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On the ratio between two factorization functions

by

Noah Lebowitz-Lockard (Tyler, TX)

Abstract. Let f(n) be the number of factorizations of n, i.e., representations of n as
an unordered product of integers greater than 1. In addition, let F (n) be the number of
factorizations of n into distinct parts. In this note, we provide a new upper bound for the
ratio f(n)/F (n).

1. Introduction. Let f(n) be the number of ways of expressing n as an
(unordered) product of numbers greater than 1 (with f(1) = 1 for notational
convenience). We refer to these products as “factorizations” (or “multiplica-
tive partitions”) of n. For example, f(30) = 5 because the factorizations of
30 are

30, 2 · 15, 3 · 10, 5 · 6, 2 · 3 · 5.
In addition, we let F (n) be the number of factorizations of n into distinct
parts. One hundred years ago, MacMahon [M24] initiated the study of these
functions and observed that their Dirichlet series are

∞∑
n=1

f(n)

ns
=

∞∏
m=2

(
1− 1

ms

)−1

,

∞∑
n=1

F (n)

ns
=

∞∏
m=2

(
1 +

1

ms

)
.

Two years later, Oppenheim [O26] erroneously claimed that the maximal
order of f(n) for n ≤ x is

x

L(x)2+o(1)
,

where (here and below)

L(x) = exp

(
log x log log log x

log log x

)
.
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Canfield, Erdős, and Pomerance [CEP83] later corrected Oppenheim’s bound,
showing that

max
n≤x

f(n), max
n≤x

F (n),

are both
x

L(x)1+o(1)
.

(For the corresponding results for ordered factorizations, see [DHN08, L23].)
Canfield et al. found the maximal orders of f and F by manipulating

their Dirichlet series. However, given that these maximal orders are so close
together, it is tempting to suppose that f(n) and F (n) must always be close.
A few years ago, the author [L21, Theorem 1.3] found an upper bound for
the ratio f(n)/F (n).

Theorem 1.1. Let Ω(n) be the number of prime factors of n counted
with multiplicity. Then

f(n)/F (n) ≤ 2Ω(n)/2.

Because Ω(n) ≤ (log n)/(log 2), we also observe that f(n)/F (n) ≤
√
n.

This theorem allows us to simplify some of the arguments in [CEP83]. In
this note, we modify the proof of the previous theorem and obtain a new
upper bound for f(n)/F (n).

Theorem 1.2. As n → ∞, we have

f(n) = F (n) · exp
(
O

(
log n

log log n

))
.

Because Ω(n) is almost always asymptotic to log logn, Theorem 1.2 is
almost always weaker than Theorem 1.1. However, when Ω(n) is large, it
is a noticeable improvement. Unfortunately, Theorem 1.2 is probably sub-
optimal.

In [CEP83], the authors found the maximal orders of f(n) and F (n) sep-
arately. However, Theorem 1.2 implies that if maxn≤x f(n) = x/L(x)1+o(1),
then maxn≤x F (n) = x/L(x)1+o(1) as well.

Finally, we expect f(n)/F (n) to be unusually large when n consists of
a large number of copies of a few distinct prime factors. In light of this
observation, I also made the following conjecture.

Conjecture 1.3 ([L21, Conjecture 1.5]). A number n satisfies the con-
dition f(n)/F (n) > f(m)/F (m) for all m < n if and only if n is a power of
2 other than 2, 8, or 32.

Note that f(2k) = p(k) and F (2k) = p0(k), where p(k) is the number
of partitions of k and p0(k) is the number of such partitions with distinct
parts. Because p(k) and p0(k) have precise asymptotic formulas [HR18], we
have the following result.
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Theorem 1.4 ([L21, Corollary 1.6]). Assuming the previous conjecture,
we have

max
n≤x

f(n)

F (n)
∼ 4

√
log 2

3 log x
exp

(
π(
√
2− 1)√

3 log 2

√
log x

)
.

In [L21, §6], I proved Theorem 1.1 by creating a function which maps
factorizations of n into factorizations of n into distinct parts, then bounding
the number of pre-images a factorization can have under this function. In
this paper, we provide a new bound for the number of pre-images.

2. A map between factorizations. Let Sf (n) be the set of factor-
izations of n and SF (n) the set of factorizations of n into distinct parts.
For notational convenience, we express every element of Sf (n) as a multiset
{n1, . . . , nk}. Note that every element of SF (n) is simply a set. In [L21, §6],
I defined the map T : Sf (n) → SF (n) as follows. Let {n1, . . . , nk} ∈ Sf (n).
In order to compute T (n1, . . . , nk), multiply all repeated copies of the same
element together, then replace the initial elements with the product. (If there
are multiple sets of repeated elements, apply these multiplications “simulta-
neously”.) Repeat this process until every element is distinct.

For example, let n = 648. One factorization of n is 2 · 2 · 2 · 3 · 3 · 9.
Applying T to this factorization gives us

T (2, 2, 2, 3, 3, 9) = T (2 · 2 · 2, 3 · 3, 9) = T (8, 9, 9) = T (8, 81) = (8, 81).

In [L21], I proved Theorem 1.1 by showing that every element of SF (n)
has at most 2Ω(n)/2 pre-images under T . In this note, we prove Theorem 1.2
in the same way. Before doing so, we need some definitions.

Definition 2.1. Let p(n) be the number of partitions of n and pd(n)
the number of partitions of n into divisors of n.

There are few results on partitions of n into divisors of n, so we highlight
some notable ones. We say that a number n is pseudoperfect or semiperfect if
n can be expressed as a sum of some distinct divisors of n [G04, §B2]. Erdős
[E70] proved that pseudoperfect numbers have a well-defined density and
that this density lies in (0, 1). Bowman, Erdős, and Odlyzko [BEO92] later
found precise bounds on the number of partitions of a number into divisors
of that number. We discuss this result in more detail later.

Using pd, we can bound the number of inverse images of one-element
factorizations under T .

Lemma 2.2. For a given integer n, let a be the largest number for which
n is an ath power. For the map T : Sf (n) → SF (n), we have

#T−1(n) ≤ pd(a).
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Proof. Suppose T (n1, . . . , nk) = (n). Then for each i ≤ k, there exists a
positive integer ai such that nai

i = n. (At every stage, we combine multiple
copies of the same number together. So, we can only create perfect powers of
our original numbers.) However, each ai must divide a. For each i, we may
write ni = n1/ai = nbi/a with bi = a/ai. Hence,

n = n1 · · ·nk = n(b1+···+bk)/a,

which implies that (b1, . . . , bk) is a partition of a into divisors of a. Therefore,
there are at most pd(a) inverses of (n) under T .

It is straightforward to modify this result for factorizations into multiple
parts.

Lemma 2.3. Let {n1, . . . , nk} ∈ SF (n). For each i ≤ k, let ai be the
largest number for which ni is an aith power. Then

#T−1(n1, . . . , nk) ≤
k∏

i=1

pd(ai).

For all b, we have
pd(b) ≤ b(1+o(1))d(b)/2,

where d(b) is the number of divisors of b [BEO92]. (Through a slight refine-
ment of the proof of this bound, one can also obtain pd(b) ≤ bd(b)/2eσ(b)/b.)
In addition [HW08, Theorem 317],

d(b) = exp

(
O

(
log b

log log b

))
,

which implies that

pd(b) = exp

(
exp

(
O

(
log b

log log b

)))
.

Note that log log b is positive for b ≥ 3. In light of this fact, we may observe
that there exists a positive constant C such that

pd(b) < exp

(
exp

(
C

log(b+ 2)

log log(b+ 2)

))
.

Let S = {n1, . . . , nk} ∈ SF (n). We have

#T−1(S) ≤
k∏

i=1

pd(ai)

≤
k∏

i=1

exp

(
exp

(
C

log(ai + 2)

log log(ai + 2)

))

= exp

( k∑
i=1

exp

(
C

log(ai + 2)

log log(ai + 2)

))
.
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At this point, we can bound #T−1(S) from above. We split S into disjoint
sets S1, . . . ,Sr, where Si is the set of m ∈ S for which m is an ith power,
but not a jth power for any j > i. So,

n =
r∏

i=1

∏
m∈Si

m.

We also have

#T−1(S) ≤
r∏

i=1

∏
m∈Si

#T−1(m).

If m ∈ Si, then m1/j is not an integer for any j > i. For such an m, we have

#T−1(m) ≤ pd(i) < exp

(
exp

(
C

log(i+ 2)

log log(i+ 2)

))
.

Plugging this back into our bound for #T−1(S) gives us the following.

Lemma 2.4. Let S be a factorization of n into distinct parts and let r be
the largest number with the property that some element of S is an rth power.
Then

#T−1(S) ≤ exp

( r∑
i=1

(#Si) exp

(
C

log(i+ 2)

log log(i+ 2)

))
.

3. The main result. Using Lemma 2.4, we can bound #T−1(S) for
any factorization S of n with distinct parts. Rather than manipulating the
elements of S directly, we work with the Si’s. Let si = #Si. By definition,
each element of Si is an ith power. Once again, we let r be the largest number
for which some element of S is an rth power. Therefore,

n =

r∏
i=1

∏
m∈Si

m ≥
r∏

i=1

si+1∏
j=2

ji =

r∏
i=1

((si + 1)!)i.

Stirling’s formula implies that there exists a positive constant D such that
log(m!) ≥ Dm logm for all positive m. Therefore,

r∏
i=1

eDi(si+1) log(si+1) ≤ n.

Taking the logarithm of both sides and dividing by D gives us
r∑

i=1

i(si + 1) log(si + 1) ≤ log n

D
.

To summarize, our goal is to bound the quantity
r∑

i=1

si exp

(
C

log(i+ 2)

log log(i+ 2)

)
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under the constraint
r∑

i=1

i(si + 1) log(si + 1) ≤ 1

D
log n.

We break the argument into three cases based on the sizes of i and si.
First, suppose that si >

√
log n. We have∑

i≤r
si>

√
logn

i(si + 1) log(si + 1) ≥ 1

2
(log log n)

∑
i≤r

si>
√
logn

isi

≫ (log log n)
∑
i≤r

si>
√
logn

si exp

(
C

log(i+ 2)

log log(i+ 2)

)
.

Because the sum of i(si + 1) log(si + 1) over all i ≤ r is at most (log n)/D,
we have ∑

i≤r
si>

√
logn

si exp

(
C

log(i+ 2)

log log(i+ 2)

)
≪ log n

log log n
.

Next, suppose that i > (log log n)2. We apply a technique which is similar
to the one we just used. Fix ϵ ∈ (0, 1). If i is sufficiently large, then

exp

(
C

log(i+ 2)

log log(i+ 2)

)
< exp((ϵ/2) log i) = iϵ/2,

which implies that

i exp

(
−C

log(i+ 2)

log log(i+ 2)

)
> i1−(ϵ/2) > (log log n)2−ϵ.

The inequality is now∑
(log logn)2<i≤r

i(si + 1) log(si + 1)

≫ (log log n)2−ϵ
∑

(log logn)2<i≤r

si(log(si + 1)) exp

(
C

log(i+ 2)

log log(i+ 2)

)

≫ (log log n)2−ϵ
∑

(log logn)2<i≤r

si exp

(
C

log(i+ 2)

log log(i+ 2)

)
.

Hence, ∑
(log logn)2<i≤r

si exp

(
C

log(i+ 2)

log log(i+ 2)

)
≪ log n

(log log n)2−ϵ
,

which is negligible.
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Finally, suppose that si ≤
√
log n and i ≤ (log log n)2. Our sum is now∑

i≤(log logn)2

si exp

(
C

log(i+ 2)

log log(i+ 2)

)

≤
√
log n

∑
i≤(log logn)2

exp

(
C

log(i+ 2)

log log(i+ 2)

)
= (log n)(1/2)+o(1).

Summing these quantities shows that
r∑

i=1

si exp

(
C

log(i+ 2)

log log(i+ 2)

)
≪ log n

log logn
,

as n → ∞. This, in turn, implies that

#T−1(S) = exp

(
O

(
log n

log logn

))
for all factorizations S ∈ SF (n). Because f(n)/F (n) ≤ maxS∈SF (n)#T−1(S),
we have

f(n)

F (n)
= exp

(
O

(
log n

log log n

))
as well.

We may also observe that our upper bound on #T−1(S) is optimal (up
to the constant in the exponent). Let n = (p1 · · · pm)2 for some integer m,
where pi is the ith prime. Then

#T−1(p21, . . . , p
2
m) = 2m.

Because m ∼ (1/2) log n/ log log n, we have

#T−1(p21, . . . , p
2
m) > exp

(
c

log n

log log n

)
for some positive constant c when n is sufficiently large.
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