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Two problems on the greatest prime factor of n? + 1
by

GLYN HARMAN (Egham)

Abstract. Let Pt (m) denote the greatest prime factor of the positive integer m.
In [Arch. Math. (Basel) 90 (2008), 239-245] we improved work of Dartyge [Acta Math.
Hungar. 72 (1996), 1-34] to show that
Hn<z:PT(n®+1) <z} >z

for o > 4/5. In this note we show how the recent work of de la Bretéche and Drappeau
[J. Eur. Math. Soc. 22 (2020), 1577-1624] (which uses the improved bound for the smallest
eigenvalue in the Ramanujan—Selberg conjecture given by Kim [J. Amer. Math. Soc. 16
(2003), 139-183]) along with a change of argument can be used to reduce the exponent
to 0.567. We also show how recent work of Merikoski [J. Eur. Math. Soc. 25 (2023),
1253-1284] on large values of P (n? 4+ 1) can improve work by Everest and the author
[London Math. Soc. Lecture Note Ser. 352, Cambridge Univ. Press, 2008, 142-154] on
primitive divisors of the sequence n? + 1.

1. Introduction. On page 23 of [12] the following conjecture is asserted.

There are infinitely many primes n® + 1. More generally, if a,b,c are
integers without common divisor, a is positive, a+b and ¢ are not both even,
and b*> — 4dac is not a perfect square, then there are infinitely many primes
an® +b+c.

Indeed, there is a more general conjecture on irreducible polynomials
without fixed prime divisors, and this has been put into a quantitative form
[2, [I1]. In the same way, conjectures have been made on “smooth” values of
polynomials. For example, it is reasonable, given —D not an integer squared,
to suppose that, given € > 0, one should have P*(n? + D) < n¢ infinitely
often, where P*(m) denotes the greatest prime factor of the positive inte-
ger m. Indeed, this has been proved, in a slightly stronger form with an ex-
plicit e(n, D) — 0, by Schinzel [20, Theorem 13|. However, Schinzel’s method
does not give the expected formula for the number of such values of n?+ D.
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In fact, given a > 0 (not necessarily “small”) it cannot even provide a lower
bound of the correct order of magnitude for

{n <z:PT(n®+ D) <z} =¥)(x,a), say,

since the values of n are stated explicitly in a form > 2™ for a certain
sequence of values m [20, p. 230].

There is more recent work which covers general quadratic polynomials [4],
but still cannot provide the correct order lower bound. An asymptotic for-
mula has been given by Martin [18], but only dependent on a very strong
unproved hypothesis (a uniform quantitative version of “Hypothesis H” of
Schinzel and Sierpiniski). In 1996 Dartyge [5] proved that ¥;(z, «) > z for
o > 123 ~ 0.8324. The method drew on the techniques used in [14} [7] for
proving that P*(n? + 1) > n? with v > 1, combined with methods of Ba-
log [1] and Friedlander [I0] for obtaining the correct order of magnitude of
smooth numbers in certain sequences.

In [I3] we dispensed with Balog’s method and thereby reduced the lower
bound for « to %, and the first purpose of the present paper is to give the
following more significant improvement. The value 0.567 which occurs in our
main result arises as 256

—-1/2
33 16 / +e€
for any € > 0. Here, and throughout the paper, we reserve the letter e for
the base of natural logarithms. There are no serious mathematical problems
in replacing n? + 1 with n%2 + D (where —D is not an integer squared) in any
of our results. We have restricted ourselves to n? + 1 for brevity and clarity.
All the main lemmas have exact analogues for n? + D which can be derived
using Hooley’s work [I4] [I5] and noting that [3] deals with the more general
case. Henceforth we shall therefore suppress the subscript 1 on ¥ (z, «).

THEOREM 1.1. For «« > 0.567 we have
(1) U (z,a) > x.

If we fed an improved result from [3] into the method of [13] we would only
get an exponent of 82/107+¢ ~ 0.766. However, we shall use a different result
from [3] and combine that with the Balog-Friedlander approach to get a
much better improvement in the exponent (though paradoxically this makes
our method resemble Dartyge’s approach [5]). We remark that Merikoski
[19] has combined the work of de la Bréteche and Drappeau with other ideas
to show that infinitely often P (n? + 1) > n'?™. The methods used to
prove these types of results have implications for the work given in [8, 9] on
primitive divisors of quadratic polynomials, and we shall briefly describe one
such result in our final section.



Two problems on the greatest prime factor of n? + 1 3

2. Outline of the method. Write
p=e? pB= %, a=PB¢+e A=[z,22]NN, n=¢, v=¢.
Henceforth it will be implicit that the constants in the O and < notation
may depend on €, though we will write O* for the few occurrences where
we need the constants to be absolute. Our basic idea is to count integers
mpl = k?> + 1, k € A. Here and elsewhere p and ¢ always denote primes.
If both m and ¢ are around Y in size, Balog’s technique, if we can do the
counting correctly, can show that ¢ |¢/m = ¢ < Y?*". Friedlander’s idea is
to make £ have all its prime factors > z¥ and so, for a fixed n, the number of
solutions to mpl = n? + 1 is < 1. Since pY? ~ 2, we would like p to range
over values as large as possible to reduce Y, but also satisfying p < Y17,

We need to introduce a smoothing factor for the variable &k in order to
use a result from [3]. To this end we let V(u) be an infinitely differentiable
non-negative function such that

V() <2 ifl<u<?2,
u
=0 fu<loru>2,

with
d"V(u)

du”

<, 1 and SV(u)duzl.
R

We allow implied constants to depend on the choice of V(u), for example in
below. Since we will often have a factor V(k/z), the condition k € A will
be superfluous and so omitted in most of the sums that follow. The following
result then follows immediately from |3, Théoréme 5.2] and provides us with
the means of counting solutions of the required form. We write w(n) for the
number of solutions to the congruence r?> = —1 (mod n), 0 < r < n, and,
for B> 1, we write b~ B for B<b<eB,beN.

PROPOSITION 2.1. Let n > 0, z, M,N > 1, MN < z2, and suppose
Gm, hn are two sequences of complex numbers with modulus at most 1. Write

M= Y v(’;)—x@

k2=-1 (mod s)
Then
(2) Z Z gmhnr(mn) < F($,M, Na n)a
m~M n~N
(m,n)=1
where

(3) F($,M, N, ,’7) _ x1/2+"M1/2 + 3:,l—i—n]\[3/2—0]\4—1/4—4—9/2.
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Here i — 62 is the best known lower bound for the smallest eigenvalue for
any congruence subgroup, so 8 = 7/64 is acceptable by [17T].

Now we will require F(z, M, N,n) < x'72" to get an asymptotic formula
for the weighted number of solutions we are counting by . We will take hy,
as the characteristic function of the set of primes, so we will want NM? ~ z2.
Simple algebra then shows we need to take N ~ x50/38L N[ s ¢356/381 e

define three sequences a,, by, cs by
1 ifp|r=p<a”, 1 ifp|l=p>a”,
r = . cs =1~ s, bK = .
0 otherwise, 0 otherwise.

The Balog—Friedlander approach with this notation (omitting the smoothing
factor for clarity) is to observe that

D ambag > Ty — 5,

ke A
tmp=k2+1
where
21 = Z bgag, 22 = Z bgcm.
ke A ke A
Imp=k3>+1 Imp=k3+1

Our main task will be to show that we can obtain a lower bound for »; and
an upper bound for Xy which are both of the “correct” size. This will lead
to a lower bound of the correct order of magnitude for the integers we are
counting, which includes a factor

1- 2log<w> =1- 210g(ﬂa+6> =log(1+¢/(B¢)) — log(1 +€/5)

log &

~ %(gb_l ~1)>1.

Here we noted that log ¢ = —1/2 and this is what brings the e~ Y2 into the
exponent of our result.

3. Preliminary results. Write x(n) for the non-trivial character
(mod 4). We note that for all primes w(p) = 1 + x(p), and for n > 2,

we have
0 if p=2,
w(p") = ;
1+ x(p) otherwise.

Let L(s, x) be the corresponding L-function. We note that, by the working
in [0, Chapter 22|, we have by partial summation, for s > 1,

(4) $ Xéq’ < exp(~C(log X)1/2)
>X
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forsome C' > 0. This result is used implicitly in the following where we need that
w(q) = 1 on average, and is quoted explicitly later in the proof of Theorem 1.1.

The following result is established in [8, pp. 150-151]. A more general
result (with a slightly weaker error term) can be found in the works of Hooley
[14] and [15, Chapter 2].

LEMMA 3.1. For any d € N and L > 1 we have

witd) LX) | [ w(d)7(d)(oga)’
©) Ol +O< L2 )

Here )
N\ -
p(d) = w(d) H(l + ) .
b
pld
Now write

P = (1792 = 50/381-2¢

The following simple lemma shows that we can add or remove the conditions
(m,p) = 1 or ({,p) = 1 when counting solutions to mpl = n? + 1 with
negligible error.

LEMMA 3.2. We have, for any IT < z'/2,
xltn

> Zl<<ﬂ.

x1/2>p>11 neA
T tmp?=n2+1

Proof. This is immediate from the well-known result that w(p?) < 2. =
Henceforth we write B = z".

LEMMA 3.3. In the above notation, there are two sequences of reals /\leE
supported on the square-free numbers such that

AF| <1, Mr=0 ford>a,

Z}\dg{l if ¢|ln=q> B, Z}\:{Z{l if ¢|ln=q> B,

i 0 otherwise, i 0 otherwise,

and, for Aq equal to either of )\i,
(6) Z )\dzw — (1 + O*(e—l/e) + O((log:ﬂ)_l/?’)) H <1 B p(q)>
dse q<B q

Proof. See [16l, Lemma 3|. This is a “Fundamental Lemma” form of the
result (since we are sieving by the primes up to x¥ with distribution level z"
where n/v = ¢! is “large”). =
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We will need a less precise form of the above result for a narrow range
of the variables which again follows from [16, Lemma 3| as a simple upper
bound. Henceforth ~ always denotes Euler’s constant.

LEMMA 3.4. There is a sequence of reals X, supported on the square-free
numbers such that

L =q>B
dn 0 otherwise,

and
d<B d B q
LEMMA 3.5. We have

®) 11 (1 - p(qq)> - s T (1 ! O<1oéx>)'

q<B

Proof. This is essentially [I3, Lemma 3.2] and also occurs inter alia in
[5, p. 10], and [7, p. 10]. =

In the final part of our proof of Theorem 1.1 we shall not be able to make
use of the averaging over ¢ given in Lemma This forces us to consider

A w(m A d
©) > remd) = En) 2 dd“<(d,m)>'

d<zn d<z"
2t(d,m)
Thus, in our sieve bounds,
I <1 B p(cz))
q<B q

is replaced by (for w(m) # 0)

n(-2) 1)

q<B
qtm qlm

For this reason we introduce
1-1/q 1
(9] = = 14+ —1.
(m) 1_[1—2/@1 H<+q—2>
q|m m
q>2 q>2

We then need the following result.
LEMMA 3.6. For allY > 2 we have
w(m)2(m)
10 —— - <K logY.
(10) Y, - <log

m<Y
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Proof. We have

Z H( ()+W(q2)f(q2)+m>

m<y <Y 9
2
7? H <1+ +O< >><<logY,
2<q<Y q
w(q)#0

by standard procedures (we are, of course, using implicitly here). m

4. Proof of Theorem Pick IT = e"P with 1 < " < 2. Then
choose L = €921t with 1 < €9 < 2. We first want to find a lower bound
very close to the expected formula for

S(L,M)= ) bgagV(fZ).

ke A
tmp=k>+1
b~ Ly p~IT

By Proposition 2.1 and Lemma [3.2] we have

6
S(L, ) ==z Z ba w(p)w(t) + O(z!72m).
b~ L, p~IT
Now
ap=1- Z 1.
qle
¥ <g<el
Let

Qi=2% Q2=L(logz)™®, Qs=eL.
For 1 < j <2 write Q; = [Q},Q;+1) N N. We then write

2
ar=1-30j(t) where o)=Y 1.
j=1

qlt
qeQ;

We then have three terms to deal with in order to evaluate S(L, IT) as follows:
(i) The first term is

> p ey Dy )
O~ L, pIT ~L p~IT p

Now

Z wg(nm = loglﬂ(l + O((logm)*l)),
p~IT
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while from Lemma

I B I

I~ i~ L dje
L1, x) Agp(d) w(d)7(d)(log x)*
(2 d;ﬁ ) d + O<d§7 dL1/2 >

The error term above is clearly < (logz)"L~/2. By Lemma the main
term in the last line is

o e [T (20 = e (002 )

q<B

using Lemma [3.5] Here we have written
K(z,€) = (140" (n) + O((log x)~'/%)),
noting that exp(—1/¢) < €2 = 5. Combining all our results gives

677
log IT) (v log x)

SIELEUE.

b~ L, p~IT

K(z,e€).

(ii) We have
wal(g)&: Z M Z be@~
{~L ¢ g€ 9 ¢~L/q ¢

We can treat

w(f)
> be=y~

¢~L/q

as in case (i) except that we now require an upper bound. We thus switch
A~ to AT and the error term

O((log x)7L_1/2) becomes  O((log x)7(L/q)_1/2).

Since ¢ < Q2 = L(logx)~2°, this error term is still admissible. (In fact,
we must have ¢ < eL/B as ¢ has no prime factors < B, but we are only
obtaining an upper bound, and this situation does not arise in the analogous
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case when we switch the roles of £ and m.) We deduce from that

Z wla) = Z l—i— O(exp(—C(logm)l/Q))
g€ q q€1 1
_ 1Og(logL —20loglog
log &

)+om%@*>

%"'6 1/2
-ﬂ%(yw)+mmwom%mw
@—f—e

1
=5 — Re+0"(n) + O((log x)~?)

where 181 .

— 227 el/2 _ -

356¢ D> 3

Hence
w(p)w(l) e <1 )
by————=01(¢) < K(x,e)| = — Re |.
ZN%’;NH e () (log IT)(v log x) (z,€) 2

(iii) In this case for large x we must have ¢ > eL/B. This forces ¢ ~ L
as ¢ cannot have a prime factor less than B, so £ = 1. The contribution from
this final part of the sum is therefore

w 1 14+ O((logz)~t K(x,6)O*(v
Z;q) _14+0((logz)™")  K(z,€)0"(v)

= logll  logIIlogL (log IT)(vlogx)
We have thus established that
1 -
S(L,IT) >x e < K(z,€).

2 (logIT)(vlogx)
It follows that (recall 0 < g,h < nlogz)
9 1+4+e€ e 7

(11) S(L,IT) > n°x
% 2 (32 —2¢)v

K(xz,¢).

We must now change the roles of the variables to estimate the quantity we
called X5 in §2. Instead of breaking up the summation range over ¢ we must
do this for m. We treat p as before and suppose that IT = e P with e < 2.
To ensure we include all possible values for m (since we are subtracting the
final term, we need an upper bound) we consider

5(32_’8_6 62$2—ﬁ—e+7]
— <m< ——
eIl I
So we will be taking values
eg$2—ﬁ—5
M=—"——— with e9<el2"

e2l]
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We are thus summing over nlogz + O(1) values M and the additional O(1)
introduces no difficulties here. We must therefore study

T(M, )= Y beaV (D .

Imp=Kk>+1
m~M, p~IT

By Lemma [3.3] we can give an upper bound for this quantity by considering
k
Ay Vi=).
Sa Y av(t)
d<zn tdmp=Kk?+1
m~M, p~IT
We apply Proposition to demonstrate this sum is

x Z b Z cmaW + O(z'™).

d<xn p~IT P
m~M

Now
Cm = Z 1 =cn(l) +cen(2), say,

qlm
z*<g<eM
where ¢ < eM (logz)~2% in ¢,,(1). We can work as in case (ii) of the estimate

for S(L, IT) to obtain a satisfactory bound for this part of the sum, namely,

e x 1
< K — — Re .
= Tog M(wloga) " (2 6)
The sum involving ¢, (2) is

(12) Py Yoy ek,

m< (log z)20 d<z" p~IT
maq~M

Of course w(mdq) = w(q)w(dm). Clearly
w(Q) 1 _9
= + O((log M)™7).
qrgM q  log(M/m)
We then use @ and the working that follows in §3 to get the contribution

from to be

z loglog x
(logz)3
We have thus shown that

TWM.N) < (log ;;ZVxlog w)K(x’ ° (é - R6> i O(W)
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It follows that (recall 0 < g <4+ nlogx, and 0 < h < nlogx)

1—e€ e 7
(13) T(M,IT) < n’x =
; 2 (3% —2¢)v
Taking the difference between and gives a lower bound for the

numbers we wish to count, which is

K(xz,¢).

> n2x76_7
=€ 50
(351 — 2€)v
This completes the proof of Theorem [I.1]

(1+0%(e) + O((log z)~1/3)).

5. Primitive divisors of quadratic polynomials. We recall the fol-
lowing standard definition and proposition (see, for example, 8, 9]).

DEFINITION 5.1. Let (4,,) denote a sequence with integer terms. We say
an integer d > 1 is a primitive divisor of A, if
(1) d[ Ap,
(2) ged(d, Ayy) = 1 for all non-zero terms A, with m < n.

PROPOSITION 5.2. For alln > |D|, the term P, = n?+ D has a primitive
divisor if and only if PT(n?+ D) > 2n. For alln > |D|, if P, has a primitive
divisor then that primitive divisor is a prime and it is unique.

In [8] we proved the following result (we take D = 1 for simplicity, but
as with our previous sections the results can be made more general).

THEOREM 5.3. Define
p(x) = |{n <z :n®+1 has a primitive divisor}|.
For all sufficiently large x we have

0.5324 < M < 0.905.

T
We also tentatively suggested the following conjecture.

CONJECTURE 5.4. As z — oo we have p(z) ~ xlog 2.

It was explained there that such a conjecture would imply astonishingly
strong results on the lower bound for P*(n? + 1) for infinitely many n.
Since this looks unlikely to be established without a significant advance in
knowledge, it seems worthwhile to give a modest sharpening of Theorem [5.3}

THEOREM 5.5. For all sufficiently large x we have

(14) 0.5377 < p(;) < 0.86.

Proof. To consider the upper bound in our result we need to use the
working in [I9], or rather the working with one factor changed.
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Let P, = 27 = max,<, lD+(n2 + 1). The basic argument goes back to
Chebyshev and starts with the observation that

Z Gplogp = xlogz + O(x).
z<p<Py
Here
Gp= > v(k)
plk2+1 .

Simplifying a few details to expose the main idea, we then wish to obtain
upper bounds for G, of the form

S Gy < K(a)(1+o(1))

logx”
1<px—><e

It is then a question of showing that

SaK(oz) da < 1,
1

and this determines the maximum value for 7. In [§] we show that in the
above notation

-
’)(;) < (1+0(1) | K() dov.
1

So, to prove our result, we only need to perform the same calculations as
in [19], removing the factor a from the integrand. In some ranges of «
the integrals are elementary, but in others numerical integration must be
employed. In his paper [I9, p. 1268] Merikoski has kindly supplied links
to his Python programs for these calculations. Changing these programs to
remove the a factor, and calculating the remaining elementary integrals, then
gives

| K(a)da < 0.86
1

as required to complete the proof.

We give one example of the integrals and calculations involved to illustrate
what happens. In [19] the argument splits according to the size of o and the
first range is 1 < ao < 758/733. The integral computed for this region is

758/733

S lda + Gy = 0.034106. .. + G,
1
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where
758/733 a—20
dﬁ dp
Giim | a | wl/s-nG+ | wla/s-% )
1 § § 32 S 32
< 0.01745.

Here w(u) is Buchstab’s function, and o, & are certain functions of a given
in [19] §2.4.1].
For the proof of our result the contribution from that region is

758733
| —da+Hi=0083537...+ Hy
1
where
758/733 , a—2¢ /2
g dp
Hi= | ( | wla/s-1) %+ S w(a /5—”52)‘1

1 o

< 0.01706.

Of course, « is still quite close to 1 in this region, so dividing by « has only
made a small change here.

To consider the lower bound in we note that the working in [8] shows
that

(15) P < (14 0(1) | () da,

where 7 is the solution to

In [8] we used an elementary argument to allow the choice

2
a—1"

K(a)=

If, instead, we use Proposition 2.1 (now with a different smoothing factor
V(k/x) providing an upper bound which only loses an 1 factor in the main
term) with M = 2'=% (compare [3, Théoréme 1.1]), we can replace this
with (ignoring an n term for clarity)

2

_ 153~
@~ 178

Calculations then give 7 = 1.73111..., leading, via , to the lower bound
in . We note that the corresponding value of 7 in [8] was 1.766249. ...

K(a) =
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This change may appear quite small, but subtracting both values from 2
(which is the “starting point”, so to speak), this is a 15% improvement. =

Acknowledgements. The author thanks the referee for their careful

reading of the paper and pertinent remarks.

(1]
2]
3]
14]
5]
16]
7]

18]

9]
[10]
[11]
[12]
[13]
[14]
115]
[16]
[17]
[18]
[19]

[20]

References

A. Balog, p + a without large prime factors, in: Sém. Théor. Nombres Bordeaux
1983-1984, Univ. Bordeaux I, 1984, exp. no. 31, 5 pp.

P. T. Bateman and R. A. Horn, A heuristic asymptotic formula concerning the dis-
tribution of prime numbers, Math. Comp. 16 (1962), 363-367.

R. de la Bretéche et S. Drappeau, Niveau de repartition des polynémes quadratiques
et crible majorant pour les entiers friables, J. Eur. Math. Soc. 22 (2020), 1577-1624.
J. W. Bober, D. Fretwell, G. Martin and T. D. Wooley, Smooth values of polynomials,
J. Austral. Math. Soc. 108 (2020), 245-261.

C. Dartyge, Entiers de la forme n® + 1 sans grand facteur premier, Acta Math.
Hungar. 72 (1996), 1-34.

H. Davenport, Multiplicative Number Theory, 2nd ed., Grad. Texts in Math. 74,
Springer, 1980.

J.-M. Deshouillers and H. Iwaniec, On the greatest prime factor of n®> + 1, Ann. Inst.
Fourier (Grenoble) 32 (1982), no. 4, 1-11.

G. R. Everest and G. Harman, On primitive divisors of n? + b, in: Number Theory
and Polynomials, London Math. Soc. Lecture Note Ser. 352, Cambridge Univ. Press,
2008, 142-154.

G. R. Everest, S. Stevens, D. Tamsett and T. Ward, Primes generated by recurrence
sequences, Amer. Math. Monthly 114 (2007), 417-431.

J. B. Friedlander, Shifted primes without large prime factors, in: Number Theory and
Applications, Kluwer, 1989, 393—401.

G. H. Hardy and J. E. Littlewood, Some problems of ‘partitio numerorum’; III: On
the expression of a number as a sum of primes, Acta Math. 44 (1923), 1-70.

G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 6th ed.,
Oxford Univ. Press, 2008.

G. Harman, On values of n® + 1 free of large prime factors, Arch. Math. (Basel) 90
(2008), 239-245.

C. Hooley, On the greatest prime factor of a quadratic polynomial, Acta Math. 117
(1967), 281-299.

C. Hooley, Applications of Sieve Methods to the Theory of Numbers, Cambridge Tracts
in Math. 70, Cambridge Univ. Press, 1976.

H. Iwaniec, A new form of the error term in the linear sieve, Acta Arith. 37 (1980),
307-320.

H. H. Kim, Functoriality for the exterior square of GL4 and the symmetric fourth of
GL2, J. Amer. Math. Soc. 16 (2003), 139-183.

G. Martin, An asymptotic formula for the number of smooth values of a polynomial,
J. Number Theory 93 (2002), 108-182.

J. Merikoski, On the largest prime factor of n®> 4+ 1, J. Eur. Math. Soc. 25 (2023),
1253-1284.

A. Schinzel, On two theorems of Gelfond and some of their applications, Acta Arith.
13 (1967), 177-236.


http://dx.doi.org/10.1090/S0025-5718-1962-0148632-7
http://dx.doi.org/10.4171/jems/951
http://dx.doi.org/10.1017/S1446788718000320
http://dx.doi.org/10.1007/BF00053694
http://dx.doi.org/10.1007/978-1-4757-5927-3
http://dx.doi.org/10.5802/aif.891
http://dx.doi.org/10.1080/00029890.2007.11920430
http://dx.doi.org/10.1007/BF02403921
http://dx.doi.org/10.1093/oso/9780199219858.001.0001
http://dx.doi.org/10.1007/s00013-007-2404-z
http://dx.doi.org/10.1007/BF02395047
http://dx.doi.org/10.4064/aa-37-1-307-320
http://dx.doi.org/10.1090/S0894-0347-02-00410-1
http://dx.doi.org/10.1006/jnth.2001.2722
http://dx.doi.org/10.4171/JEMS/1216
http://dx.doi.org/10.4064/aa-13-2-177-236

Two problems on the greatest prime factor of n? + 1

Glyn Harman

Department of Mathematics

Royal Holloway, University of London
Egham, Surrey TW20 0EX, UK
E-mail: g.harman@rhul.ac.uk

15



	1. Introduction
	2. Outline of the method
	3. Preliminary results
	4. Proof of Theorem 1.1
	5. Primitive divisors of quadratic polynomials
	References

