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Invariant ideal axiom,
beyond the countable sequential groups

by

Michael Hrušák (Morelia) and Alexander Shibakov (Cookeville, TN)

Abstract. We demonstrate applications of IIA to groups outside the class of count-
able sequential groups and answer several questions of D. Shakhmatov and others. A num-
ber of new open questions are stated as well.

1. Introduction. The study of phenomena resulting from marrying con-
tinuous and algebraic structures has a long history. In most cases, even a
mild algebraic structure (say, that of a group) combined with an interesting
topological property (e.g. compactness, or countable (π-)character) results
in a space with a very rich topological structure (e.g. all compact groups are
dyadic while first-countable groups are exactly the metrizable ones, see [3]).
In some cases, the algebraic properties are affected, as well (as an example,
every countably compact sequential semigroup with two-sides cancellations
is in fact a topological group [35]).

Existence of (a rich supply of) convergent sequences in topological groups
has been a subject of active research for several decades (see [1, 2, 7, 9, 16,
17, 18, 19, 21, 36] and also surveys [24, 25, 13]). The two early questions
that guided the development of this field were asked by V. Malykhin and
P. Nyikos in 1978 and 1980 respectively. Without getting into full details, let
us point out that these questions involved topological groups in which con-
vergent sequences determine the topology, i.e. Fréchet groups (in Malykhin’s
question) and sequential groups (in Nyikos’ question).

The answers to both Malykhin’s and Nyikos’ problems were found to be
independent of the usual axioms of set theory (see [5, 12, 28, 29]). Analyz-
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ing the proofs of these results, the present authors extracted a set-theoretic
principle, called the Invariant Ideal Axiom, or IIA, and used it to obtain a full
topological classification of countable sequential topological groups in [14]. In
the same paper, the authors expressed their hope that the IIA is not merely a
one-off technique for obtaining the classification mentioned above, but a tool
providing a general (consistent) framework for investigating convergence in
groups that are not necessarily sequential or countable.

In the present paper we continue the investigation started in [14] by con-
sidering some classes of uncountable sequential groups, as well as countable
but not necessarily sequential groups. We introduce an extension of the class
of sequential groups, the class of (strongly) groomed groups and use IIA
to show that strongly groomed groups have almost the same structure as
the class of sequential groups. An example showing that the ‘almost’ in the
previous sentence cannot be dropped is given as well.

We also show that IIA implies the nonexistence of precompact (thus pseu-
docompact, as well) sequential groups that are not Fréchet, answering ques-
tions of D. Shakhmatov [24], and A. Arkhangel’skii and V. Tkachenko [3].
It is worth noting that this application of IIA requires an analysis of subse-
quential groups, so nearly full generality of IIA is essential.

Finally, we study embeddings into sequential topological groups and con-
struct an example of a completely regular sequential space that cannot
be embedded into a sequential topological group, answering questions of
D. Shakhmatov [25] and A. Arkhangel’skii and V. Tkachenko [3]. We also
show that in the model of IIA built in [14] every sequential topological group
that is not Fréchet contains a closed copy of the sequential fan, S(ω), and
build an example that demonstrates that some natural generalizations of IIA
are false, answering a question asked by L. Zdomskĭı.

2. Definitions and preliminary results. All spaces below are as-
sumed to be Hausdorff unless stated otherwise. The following definitions are
central to the study of convergence in topological spaces.

Definition 2.1. A space X is called Fréchet if for any x ∈ A ⊆ X there
is a sequence S ⊆ A such that S → x.

An important subclass of Fréchet spaces is that of first-countable spaces,
i.e. spaces that have a countable local base of open neighborhoods at every
point.

Sequential spaces provide a nontrivial extension of the class of Fréchet
spaces.

Definition 2.2. A space X is called sequential if for every A ⊆ X such
that A ̸= A there is a sequence C ⊆ A such that C → x ̸∈ A.
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We will also need the following detailed description of the closure operator
in sequential spaces.

Definition 2.3 (Sequential closure). Let A ⊆ X. Define

[A]′ = {x ∈ X : C → x for some C ⊆ A }.
Put

[A]0 = A, [A]α =
⋃

{[[A]β]′ : β < α} for 0 < α ≤ ω1.

It follows that X is sequential if and only if A = [A]ω1 for every A ⊆ X.
We can now also define the sequential order as a complexity measure for

the closure operator.

Definition 2.4. Define so(X) = min {α ≤ ω1 : [A]α = A for every
A ⊆ X. Similarly, for any x ∈ X and any A ⊆ X such that x ∈ [A]ω1 , define
so(x,A) = min {α ≤ ω1 : x ∈ [A]α}.

Various standard test spaces are defined below. They serve as quick ex-
amples that illustrate the various definitions introduced above.

Let Sn = ω≤n for n ∈ ω and Sω =
⋃

n∈ω Sn. Declare U ⊆ Sn, where
n ∈ ω + 1, to be open if and only if for every s ∈ U the set {s⌢k ∈ Sn :
s⌢k ̸∈ U} is finite. Now each Sn is sequential and so(Sn) = n for n < ω,
whereas so(Sω) = ω1. S2 is known also as Arens’ space, while Sω is referred
to as the Arkhangel’skii–Franklin space.

The quotient S(ω) = S2/ω
≤1 is called the sequential fan. Finally, define

D(ω) = ω × ω ∪ {(ω, ω)} ⊆ (ω + 1)2 in the natural product topology (this
space is sometimes referred to as a convergent sequence of discrete sets).

We quickly note the following standard facts.
S(ω) is Fréchet but not first-countable (it has character d), while S(ω)2 as

well as S2 are sequential but not Fréchet. The space Sω is homogeneous but
not a topological group [22]. The spaceD(ω) is metrizable, while S(ω)×D(ω)
is not sequential.

Some less immediate properties of test spaces will be listed next.

Theorem 2.5 (P. Nyikos, [18]). A topological group contains a copy of
S2 if and only if it contains a copy of S(ω).

Theorem 2.6 (Y. Tanaka, [34]). Let X be a topological space in which
every point is Gδ (for example, X is countable). Then X contains a copy of
S(ω) (resp., S2) if and only if X contains a closed copy of S(ω) (resp., S2).

Putting these facts together and recalling that S2 is not Fréchet, one ob-
tains the following characterization of Fréchet groups in terms of embeddings
of test spaces.

Corollary 2.7. A countable sequential topological group is Fréchet if
and only if it does not contain a closed copy of S(ω) (equivalently S2).
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We now introduce two important classes of topological spaces that will
play a central role in the rest of the paper.

Definition 2.8. X is called a kω-space (resp. cω-space) if there exists
a countable family K of compact (resp. countably compact) subspaces of X
such that A ⊆ X is closed if an only if A ∩K is closed for every K ∈ K.

Some authors use the notation kℵ0 in place of kω, as well. A few basic
properties of kω-spaces are listed below. Most of these results are folklore;
see [8] for further details.

Lemma 2.9. Countable kω-spaces are sequential. The class of kω-spaces
is finitely productive, i.e. if X and Y are kω then so is X × Y . Countable
kω-spaces have definable (in fact Fσδ) topologies; in particular, all countable
kω-spaces are analytic (see below for the definition). Every kω-space is a
quotient image of a topological sum of countably many compact spaces.

The class of cω-spaces is not equally well studied. A natural question
about cω-spaces is how they behave with respect to products. Note that
at most countable products (in fact, all Σ-products) of countably compact
sequential spaces are countably compact and sequential [15]. We repeat the
question from [14] here.

Question 1. Is the class of sequential cω-spaces closed under finite prod-
ucts?

To introduce the next property of kω-groups we need to recall the defi-
nition of the Cantor–Bendixson index.

Definition 2.10. Define (Y )′ = Y \ {x ∈ Y : x is isolated in Y }. Now
put (X)0 = X, (X)α+1 = ((X)α)′, and (X)α =

⋂
β<α(X)β for limit α.

A space X is called scattered if (X)α = ∅ for some α. The smallest such
α is called the scatteredness (or the Cantor–Bendixson) index of X. Given
x ∈ X, we write scl(x,X) = α where α is the unique ordinal such that
x ∈ (X)α \ (X)α+1.

It is well-known that every countable compact space is scattered (and is
homeomorphic to a subspace of ω1 in the standard order topology), which
makes the following concept well-defined.

Definition 2.11. Define the compact scatteredness rank of a countable
space X as the supremum of the scatteredness (Cantor–Bendixson) indices
of compact subspaces of X.

The next result by E. Zelenyuk [36] is particularly useful.

Lemma 2.12 (E. Zelenyuk). Countable kω-groups of the same compact
scatteredness rank are homeomorphic.
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In particular, there are exactly ω1 countable kω-group topologies (up to
a homeomorphism).

If in the last property of Lemma 2.9 one replaces ‘a topological sum of
countably many compact spaces’ with ‘a separable metrizable space’, the
resulting space can be described using the following concept.

Definition 2.13. A countable family K of subsets of a topological space
X is called a cs∗-network if for any infinite convergent sequence S → x and
any open U ∋ x there exists a K ∈ K such that K ⊆ U and K ∩S is infinite.

It can be shown that a sequential X is a quotient image of a separable
metrizable space if and only if X has a countable cs∗-network. Among the
many applications of Lemma 4.5 (see below) is the following, somewhat
unexpected result.

Theorem 2.14 (T. Banakh, L. Zdomsky̆ı, [4]). A countable sequential
topological group is kω if and only if it has a countable cs∗-network.

3. Questions of V. Malykhin and P. Nyikos and the Invariant
Ideal Axiom. The following two questions have been especially influential
in the study of convergence properties in groups.

Question 2 (V. Malykhin, 1979). Does there exist a separable (equiv-
alently, countable) Fréchet topological group that is not metrizable?

Question 3 (P. Nyikos, 1980). Does there exist a (separable) sequen-
tial topological group that has an intermediate (i.e. not one of 0, 1, or ω1)
sequential order?

Relatively weak set-theoretic assumptions such as ♢(2,=) [12] and p = b
[23] are known to produce examples that answer Malykhin’s question in the
affirmative.

The result establishing the independence of the answer to Question 2
from ZFC was proved in [12] by the first author and U. A. Ramos-García,
where the following theorem was proved.

Theorem 3.1. There exists a model of ZFC in which all separable Fréchet
topological groups are metrizable.

Consistent examples of countable sequential groups with an intermediate
sequential order were constructed in [27] and [28] using CH. Finally, in [29],
the second author proved the result below, establishing the independence of
the answer to P. Nyikos’s question from the axioms of ZFC.

Theorem 3.2. There exists a model of ZFC in which the sequential order
of every sequential group is in {0, 1, ω1}.

Striving to unify the proofs of Theorems 3.1 and 3.2, the authors intro-
duced a new set-theoretic axiom, called the Invariant Ideal Axiom or IIA
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in [14]. The axiom allowed a complete topological characterization of count-
able sequential groups in a manner similar to that of Theorem 2.14. To
reach such generality, the language of networks had to be replaced with that
of ideals.

Our treatment of IIA here differs from the one in [14] in order to achieve
greater generality and provide deeper insight into the behavior of general
ideals in groups and other spaces.

Recall that an ideal is a family I ⊆ P(G), closed under taking subsets
and finite unions. Recall also that I+ = P(G) \ I.

We now state the most general form of the Ideal Axiom. Let P be a class
of countable topological spaces and Q be a class of ideals on the members
of P.

IA(P,Q): For every space X ∈ P and ideal I ⊆ P(X) in Q one of the
following holds for every x ∈ X:

(1) there is a countable S ⊆ I such that for every infinite se-
quence C convergent to x ∈ X there is an I ∈ S such that
C ∩ I is infinite;

(2) there is a countable H ⊆ I+ such that for every open U ⊆ X
where x ∈ U , there is an H ∈ H such that H \ U ∈ I.

We will call the S from the first alternative a sequence capturing family,
and the set H from the second alternative an almost π-network.

We will use · as a stand-in for ‘an arbitrary ideal’. It is a trivial obser-
vation that IA({X}, ·) holds for any space X without nontrivial convergent
sequences. The following easy lemma provides useful examples of spaces rich
in convergent sequences that have the same property.

Lemma 3.3. Let X be a countable kω-space or a first-countable space.
Then IA({X}, ·) holds.

Proof. Suppose X is a countable kω-space. Let K be a countable family
of compact subspaces of X such that F ⊆ X is closed if and only if F ∩K
is closed for every K ∈ K. Let x ∈ X and let I ⊆ P(X) be any ideal.

Let K ∈ K be such that x ∈ K. Suppose for any U ⊆ K, x ∈ U , such
that U is relatively open in K, there is no I ∈ I such that U ⊆ I. Then every
such U is in I+. Since K is metrizable and thus first-countable, a countable
base {Un : n ∈ ω} of relatively open neighborhoods of x in K satisfies (2).

Otherwise, for every K ∈ K, find an IK ∈ I such that IK contains a
nonempty relatively open neighborhood of x in K ∪ {x}.

It is well-known (see for example [8]) that for any infinite S → x there
exists a K ∈ K such that S ∩K is infinite. This implies that the countable
family S = {IK : K ∈ K} satisfies (1).

The proof for the first-countable case is similar and is omitted.
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Thus IA(kω ∪ χω, ·) holds where kω stands for the class of countable
kω-spaces and χω denotes the class of countable first-countable spaces.

In order to state a consistent version of IA(P,Q) for a wide class of
topological groups P relatively rich in convergent sequences, we need a few
more definitions.

Given a topological group G, an ideal I ⊆ P (G) is called invariant if both
g ·I = {g ·h : h ∈ I} and I ·g = {h ·g : h ∈ I}, as well as I−1 = {h−1 : h ∈ I},
are in I for every I ∈ I and g ∈ G.

An ideal I on a set X is ω-hitting if for every countable family Y of
infinite subsets of X there is an I ∈ I such that Y ∩ I is infinite for every
Y ∈ Y.

We call an ideal I tame if for every Y ∈ I+, every f : Y → ω, and every
ω-hitting ideal J on ω there is a J ∈ J such that f−1[J ] ̸∈ I, i.e. if no ideal
Katětov-below a restriction of I to a positive set is ω-hitting (an interested
reader may want to consult [10] for further details about Katětov order and
ω-hitting ideals).

We now present an extension of the class of sequential spaces that will
be used in the statement of IIA.

Given a point x in a topological space (or a topological group) we denote
by

Ix = {A ⊆ X : x ̸∈ A}
the ideal dual to the filter of neighborhoods of x. Call a subset Y of a
topological space X entangled if Ix↾Y is ω-hitting for every x ∈ X. We shall
call a topological space X groomed if it does not contain a dense entangled
set. In a later section we shall present a more topological description of the
class of groomed spaces (see Lemma 4.10 below).

The class of groomed spaces includes all nondiscrete sequential (thus all
Fréchet) spaces, as well as all subsequential spaces (i.e. subspaces of sequen-
tial spaces), as the next lemma shows (see [14]).

Lemma 3.4. Every nondiscrete subsequential space is groomed.

Finally, we call an ideal I of subsets of a topological group G weakly
closed if for every set A ⊆ G and every sequence C ⊆ G convergent to 1G,

A ∈ I if and only if A ∪ {x : C · x ⊆∗ A} ∈ I.
Let G be the class of countable groomed topological groups and WC be

the class of all weakly closed tame invariant ideals. We will refer to IA(G,WC)
as simply IIA, in agreement with the terminology in [14].

The following consistency result was established in [14]. The definition
of a strongly ω-hitting preserving notion of forcing can also be found in [14].
We only point out here that every countable poset is strongly ω-hitting
preserving.
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Theorem 3.5. The Invariant Ideal Axiom IIA together with Martin’s
Axiom MA(σ-centered strongly ω-hitting preserving) is consistent with ZFC.

Let us now list a few ideals particularly suitable for the applications
of IIA. Note that each one of these ideals is weakly closed and invariant (if
the space is a topological group) by definition.

Let X be a topological space and τ be the topology on X. Throughout
the paper, csc(τ) denotes the ideal generated by closed scattered subsets
of X, nwd(τ) is the ideal of nowhere dense subsets of X, and cpt(τ) stands
for the ideal generated by all the compact subsets of X. When τ is clear from
the context we shall also use the notation csc(X), nwd(X), and cpt(X).

The following topological classification of countable sequential groups
was established in [14]. In this paper we prove a generalization of Theo-
rem 3.6 applicable to countable groups that are not necessarily sequential
(see Theorem 4.12 below).

Theorem 3.6. Assuming IIA, every countable sequential group is either
kω or first-countable.

Now Lemma 3.3 together with the theorem above imply the following
corollary showing that for countable sequential groups one can drop all the
restrictions on the ideal (including invariance), assuming IIA holds.

Corollary 3.7. Let Sω be the class of all countable sequential groups.
Then IIA implies IA(Sω, ·). In particular, IA(Sω, ·) is consistent.

Since both classes of groups (kω and first-countable = metrizable) are
rather well-behaved, Theorem 3.6 has a number of useful implications. For
example, if IIA holds, there are exactly ω1 nonhomeomorphic sequential
group topologies on countable groups, those topologies are definable (an-
alytic, in fact Fσδ), finite products of kω sequential non-Fréchet groups are
sequential, etc. See [14] for a more exhaustive list.

4. Nonsequential groups and sequential coreflection. The follow-
ing definition provides a natural way to ‘adjust’ a given topology in order to
make it sequential.

Definition 4.1. Let (X, τ) be a topological space. Define the sequential
coreflection [τ ] to be the finest topology on X that has the same set of
convergent sequences as τ .

It is easy to check that the sequential coreflection is always defined and
always sequential; moreover, so(x,A) and so(X) have identical values in τ
and [τ ] for any x ∈ X and A ⊆ X. If the original topology was Hausdorff (or
even Urysohn) then so will be its sequential coreflection. In general, however,
the sequential coreflection of a regular space may not be regular.



Invariant ideal axiom 9

If (G, τ) is a countable topological group, its sequential coreflection
(G, [τ ]) may no longer be a topological group, although all translations re-
main continuous.

Lemma 4.2. Let (G, τ) be a topological group. If [τ ]2 is sequential then
[τ ] is a group topology on G.

Proof. Note that all the group operations are sequentially continuous
in [τ ].

We now introduce an extension of the class of sequential spaces that
may be thought of as located between the classes of groomed and sequential
spaces.

Definition 4.3. A space X is called remotely sequential if for every
A ⊆ X such that A ̸= A there is an infinite sequence C ⊆ A and an x ∈ X
such that C → x.

Note that the only difference between the definition above and that of a
sequential space (Definition 2.2) is that it is not required that x ∈ X \A.

The following simple lemma follows immediately from the definition and
illuminates the concept of a remotely sequential space.

Lemma 4.4. X is not remotely sequential if and only if there exists a
D ⊆ X such that D ̸= D and D ∩ S is finite for every convergent sequence
S ⊆ X.

Thus non-remotely-sequential spaces contain a witness that exhibits the
difference between the sequential closure and the topological closure in a
dramatic way.

The following lemma was essentially proved in [4].

Lemma 4.5 (T. Banakh, L. Zdomsky̆ı). Let (G, τ) be a topological group
such that (G, [τ ]) contains closed copies of D(ω) and S(ω). Then (G, τ)
contains a countable nondiscrete subspace that is almost disjoint from every
convergent sequence. In particular, G is not remotely sequential.

Call a space X strongly groomed if for every dense D ⊆ X there exists an
infinite convergent sequence C ⊆ D (a justification for this choice of termi-
nology will be given shortly below). Lemma 4.10 shows that every strongly
groomed space is groomed.

Lemma 4.6. Every nondiscrete remotely sequential space is strongly
groomed (and thus groomed).

Proof. Let D = X. Since X is not discrete, we may assume D ̸= D by
passing to a subset of D, if necessary. Now there exists an infinite sequence
C ⊆ D such that C → x for some x ∈ X, since X is remotely sequential.
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A quick example of a countable topological group that is groomed but
not remotely sequential can be constructed using the following lemma.

Lemma 4.7. Let G be a countable sequential non-Fréchet topological group,
H be a subgroup of G such that H contains a copy of S(ω) and H ̸= H.
Then H is groomed and is not remotely sequential.

Proof. The proof is an easy application of Lemma 3.4 and Lemma 4.5.
To show that H contains a closed copy of D(ω), find a C ⊆ H such that
C → g ̸∈ H using H ̸= H. Let C = {ci : i ∈ ω} and define D = {ci · c−1

j :

j > i} ∪ {1G}. Note that every set Di = {ci · c−1
j : j > i} is closed and dis-

crete in H since Di → ci · g−1 ̸∈ H. Let U be an open neighborhood of 1G,
and pick an open V ⊆ G such that g ∈ V and V · V −1 ⊆ U . Let k ∈ ω be
such that ci ∈ V for all i > k. Then ci · cj ∈ U for i, j > k, and thus Di ⊆ U .

Now the argument above implies Di → 1G, which in turn means that D
is a closed copy of D(ω) in H.

The following definition serves as an important technical tool in several
proofs below and also helps to provide a topological description of groomed
spaces.

Definition 4.8. Let X be a topological space. Let D be a countable
family of infinite closed discrete subspaces of X. We call D a (strict) van
Douwen network (vD-network for short) at x ∈ X if for every open U ∋ x
there is a D ∈ D such that D ∩ U is infinite (D ⊆∗ U).

If D is a vD-network at x we will refer to the space
⋃
D ∪ {x} as a vD-

subspace of X and the point x as a vD-point of D in X. In case we need to
mention the topology on X explicitly, we shall use the notation vD(τ)-point,
etc.

A closed copy of D(ω) in X is a trivial example of a vD-subspace of X.
The following easy lemma was proved in [29] and may serve as an initial

motivation for studying vD-points in sequential groups.

Lemma 4.9. Let X be a countable space and x ∈ X be a vD-point in X.
Then X × S(ω) is not sequential.

The utility of the concept of a vD-network can also be seen in the fol-
lowing description of groomed spaces.

Lemma 4.10. A regular countable topological space X is groomed if and
only if for every dense D ⊆ X there exists a point x ∈ X such that there
exists either an infinite sequence S ⊆ D that converges to x or a strict
vD-network D ⊆ P(D) at x.

Proof. Let X be a regular countable groomed space and D ⊆ X be a
dense subset of X. Since X is groomed, D is not entangled, that is, there
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exists a point x ∈ X such that the ideal Ix↾D is not ω-hitting. Let D ∈ [D]≤ω

be a family of infinite subsets of D that witnesses that Ix↾D is not ω-hitting.
Let C ∈ D. Consider the closure C and note that if C is a (countably)

compact subspace of X, since X is countable, there exists a nontrivial con-
vergent sequence S ⊆ C such that S → x′ for some x′ ∈ X.

Thus assume that no C ∈ D is compact and for each C ∈ D pick a
discrete and closed (in X) subset C ′ ⊆ C (this is the only place where the
regularity of X is used). Put D′ = {C ′ : C ∈ D} and observe that D′ is the
required vD-network at x.

In view of the previous lemma, our next definition is natural. Call a
topological space X weakly groomed if for every dense D ⊆ X and every
point x ∈ X there either exists an infinite sequence S ⊆ D such that S → x
or a (not necessarily strict) vD-network D ⊆ P(D) at x. It is natural to
ask if the consistency of IIA can be extended to the wider class of weakly
groomed countable groups. We have the following simple implications:

sequential ⇒ remotely sequential ⇒
strongly groomed ⇒ groomed ⇒ weakly groomed

We need the following technical definition to state Theorem 4.12 in full
generality.

Definition 4.11. A closed scattered subset P of a topological space
(X, τ) is called τ -weakly regular if for each p ∈ P there exists an open
Op ∋ p such that for every q ∈ Op ∩ P \ {p}, scl(q, P ) < scl(p, P ).

Note that, trivially, if P above is regular as a subspace of (X, τ), then it is
τ -weakly regular. In all the applications below, τ = [τ ′] for some topology τ ′.

The rest of this section is dedicated to the proof of the following theorem.

Theorem 4.12. (IIA) Let (G, τ) be a countable strongly groomed topolog-
ical group in which every [τ ]-closed [τ ]-scattered subset is [τ ]-weakly regular.
Then (G, [τ ]) is a kω-group or (G, τ) is metrizable.

Before we proceed with the details of the proof, let us state some corol-
laries that illustrate possible applications of Theorem 4.12.

Corollary 4.13. (IIA) Let (G, τ) be a countable group. Then one of the
following properties holds:

(1) G contains a dense subset that is almost disjoint from every convergent
sequence in G;

(2) G contains a subspace P that is closed and scattered in [τ ] but is not
regular in the topology inherited from [τ ];

(3) G is metrizable;
(4) (G, [τ ]) is a kω-group.
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The next corollary sheds some light on what prevents the sequential
coreflection from being a topological group in a model of IIA.

Corollary 4.14. (IIA) Let (G, τ) be a strongly groomed countable group.
Then (G, [τ ]) is a topological group if and only if it is regular.

The following corollary generalizes Corollary 3.7 to a wider class of count-
able groups.

Corollary 4.15. Let SGω be the class of all countable strongly groomed
groups with regular sequential coreflection. Then IIA implies IA(SGω, ·). In
particular, IA(SGω, ·) is consistent.

Proof. Let (G, τ) ∈ SGω and I ⊆ P(G) be any ideal. Theorem 4.12
implies that either τ is first countable or (G, [τ ]) is kω. In the former case
IA({G}, ·) holds by Lemma 3.3. In the latter, IA({(G, [τ ])}, {I}) holds sim-
ilarly. Now alternative (1) of IA({(G, [τ ])}, {I}) implies alternative (1) of
IA({(G, τ)}, {I}), since every τ -convergent sequence is convergent in [τ ].
Similarly, alternative (2) of IA({(G, [τ ])}, {I}) implies alternative (2) of
IA({(G, τ)}, {I}) since τ ⊆ [τ ].

It is not clear if the statement of Theorem 4.12 is optimal. Perhaps
the most interesting question is whether the ([τ ]-weak) regularity in Theo-
rem 4.12 may be dropped altogether (which would eliminate alternative (2)).

Example 4.22 shows that ‘(G, [τ ]) is kω’ cannot, in general, be strength-
ened to ‘(G, τ) is kω’ even if IIA is assumed.

The proof of Theorem 4.12 is split into several lemmata. Lemmata 4.16
and 4.18 generalize the corresponding propositions from [14].

Lemma 4.16. Let (G, τ) be a countable strongly groomed group in which
every [τ ]-closed, [τ ]-scattered subset is [τ ]-weakly regular. SupposeP ⊆ csc([τ ])
is a countable family such that for every S → 1G there exists a P ∈ P such
that |S ∩ P | = ω. Let D ⊆ [G]ω be a countable family of closed discrete
subsets of G. Then for every g ∈ G there exists an open U ∋ g such that
U ∩D is finite for every D ∈ D.

Proof. Let D = {Dn : n ∈ ω} ⊆ P(G) be a collection of closed discrete
subsets of G. The statement of the lemma is equivalent to claiming that
there are no vD(τ)-points of D in G. Suppose g ∈ G is a vD(τ)-point of D.
By translating each D ∈ D if necessary, we may assume that g = 1G.

Let P = {Pn : n ∈ ω} be a collection of [τ ]-closed, [τ ]-scattered subsets
of G such that for any S → 1G there is a P ∈ P such that |S ∩ P | = ω.
By requiring P to be closed under finite unions we may assume that such
a P can be chosen so that S ⊆∗ P . Using the [τ ]-weak regularity of each
P ∈ P we may also assume that scl(1G, P ) > scl(p, P ) for any p ∈ P \ {1G}
and any P ∈ P. To simplify the notation, scatteredness scl(·, ·) will always
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refer to [τ ]-scatteredness below. For the same reason, closure is assumed to
be closure in τ unless stated otherwise.

Pick a family {On : n ∈ ω} of τ -open neighborhoods of 1G such that
On+1 ⊆ On and

⋂
n∈ω On = {1G}. Put P =

⋃
n∈ω Pn ∩ On. One may verify

that P is [τ ]-closed, [τ ]-scattered, and for any S → 1G, S ⊆∗ P . Note that
the properties of P imply that scl(1G, P ) = scl(P ) > scl(p, P ) for any p ∈ P
such that p ̸= 1G. One may further require that αP = scl(1G, P ) is the
smallest ordinal among all αP ′ = scl(1G, P

′) such that P ′ has the properties
above. Therefore

(3) P is a [τ ]-closed, [τ ]-scattered subset of G such that S ⊆∗ P for every
S → 1G; moreover, αP = scl(P ) = scl(1G, P ) > scl(p, P ) for any p ∈
P \ {1G}, and αP is the smallest possible.

Thus, effectively, the countable family P has been replaced by a single ele-
ment P . In what follows we occasionally construct scattered subsets P ′ to
show that P may be assumed to have additional properties. Just as in the
construction of P , we will use the notation Pn (or P ′

n) for the pieces the
subspace P ′ is ‘assembled of’.

Let {gi ∈ G : i ∈ ω} be a 1-1 listing of G. We will use the notation Gn =
{gi : i ≤ n} for brevity. By modifying Dn if necessary, we may assume that
Dn ∩G−1

n = ∅. For each n ∈ ω find τ -open On ∋ 1G such that On+1 ⊆ On,⋂
n∈ω On = {1G}, and the following condition holds:

(4) On ∩Dn ·Gn = ∅.

Such choice of On is possible since each Di is closed and discrete.
Suppose there exists an S → 1G such that (S · p) \ P is infinite for every

p ∈ P \ {1G}. We may then pick an infinite sequence S′ ⊆ S · S so that
S′ → 1G and S′ ⊆ G \P , contradicting (3). Thus for every sequence S → 1G
there exists a p ∈ P \ {1G} such that S · p ⊆∗ P .

Let P \ 1G = {pn : n ∈ ω} be a 1-1 listing of P \ {1G}. Using the [τ ]-
weak regularity of P , for each pn ∈ P pick a [τ ]-open Un ∋ p such that
αP > scl(pn, P ) > scl(q, P ) for any q ∈ Un ∩ P [τ ] \ {pn}. Put Pn = On ∩
(Un ∩ P [τ ] · p−1

n ) and observe that P ′ =
⋃
Pn is a [τ ]-closed, [τ ]-scattered

subset of G that satisfies all the properties of P in (3). Indeed, if S → 1G
then by the argument in the preceding paragraph, there is a pn ∈ P \ {1G}
such that S · pn ⊆∗ P . Thus S · pn ⊆∗ Un ∩ P , therefore S ⊆∗ Pn ⊆ P ′.

Let p ∈ (Dn ·Gn)∩P ′. Then, by the construction of Pn and On and (4),
p ∈ P ′ \On, so scl(p, P ′) < βn = maxi≤n scl(pi, P ) < αP .

To simplify notation, we will assume that P itself has the following ad-
ditional property of P ′ we have just established:

(5) There exists a βn < αp such that scl(p, P ) < βn for any p ∈ Dn ·Gn∩P .



14 M. Hrušák and A. Shibakov

Suppose A ⊆ G is such that there exists an ordinal β with the property
scl(a, P ) < β < αP for every a ∈ A ∩ P . We will show that there exists a
sequence S → 1G such that S \ (P · F−1) is infinite for every F ∈ [A]<ω.

Indeed, suppose no such S exists and let A = {an : n ∈ ω} list all the
points in A. First, note that it is enough to establish the existence of such S
for any F ⊆ A, since trivially |S∩P ·a| < ω for any S → 1G whenever a ̸∈ P
due to the closedness of P . For each n ∈ ω use the [τ ]-weak regularity of P to
find a [τ ]-open neighborhood Un ∋ an such that scl(q, P ) < β′ < β whenever
an ∈ P and q ∈ Un ∩ P [τ ] \ {an}. Put P ′

n = Un ∩ P [τ ] · a−1
n if an ∈ P , and

P ′
n = ∅ otherwise. Note that P ′ = {P ′

n : n ∈ ω} is a collection of [τ ]-closed,
[τ ]-scattered subsets of G with scl(Pn) < β for every n ∈ ω, and for every
S → 1G there exists an F ∈ [ω]<ω such that S ⊆∗ ⋃

n∈F P
′
n.

Repeating the construction used to build P out of Pn at the beginning
of this argument, we may construct a [τ ]-closed, [τ ]-scattered P ′ ⊆ G such
that scl(P ′) ≤ β < αP and S ⊆∗ P ′ for every S → 1G, contradicting the
minimality of αP in (3).

Using (5) and the argument above, for each n ∈ ω construct an Sn → 1G
such that Sn \P ·G−1

n ·d−1 is infinite for every d ∈ Dn. Let Dn = {di : i ∈ ω}
and Sn = {si : i ∈ ω} be 1-1 listings of Dn and Sn. For each i ∈ ω pick an
m(i) > n so that m(i) is strictly increasing, sm(i) · di ·Gn ⊆ G \ P for every
i ∈ ω and put eni = sm(i) · di. Put Bn = {eni : i ∈ ω}, B =

⋃
n∈ω Bn and note

that each Bn is a closed and discrete subspace of G.
Now, 1G ∈ B. Indeed, let U be any open neighborhood of 1G. Find an

open V ∋ 1G such that V · V ⊆ U . Then V ∩Dn is infinite for some n ∈ ω,
since 1G is a vD-point of D. Also, Sn ⊆∗ V . Thus for some large enough
i ∈ ω, both di ∈ V and sm(i) ∈ V , showing that eni ∈ U .

Let g ∈ G and F ∈ [G]<ω. Find k ∈ ω such that g ·F−1 ⊆ Gk. Let b ∈ Bn

for some n > k. Then b = eni = sm(i) · di for some n > k, i ∈ ω, sm(i) ∈ Sn,
and di ∈ Dn. Hence b · g · F−1 = sm(i) · di · g · F−1 ⊆ sm(i) · di ·Gn ⊆ G \ P .
We have established:

(6) For any g ∈ G and any finite F ⊆ G the intersection B · g ∩ P · F is a
closed discrete subset of G. In particular, g ∈ B · g \ P · F .

Put Cn = B · gn \ P · Gn for n ∈ ω, and C =
⋃

n∈ω Cn. Then by (6),
gn ∈ Cn for every n ∈ ω so C is dense in G.

Suppose S ⊆ C is an infinite sequence such that S → g for some g ∈ G.
By (3), S ⊆∗ P · g ⊆ P · Gn for some n ∈ ω. If S ∩ Ck is infinite for
some k ∈ ω then, passing to a subsequence if necessary, we may assume that
S ⊆ B·gk∩P ·Gn, contradicting B·gk∩P ·Gn being closed and discrete by (6).

Otherwise, there exists an s ∈ S∩Cn′ for some n′ > n; but Cn′∩P ·Gn ⊆
Cn′ ∩ P · Gn′ = ∅ by the choice of Ci, a contradiction. Therefore C is a
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dense subset of G, almost disjoint from every convergent sequence in G,
contradicting the assumption that G is strongly groomed.

While the sequential coreflection of a topological group may not be a
topological group itself, the following weak version of joint continuity holds.
We only need the lemma below, while a more general result can be shown
that uses k-spaces instead of sequential ones.

Lemma 4.17. Let G be a countable group, U be a [τ ]-open neighborhood
of 1G, and S → 1G be a sequence such that S ⊆ U . Then there exists a
[τ ]-open O ∋ 1G such that O · S ⊆ U .

Proof. Define O = {g ∈ U : S · g ⊆ U}. Let F = G \ O and suppose F
is not [τ ]-closed. Then there exists an infinite sequence C ⊆ F such that
C ⊆ U and C → x for some x ∈ O. Since S · C is compact in τ , the set
S ·C \U has an accumulation point c ∈ S ·x. Then c ̸∈ U , contradicting the
choice of x. Thus O ∋ 1G is the desired neighborhood.

Lemma 4.18. Let (G, τ) be a countable strongly groomed group. Suppose
P ⊆ nwd([τ ]) is a countable family such that for every S → 1G there exists
a P ∈ P such that |S ∩ P | = ω. Then G has no countable π-network at 1G
that consists of subspaces whose closures are not [τ ]-locally compact.

Proof. Let D = {Dn : n ∈ ω} be a π-network (in τ) at 1G such that each
Dn ∈ D is [τ ]-dense in itself. Since τ is regular, we may assume that each
Dn is closed in [τ ]. By translating each element of D if necessary, we may
assume that 1G ∈ D is a point at which D is not locally compact for every
D ∈ D.

Fix an open On ∋ 1G so that On+1 ⊆ On and
⋂

n∈ω On = {1G}.
Let P = {Pn : n ∈ ω} ⊆ nwd([τ ]) be such that for every S → 1G there

exists a P ∈ P such that |S ∩ P | = ω. Just as in the proof of Lemma 4.16
we may construct a P ∈ nwd([τ ]) such that for every S → 1G, S ⊆∗ P . By
taking the [τ ]-closure of P if necessary, we may assume that P is [τ ]-closed.
Additionally, given any N ∈ nwd([τ ]) we may assume that N ⊆ P by
replacing P with P ∪N in what follows.

Let g ∈ G. Define d(g) = so(g,G\P ). Let αP = d(1G). Note that αP > 1
by the choice of P . We now prove the following claim by induction on α.

(7) Let p ∈ P and d(p) = α for some α < ω1. There exists a T ⊆ G \ P and
a neighborhood assignment W : T → τ such that

(a) p ∈ [T ]α, and if p′ ∈ T then d(p′) = so(p′, T );
(b) g ∈ W (g) \ P for every g ∈ T and the W (g) are disjoint; if si ∈

W (gi) \P is such that si → g for some g ∈ G and all gi are distinct
then gi → g.
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Let d(p) = α for some p ∈ P . If α = 1, there exists an infinite sequence
of gi ∈ G \ P such that gi → p. Thinning out the sequence and reindexing
if necessary, pick disjoint open W (gi) ∋ gi so that W (gi) ⊆ Oi · p. Put
T = {gi : i ∈ ω}. Properties (7a) and (7b) are easy to check.

Thus we may assume α > 1. Let pn → p and αn < α be such that
pn ∈ On ·p and pn ∈ [G\P ]αn for every n ∈ ω. Since d(pn) ≤ αn < α, by the
induction hypothesis there exist Tn ⊆ G\P andWn : Tn → τ that satisfy (7).
Pick a sequence of τ -open disjoint Vn ∋ pn such that Vn ⊆ On · p after
thinning out and reindexing if necessary. By passing to subsets and possibly
reindexing again, we may assume that the Tn are disjoint, Tn ⊆ On · p ∩ Vn,
and Wn(g) ⊆ On · p ∩ Vn for every n ∈ ω and g ∈ Tn. Let T =

⋃
n∈ω Tn and

define W : T → τ by W (g) =Wn(g) whenever g ∈ Tn.
By the choice of Tn and On, T = {p} ∪

⋃
n∈ω Tn. If p′ ∈ Tn then d(p′) =

so(p′, Tn) = so(p′, T ) by the inductive hypothesis and the choice of Tn. Since
d(p) = supn αn + 1 and d(pn) ≤ αn, we find that d(p) = so(p, T ).

Let si ∈ W (gi) \ P for some gi ∈ T be such that si → g. By thinning
out and reindexing we may assume that either gi ∈ Tn for some fixed n ∈ ω
or gi ∈ Tn(i) ⊆ On(i) · p for some strictly increasing n(i). In the first case
gi → g ∈ P by the choice of Tn. Otherwise, si ∈ Wn(i)(gi) ⊆ On(i) · p so
si → p by the choice of On, contradicting si ∈ G \ P and d(p) = α > 1.

Pick T and W that satisfy (7) for p = 1G and let T = {tn : n ∈ ω} be
a 1-1 enumeration of the points of T . Pick [τ ]-open Un ⊆ (W (tn) \ P ) · t−1

n

so that Un+1 ⊆ Un ⊆ On, and 1G ∈ {tk : Uk · tk ⊆ On} for every n ∈ ω. To
see that such a choice of Un is possible, note that 1G ∈ T ∩On

[τ ] for every
n ∈ ω. Observe that (W (tn) \ P ) · t−1

n is a [τ ]-open neighborhood of 1G and
recursively pick Ui so that (1) Ui ⊆ (W (ti) \ P ) · t−1

i , (2) Ui+1 ⊆ Ui ⊆ Oi,
and (3) Ui ⊆ On · t−1

i whenever ti ∈ On. To see that (3) is possible, note
that for each ti there are only finitely many n ∈ ω such that ti ∈ On. Now
T ∩On ⊆ {tk : Uk · tk ⊆ On}, implying the required property of Ui.

Note that
⋂

n∈ω Un = {1G}, and Un · tn ⊆ G \ P for each n. Let k ∈ ω
and show that

(8) there exists a [τ ]-closed [τ ]-discrete subset Ek ⊆ Dk such that Ek =
{ekn : n ∈ ω} and ekn ∈ Un for every n ∈ ω, or there is a [τ ]-closed copy
of D(ω) in (G, [τ ]);
If no such Ek exists, the Un ∩ Dk form a countable base of [τ ]-open

neighborhoods of 1G in Dk. Now Un
τ form a nested countable local network

at 1G (in both τ and [τ ]). Note that no Un
τ is τ -compact. Otherwise, since

τ and [τ ] share the same compact subspaces, Dk would be locally compact
at 1G. Selecting an infinite closed discrete subset in each Un

τ results in a
closed (in both τ and [τ ]) copy of D(ω) (as a subspace of (G, τ)). Since
D(ω) is first-countable, it remains a D(ω) in [τ ].
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Now consider the following cases.

Case 1. It is possible to pick an Ek ⊆ Dk as in (8) for every k ∈ ω.
Consider the setDk = {dn : dn = ekn · tn, Un · tn ⊆ Ok, n ∈ ω}. NowDk ⊆

Ok \ P for every k ∈ ω and dn ∈ W (tn) for every n ∈ ω by ekn ∈ Un and
the choice of Un. Suppose dn(i) → d for some d ∈ G. By (7b), tn(i) → d so
ekn(i) = dn(i) · t−1

n(i) → 1G, contradicting the choice of ekn. Thus each Dk ⊆ Ok

is closed and discrete in (G, [τ ]).
Suppose S → g for some g ∈ G is an infinite sequence such that S ⊆⋃

k∈ωD
k. Since each Dk is closed discrete in [τ ], we may assume that S =

{sn : n ∈ ω}, where sn ∈ Dk(n) for some strictly increasing k(n). Then
sn ∈ Ok(n) and S → 1G, contradicting S ⊆ G \ P and the choice of P .
Thus

⋃
k∈ωD

k is almost disjoint from every convergent sequence in G.
Let U ∋ 1G be open (for the rest of the paragraph we work in τ) and find

an open V ∋ 1G such that V · V ⊆ U . Let k ∈ ω be such that Dk ⊆ V , and
let tn be such that Un · tn ⊆ Ok and tn ∈ V . Then dn = ekn · tn ∈ Dk ∩ V · V .
Thus 1G ∈

⋃
k∈ωD

k. Note that
⋃

k∈ωD
k ∈ nwd([τ ]).

Case 2. There exists a [τ ]-closed copy of D(ω) in (G, [τ ]).
Since P ∈ nwd([τ ]) and there is no S ⊆ G\P such that S → 1G, (G, [τ ])

is not Fréchet. Since G is countable, there exists a [τ ]-closed copy of S(ω)
in G. Let

⋃
i,j∈ω S

j
i be a [τ ]-closed copy of S(ω) in G such that each Sj

i → 1G,

the Sj
i s are disjoint, and any

⋃
k∈ω S

j(k)
i(k) is a [τ ]-closed copy of S(ω) provided

the set {(i(k), j(k)) : k ∈ ω} is infinite. Similarly, let
⋃

i,j∈ωD
j
i be such that

each Dj
i is closed and discrete, the Dj

i s are disjoint, and
⋃

k∈ωD
j(k)
i(k) ∪ {1G}

is a closed copy of D(ω) provided the set {(i(k), j(k)) : k ∈ ω} is infinite.
Let Dn

i = {dni (j) : j ∈ ω} and Sn
i = {sni (j) : j ∈ ω} be 1-1 listings of

Dn
i and Sn

i . Using Lemma 4.17 and trimming Dn
i and Sn

i if necessary, we
may assume that Bn

i = {sni (j) · dni (j) : j ∈ ω} ⊆ Un for every i ∈ ω. Put
Bn =

⋃
i∈ω B

n
i \ {1G} ⊆ Un. A standard argument shows that 1G ∈ Bn. Let

B =
⋃

n∈ω B
n · tn and observe that B ⊆ G \ P and 1G ∈ B.

Suppose there exists an infinite C ⊆ B such that C → x for some
x ∈ G. First assume we can pick a strictly increasing n(i) ∈ ω such that
ci ∈ C ∩Bn(i) · tn(i) for each i ∈ ω. Then ci ∈ Un(i) · tn(i) ⊆ Wn(i) \ P , so
by (7b) tn(i) → x. Now ci = s

n(i)
j(i) (ki) · d

n(i)
j(i) (ki) · tn(i), where dn(i)j(i) (ki) → 1G,

ci → x and tn(i) → x. This implies sn(i)j(i) (ki) → 1G, contradicting the choice
of Sn

i .
Thus we may assume that C ⊆ Bn · tn for some n ∈ ω. If there exists a

strictly increasing i(k), k ∈ ω, such that ck ∈ Bn
i(k) · tn for infinitely many

ck ∈ C then ck = sni(k)(mk) ·dni(k)(mk) ·tn, where ck → x and dni(k)(mk) → 1G,
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implying sni(k)(mk) → x · t−1
n , contradicting the choice of Sj

i . Otherwise,
ck ∈ Bn

i · tn for some i, n ∈ ω and infinitely many ck ∈ C. An argument
similar to the one above results in a contradiction.

We have therefore proved the following claim (the argument above deals
with the case of p = 1G only; the general case follows by translating N if
necessary):

(9) Let N ∈ nwd([τ ]) and p ∈ G. There exists a set B ⊆ G \ N such that
p ∈ B, B ∈ nwd([τ ]), and B is almost disjoint from every convergent
sequence in τ .

Now let G = {gi : i ∈ ω} list all the points of G. Using (9), recursively
build Bi ∈ nwd([τ ]) such that gi ∈ Bi, Bi is almost disjoint from every con-
vergent sequence in τ and Bn ⊆ G \

⋃
i<n(P · gi ∪ Bi) where P ∈ nwd([τ ])

is a sequential neighborhood of 1G constructed at the beginning of the
proof.

Put B =
⋃

i∈ω Bi. Then B is dense in G by construction. Suppose S ⊆ B
is an infinite sequence with S → gi for some i ∈ ω. By trimming S if
necessary, we may assume S ⊆ P · gi. Since Bj ∩ S is finite for every j ∈ ω
there is an s ∈ S ∩ P · gi such that s ∈ Bn for some n > i, contradicting
s ∈ Bn ⊆ G \

⋃
i<n(P · gi ∪ Bi). Thus B is almost disjoint from every

convergent sequence in τ , contradicting the condition that (G, τ) is strongly
groomed.

Lemma 4.19. Let (G, τ) be a nonmetrizable countable topological group
such that τ has a countable π-network U at 1G such that each U ∈ U is
[τ ]-dense in some open subset of (G, [τ ]). Then (G, [τ ]) is a first-countable
topological group and there exists a subset D ⊆ G, dense in τ and almost
disjoint from every convergent sequence in (G, τ). In particular, (G, τ) is not
strongly groomed.

Proof. Since (G, τ) is regular, we may assume that each U ∈ U is closed
in τ . By taking the interior of each U ∈ U in [τ ] we may construct a countable
π-network for (G, τ) consisting of open subsets of (G, [τ ]). To simplify the
notation we will assume that U is such a network.

By considering the appropriate translations we may additionally assume
that 1G ∈ U for every U ∈ U .

Let S ⊆∗ U for every U ∈ U . Since U is a π-network at 1G, it follows that
S → 1G in τ , so S → 1G in [τ ]. Since [τ ] is sequential and homogeneous,
(G, [τ ]) is first-countable. By Lemma 4.2, (G, [τ ]) is a topological group.

Let {Un : n ∈ ω} be a countable base of open neighborhoods at 1G for
(G, [τ ]) such that Un+1 ⊆ Un for every n ∈ ω. Since (G, τ) is not metrizable,
we may assume that each Un is nowhere dense in τ . Since G is countable,
we may further assume that each Un is clopen in [τ ]. Recursively build an
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open partition {Vi : i ∈ ω} of (G, [τ ]) so that Vi ⊆ Un(i) · gi for some strictly
increasing n(i) ∈ ω and gi ∈ Vi.

Let U ⊆ G be open in τ . Find a V ∋ 1G open in τ such that V −1·V ·x ⊆ U
for some x ∈ U . Let m ∈ ω be such that Un(i) ⊆ V for all n(i) > m. Since
each Vi is nowhere dense in τ , there exists an i ∈ ω such that n(i) > m and
g ∈ V · x ∩ Vi for some g ∈ G. Then gi ∈ U−1

n(i) · g ⊆ V −1 · V · x ⊆ U . Thus
the set D = {gi : i ∈ ω} is dense in (G, τ). Since Vi form an open partition
of (G, [τ ]) and gi ∈ Vi for each i ∈ ω, D is closed and discrete in [τ ].

The proof of the following lemma is identical to that of [14, Lemma 26]
(although the statement in [14] uses the group topology instead of [τ ], the
basic argument stays the same).

Lemma 4.20. Let (G, τ) be a countable topological group. Then each of
nwd([τ ]), csc([τ ]), and cpt([τ ]) is a weakly closed, tame, invariant ideal.

The next lemma finishes the proof of Theorem 4.12.
Lemma 4.21. Let G be a countable, strongly groomed nonmetrizable group

such that (G, [τ ]) is not kω. Then one of the nwd([τ ]), csc([τ ]), and cpt([τ ])
is a tame, weakly closed invariant ideal that satisfies neither (1) nor (2) of
the IIA.

Proof. Suppose the contrary. Since G is not kω, cpt([τ ]) does not have
a countable sequence capturing subfamily. Thus alternative (2) of IIA, ap-
plied to cpt([τ ]), must hold and there exists a countable almost π-network
consisting of cpt([τ ])+-subsets. Thinning each of the subsets if necessary we
may assume that G has a π-network D consisting of infinite closed discrete
subspaces.

Applying Lemma 4.16 shows that alternative (1) of IIA, applied to
csc([τ ]), fails and therefore there exists a countable almost π-network of
subsets in csc([τ ])+. By thinning out we may assume that G has a count-
able π-network consisting of subsets [τ ]-dense in themselves. Note that no
such set can have a locally [τ ]-compact closure.

Applying Lemma 4.18 shows that alternative (1) of IIA, applied to
nwd([τ ]), fails, so by alternative (2) there exists a countable π-network of
subsets of G whose [τ ]-closures have nonempty [τ ]-interiors. Now Lemma 4.19
implies that G is not strongly groomed, a contradiction.

The next example shows that remotely sequential does not imply sequen-
tial even if IIA holds and the sequential coreflection is kω. Before describing
the construction, we introduce some useful notation. Given a countable topo-
logical group G and a countable family of compact subspaces K, one may
construct the finest group topology τ on G in which each K ∈ K retains its
topology inherited from G. It is easy to show that the topology is well-defined
and is kω (see e.g. [31, Lemma 4]). We write kω(K) to denote such τ . One



20 M. Hrušák and A. Shibakov

useful property of kω(K) is that any subset C ⊂ G, compact in kω(K), is
a subset of a finite sum of translations of elements of K, or, if K covers G,
‘translations of’ above may be omitted. If G is abelian and B ⊆ G, we write∑nB = B + · · ·+B where the sum consists of n copies of B.

Example 4.22. (MA(countable)) There exists a remotely sequential non-
sequential Hausdorff group topology with a kω-sequential coreflection on a
countable boolean group.

Proof. Let B be a countable infinite boolean group and τ1 be a first-
countable Hausdorff group topology on B such that S → 0 in τ1 for some
algebraic basis S ⊆ B of B (for example, one can take a free boolean group
over a convergent sequence to obtain such B and S). Let S = {v0, v1, . . .},
m ∈ ω and define B0(m) = {0}, B1(m) = {vi : i ≥ m} ∪ {0}, Bn+1(m) =
Bn(m) + B1(m) (i.e. Bn(m) is a sum of n copies of the m-tail of S ∪ {0}).
For brevity, we shall write Bn = Bn(0). Note that every Bn(m) is a compact
subspace of (B, τ1). Put τ0 = kω({B1}) and note that every K ⊆ B compact
in τ0 is a subset of some Bn.

Given an a ∈ B one can uniquely (up to the order of the summands)
write a = vi(1)+ vi(2)+ · · ·+ vi(s) for some distinct vi(j) ∈ S. Put |a| = s and
∥a∥ = max {i(j) : j ≤ s}. Note that |b| ≤ n for every b ∈ Bn.

Pick a clopen neighborhood U0 ∈ τ0 of 0 and an infinite subset D ⊆
B \ U0 such that D is closed discrete in τ0 and D → 0 in τ1. Let D =
{di : i ∈ ω} and pick a sequence m0,m1, . . . such that Ki = di + Bi(mi) ⊆
B \ U0, Ki ∩ Kj = ∅ for i ̸= j, and K0 =

⋃
{di + Bi(mi) : i ∈ ω} ∪ {0}

is compact in τ1. Note that this choice of Ki and the compactness of K0

imply that for any sequence bi ∈ Kq(i), bi → 0 in τ1 as long as q(i) is strictly
increasing.

Let {Lλ : λ < c} list all closed discrete subspaces of (B, τ0). For conve-
nience we shall assume that L0 is a closed discrete subspace of (B, τ1) as
well.

For each λ < c construct, by recursion on λ, topologies τλ ⊆ τ0 on B,
families τλ0 ⊆ τλ, and compact subspaces Hλ ⊆ K0 of (B, τ1) such that

(10) τα ⊆ τλ for α < λ;
(11) τλ0 is a local base of open neighborhoods of 0 for τλ and |τλ0 | < c;
(12) whenever U ∈ τλ, k ∈ ω, and o ∈ [λ + 1]<ω there exist b ∈ B and

m,n ∈ ω such that b+ Bn(m) ⊆ U ∩
⋂
{Hβ : β ∈ o} and n > k;

(13) Lλ is a closed discrete subspace of (B, τλ).

Let τ0 = τ1, H0 = K0, and let τ00 be a countable local base of neighbor-
hoods of 0 in τ0. Properties (10)–(13) follow for λ = 0.

Let λ < c and suppose τα, τα0 , and Hα have been constructed to sat-
isfy (10)–(13) for all α < λ. Put τ<λ =

⋃
{τα : α < λ}. Then τ<λ ⊆ τ0 is a
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Hausdorff group topology on B. Let τ<λ
0 be a local base of open neighbor-

hoods of 0 for τ<λ such that |τ<λ
0 | < c.

Let P be the set of all compact F in (B, τ0) with the following properties:

(14) F =
⋃

{bi + Bq(i)(p(i)) : i ≤ s} for some s ∈ ω, where the sequence of
q(i) is strictly increasing; put F (i) = bi + Bq(i)(p(i));

(15) F (i) ⊆ Kr(i) for each i, where the sequence r(i) is strictly increasing;
(16) (bi +

∑q(i)({bj : j < i} ∪ {0}) + Bi) ∩ Lλ = ∅ for every i ≤ s.

Now P is countable. Given F0, F1 ∈ P , define F0 ≤ F1 if and only if F1 ⊆ F0

and F0 ∩Ki ∩ F1 ̸= ∅ implies F0 ∩Ki = F1 ∩Ki.
Let U ∈ τ<λ

0 , o ∈ [λ]<ω, and k ∈ ω. Define D(U, o, k) to be the set of all
F ∈ P such that b + Bn(m) ⊆ F ∩ U ∩

⋂
{Hβ : β ∈ o} for some n ≥ k and

m ∈ ω.
Let F1 ∈ P , U ∈ τ<λ

0 , o ∈ [λ]<ω, and k ∈ ω. Define q(s + 1) =
max {{q(i) : i ≤ s} ∪ {k}} + 1 where q(i) and s are as in the definition of
F in (14). Now

∑q(s+1)({bi : i ≤ s} ∪ {0}) + Bs+1 ⊆ Bt for some t ∈ ω.
Using (12) find b ∈ B, q ∈ ω, and p ∈ ω so that b + Bq(p) ⊆ Kr(s+1) ∩ U ∩⋂
{Hβ : β ∈ o} for some r(s+1) > max {r(i) : i ≤ s} and q > q(s+1)+t+1.
Since Lλ is closed and discrete in τ0, the intersection Lλ ∩ B|b|+2t+1 is

finite. Hence there is a p′ ∈ ω such that p′ > max {∥g∥ : g ∈ (Lλ ∩B|b|+2t+1)
∪ {b}}. Put p′′ = max {p, p′} + 1, v = vp′′ + vp′′+1 + · · · + vp′′+t, and
bs+1 = b+ v. Define F0 = F1 ∪ bs+1 + Bq(s+1)(p) and note that F0(s+ 1) =

bs+1 + Bq(s+1)(p) ⊆ b+ Bq(p) ⊆ Kr(s+1) by the choice of bs+1 and q(s+ 1).
Now (14) and (15) are satisfied by the choice of F0. Let a ∈ bs+1 +∑q(s+1)({bi : i ≤ s}∪ {0})+Bs+1. Then a = b+ v+ v′, where v′ ∈ Bt. Thus

a ∈ B|b|+2t+1. By the choice of p′′, ∥b∥ < p′′. Since |v| = t + 1 > |v′|, we
have ∥v + v′∥ ≥ p′′ > p′ > ∥b∥, which implies ∥a∥ > p′ and a ̸∈ Lλ. This
shows (16), so F0 ∈ P . Now F0 ≤ F1 and F0 ∈ D(U, o, k) by the construction.
Thus each D(U, o, k) is dense in (P,≤).

Using MA(countable) pick a directed G ⊆ P such that G∩D(U, o, k) ̸= ∅
for every U ∈ τ<λ

0 , o ∈ [λ]<ω, and k ∈ ω. Put H ′
λ =

⋃
G ∪ {0}. Proper-

ties (14) and (15) imply that H ′
λ =

⋃
{H ′

λ(i) : i ∈ ω} ∪ {0}, where H ′
λ(i) =

bi + Bq(i)(p(i)) ⊆ Kr(i) and the sequences q(i) and r(i) are strictly increas-
ing. Observe that bi ∈ Kq(i), so by the remark immediately following the
definition of K0 we have T = {bi : i ∈ ω} → 0 in τ1. Note that the choice of
bi involves no ambiguity using simple scatteredness arguments. Thus T ∪{0}
is a compact subspace of (B, τ1).

Put τ ′ = kω({B1, T ∪ {0}}). Let k,m ∈ ω be arbitrary and let a ∈ K =∑k(T ∪{0})+Bm. Write a = bi(1)+ · · ·+bi(k′)+b, where i(1) > i(j) and i(j)
are distinct for any 1 < j ≤ k′ ≤ k, and b ∈ Bm. If i(1) > m and q(i(1)) > k

then a ̸∈ Lλ by (16). Therefore K ∩ Lλ ⊆
∑k {bi : q(i) ≤ k or i ≤ m}+ Bm
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and is thus finite, since Lλ is closed and discrete in τ0 and the sum on the
right hand side is a compact subspace of (B, τ0).

Let τ ′′ ⊆ τ ′ ⊆ τ0 be a first-countable Hausdorff group topology on B
such that Lλ is a closed discrete subspace of (B, τ ′′). Let τ ′′0 be a countable
base of neighborhoods of τ ′′ at 0. Then T → 0 in τ ′′, so we can pick a
sequence p′(i) ≥ p(i) such that bi +Bq(i)(p

′(i)) ⊆ U for all but finitely many
i ∈ ω whenever U ∈ τ ′′0 . Put Hλ =

⋃
{bi + Bq(i)(p

′(i)) : i ∈ ω} and let τλ be
the topology generated by the subbase τ ′′ ∪ τ<λ. As both τ ′′ and τ<λ are
Hausdorff group topologies on B, so is τλ. The sets U ∩ V where U ∈ τ<λ

0

and V ∈ τ ′′0 form a local base τλ0 of open neighborhoods of 0 in τλ. Thus
|τλ0 | = |τ<λ

0 | < c. This establishes (10)–(11) and (13).
Given any finite o ∈ [λ]<ω, W ∈ τλ0 , and k ∈ ω, write W = U ∩ V

where U ∈ τ<λ
0 and V ∈ τ ′′0 , and find F ∈ G such that F ∈ D(U, o, k).

Then F ⊆ H ′
λ and therefore there exist b ∈ B and n,m ∈ ω such that

b + Bn(m) ⊆ U ∩ {Hβ : β ∈ o ∪ {λ}} and n > k. We may also arrange
(by making k larger if necessary and using scatteredness arguments) for
b = bi where i is sufficiently large so that b + Bn(m) ⊆ V . It follows that
b+ Bn(m) ⊆W ∩ {Hβ : β ∈ o ∪ {λ}}, which shows (12) is satisfied.

Define τ =
⋃

λ<c τ
λ. Then τ is a Hausdorff group topology on B. Since

τ ⊆ τ0, every compact subspace of τ0 is also compact in τ . Property (13)
implies that every closed discrete subspace L = Lγ of (B, τ0) for some γ < c
is also closed and discrete in τ . This in turn implies that every sequence
converging in τ is also converging in τ0, so the sequential coreflection of
(B, τ) is (B, τ0) and τ is remotely sequential.

Let 0 ∈ U ∈ τ . Then (12) shows that 0 ∈ K0 \ {0} ⊆ B\U0. Thus τ ̸= τ0,
so τ is not sequential.

Remarks 4.23. The two topologies constructed above (τ0 and τ) share
the same closed discrete subspaces while there exists a locally compact sub-
space (K0 \ {0}) that is closed in τ0 and has an accumulation point in τ .
A similar construction may be used to build a topology τ+ that has the same
closed locally compact subspaces as τ0, yet τ+ ̸= τ0. Any such τ+ will also
be remotely sequential. We omit the proofs.

The topology above cannot be made linear (i.e. have a neighborhood
base at 0 consisting of subgroups). The proof is omitted.

To finish this section, we consider the following definition that generalizes
the concept of a kω-space.

Definition 4.24. Let γ be an infinite cardinal. Let X be a topological
space. Call X a kγ-space (resp. a cγ-space) if there exists a family K of com-
pact (resp. countably compact) subspaces ofX such that |K| ≤ γ and U ⊆ X
is open in X if and only if U ∩K is relatively open in K for every K ∈ K.
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The next theorem shows that strongly groomed groups have sequential
coreflections that are either kω or determined by a large number of compact
subspaces.

Theorem 4.25. (IIA) Let G be a countable topological group whose se-
quential coreflection is a kγ-space for γ < b. Then either the sequential
coreflection of G is kω or there exists a dense subset of G almost disjoint
from every convergent sequence.

Proof. Suppose there is no dense subset of G almost disjoint from every
convergent sequence, i.e. G is strongly groomed. Then G is groomed by
Lemma 4.10, so IIA applies.

Let τ be the topology of G and let K be the family of compact subspaces
of G of size at most γ < b. Apply IIA to cpt(G). Alternative (1) implies that
[τ ] is kω. Otherwise, (2) implies the existence of a sequence of Di ⊆ G closed
and discrete in [τ ] such that each intersection Di ∩K is finite where K ∈ K
and for every open U ∋ 0 there exists a Di such that Di \ U is finite.

Let Di = {dji : j ∈ ω}. Assume Di are disjoint and K is closed under
finite unions. For each K ∈ K define a function fK : ω → ω by fK(i) =

max {j : dji ∈ K} ∪ {0}. Since |K| < b, there exists an f : ω → ω such
that f ≥∗ fK for every K ∈ K. Define D′

i = Di \ {dji : j ≤ f(i)}. It is a
simple observation that D =

⋃
i∈ωD

′
i has the property that D ∋ 0 and every

intersection D ∩K is finite where K ∈ K. In particular D is almost disjoint
from every convergent sequence in G.

Let D = {cj : j ∈ ω} and G = {gi : i ∈ ω}. Put C ′
i = Dgi. Recursively

pick Ci ⊆ C ′
i such that gi ∈

⋃
n≤iCn \ {gi} and Ci are disjoint. At step k if

gk ∈
⋃

n<k Cn \ {gk} put Ck = ∅. Otherwise put Ck = C ′
k \

⋃
n<k Cn \ {gk}.

Note that g ∈ Ci \ F for some i ∈ ω and any finite F whenever g ∈ G.
For simplicity assume every Ci ̸= ∅ (this assumption can be eliminated by
reindexing Ci) and let Ci = {cji : j ∈ ω}

Define gK : ω → ω by gK(i) = max {j : cji ∈ K} for every K ∈ K.
As before, let g : ω → ω be such that g ≥∗ gK for every K ∈ K. Put
B =

⋃
{cji : j > g(i)}. Then B is dense in G by the property of Ci mentioned

in the previous paragraph. The choice of B implies that every intersection
B ∩K with K ∈ K is finite. Since every convergent sequence is contained in
some K ∈ K, B is almost disjoint from every sequence convergent in τ .

5. Embeddings in sequential groups. The following example answers
[24, Question 4.3(v)] as well as [3, Problem 7.1.5].

Example 5.1. There exist (1) a separable completely regular space that
cannot be embedded into a sequential topological group and (2) a separable
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completely regular first-countable space that cannot be embedded into a
sequentially compact Hausdorff space.

Proof. Let A ⊆ [ω]ω, A = {aλ : λ < c} be a MAD family of size c. Let
also C = {Cλ : λ < c} list all the C ∈ ([ω]ω)ω. For brevity, put Ai = A×{i},
i ∈ {1, 2}, and recursively define a topology on X = ω × ω ∪ A1 ∪ A2. Let
λ < c. Pick disjoint Dλ

1 , D
λ
2 ⊆ ω so that Dλ

1 ∪ Dλ
2 = ω and Dλ

i ∩ Cλ(j) is
infinite for i ∈ {1, 2} and any j ∈ ω. Leave every point in ω×ω ⊆ X isolated
and define the basic neighborhoods of a ∈ Ai by Un(a) = {a}∪ (Ai \n)×Dλ

i

where a = aλ × {i} and n ∈ ω.
Thus defined, X becomes 2-scattered, Hausdorff, first-countable, and

zero-dimensional (hence completely regular). Let X ⊆ Y , where Y is such
that for every n ∈ ω there exists an infinite C(n) ⊆ ω such that {n} ×C(n)
→ yn ∈ Y . Then C ∈ C so C = Cλ for some λ < c. Let n ∈ ω; then
Un(aλ × {i}) ∩ ({n + 1} × C(n + 1) = {n + 1} × (Dλ

i ∩ Cλ(n + 1)) → yn+1

where i ∈ {1, 2}. This shows that Y is not Urysohn. A more detailed analysis
would show that if Y is sequentially compact then Y cannot be Hausdorff.

Define Z to be the topological sum of X constructed above and the
sequential fan S(ω). Suppose Z ⊆ G for some sequential topological group G.
By [34], G contains a closed copy of S(ω). The argument in the preceding
paragraph implies that for all but finitely many n ∈ ω, the sets {n} × ω ⊆
X ⊆ G are closed and discrete in G. Therefore for some n ∈ ω, every
subspace {aλ × {i}} ∪ ((ω \ n) × Dλ

i is a closed copy of D(ω) in G. This
contradicts the assumption that G is sequential (see Lemma 4.5).

Remarks 5.2. The space above is not normal so the existence of normal
(or better still, countable) examples of spaces not embeddable in sequential
topological groups remains an open question. In a model of IIA most count-
able Fréchet spaces with a single nonisolated point (even with a countable
cs∗-network) cannot be embedded into countable sequential groups. Indeed,
in such models there are only ω1 different sequential group topologies on
countable groups and thus at most c different topologies embeddable into
such groups. At the same time there are 2c nonhomeomorphic countable
Fréchet spaces with a countable cs∗-network that have a single nonisolated
point (see e.g. [30, Example 2]). The next lemma gives a more specific ex-
ample.

Lemma 5.3. (IIA) Let X be a countable, Fréchet, α4, and non-first-
countable space. Then X cannot be embedded into a countable sequential
topological group.

Sketch. Only non-Fréchet groups are of interest. Use the kω property to
recursively build a copy of S(ω) in X (the recursion does not stop because
X is not first-countable).
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We now show that S(ω) distinguishes between Fréchet and non-Fréchet
groups in the class of general (not necessarily countable) sequential groups
in the model of IIA built in [14] (this is referred to as IIA+ below). Whether
IIA by itself implies the conclusion of Theorem 5.5 is still an open question.

Lemma 5.4. (IIA+) Let H ∈ V [G] be a separable sequential group that
is not Fréchet. Then there exists a closed normal subgroup K ⊆ H such that
ψχ(H/K) ≤ ω1 and H/K contains a closed copy of S(ω).

Proof. Let H ∈ V [G] be a separable sequential group and K ⊆ H be a
closed normal subgroup of H such that ψχ(H/K) ≤ ω1. Suppose H/K does
not contain a closed copy of S(ω). If H/K is Fréchet then it is metrizable,
since H is separable. Otherwise, there exist disjoint convergent sequences
H/K ⊇ Sn → 1 ∈ H/K, n ∈ ω, such that no ‘diagonal’ sequence in

⋃
Sn

converges to 1.
Since ψχ(H/K) ≤ ω1 < b, one may find a cofinite S′

n ⊆ Sn such that
any ‘diagonal’ convergent sequence in

⋃
S′
n must converge to 1. Since no

‘diagonal’ sequence in
⋃
Sn converges to 1 ∈ H/K and H/K is sequential, it

follows that
⋃
S′
n is a closed copy of S(ω) in H/K, contradicting the choice

of K.
Therefore we may assume that whenever a closed normal subgroup

K ⊆ H is such that ψχ(H/K) ≤ ω1, the group H/K is metrizable (i.e. H is
ω1-collapsible in the terminology of [29]).

Let X ⊆ H be a countable dense subgroup of H large enough to witness
that H is not Fréchet. Using standard arguments, find an α < ω2 such
that X, H, and G = V [Gα]∩H satisfy the conditions of [29, Lemma 18], as
well as the additional property that if ψχ(H) > ω, then ψχ(G) > ω as well.

Just as in the argument following the proof of Lemma 20 in [29], we
conclude that G is hereditarily Lindelöf and thus has pseudocharacter ω.
Thus ψχ(H) = ω and we may use an argument similar to the one above to
find a closed copy of S(ω) in H.

Theorem 5.5. (IIA+) Every separable nonmetrizable sequential group
contains a closed copy of S(ω).

Proof. Using Lemma 5.4 find a closed normal subgroup K ⊆ H such
that H/K contains a closed copy

⋃
Sn of S(ω) where Sn → 1 are disjoint

convergent sequences. Let p : H → H/K be the appropriate quotient map.
Since Sn → 1 in H/K, there exists an infinite Tn ⊆ p−1(Sn) such that
Tn → sn ∈ K and p|Tn is 1-1. It follows that

⋃
Tn · s−1

n is a closed copy of
S(ω) in H.

Corollary 5.6. (IIA+) Every countably compact subspace of a sepa-
rable sequential nonmetrizable group is nowhere dense.
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Corollary 5.7. (IIA+) The character of every separable sequential
group is either c > ω1 or ω.

Recall that a group G is called sequentially complete if for any H such
that G is a dense subgroup of H, and any S ⊆ G, if S → h in H then h ∈ G.

Corollary 5.8. (IIA+) A sequential non-Fréchet group is sequentially
complete.

Proof. Let H be a topological group and G ⊆ H is a sequential subgroup
of H that is not Fréchet such that there exists an S → a ∈ H\G with S ⊆ G.
Find a separable subgroup G′ ⊆ G that is sequential and not Fréchet and
S ⊆ G′. Then G′ contains closed copies of S(ω) and D(ω) ⊆ S · S−1 which
contradicts Lemma 4.5.

Corollary 5.9 (IIA+). A sequential subgroup of a sequential group is
either Fréchet or closed.

We now turn to the question of strengthening the statement of IIA.
We use [14, Example 29] to show that the alternative (1) of IIA cannot

be strengthened to require that the countable family S satisfy the additional
property that for any sequence C → x and any open neighborhood U ∋ x
there exists an element S ∈ S such that S ⊆ U and S∩C is infinite. A family
with this property is called a cs∗-network at x (see for example [4]). The
authors of [4] proved that any countable sequential group with a countable
cs∗-network is kω (see Lemma 2.14 above). Thus such a stronger version of
the IIA would have enabled much shorter proofs for most of the results in
this paper. The question about a possible extension of IIA along these lines
was asked by L. Zdomsky̆ı during a talk given by the first author.

After establishing some simple preliminary results, we show that such an
extension of IIA is false. More specifically, we shall show below that the sub-
group K of G generated by D in [14, Example 29] does not have a countable
cs∗-network at 0G, while the restriction to K of the ideal generated by the
countably compact subspaces of G satisfies alternative (1) of IIA. Addition-
ally, such a G can be constructed in a model of IIA, while K is subsequential,
and therefore groomed.

Lemma 5.10. Let R be countably compact and Fréchet, and Q ⊆ R be a
dense subspace of R. If Q has a countable cs∗-network at x ∈ Q then R is
first-countable at x.

Proof. Let K ⊆ 2Q be a countable cs∗-network for Q at x ∈ Q closed
under finite unions. Put K = {P : P ∈ K} where the closure is taken in R.
To show that K is a countable cs∗-network at x in R consider S → x with
S ⊆ R, and an open U ∋ x. Since R is Fréchet, we may pick Si → xi where
S = ⟨xi : i ∈ ω⟩ and Si ⊆ Q. If there exists a finite KU ⊆ {P ∈ K : P ⊆ U}



Invariant ideal axiom 27

such that (
⋃

KU ) ∩ Si is infinite for infinitely many i ∈ ω then (
⋃
KU ) ∩ S

is infinite and we are done.
Suppose such a finite subfamily does not exist and let {P ∈ K : P ⊆ U}

= {Pi : i ∈ ω}. Recursively choose strictly increasing indices ik ∈ ω such
that

⋃
{Pi : i ≤ k} ∩ Sik = Fk is finite. Using the Fréchet property again,

find a sequence T ⊆
⋃

k∈ω(Sik \Fk) such that T → x. Now T ⊆ Q and P ∩T
is finite for every P ∈ K such that P ⊆ U , contradicting the choice of K
together with the regularity of R.

Now Proposition 7(1) of [4] finishes the proof.

Lemma 5.11. Let G be a topological group whose topology is determined
by a countable family C of countably compact sequential subspaces. If G has
a nonmetrizable countably compact subspace then there exists a C ∈ C that
has an uncountable pseudocharacter.

Proof. Let C = {Ci : i ∈ ω}. Since G has a nonmetrizable countably
compact subspace, G must also have a countably compact subspace K of
uncountable pseudocharacter. To show this we will modify the proof of [3,
Lemma 3.3.22]. Let C be a countably compact nonmetrizable subspace of G.
Note that C is sequential (since G must be) and thus C×C is also sequential
and countably compact [15]. Let K = C ·C−1. Since K is a continuous image
of C × C and a subspace of G, it is also sequential and countably compact.
Now if 1G ∈ K has a countable pseudocharacter in K it follows, just as in
[3, proof of Lemma 3.3.22], that C has a Gδ diagonal and is thus compact
and metrizable by the classical result of [6], contradicting the choice of C.

Note that the sequentiality of G implies that every C ∈ C is closed in G.
Since the topology of G is determined by C, there exists a finite C′ ⊆ C such
that K ⊆

⋃
C′, so one of C ∈ C′ has an uncountable pseudocharacter.

The proof of the next lemma uses standard techniques and is omitted.

Lemma 5.12. Let B be a continuous image of C, where both C and B
are sequential and countably compact. If C is Fréchet then so is B.

Before we proceed to construct the example promised at the beginning
of this section, we shall briefly review the construction of [14, Example 29]
for the reader’s benefit.

The construction uses a space X = D∪ω1 with the following properties:
(1) D is a dense countable set of isolated points, (2) the subspace ω1 has the
natural topology, and (3) X is first-countable, locally compact and countably
compact. Such spaces were called γN in [20] where their existence was shown
to follow from t = ω1, which holds in any model of IIA (this is because IIA
implies that all countable Fréchet groups are metrizable, which is false under
t > ω1 [11]).
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The group G is constructed as a free boolean topological group over X.
This means that (4) the points of X form an algebraic basis for G (thus the
elements of G may be thought of as finite subsets of X with the symmetric
difference as the algebraic operation), (5) the topology of X as a subspace of
G is the original topology of X, and (6) the topology of G is the finest group
topology with these properties. Theorem 2 of [33] states that such objects
exist for any space X.

The argument in [14, Example 29] shows that G is sequential and that the
topology of G is determined by the countable family of subspaces {

∑nX :
n ∈ ω} (i.e. F ⊆ G is closed if and only each F ∩ {

∑nX : n ∈ ω} is closed).
Since X is first-countable, these subspaces are sequential (because G is and
because they are closed in G due to the next property), as well as countably
compact (as continuous images of finite products of sequential countably
compact spaces). This shows that G is cω.

Let K be the subgroup of G generated by D ⊆ X. Further, let I be the
ideal generated by the countably compact subspaces of G and put J = I|K .
Then J is a tame invariant ideal that satisfies alternative (1) (but not (2)!)
of IIA.

Suppose K has a countable cs∗-network K. The topology of G is de-
termined by the family {

∑nX : n ∈ ω}. Since Xn is first-countable, and
each

∑nX is sequential, Lemma 5.12 implies that each
∑nX is Fréchet.

Since X is not metrizable, Lemma 5.11 implies that one of
∑nX is not

first-countable. Since X algebraically generates G we may assume (by pick-
ing a larger n if necessary) that 0G has uncountable character in

∑nX. Now
K|∑n D is a countable cs∗-network in

∑nD ∋ 0G which is dense in
∑nX.

Lemma 5.10 gives the desired contradiction.

Question 4. Does there exist, in ZFC, a countable group (G, τ) such
that [τ ] is not regular? Does such a group exist in a model of IIA?

Question 5. Are the ideals nwd(τ) and csc(τ) tame for a countable
topological group G?

The final result of this section answers [25, Question 7.4] by showing
that IIA implies the nonexistence of sequential precompact groups that are
not Fréchet. For countable sequential groups in the Cohen model this was
established in [32]. It was shown in [26] that countably compact sequential
non-Fréchet groups exist under ♢, which together with the result below
implies that the existence of precompact sequential non-Fréchet groups is
independent of the usual axioms of ZFC.

Lemma 5.13. Let G be a precompact sequential group and H ⊆ G be a
dense subgroup. Then for any countable I ⊆ nwd(G) there exists a nontrivial
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sequence ⟨yi : i ∈ ω⟩ ⊆ H converging to 1G such that ⟨yi : i ∈ ω⟩∩N is finite
for every N ∈ I.

Proof. Let H ⊆ G ⊆ X be such that H is a dense subgroup of a se-
quential group G, which is a dense subgroup of a compact group X. Let
I = {Ni : i ∈ ω} ⊆ nwd(X). Recursively pick xi ∈ H and open (in X)
neighborhoods Oi of 1X so that

(17) xi+1 ∈ Oi and Oi+1 ⊆ Oi;
(18) xi ·O−1

i · (Oi ·O−1
i )−1 ⊆ X \

⋃
j≤iNj .

SinceX is compact, the set {xi : i ∈ ω} has an accumulation point x ∈ X.
Let O be an arbitrary open neighborhood of 1X in X. Pick an open U ∋ x
so that U · U−1 ⊆ O. Since x is an accumulation point of {xi : i ∈ ω}, there
are i > j such that xi, xj ∈ U . Thus xj ·x−1

i ∈ O, which shows that 1X = 1G
is an accumulation point of S = {xj · x−1

i : i > j, i, j ∈ ω} ⊆ H. Since G is
sequential, there exists a nontrivial convergent sequence T ⊆ S.

Consider the following two cases. First, suppose T can be picked so that
T = ⟨xj · x−1

n(i) : i ∈ ω⟩ for some fixed j ∈ ω and an increasing n(i). Then the
sequence ⟨xn(i) : i ∈ ω⟩ converges. Now the sequence ⟨xn(i) · x−1

n(i+1) : i ∈ ω⟩
converges to 1G. By (18) and (17), xn(i+1) ∈ On(i) and yi = xn(i) · x−1

n(i+1) ∈
xn(i) · O−1

n(i) · (On(i) · O−1
n(i))

−1 ⊆ X \
⋃

j≤n(i)Nj . Since n(i) is increasing,
⟨yi : i ∈ ω⟩ ∩Ni is finite for every i ∈ ω.

If no such T exists, we may assume, after thinning T if necessary, that
T = ⟨xn(i) · x−1

m(i) : i ∈ ω⟩ where n(i) is strictly increasing and m(i) > n(i).
Put yi = xn(i) · x−1

m(i) · (xn(i+1) · x−1
m(i+1))

−1 and note that yi → 1G and
yi ∈ xn(i) ·O−1

n(i) · (On(i) ·O−1
n(i))

−1 ⊆ X \
⋃

j≤n(i)Nj . Thus ⟨yi : i ∈ ω⟩ ∩Nj is
finite for every j ∈ ω.

Corollary 5.14. (IIA) Every separable precompact sequential group is
metrizable.

Proof. Let G be precompact sequential and let H ⊆ G be a dense count-
able subgroup. Since H is subsequential, H is groomed. Now H has no
isolated points and G is sequential, so the ideal nwd(H) is tame by [29,
Lemma 19] and [14, Lemma 10] ([29, Lemma 19] is stated in terms of preser-
vation of the ω-hitting property under some forcing extensions and [14,
Lemma 10] states that this is equivalent to tameness). Now Lemma 5.13
implies that alternative (1) of the IIA does not hold, so H has a countable
π-base. Thus, H is metrizable and so is G.
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