ACTA ARITHMETICA

Online First version

On sequences of integers with small prime factors
by

C. L. STEWART (Waterloo, ON)

For Professor Henryk Iwaniec on the occasion

of his seventy-fifth birthday

Abstract. We show that the difference between consecutive terms in sequences of
integers whose greatest prime factor grows slowly tends to infinity.

1. Introduction. Let y be a real number with y > 3 and let 1 =n; <
ng < - -- be the increasing sequence of positive integers with all prime factors
of size at most y. In 1908 Thue [I4] proved that

(1) lim (nj41 — n;) = o0;
1—>00

see also Polya [11] and Erdés [4]. Thue’s result was ineffective. In particular,
his proof does not allow one to determine, for every positive integer m, an
integer i(m) such that n; 11 — n; exceeds m whenever i is larger than i(m).
Cassels [2] showed how can be made effective by means of estimates due
to Gel’fond [5] for linear forms in two logarithms of algebraic numbers. In
1973 Tijdeman [15] proved, by appealing to work of Baker [I] on estimates for
linear forms in the logarithms of algebraic numbers, that there is a positive
number ¢, which is effectively computable in terms of y, such that
(2) niy1 — ni > n;/(logn;)°
for n; > 3. In addition, Tijdeman showed that there are arbitrarily large
integers n; for which ([2)) fails to hold when c is less than 7 (y) — 1; here 7(x)
denotes the counting function for the primes up to x.

Now let y = y(z) denote a non-decreasing function from the positive
real numbers to the real numbers of size at least 3. For any integer n
let P(n) denote the greatest prime factor of n with the convention that

2020 Mathematics Subject Classification: Primary 11N25; Secondary 11J86.
Key words and phrases: small prime factors, linear forms in logarithms.
Received 4 August 2023.

Published online 1 February 2024.

DOI: 10.4064/aa230804-2-9 [1] © Instytut Matematyczny PAN, 2024



2 C. L. Stewart

P(0) = P(£1) = 1. Let (n;)72,; be the increasing sequence of positive inte-
gers n; for which

(3) P(ni) <y(ni).

For any integer k > 2 let log; denote the kth iterate of the function x —
max(1,logx) for x > 0. We shall prove that holds provided that

() i) = of ELLE ),

log,n

Furthermore, if we assume the abc conjecture (see §2), then we can prove

that holds provided that
() y(n) = o(logn).
For any real number z > 2 put
o(x) = exp<
We shall deduce from the following result.

zlogy x
logz /)

THEOREM 1. Let y = y(x) be a non-decreasing function from the positive
real numbers to the real numbers of size at least 3. Let (ny,na,...) be the
increasing sequence of positive integers m; for which holds. There is an
effectively computable positive number ¢ such that for i > 3,

(6) ni+1 — 1 > n;/(log ni)‘s(cy(”iﬂ))'

Furthermore, there is an effectively computable positive number ci such that
for infinitely many positive integers i,

(7) nit1 —ni < ngexp(cry(ng))/(logng)" ™,

where = w(y(\/n5)).

Observe that we obtain from @ when holds on noting that in
this case n;1+1 < 2n; and

(logn)¥(™) = o(n).

In order to establish @ we shall appeal to an estimate for linear forms in
the logarithms of rational numbers due to Matveev [8, 9]. The upper bound
follows from an averaging argument based on a result of Ennola [3].

We are able to refine the lower bound @ provided that the abc conjecture
is true.

THEOREM 2. Lety = y(x) be a non-decreasing function from the positive
real numbers to the real numbers of size at least 3. Let (ni,na,...) be the
increasing sequence of positive integers n; for which holds and let € be a
positive real number. If the abc conjecture is true then there exists a positive



On sequences of integers with small prime factors 3

number ¢; = c1(€), which depends on e, and a positive number co such that
fori>1,
(8) i1 — i > ei(e)ng ¢ fexp(eay(nisn)).

We obtain from when holds since in this case

exp(eay(n)) = n.

2. Preliminary lemmas. For any non-zero rational number o we may
write « = a/b with a and b coprime integers and with b positive. We de-
fine H(«), the height of a, by

H{(a) = max([al, |b]).

Let n be a positive integer and let «y,...,a, be positive rational num-
bers with heights at most A1, ..., A, respectively. Suppose that A; > 3 for
i =1,...,n and that logay,...,log a, are linearly independent over the ra-
tionals, where log denotes the principal value of the logarithm. Let by, ..., b,
be non-zero integers of absolute value at most B with B > 3 and put

A=bilogay + -+ by log ay.

LEMMA 3. There exists an effectively computable positive number co such
that
log |A] > —c{log A; .. .log A, log B.
Proof. This follows from Theorem 2.2 of Nesterenko [10], which is a spe-
cial case of the work of Matveev [8,9]. m

Let 2 and y be positive real numbers with y > 2 and let ¥(z,y) denote
the number of positive integers of size at most = all of whose prime factors
are of size at most y. Let r denote the number of primes of size at most y,
so that r = m(y).

LEMMA 4. For 2 <y < (logz)'/? we have
(log z)" 2 -1 -1
U(z,y) = = (1 4+ O(y*(logz)” "(logy .
(@) = T ooy (1 O 1oz ) logy) )
Proof. This is [3, Theorem 1]. m

We also recall the abc conjecture of Oesterlé and Masser [6l [7, 13]. Let
x,y and z be positive integers. Denote the greatest square-free factor of xyz

by G = G(z,y, 2), so
G = H p.

plzyz
p prime

CONJECTURE 5 (abc conjecture). For each positive real number € there
is a positive number c(g) such that for all pairwise coprime positive integers
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x,y and z with
rt+y==z
we have
z < c(e)GHTE.

For a refinement of the abc conjecture see [12].

3. Proof of Theorem 1. Let ¢, co, ... denote effectively computable
positive numbers. Following [15], for i > 3 we have n; > 3,

(9) Ni4+1 — Ny = Ny <ni+1 — 1)

1

and, since e — 1 > z for z positive,

n; n;
(10) “HL 1> log L
i n;

Let p1,...,pr be the primes of size at most y(n;;+1). Notice that » > 2 since
y(niy1) > 3. Then nyy1/n; = plt...plr with Iy,...,l, integers of absolute
value at most c; logn;4+1 and, since n;11 < 2n;,
(11) max(|l1], ..., |lr]) < calogn,.
Since n

log == = Iy logpy + -« + I, log p,

(A

it follows from and Lemma 3| that

(12) log @ > (log ni)_c§ logpl...logp,.‘
ng

By the arithmetic-geometric mean inequality,

(13) ﬁlogpi < <i zr:logpi)r,
i=1 i=1

and by the prime number theorem,

,
(14) Z log p; < cqrlogr.
i=1
Thus, from 7,
(15) log FL > (log ny) (s le8™)",
ng
Observe that » > 2 and so
(16) (cslogr)” < ecorloga
Further,

3 <pr <y(nit1)
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and so

(17) r < ery(niv1)/logy(nita).
Thus, by and ,

(18) (cslogr)" < d(csy(nit1))

and @ follows from @, , and .

We shall now establish @ Observe that if n; satisfies (3) then since
y(t) > 3 for all positive real numbers ¢, P(2n;) < y(n;) < y(2n;) and so
2n; = n; for some integer j with j > 4. In particular n;11 < 2n;, hence
niy1 —n; < n; and

(19) Nit1 — Ny < 2n;.

Suppose that X is a real number with X > 9 and that ¢ is a positive integer
with n;y1 and n; in the interval (\/X , X ] If, in addition,

(20) y(VX) > (log X)/*4
then, since VX < n; < X,
(21) y(ni) > (logny)"/*.

Since y is non-decreasing,

(22) m(y(vng) =1 < w(y(ni)),

and by the prime number theorem,

) < g ey
By (21),
, y(ni)
(23) rly(n)) < cuog -
Thus by and (23)),
(24) (log ng)™WVm)) =1 < geroy(ni)

We may suppose that c; exceeds 1+ c19 and in this case, by ,
exp(ery(ni))/(log ni) "WYM)L > exp(y(ni)) = exp(3) = 2,

and therefore follows from (|19)).

We shall now show that there is a positive number ¢17 such that if X is
a real number with X > ¢;1, then there is a positive integer ¢ for which n;41
and n; are in (\/)7 , X ] and satisfy @ Accordingly, let X be a real number
with X > 9, and put

r=n(y(VX)).
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Notice that r > 2 since y(t) > 3 for all positive real numbers ¢. By the
preceding paragraph we may suppose that

y(\/f) < (logX)1/4.
Let A(X) be the set of integers n with

(25) VX <n<X
for which
(26) P(n) < y(VX).

Note that the members of A(X) occur as terms in the sequence (ny,na,...).
The cardinality of A(X) is

v (X, y(VX)) (VX y(VX)),
and so for X > ¢19 it is, by Lemma[4] at least
(log X)"
2 H::1 ilogp;’
Let 7 be the positive integer for which

X X
§<\/X§2jj
]

and consider the intervals (X/2%, X/2F=1] for k = 1,...,5. Then j < 1 +
log X /(2log2) and so, for X > ¢i3,

(28) Jj <logX.

Thus, by and , there is an integer h with 1 < h < j for which the
interval (X/2", X/2"=1] contains at least

(log X)"
2]1;_, ilogpi
integers from A(X). Notice that

Hilogpl- < (r logy(\/)?))r.
i=1

(27)

Thus, since y(\/Y) < (log X)V/*, and r —1 > r/2 because r > 2, we see that
for X > cy4, the interval (X/2", X/2"~1] contains at least

(log X)% |
3(r logy(\/f))r
terms from A(X), hence two of them, say n;+1 and n;, satisfy
Nip1 — Ny < 3(rlogy(ﬁ))T.

2 (log X )71
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Since n; > X/2" it follows that

(r logy(ﬁ))T.

<3 n;
Nig1 — Ny < 37—
R (log ng)r—1

- < VX < n; and hence, since y is non-decreasing, y(y/n;) <

g
E
®

N1 — N < 3717.)(7"1%9(”1))

(log
and so

(29) Niy1 —n; < 3 (slogy(ni))?,

1
(logn;)r'—1
where r’ = w(y(y/n;)) and s = 7(y(n;)). By the prime number theorem there
is a positive number c15 such that
(30) 3(slogy(n;))® < ec1s¥(mi),

Estimate now follows from and . On letting X tend to infinity
we find infinitely many pairs of integers n; 1 and n; which satisfy .

4. Proof of Theorem 2. Let ¢ > 1 and put
(31) Ni4+1 — Ny = t.
Let g be the greatest common divisor of n;11 and n;. Then
nit1 Nyt

9 9 9
Let ¢ > 0. By the abc conjecture there is a positive number ¢(g) such that

1+e
n; t
g = ()<g 11 p)
p<y(nit1)

and hence

(o) < 1L s

p<y(nit1)

By the prime number theorem, since y(n;+1) > 3, there exists a positive
number ¢y such that

(33) I[I p<eovime.
P<y(nit+1)
The result follows from —.
Acknowledgements. This research was supported in part by the Cana-

da Research Chairs Program and by grant A3528 from the Natural Sciences
and Engineering Research Council of Canada.



8 C. L. Stewart

References

|1]| A. Baker, A sharpening of the bounds for linear forms in logarithms, Acta Arith. 21
(1972), 117-129.

[2] J. W. S. Cassels, On a class of exponential equations, Ark. Mat. 4 (1961), 231-233.

[3]| V. Ennola, On numbers with small prime divisors, Ann. Acad. Sci. Fenn. Math. 440
(1969), 1-16.

|4]] P. Erdss, Some recent advances and current problems in number theory, in: Lectures
on Modern Mathematics, Vol. 111, Wiley, New York, 1965, 196-244.

[5] A. O. Gel’fond, Transcendental and Algebraic Numbers, Gos. Izdat. Tekhn.-Teoret.
Lit., Moscow, 1952 (in Russian); English transl.: Dover, New York, 1960.

[6] D. W. Masser, Open problems, circulated at Symp. Analytic Number Theory, Imperial
College, London, 1985.

[7] D. W. Masser, Abcological anecdotes, Mathematika 63 (2017), 713-714.

[8]| E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in
logarithms of algebraic numbers, Izv. Ross. Akad. Nauk Ser. Mat. 62 (1998), no. 4,
81-136 (in Russian); English transl.: Izv. Math. 62 (1998), 723-772.

[9]] E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in
logarithms of algebraic numbers. II, Izv. Ross. Akad. Nauk Ser. Mat. 64 (2000), no. 6,
125-180 (in Russian); English transl.: Izv. Math. 64 (2000), 1217-1269.

[10] Y. Nesterenko, Linear forms in logarithms of rational numbers, in: Diophantine Ap-
proximation (Cetraro, 2000), Lecture Notes in Math. 1819, Springer, Berlin, 2003,
53-106.

[11]| G. Polya, Zur arithmetischen Untersuchung der Polynome, Math. Z. 1 (1918), 143-148.

[12]| O. Robert, C. L. Stewart and G. Tenenbaum, A refinement of the abc conjecture,
Bull. London Math. Soc. 46 (2014), 1156-1166.

[13] C. L. Stewart and K. Yu, On the abc conjecture, II, Duke Math. J. 108 (2001),
169-181.

[14] A. Thue, Bemerkungen iber gewisse Naherungsbriiche algebraischer Zahlen, Chris-
tiania Vidensk. Selsk. Skr. 1908, no. 3, 34 pp.

[15]| R. Tijdeman, On integers with many small prime factors, Compos. Math. 26 (1973),
319-330.

C. L. Stewart

Department of Pure Mathematics
University of Waterloo

Waterloo, Ontario, Canada N2L 3G1
E-mail: cstewart@uwaterloo.ca


http://dx.doi.org/10.4064/aa-21-1-117-129
http://dx.doi.org/10.1007/BF02592010
http://dx.doi.org/10.5186/aasfm.1969.440
https://www.renyi.hu/~p_erdos/1965-17.pdf
http://dx.doi.org/10.1112/S0025579317000146
http://dx.doi.org/10.1070/IM1998v062n04ABEH000190
http://dx.doi.org/10.1070/IM2000v064n06ABEH000314
http://dx.doi.org/10.1007/BF01203608
http://dx.doi.org/10.1112/blms/bdu069
http://dx.doi.org/10.1215/S0012-7094-01-10815-6
http://www.numdam.org/item/CM_1973__26_3_319_0

	1. Introduction
	2. Preliminary lemmas
	3. Proof of Theorem 1
	4. Proof of Theorem 2
	References

