j=1

(µj − 1/2) := ηF + idθF

with ηF , θF ∈ R; here θF is the internal shift of F .
We conclude this section by reporting some results on the meromorphic

structure of the standard twist F (s, α); see [6]. The spectrum of F ∈ S♯ with
θF = 0 is defined as

Spec(F ) = {α > 0 : a(nα) ̸= 0}, nα = qd−dαd, a(nα) = 0 if nα ̸∈ N.

Then F (s, α) is entire if α ̸∈ Spec(F ), while it is meromorphic over C if
α ∈ Spec(F ). In the latter case, F (s, α) has at most simple poles at the
points

sk =
1

2
+

1

2d
− k

d
, k = 0, 1, . . . ,

with ress=s0F (s, α) ̸= 0. Moreover, in all cases F (s, α) has polynomial
growth on vertical strips.

3. Proof of Theorem 2. For T > 0 sufficiently large we also write

JF (T ) =

∞�

−∞
|F (1/2 + it)|2e−(t/T )2 dt.

Clearly
IF (T ) ≤ eJF (T ).

Moreover, since by convexity F (1/2+it) ≪ |t|ξ for every ξ > d/2 as |t| → ∞,
in the opposite direction we have

JF (T ) ≤ IF (T
√

c log T ) +O(1)

for every c > 1 + d. By partial integration we also obtain

JF (T ) =
1

T

∞�

0

IF (t)φ(t/T ) dt,

where φ(u) = 2ue−u2 . From the above relations it is easy to deduce that for
any A > 0,

IF (T ) ≪ TA ⇐⇒ JF (T ) ≪ TA,

IF (T ) ≪ T logA T ⇐⇒ JF (T ) ≪ T logA T.
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As a consequence, estimating IF (T ) and JF (T ) are essentially equivalent
tasks; we shall deal with JF (T ).

3.1. Set-up. In what follows, the implicit constants in the O- and ≪-
symbols may always depend on F . The symbol c, with or without subscript,
denotes complex constants depending on F , whose values will not necessarily
be the same at each occurrence. Analogously, the symbol r, with or without
suffix, denotes real constants with the same properties as c. Such constants
c and r can be explicitly computed, but in this paper their value is not
relevant.

Recalling the definition of JF (T ) and F we have

JF (T ) =
1

i

�

(1/2)

F (s)F (1− s)e(
s−1/2

T
)2 ds.

Then we shift the line of integration to σ = 3/2, taking into account the
residue of the integrand at the possible pole of F at s = 1. This is allowed
by the polynomial growth of F and the exponential decay of e((s−1/2)/T )2 .
Estimating the residue we obtain

(3.1) JF (T ) =
1

i

�

(3/2)

F (s)F (1− s)e(
s−1/2

T
)2 ds+O(1).

Recalling the functional equation of F , from (3.1) we deduce that

JF (T ) =
1

iω

�

(3/2)

F (s)2
γ(s)

γ(1− s)
e(

s−1/2
T

)2 ds+O(1).

Moreover, on the line σ = 3/2 we replace F (s)2 by its Dirichlet series and
switch summation and integration, thus getting

(3.2) JF (T ) =
1

ω

∞∑
n=1

a2(n)

n3/2

∞�

−∞

γ(3/2 + it)

γ(−1/2− it)
n−ite(

1+it
T

)2 dt+O(1).

Recalling our assumption that θF = 0, from the Stirling expansion in
[3, equation (2.8)] we have, for fixed σ and large |t|,

(3.3) log γ(s) = As log s+Bs+ C log s+

N∑
ν=0

cν
sν

+O(|s|−N−1),

where N ≥ 0 is a given integer and

(3.4) A= d/2, B=(log q − d log(2πe))/2, C = ξF /2∈R, cν ∈C.

Observing that

γ(s) = Qs
r∏

j=1

Γ (λjs+ µj),
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we see that the values of A,B,C computed from the data of γ(s) and γ(s)
coincide. Hence from (3.3) we deduce that

(3.5) log
γ(3/2 + it)

γ(−1/2− it)

= A(3/2 + it) log(3/2 + it) +B(3/2 + it) + C log(3/2 + it)

+A(1/2 + it) log(−1/2− it) +B(1/2 + it)− C log(−1/2− it) +Σ0(t),

where Σ0(t) arises from the expansion of the terms in the sum over ν in (3.3)
with s = 3/2 + it and s = −1/2 − it. Recalling that the value of cν is not
necessarily the same at each occurrence, Σ0(t) has the form

(3.6) Σ0(t) =

N∑
ν=0

cν
tν

+O(|t|−N−1).

By further expansions we get

(3.7)
log(3/2 + it) = log |t|+ i

π

2
sgn(t) +Σ1(t),

log(−1/2− it) = log |t| − i
π

2
sgn(t) +Σ1(t).

Here the form of Σ1(t) is similar to (3.6), but the summation starts with
ν = 1. Thus (3.4)–(3.7) give

log
γ(3/2 + it)

γ(−1/2− it)
= d log |t|+ i(dt log |t|+ 2Bt+D sgn(t)) +Σ0(t),

where

(3.8) D = πd/4 + πC ∈ R.

Hence for large |t|, say |t| > t0, we have

(3.9)
γ(3/2 + it)

γ(−1/2− it)
= |t|deiθ(t)Σ0(t),

where Σ0(t) is of the form (3.6) and

θ(t) = dt log |t|+ 2Bt+D sgn(t).

Recalling that d ∈ N, choosing N = d in (3.3), estimating trivially the
part with |t| ≤ t0 of the integral over (−∞,∞) and writing

fn(t) = θ(t)− t log n+ 2t/T 2,
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from (3.2), (3.6) and (3.9) we obtain
(3.10)

JF (T ) =
e1/T

2

ω

∞∑
n=1

a2(n)

n3/2

∞�

−∞
eifn(t)|t|de−(t/T )2Σ0(t) dt+O(1)

= e1/T
2

d∑
ν=0

cν

∞∑
n=1

a2(n)

n3/2

∞�

−∞
eifn(t)|t|dt−νe−(t/T )2 dt+O(log T ).

Denoting the last integrand by gν(t), and observing that fn(−t) = −fn(t)
for t ̸= 0, we have

ν even =⇒ gν(−t) = gν(t) and ν odd =⇒ gν(−t) = −gν(t).

Hence, writing

(3.11) Jν(n, T ) =

∞�

0

eiFn(t)td−νe−(t/T )2 dt

with

(3.12) Fn(t) = dt log t+ (2B − log n+ 2/T 2)t

and B as in (3.4), from (3.10) we finally deduce that

(3.13) JF (T ) = e1/T
2

d∑
ν=0
ν even

cν

∞∑
n=1

a2(n)

n3/2
ℜ(eiDJν(n, T ))

+ e1/T
2

d∑
ν=1
ν odd

cν

∞∑
n=1

a2(n)

n3/2
ℑ(eiDJν(n, T )) +O(log T )

with D as in (3.8).

3.2. Saddle point: preliminary reductions. Next we compute the
saddle point of the exponential integrals Jν(n, T ) in (3.13) and then we use
a suitable saddle point technique to extract their main contribution.

Since F ′
n(t) = d log t− d log(2π(n/q)1/d) + 2/T 2, see (3.12), we have

(3.14) F ′
n(t) = 0 if and only if t = tn := 2π(n/q)1/de−2/(dT 2).

Accordingly, we shift the integration over (0,∞) in Jν(n, T ) in the following
way. For a fixed 0 < θ < π/4 to be chosen later on, we consider the three
lines in the complex z-plane

ℓA : z = ρe−iθ, ℓB : z = ρeiθ, ℓn : z = tn + ρeiπ/4 with ρ ∈ R,

and define the two points

zA = ℓA ∩ ℓn and zB = ℓB ∩ ℓn
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lying in the half-plane ℜ(z) > 0. The functions Fn(z) in (3.12) and zd−ν ,
e−(z/T )2 in (3.11) are holomorphic for ℜ(z) > 0. Moreover, writing z = ρeiϕ,
we have

eiFn(z)zd−νe−(z/T )2

≪ e−ρ(d log ρ sinϕ+dϕ cosϕ+(2B−logn+2/T 2) sinϕ)ρd−νe−(ρ/T )2 cos(2ϕ),

thus the integrand in (3.11) has exponential decay as ρ → ∞ uniformly for
0 ≤ ϕ ≤ θ, i.e. in the sector between the half-lines z = ρ and ℓB with ρ > 0,
thanks to 0 < θ < π/4. Hence by Cauchy’s theorem we can shift the path of
integration, thus getting

(3.15) Jν(n, T ) =
(zA�

0

+

zB�

zA

+

∞eiθ�

zB

)
eiFn(z)zd−νe−(z/T )2 dz

= J (1)
ν (n, T ) + J (2)

ν (n, T ) + J (3)
ν (n, T ),

say, where the paths of integration are along ℓA, ℓn and ℓB, respectively.
Before treating the integrals in (3.15) we compute zA and zB. Let h, h′

be the distances of zA, zB from the real axis, respectively. Then

tan θ =
h

tn − h
, h =

tan θ

1 + tan θ
tn,

|zA| =
h

sin θ
=

tan θ

1 + tan θ

1

sin θ
tn =

tn
sin θ + cos θ

and hence

(3.16) zA =
e−iθ

sin θ + cos θ
tn.

Arguing in a similar way we obtain

(3.17) zB =
eiθ

cos θ − sin θ
tn.

In view of the definition of ℓA and recalling that 0 ≤ ν ≤ d, we have

J (1)
ν (n, T ) ≪

|zA|�

0

e−ℑFn(ρe−iθ)(1 + ρd) dρ.

Moreover, from (3.4), (3.12) and (3.14) we get

(3.18) ℑFn(ρe
−iθ) = −dρ log ρ sin θ−dρθ cos θ−ρ(2B− log n+2/T 2) sin θ

= −dρ sin θ log

(
ρ(q/n)1/de2/(dT

2)eθ cot θ

2πe

)
= dρ sin θ log

(
etn

ρeθ cot θ

)
.
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But, thanks to (3.16), for 0 ≤ ρ ≤ |zA| we obtain
etn

ρeθ cot θ
≥ e

sin θ + cos θ

eθ cot θ
= 1 + θ +O(θ2)

as θ → 0+, therefore
ℑFn(ρe

−iθ) ≥ dρθ2/2

for 0 ≤ ρ ≤ |zA| and 0 < θ < θ0, where θ0 > 0 is sufficiently small. As a
consequence we have

(3.19) J (1)
ν (n, T ) ≪

|zA|�

0

e−dρθ2/4(1 + ρd) dρ ≪ 1

uniformly in n, ν and T , with any fixed 0 < θ < θ0 and a sufficiently small
θ0 > 0.

The treatment of J (3)
ν (n, T ) is similar. Thanks to (3.14), (3.17) and (3.18),

for ρ ≥ |zB| we have

ℑFn(ρe
iθ) = dρ sin θ log

(
ρeθ cot θ

etn

)
≥ dρ sin θ log

(
eθ cot θ

e(cos θ − sin θ)

)
,

and as θ → 0+,
eθ cot θ

e(cos θ − sin θ)
= 1 + θ +O(θ2).

Hence, as before, we deduce that

J (3)
ν (n, T ) ≪

∞�

|zB |

e−dρθ2/4ρd dρ ≪ 1,

thus from (3.15) and (3.19) also that

(3.20) Jν(n, T ) = J (2)
ν (n, T ) +O(1),

with the same uniformity and conditions stated after (3.19).
We conclude this subsection by rewriting J

(2)
ν (n, T ) in a more convenient

form. To this end we write z ∈ [zA, zB] as

(3.21) z = tn(1 + ueiπ/4) with −A(θ) ≤ u ≤ B(θ)

and compute A(θ) and B(θ). From (3.16) we see that A(θ) satisfies
cos θ − i sin θ

sin θ + cos θ
= 1−A(θ)eiπ/4,

hence

(3.22) A(θ) = (1 + i)
sin θ

sin θ + cos θ
e−iπ/4 =

√
2

sin θ

sin θ + cos θ
=

√
2

1 + cot θ
.

Similarly, from (3.17) we get

(3.23) B(θ) = (1 + i)
sin θ

cos θ − sin θ
e−iπ/4 =

√
2

cot θ − 1
.



Nonlinear twists and moments of L-functions 11

Therefore, in view of (3.15) and (3.21), J (2)
ν (n, T ) can be rewritten as

(3.24) J (2)
ν (n, T )

= tne
iπ/4

B(θ)�

−A(θ)

eiFn(tn(1+ueiπ/4))td−ν
n (1 + ueiπ/4)d−νe−(tn/T )2(1+ueiπ/4)2 du

= td+1−ν
n eiπ/4eiFn(tn)

B(θ)�

−A(θ)

ei(Fn(tn(1+ueiπ/4))−Fn(tn))

× (1 + ueiπ/4)d−νe−(tn/T )2(1+ueiπ/4)2 du,

where A(θ) and B(θ) are given by (3.22) and (3.23), respectively. Moreover,
θ is fixed with 0 < θ < θ0 and θ0 > 0 sufficiently small. Therefore, in what
follows we assume that |u| is sufficiently small as well, since A(θ), B(θ) → 0
as θ → 0+.

3.3. Saddle point: further reductions. From (3.4), (3.12) and (3.14)
we see that

(3.25) Fn(z) = dz log

(
z

etn

)
,

hence

Fn

(
tn(1 + ueiπ/4)

)
− Fn(tn) = dtn

(
(1 + ueiπ/4) log(1 + ueiπ/4)− ueiπ/4

)
.

But for |w| ≤ 1/2 we have

(1+w) log(1+w)−w = (1+w)
∞∑

m=1

(−1)m+1

m
wm −w =

∞∑
m=2

(−1)m

m(m− 1)
wm,

therefore for any integer M ≥ 2 we deduce, with the obvious meaning of the
real constants rm, that

(3.26) Fn(tn(1+ueiπ/4))−Fn(tn) = dtn

M∑
m=2

rmeimπ/4um+O

(
tn|u|M+1

M

)
.

As a consequence, from (3.24) we obtain

(3.27) J (2)
ν (n, T ) = td+1−ν

n eiFn(tn)e−(tn/T )2
d−ν∑
µ=0

(
d− ν

µ

)
ei(µ+1)π/4

×
B(θ)�

−A(θ)

e−
1
2
dtnu2

eidtn
∑M

m=3 rmeimπ/4um
eO

(
tn|u|M+1

M

)
uµe−(tn/T )2(2eiπ/4u+iu2) du

= td+1−ν
n eiFn(tn)e−(tn/T )2

d−ν∑
µ=0

(
d− ν

µ

)
ei(µ+1)π/4J̃µ(n, T ),

say.
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By the substitution

(3.28)
√

dtn/2u = ξ

we have

(3.29)

J̃µ(n, T ) =

(
2

dtn

)(µ+1)/2

√
dtn/2B(θ)�

−
√

dtn/2A(θ)

e−ξ2ξµeidtn
∑M

m=3 rm( 2
dtn

)m/2eimπ/4ξm

× eO( tn
M

(2ξ2/(dtn))(M+1)/2)e
−(tn/T )2(2eiπ/4

√
2

dtn
ξ+i 2

dtn
ξ2) dξ

=

(
2

dtn

)(µ+1)/2( √
dtn/2B(θ)�

−
√

dtn/2A(θ)

e−ξ2ξµeΣ(ξ,n)e−g(ξ,n,T ) dξ +Rµ(n, T )
)

=

(
2

dtn

)(µ+1)/2

(Jµ(n, T ) +Rµ(n, T )).

Here Rµ(n, T ) is the error term arising from the replacement of

eO
(

tn
M

(2ξ2/(dtn))(M+1)/2
)

by 1 inside the first integral, and

Σ(ξ, n) = idtn

M∑
m=3

rm

(
2

dtn

)m/2

eimπ/4ξm,(3.30)

g(ξ, n, T ) = (tn/T )
2

(
2eiπ/4

√
2

dtn
ξ + i

2

dtn
ξ2
)
,(3.31)

Jµ(n, T ) =

√
dtn/2B(θ)�

−
√

dtn/2A(θ)

e−ξ2+Σ(ξ,n)−g(ξ,n,T )ξµ dξ.(3.32)

Next we estimate the contribution to J (2)
ν (n, T ) of the error termsRµ(n, T )

in (3.29). Recalling (3.28), the value of rm in (3.26) and the fact that |u| is
assumed to be sufficiently small (see after (3.24)), from (3.30) and (3.31) we
have that

(3.33) Σ(ξ, n) ≪ |ξ|3√
tn

≤ ξ2/2 and |g(ξ, n, T )| ≤ (tn/T )
2

2

for −
√

dtn/2A(θ) ≤ ξ ≤
√
dtn/2B(θ). Then we choose M = M(n) so large

that

(3.34)
tn

M2M
< c t−d−1/2

n ,

with a sufficiently small constant c > 0. Hence, recalling that A(θ), B(θ) are
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sufficiently small and µ ≥ 0, from (3.29), (3.33) and (3.34) we obtain(
2

dtn

)(µ+1)/2

Rµ(n, T ) ≪
1

td+1
n

e(tn/T )2/2
∞�

−∞
e−ξ2/2 dξ(3.35)

≪ 1

td+1
n

e(tn/T )2/2.

Since Fn(tn) ∈ R, by (3.27), (3.29) and (3.35) the contribution to J
(2)
ν (n, T )

of the error terms Rµ(n, T ) is

(3.36) O(1)

uniformly in ν, n and T , provided θ0 > 0 is sufficiently small and M satisfies
(3.34). Therefore, from (3.20), (3.27), (3.29) and (3.36) we deduce that

(3.37) Jν(n, T )

= eiFn(tn)td+1−ν
n e−(tn/T )2

d−ν∑
µ=0

(
d− ν

µ

)
ei(µ+1)π/4

(
2

dtn

)(µ+1)/2

Jµ(n, T )

+O(1)

with the same uniformity and conditions after (3.36), where Jµ(n, T ) is de-
fined by (3.32).

3.4. Saddle point: computing the main terms. Now we study the
integrals Jµ(n, T ). We may assume that n is sufficiently large, say n ≥ n0,
since for n < n0 we have Jν(n, T ) = O(1) and their contribution to JF (T )
amounts to O(1). We first show that the range of integration in Jµ(n, T ) can
be replaced, up to a negligible quantity, by |ξ| ≤ c(θ) log tn, where c(θ) > 0
is such that

min(
√
ktn/2A(θ),

√
ktn/2B(θ)) > c(θ) log tn

for every n ≥ n0. To this end we write

(3.38) Iµ(n, T ) =

c(θ) log tn�

−c(θ) log tn

e−ξ2+Σ(ξ,n)−g(ξ,n,T )ξµ dξ,

and arguing as in (3.35), from (3.33) we find that

(3.39) Jµ(n, T )− Iµ(n, T ) ≪
(−c(θ) log tn�

−∞
+

∞�

c(θ) log tn

)
e−ξ2/2+(tn/T )2/2|ξ|µ dξ

≪ t−A
n e(tn/T )2/2
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for every A > 0. Therefore, arguing as for (3.36), from (3.37) and (3.39) we
get

(3.40) Jν(n, T ) = eiFn(tn)e−(tn/T )2
d−ν∑
µ=0

αν,µ t
d+1−ν−(µ+1)/2
n Iµ(n, T ) +O(1)

with the same uniformity and conditions after (3.36), where Iµ(n, T ) is de-
fined by (3.38) and

(3.41) αν,µ =

(
d− ν

µ

)(
2

d

)(µ+1)/2

ei(µ+1)π/4.

Next we estimate the contribution of the integrals Iµ(n, T ) to Jν(n, T )
for the values n ≥ n0 such that tn > T log tn. In this case, again thanks
to (3.33), we have

Iµ(n, T ) ≪
c(θ) log tn�

−c(θ) log tn

e(tn/T )2/2|ξ|µ dξ ≪ e(tn/T )2/2 logµ+1 tn.

Hence such a contribution is

(3.42) O(1),

once more with the same uniformity and conditions after (3.36).
Finally, we compute the contribution of Iµ(n, T ) to Jν(n, T ) for n ≥ n0

with tn ≤ T log tn. From (3.30), (3.31) and the first estimate in (3.33) we see
that for |ξ| ≤ c(θ) log tn,

|Σ(ξ, n)|, |g(ξ, n, T )| ≤ log3 tn√
tn

,

provided c(θ) is sufficiently small. Hence, given an arbitrarily large constant
A > 0, there exist integers Q = Q(A) > 0 and 0 ≤ p, k, ℓ ≤ Q, and coeffi-
cients βp,k,ℓ ∈ C, such that for |ξ| ≤ c(θ) log tn we have

eΣ(ξ,n)−g(ξ,n,T ) =
∑

0≤p≤Q

∑
0≤k≤Q

∑
0≤ℓ≤Q

βp,k,ℓ
ξp

t
k/2
n

(
tn
T

)2ℓ

+O(t−A−1
n ).

Note that β0,0,0 = 1, while the other coefficients βp,k,ℓ are computable from
the expressions in (3.30) and (3.31). Note also that, although M in (3.30) now
depends on n, the integer Q is independent of n. Indeed, the contribution of
the terms in (3.30) with m sufficiently large in terms of A is directly absorbed
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into the error term O(t−A−1
n ). As a consequence,

(3.43) Iµ(n, T )

=
∑

0≤p≤Q

∑
0≤k≤Q

∑
0≤ℓ≤Q

βp,k,ℓ
1

t
k/2
n

(
tn
T

)2ℓ c(θ) log tn�

−c(θ) log tn

e−ξ2ξµ+p dξ +O(t−A−1
n ).

But for an arbitrarily large constant B > 0 we have
c(θ) log tn�

−c(θ) log tn

e−ξ2ξµ+p dξ =

∞�

−∞
e−ξ2ξµ+p dξ +O(t−B

n )

=
1

2
Γ

(
µ+ p+ 1

2

)
(1 + (−1)µ+p) +O(t−B

n ).

Hence, by a suitable choice of B = B(A) and after summation over p, (3.43)
becomes

(3.44) Iµ(n, T ) =
∑

0≤k≤Q

∑
0≤ℓ≤Q

γk,ℓ,µ
1

t
k/2
n

(
tn
T

)2ℓ

+O(t−A
n )

for n ≥ n0 with tn ≤ T log tn, where

(3.45) γk,ℓ,µ =
1

2

∑
0≤p≤Q

βp,k,ℓΓ

(
µ+ p+ 1

2

)
(1 + (−1)µ+p).

Now we fix a sufficiently small θ > 0 such that all the above estimates
hold, and a sufficiently large A. Hence from the remark at the beginning of
this subsection and from equations (3.40), (3.42), (3.44) we deduce, for the
values of n such that n < n0 or tn > T log tn, that

(3.46) Jν(n, T ) = O(1).

Moreover, for the values of n with n ≥ n0 and tn ≤ T log tn we have

(3.47)
Jν(n, T ) = eiFn(tn)e−(tn/T )2

d−ν∑
µ=0

Q∑
k=0

Q∑
ℓ=0

δν,µ,k,ℓt
d+1/2−ν−(µ+k)/2
n

(
tn
T

)2ℓ

+O(1)

uniformly in ν, n and T . Here

(3.48) δν,µ,k,ℓ = αν,µγk,ℓ,µ,

where αν,µ is given by (3.41) and γk,ℓ,µ is as in (3.45). Note that δν,µ,k,ℓ are
complex numbers due to the powers of eiπ/4 involved in αν,µ and βp,k,ℓ.

3.5. Entering the self-reciprocal twist and completion of the
proof. From (3.13), (3.46), (3.47) and a simple estimate for the terms with



16 J. Kaczorowski and A. Perelli

n < n0 we obtain

(3.49) JF (T ) = e1/T
2

d∑
ν=0
ν even

cν

d−ν∑
µ=0

Q∑
k=0

Q∑
ℓ=0

S̃Re(T )

+ e1/T
2

d∑
ν=1
ν odd

cν

d−ν∑
µ=0

Q∑
k=0

Q∑
ℓ=0

S̃Im(T ) +O(log T ),

where the coefficients cν are as in (3.13),

(3.50) S̃Re(T ) =
∑

tn≤T log tn

a2(n)

n3/2
ℜ(δν,µ,k,ℓeiDeiFn(tn))t

d−ν+ 1−µ−k
2

n ϕ2ℓ(tn/T ),

ϕ2ℓ(ξ) = e−ξ2ξ2ℓ,

the coefficients δν,µ,k,ℓ ∈ C are given by (3.48), and D is as in (3.8). Moreover,
S̃Im(T ) is similar to S̃Re(T ), but with the real part replaced by the imaginary
part.

Recalling the value of tn in (3.14) we have

t
d−ν+ 1−k−µ

2
n = (2π)d−ν+ 1−k−µ

2

(
n

q

) d−ν
d

+ 1−k−µ
2d

( d∑
h=0

rh
T 2h

+O

(
1

T 2d+2

))
,

where rh ∈ R are easily computed and r0 = 1. Moreover, by (3.14) and
(3.25) we also get

Fn(tn) = −dtn = −2πd

(
n

q

)1/d( d∑
h=0

rh
T 2h

+O

(
1

T 2d+2

))
with certain coefficients rh. Therefore, since tn ≤ T log tn implies that n1/d ≪
T log T , by a further expansion of the exponential we obtain

(3.51) eiFn(tn)t
d−ν+ 1−k−µ

2
n = (2π)d−ν+ 1−k−µ

2

(
n

q

) d−ν
d

+ 1−k−µ
2d

e(−κ0n
1/d)

×
( d∑

h=0

h∑
j=0

ηh,j
nj/d

T 2h
+O(T−d)

)
uniformly in ν, µ and k, where ηh,j ∈ C can be computed from the above
expressions and
(3.52) κ0 = dq−1/d.

Plugging (3.51) into (3.50) and then completing to ∞ the resulting sum
over n, thanks to the decay of the function ϕ2ℓ(tn/T ) we obtain

(3.53) S̃Re(T ) =
d∑

h=0

h∑
j=0

1

T 2h
SRe(T ) +O(1),
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where

(3.54) SRe(T ) =
∞∑
n=1

a2(n)

n
1
2
− 1

2d
+ ν−j

d
+ k+µ

2d

ℜ(ων,µ,k,ℓ,h,je(−κ0n
1/d))ϕ2ℓ(tn/T ),

κ0 is given by (3.52) and

ων,µ,k,ℓ,h,j = eiD
(
(2π)d

q

) d−ν
d

+ 1−k−µ
2d

δν,µ,k,ℓηh,j .

Clearly, a completely analogous expression holds for S̃Im(T ), with the imag-
inary part in place of the real part. Therefore, inserting (3.53) into (3.49) we
finally obtain

(3.55) JF (T ) = e1/T
2

d∑
ν=0
ν even

d−ν∑
µ=0

Q∑
k=0

Q∑
ℓ=0

d∑
h=0

h∑
j=0

cν
T 2h

SRe(T )

+ e1/T
2

d∑
ν=1
ν odd

d−ν∑
µ=0

Q∑
k=0

Q∑
ℓ=0

d∑
h=0

h∑
j=0

cν
T 2h

SIm(T ) +O(log T ).

Now we recall that a2(n) are the coefficients of F (s)2, whose degree is 2d.
Thus the above quantities SRe(T ) and SIm(T ), and hence also JF (T ) thanks
to (3.55), are closely related to the self-reciprocal twists F 2

self(s) and F 2
self(s).

More precisely, for σ > 1 and α ̸= 0 we write

F 2
cos(s) :=

1

2
(F 2

self(s) + F 2
self(s)) =

∞∑
n=1

a2(n)

ns
cos(−2πκ0n

1/d),(3.56)

F 2
sin(s) :=

1

2i
(F 2

self(s, α)− F 2
self(s)) =

∞∑
n=1

a2(n)

ns
sin(−2πκ0n

1/d).(3.57)

Hence, writing for simplicity

a = aν,µ,k,ℓ,h,j := ℜ(ων,µ,k,ℓ,h,j), b = bν,µ,k,ℓ,h,j := ℑ(ων,µ,k,ℓ,h,j)

and

(3.58) σ0 :=
1

2
− 1

2d
+

ν − j

d
+

k + µ

2d
=

1

2
− 1

2d
− j

d
+ f,

say, in view of (3.54), (3.56), (3.57) the quantities SRe(T ) and SIm(T ) are
closely related to

aF 2
cos(σ0)− bF 2

sin(σ0) and bF 2
cos(σ0) + aF 2

sin(σ0),

respectively. But, thanks to the δ-Hypothesis, the functions Fcos(s) and
Fsin(s) have holomorphic continuation to the half-plane σ > 1/2+1/(2d)+δ,
with polynomial growth on vertical strips. Thus we may apply a Mellin trans-
form technique to get bounds for SRe(T ) and SIm(T ).
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To this end we first compute the Mellin transform of ϕ2ℓ(ξ), namely

(3.59) ϕ̃2ℓ(s) =

∞�

0

ϕ2ℓ(ξ)ξ
s−1 dξ =

1

2
Γ

(
s+ 2ℓ

2

)
,

and let

(3.60) Y =
q1/d

2π
Te2/(dT

2) =
q1/d

2π
T

(
1 +O

(
1

T 2

))
,

so that by (3.14) we have

(3.61) ϕ2ℓ(tn/T ) = ϕ2ℓ(n
1/d/Y ).

Thus from (3.59), (3.61) and the inverse Mellin transform we obtain
(3.62)

SRe(T ) =
1

2πi

�

(c)

(aF 2
cos(s/d+ σ0)− bF 2

sin(s/d+ σ0))
1

2
Γ

(
s+ 2ℓ

2

)
Y s ds

with a sufficiently large constant c > 0, and similarly for SIm(T ). Let ε > 0 be
arbitrarily small. Recalling the value of σ0 in (3.58), thanks to our hypothesis
and the decay of the Γ function we can shift the integration in (3.62) to the
line σ = 1 + δd+ j − df + ε. Indeed, on this line we have

ℜ(s/d+ σ0) =
1

2
+

1

2d
+ δ +

ε

d
,

and hence in view of (3.56), (3.57), (3.60) and (3.62) we get

(3.63) SRe(T ), SIm(T ) ≪ Y 1+δd+j−df+ε ≪ T 1+δd+j−df+ε.

Finally, from (3.55) and (3.58) we see that the worst case in (3.63) happens
when ν ≤ 1 and µ = k = h = j = 0, so f = 0 as well, thus

JF (T ) ≪ T 1+δd+ε,

and Theorem 2 follows.
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