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Relations between Reeb graphs, systems of hypersurfaces
and epimorphisms onto free groups

by

Wacław Marzantowicz and Łukasz Patryk Michalak (Poznań)

Abstract. We construct a correspondence between epimorphisms φ : π1(M) → Fr

from the fundamental group of a compact manifold M onto the free group of rank r, and
systems of r framed non-separating hypersurfaces in M , which induces a bijection onto
framed cobordism classes of such systems. In consequence, for closed manifolds any such
φ can be represented by the Reeb epimorphism of a Morse function f : M → R, i.e. by the
epimorphism induced by the quotient map M → R(f) onto the Reeb graph of f . Applying
this construction we discuss the problem of classification up to (strong) equivalence of
epimorphisms onto free groups, providing a new purely geometrical-topological proof of
the solution of this problem for surface groups.

1. Introduction. The Reeb graph R(f) of a Morse function f : M → R
on a closed manifold M , as an invariant of the pair (M,f), is a tool of
global analysis attracting more attention recently due to its applications to
computer graphics as well as its importance in purely mathematical prob-
lems (for more details see [3, 6, 8, 9, 16, 19, 22, 32]). The graph R(f) is
constructed by contracting the connected components of level sets of the
function f . Since it is a finite graph, its fundamental group is a free group
Fr of a finite rank r ≥ 0. This work is motivated by a natural question:
is any epimorphism π1(M) → Fr represented as the canonical epimor-
phism q# : π1(M) → π1(R(f)), induced by the quotient map q : M → R(f)
for a Morse function f? The epimorphism q# is called the Reeb epimor-
phism of f . We give an affirmative answer to this question in Theorem 4.17.
Below we summarize the main results obtained in this work and the methods
used.
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One of the main ingredients in the proof is the correspondence, given
by an extended Pontryagin–Thom construction, between homomorphisms
π1(W ) → Fr and systems of hypersurfaces N = (N1, . . . , Nr) consisting
of framed and properly embedded submanifolds Ni of codimension 1 in a
compact manifold W , possibly with boundary. A system N is independent
if it is non-separating, and it is regular if each Ni is connected. It is an easy
observation that an independent system of hypersurfaces induces a surjective
homomorphism π1(W ) → Fr. The converse is the first substantial result of
this work (Theorem 2.10). It provides, for any epimorphism φ : π1(W ) → Fr,
the construction of a regular and independent system of hypersurfaces which
induces φ.

Having these geometric tools, we study the problem of classification of
epimorphisms G → Fr up to equivalence and strong equivalence defined in
[10, 11, 12]. Briefly, on the set Hom(G,Fr) of homomorphisms there are the
natural actions of the automorphism groups Aut(G) and Aut(Fr) by com-
position. Two homomorphisms are strongly equivalent (resp. equivalent) if
they are in the same orbit of the action of Aut(G) (resp. Aut(G)×Aut(Fr)).
First, note that two systems induce the same homomorphism if and only if
they are framed cobordant as systems of hypersurfaces (see Definition 2.3).
This leads to a correspondence between strong equivalence classes of epimor-
phisms π1(M) → Fr and elements of Hfr

r (M)/Diff•(M), the set of framed
cobordism classes of independent and regular systems of size r in M up to
diffeomorphisms which preserve the basepoint. It is a one-to-one correspon-
dence if the natural homomorphism Diff•(M) → Aut(π1(M)) is surjective.
For example, this holds when M is a closed surface (by the Dehn–Nielsen
Theorem) or when M is a hyperbolic manifold of dimension at least 3 (by the
Mostow Rigidity Theorem). As an application of the methods we develop,
in the proof of Theorem 3.15 we determine the elements of Hfr

r (Σ)/Diff•(Σ)
for a closed surface Σ. This provides a classification up to strong equivalence
of epimorphisms π1(Σ) → Fr, which was originally shown by R. Grigorchuk,
P. Kurchanov and H. Zieschang [10, 11, 12] by using more algebraic, but also
topological methods (see Theorem 3.1).

Transition from strong equivalence classes to equivalence classes is ob-
tained by considering the action of Aut(Fr), which is generated by elemen-
tary Nielsen transformations. We define analogous operations on Hfr

r (M)
which cause the same change of an inducing epimorphism as its composition
with the corresponding Nielsen transformation. These operations allow us
to compute equivalence classes of epimorphisms π1(Σ) → Fr (see Theorem
3.20) as in the Grigorchuk–Kurchanov–Zieschang Theorem.

Next, we exhibit relations to Reeb graph theory. Extending the methods
of the second author from [23] we assign in Theorem 4.6 a Morse function f
on W and its Reeb graph to any system of hypersurfaces without boundary
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in such a way that the induced homomorphism factorizes through the Reeb
epimorphism of f . Moreover, if the system is independent, this gives the
construction of the initial graph (see Figure 4) as the Reeb graph such that
submanifolds from the system are components of the same level set of f .
Subsequently, one of the main results of the paper, Theorem 4.15, provides,
for a regular and independent system N of hypersurfaces and a graph Γ with
natural necessary conditions, the construction of a Morse function realizing
Γ as its Reeb graph such that submanifolds from N correspond to prescribed
edges of Γ outside a spanning tree.

Prescribed components of level sets are an additional ingredient to the
realization theorems for Reeb graphs. The classical result of V. Sharko [33]
provides a realization of any graph with the so-called good orientation as the
Reeb graph of a function on a surface. Recently, the second author [22, 23]
resolved the realization problem with an arbitrary fixed closed manifold. In
the case of surfaces the realization is up to isomorphism of graphs with a de-
tailed description of Reeb graphs of Morse functions. For higher-dimensional
manifolds it is up to homeomorphism, and the construction relies on com-
binatorial modifications of Reeb graphs. It is known that any graph Γ with
good orientation is obtained from the initial graph by using a finite sequence
of combinatorial modifications. In this work, we extend these results to the
situation when the manifold W has a boundary and one can prescribe con-
nected components of level sets of the function corresponding to edges of the
graph outside a spanning tree.

The principal significance of Theorem 4.15 is that it allows one to repre-
sent any epimorphism

φ : π1(M) → π1(Γ )

as the Reeb epimorphism of a Morse function whose Reeb graph is homeo-
morphic to Γ (Corollary 4.18). Theorems 4.14 and 4.17 provide an answer
to the initial question for a manifold W with boundary. An epimorphism
π1(W ) → π1(Γ ) is represented as the Reeb epimorphism if and only if it is
induced by a system of hypersurfaces without boundary. Equivalently, it fac-
torizes through π1(W )/⟨π1(∂W )⟩π1(W ), where ⟨π1(∂W )⟩π1(W ) is the smallest
normal subgroup of π1(W ) containing the classes of all loops from ∂W .

Note that the problem of representability of an epimorphism as the Reeb
epimorphism was also considered independently by O. Saeki [30]; for a finite
graph Γ without loops and a closed manifold he constructs a smooth function
with finitely many critical values such that its Reeb graph is isomorphic to Γ
and under this identification its Reeb epimorphism is φ. Thus Saeki realizes
not only the topological structure of Γ , but also the combinatorial one, at the
cost of losing the non-degeneracy of critical points. Note that the number
of vertices of degree 2 in the Reeb graph of a Morse function cannot be
arbitrary (see, for instance [22, Theorem 5.6]), and thus we focus on the
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homeomorphism type. Our results are also different in that they deal with
manifolds with boundary and allow us to control the system of hypersurfaces
in connected components of level sets of the constructed function.

Another subject of this paper is the maximum values of some related
quantities. The corank of a finitely generated group G is the maximum rank r
for which there exists an epimorphism G→ Fr. As defined in [22] for closed
manifolds, the Reeb number R(W ) of W is the maximum cycle rank of Reeb
graphs of Morse functions f : W → R which are constant on each connected
component of ∂W . In other words, R(W ) is the maximum rank of the Reeb
epimorphism of such a Morse function on W . For closed manifolds we have
R(M) = corank(π1(M)) (see [23, 9]). In Theorem 4.14 we establish the
corresponding formula for manifolds with boundary:

R(W ) = corank(π1(W )/⟨π1(∂W )⟩π1(W )).

R(W ) is also equal to the maximum size of an independent system of hy-
persurfaces without boundary in W . The last quantity we consider is the
maximum size of an independent system of hypersurfaces in W , which was
denoted by C(W ) by O. Cornea [5]. It is always equal to the corank of π1(W ).

Relations between these numbers have already been studied by other au-
thors. The equality C(W ) = corank(π1(W )) was established by O. Cornea [5]
for closed smooth manifolds and by W. Jaco [15] for combinatorial manifolds
with boundary. The equality R(M) = corank(π1(M)) was proved by the sec-
ond author [23] and independently by I. Gelbukh [8] for orientable manifolds
by using foliation theory and later in [9] without the orientability assumption
by other methods. It is worth emphasizing that, while these papers contain
geometric descriptions of the corank of π1(M), no correspondence between
epimorphisms, systems of hypersurfaces and Reeb graphs was given. This
work fills this gap.

The paper is organized as follows. In Section 2 we describe the corre-
spondence between systems of hypersurfaces and homomorphisms onto free
groups. Next, in Section 3 we deal with the problem of classification of epi-
morphisms onto free groups up to equivalence and strong equivalence. Sec-
tion 4 establishes the representation of epimorphisms onto free groups as the
Reeb epimorphisms of Morse functions. The rest of the section is devoted to
some applications concerning description of the corank and Reeb number,
the problem of extendability of independent systems and connections with
topological conjugacy of functions.

2. Systems of hypersurfaces and induced homomorphisms. We
assume that all manifolds considered are smooth of dimension n ≥ 2. Here-
after, M and W are connected and compact smooth manifolds with fixed
basepoints and M is closed, unless otherwise stated.
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We use the following model of Fr, the free group on r generators. Consider
the circle S1 as the quotient [−1, 1]/{−1, 1} and take Fr := π1(

∨r
i=1 S

1
i ), the

fundamental group of the wedge product of r ≥ 1 copies of the circle. By
convention,

∨0
i=1 S

1
i = pt, thus F0 = 1 is the trivial group.

We will omit basepoints from the notation.

2.1. Systems of hypersurfaces. Let W be a compact manifold. A sub-
manifold N of W is called proper if N ∩ ∂W = ∂N . A framing of a sub-
manifold N in W is a smooth function ν which assigns to each x ∈ N a
basis of the normal bundle of N at x. The pair (N, ν) is called a framed sub-
manifold. If N is of codimension 1, then its framing is just a nonzero section
of the normal bundle of N . Thus N has a closed product neighbourhood
P (N) ∼= N × [−1, 1] and it is called 2-sided. We assume that P (N) is com-
patible with the framing. Denote by Pt(N) the submanifold corresponding
to N×{t}. The positive side of N containing Pt(N) for t ∈ (0, 1] agrees with
the side determined by the framing.

A system of hypersurfaces in W is a tuple N = (N1, . . . , Nr) of disjoint,
proper, 2-sided submanifolds Ni together with their framings νi. The number
r is called the size of the system N . Denote by

W |N :=W \
r⋃
i=1

IntP (Ni)

the complement of the system N for sufficiently small product neighbour-
hoods ofNi’s. It will cause no confusion if we use N to designate also

⋃r
i=1Ni,

the union of all submanifolds from the system. Of course, the framings νi of
the submanifolds Ni form a framing ν of N such that ν|Ni = νi. Unless it is
necessary, we will not write a framing of a system explicitly.

A system N is called independent if W |N is connected, and it is called
regular if eachNi is connected. The system N is without boundary if ∂N = ∅.
Note that we do not assume that the submanifolds Ni are connected, unless
N is regular.

Now we define the extended Pontryagin–Thom construction for a system
of hypersurfaces.

Definition 2.1. The homomorphism φN : π1(W ) → Fr induced by a
system N = (N1, . . . , Nr) omitting the basepoint is defined as follows. Fix
product neighbourhoods P (Ni) ∼= Ni × [−1, 1] which are disjoint. We define
the map

fN : W →
r∨
i=1

S1i

which maps W |N to the basepoint and each P (Ni) onto the ith circle S1i =
[−1, 1]/{−1, 1} by mapping Pt(Ni) to t. It is clear that fN is continuous, so
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let φN := (fN )# be the homomorphism induced by fN on the fundamental
groups.

By the definition of a system of hypersurfaces, φN is well-defined and it
is clear that it does not depend on the choice of P (Ni)’s and a given framing,
but on the orientation of the normal bundle of N .

Proposition 2.2. Any homomorphism φ : π1(W ) → Fr is induced by
a system of hypersurfaces. If a system N is independent, then φN is an
epimorphism.

Proof. Since
∨r
i=1 S

1
i is an Eilenberg–MacLane space K(Fr,1), there is

a map f : W →
∨r
i=1 S

1
i such that f# = φ. Smooth it outside the inverse

image of the basepoint and take regular values ai ∈ S1i of both f and f |∂W .
Since W is compact, there is a neighbourhood [ai − ε, ai + ε] consisting of
regular values, and thus Ni := f−1(ai) is a 2-sided, proper submanifold with
a product neighbourhood f−1([ai − ε, ai + ε]) ∼= Ni × [ai − ε, ai + ε]. Take
the map h :

∨r
i=1 S

1
i →

∨r
i=1 S

1
i which contracts

r∨
i=1

S1i \
r⋃
i=1

[ai − ε, ai + ε]

to the basepoint and maps linearly [ai − ε, ai + ε] onto S1i , preserving orien-
tation. It is clear that (h ◦ f)# = φ is induced by N = (N1, . . . , Nr) with
framings compatible with the orientations of [ai − ε, ai + ε].

If N is independent, then for any i there is a loop αi in (W |N ) ∪ P (Ni)
such that fN ◦ αi represents the generator of π1(

∨
S1i ) corresponding to S1i .

Thus φN is surjective.

There is a quite easy characterization, using a special notion of framed
cobordism, of systems in a closed manifold M which induce the same homo-
morphism to a free group.

Recall (cf. [25]) that submanifolds N and N ′ in M are cobordant if there
exists a proper compact submanifold W ⊂ M × [0, 1], called a cobordism
between N and N ′, and ϵ ∈ (0, 1) such that W ∩ (M × [0, ε]) = N × [0, ε]
and W ∩ (M × [1− ε, 1]) = N ′ × [1− ε, 1]. Framed submanifolds (N, ν) and
(N ′, ν ′) are framed cobordant if there is a cobordism W ⊂M× [0, 1] between
N and N ′ with a framing ϑ such that ϑ(x, t) = (ν(x), 0) for (x, t) ∈ N× [0, ε]
and ϑ(x, t) = (ν ′(x), 0) for (x, t) ∈ N ′ × [1− ε, 1].

Definition 2.3. Let N = (N1, . . . , Nr) and N ′ = (N ′
1, . . . , N

′
r) be two

systems in M of the same size r. We say that N and N ′ are framed cobordant
(as systems of hypersurfaces) if there are r disjoint framed cobordisms Wi ⊂
M × [0, 1] between Ni and N ′

i .
In other words, the systems N and N ′ are framed cobordant if the framed

submanifolds N and N ′ are framed cobordant by the cobordismW which has
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a partition W =W1⊔· · ·⊔Wr such that ∂Wi = Ni×{0}⊔N ′
i×{1}. Clearly,

this is an equivalence relation in the family of systems of hypersurfaces in M
of size r. Note that the cobordisms Wi form the system W = (W1, . . . ,Wr)
of hypersurfaces in M × [0, 1].

Note that the notion of framed cobordism between systems of hypersur-
faces of size 1 is the same as ordinary framed cobordism.

Proposition 2.4. Systems N and N ′ of hypersurfaces in M are framed
cobordant if and only if φN = φN ′.

Proof. If the systems N and N ′ are framed cobordant by framed cobor-
disms W1, . . . ,Wr which form the system W, then as in Definition 2.1 this
leads to a map fW : M × [0, 1] →

∨r
i=1 S

1
i for a fixed product neighbourhood

P (W). It is clear that fW |M×{0} = fN and fW |M×{1} = fN ′ for product
neighbourhoods P (N ) = P (W) ∩M × {0} and P (N ′) = P (W) ∩M × {1},
respectively. Thus fW is a homotopy between fN and fN ′ , so φN = φN ′ .

Conversely, if φN = φN ′ , then fN and fN ′ are homotopic by a map
f : M × [0, 1] →

∨r
i=1 S

1
i which is smooth outside the preimage of the base-

point since
∨r
i=1 S

1
i is an Eilenberg–MacLane space K(Fr,1). As in the proof

of Proposition 2.2, take regular values ai ∈ S1i and framed submanifolds
Wi = f−1(ai) which form a system of hypersurfaces in M × [0, 1]. They are
framed cobordisms between f−1

N (ai) ∼= Ni and f−1
N ′ (ai) ∼= N ′

i . By the con-
struction of fN and fN ′ it is clear that the system (f−1

N (a1), . . . , f
−1
N (ar))

is framed cobordant to N and (f−1
N ′ (a1), . . . , f

−1
N ′ (ar)) is framed cobordant

to N ′. The statement follows by transitivity of framed cobordism.

Remark 2.5. It is easy to check that if two systems of hypersurfaces
differ only in their framings, but the positive sides are the same, then they
are framed cobordant. Thus the induced homomorphism depends only on the
choice of sides of submanifolds from the system, not on particular framings.

2.2. Epimorphisms and independence of inducing systems. The
aim of this section is to prove that any epimorphism onto a free group is
induced by an independent and regular system.

Let N = (N1, . . . , Nr) be a system of hypersurfaces in a compact and
connected manifold W . Note that any class of loops in W can be represented
by a loop in IntW .

Lemma 2.6. For any class of loops ω ∈ π1(W ), either w can be repre-
sented by a loop in W |N or there is a loop α ∈ ω which can be written as the
concatenation of paths α1 · . . . ·αk whose ends lie in W |N and αi ∩Pt(N ) is
a single point for any t ∈ [−1, 1]. Thus writing ai := [S1i ] for the generators
of Fr = π1(

∨r
i=1 S

1
i ) we have φN (ω) = aϵ1i1 . . . a

ϵk
ik

, where ϵj ∈ {−1,+1} and
ij is the unique index for which αj ∩Nij is nonempty.
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Proof. Take any loop α in ω which is in general position relative to N .
Then the intersection of α and N is a finite set. Now, cut α into paths αi as
required.

Lemma 2.7. Suppose there is a path γ : [0, 1] → W such that γ ∩ N =
γ ∩Nj = {x, y}, where x = γ(0) ∈ X and y = γ(1) ∈ Y are in the different
connected components X and Y of Nj, and which joins x and y from the
same side, i.e. γ ∩Pt(Nj) = ∅ for any t ∈ [−1, 0) or for any t ∈ (0, 1]. Then
there is a system N ′ = (N ′

1, . . . , N
′
r) such that Ni = N ′

i for i ̸= j, N ′
j has

one connected component less than Nj and φN = φN ′.

Proof. First, change γ : [0, 1] →W to an embedded arc in IntW with the
same properties as in the statement. Take a small, closed tubular neighbour-
hood P (γ) of γ parametrized by γ×Dn−1

3 such that P (γ)∩N = P (γ)∩Nj ,
where Dn−1

t = {x ∈ Rn−1 : ||x|| ≤ t} is a closed disc of radius t. We may
assume that P (γ)∩X = {x}×Dn−1

3 and P (γ)∩Y = {y}×Dn−1
3 . Now, take

the connected sum of X and Y along γ in W , i.e. define

A = X #γ Y :=
(
X \ ({x} ×Dn−1

2 )
)
∪ (γ × ∂Dn−1

2 ) ∪
(
Y \ ({y} ×Dn−1

2 )
)
.

Obviously, A is a topological manifold, smoothly embedded outside
{x, y} × ∂Dn−1

2 . Take an open ε-neighbourhood U of {x, y} × ∂Dn−1
2 and

smooth the corners inside U . Hence we may assume that A is a 2-sided
smooth submanifold of W with a product neighbourhood P (A) such that

P (A \ U) = P
(
X ∪ Y \ ({x, y} ×Dn−1

2 ) \ U
)

∪
(
γ([ε, 1− ε])× (Dn−1

3 \ IntDn−1
1 )

)
.

Since γ joins X and Y from the same side, the orientations of their normal
bundles induce the orientation of P (A), and thus a framing of A.

Let N ′ = (N ′
1, . . . , N

′
r) be a system such that Ni = N ′

i for i ̸= j and
N ′
j = (Nj \ (X ∪ Y )) ∪ A. We will show that φN = φN ′ . Let [α] ∈ π1(W )

be any class of loops in W with basepoint outside P (N ) and P (γ). We may
assume that α does not intersect ({x, y} × Dn−1

2 ) ∪ U and it is in general
position relative to N ′. Write α = α1 · . . . · αk as in Lemma 2.6 with respect
to the system N ′, so φN ′([α]) = aϵ1i1 . . . a

ϵk
ik

. Note that φN ([α]) is obtained
from φN ′([α]) = aϵ1i1 . . . a

ϵk
ik

by removing those aϵjij which correspond to αj

such that αj ∩ (γ × ∂Dn−1
2 ) ̸= ∅. However, if αj intersects γ × ∂Dn−1

2 and
goes inside γ × Dn−1

2 (i.e. it has an end point in γ × Dn−1
2 ), then αj+1 also

intersects γ×∂Dn−1
2 , since it needs to leave γ×Dn−1

2 and does not intersect
{x, y} × Dn−1

2 . Thus aij = aij+1 and ϵj+1 = −ϵj . Therefore φN ([α]) =
φN ′([α]), so φN = φN ′ .

We call the constructed submanifold X #γ Y the connected sum of X
and Y along γ.
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X

Y

γ

(a)

X #γ Y

(b)

Fig. 1. An example of a connected sum of submanifolds X and Y along a curve γ which
joins them from the same side. The arrows indicate normal vectors from the framing.

Proposition 2.8. Let N = (N1, . . . , Nr) be a system of hypersurfaces
in W such that φN is an epimorphism and there are no paths as in the
statement of Lemma 2.7. Then there is a unique independent and regular
system A = (A1, . . . , Ar) in W such that for each j the submanifold Aj is a
component of Nj and there is a loop τj such that τj ∩N = τj ∩Aj is a single
point. In particular, if N is regular, then it is independent.

Proof. Since φN is an epimorphism, for any j there is a loop τj in W such
that fN ◦ τj represents the generator of Fr = π1(

∨r
i=1 S

1
i ) which corresponds

to S1j . As in Lemma 2.6, we may consider τj as the concatenation of paths
αj1, . . . , α

j
k such that aj = φN ([τj ]) = aϵ1i1 . . . a

ϵk
ik

, where ai = [S1i ]. If k > 1,
then there is some cancellation in the word aϵ1i1 . . . a

ϵk
ik

, so for some l both αjl
and αjl+1 intersect the same submanifold Nil . If they intersect two different
components of Nil , one obtains a path as in the statement of Lemma 2.7,
a contradiction. However, if they intersect Nil in the same connected compo-
nent X, then we may assume that the starting point of αjl and the endpoint
of αjl+1 are in Pt(X) for some t ∈ [−2, 2]\[−1, 1] by reparameterizing P (Nil).
Since X is connected, we may replace the paths αjl and αjl+1 in τj by an arc
in Pt(X) joining these two points, which provides a loop for which the num-
ber of paths in its representation from Lemma 2.6 is reduced. Proceeding
inductively we may assume that τj ∩N = τj ∩Nj is a single point.
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Note that if there were two components X and Y of Nj with loops τX
and τY with the same basepoint intersecting N only in single points of X
and Y , respectively, then they would determine a path joining X and Y as
in Lemma 2.7. Thus for any j there is a unique connected component Aj of
Nj with this property.

The system A = (A1, . . . , Ar) is regular by definition and independent by
the above property of Aj ’s. The uniqueness of A follows by the uniqueness
of its components.

If N is regular, then N = A, so it is independent.

Remark 2.9. Using the techniques of Cornea [5] one can show that for a
closed manifold M , if N is not regular and φN is surjective, then there is an
independent and regular system N ′ = (N ′

1, . . . , N
′
r) in M such that N ′ ⊂ N ,

without the assumption on the existence of paths as in Lemma 2.7.

Theorem 2.10. Any epimorphism φ : π1(W ) → Fr is induced by a reg-
ular and independent system of hypersurfaces.

Proof. Let N = (N1, . . . , Nr) be a system inducing φ = φN given by
Proposition 2.2. By Lemma 2.7 we may assume that there is no path as
in the statement of the lemma. Thus Proposition 2.8 yields a regular and
independent system A = (A1, . . . , Ar) such that Aj is a component of Nj

and for each j there is a loop τj such that τj ∩N = τj ∩Aj is a single point.
Therefore φN ([τj ]) = φA([τj ]) for each j and φA : π1(W ) → Fr is surjective.
We will show that kerφN ⊂ kerφA.

Let [α] ∈ kerφN and write α = α1 · . . . · αk as in Lemma 2.6 with
respect to the system N . We proceed by induction on k, which is even
since φN ([α]) = 1. If k = 0, then α ∩ N = ∅, so α ∈ W |N ⊂ W |A and
therefore [α] ∈ kerφA. Suppose that any element in kerφN represented by
a loop which can be written as the concatenation of less than k paths as
in Lemma 2.6 is also contained in kerφA. Let α = α1 · . . . · αk for [α] ∈
kerφN . Since 1 = φN ([α]) = aϵ1i1 . . . a

ϵk
ik

, there is an index m such that
aim = aim+1 and ϵm+1 = −ϵm, so im = im+1 =: j. Thus both the paths αm
and αm+1 intersect the same component X of Nj since there are no paths as
in Lemma 2.7. Obviously, we may extend the tubular neighbourhood of X
slightly and assume that the beginning of the path αm and the end of αm+1

are in Pt(X) for some t /∈ [−1, 1]. Since X is connected, so also is Pt(X),
and there is an arc γ in Pt(X) joining these two points. Thus we may define
the loop

β = α1 · . . . · αm−1 · (γ · αm+2) · αm+3 · . . . · αk
which has k − 2 paths as in Lemma 2.6. Write φN ([α]) = ω · aϵmj a−ϵmj · ω′.
Evidently, φN ([β]) = ωω′ = 1 and by induction hypothesis φA([β]) = 1. It is
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clear that in both the cases X =Aj and X ̸=Ajwe get φA([α]) =φA([β]) = 1,
so [α] ∈ kerφA. By induction kerφN ⊂ kerφA.

Therefore φA = η ◦ φN for some epimorphism η : Fr → Fr. Since free
groups are Hopfian (see [2]), η is an isomorphism, so kerφN = kerφA. Be-
cause [τj ]’s generate a subgroup of π1(W ) mapped isomorphically onto Fr
by φN and φA on which they are equal, we obtain φA = φN everywhere and
the theorem is proved.

3. Systems of hypersurfaces in the classification of epimorphisms.
Hereafter, Σg and Sg denote respectively an orientable and a non-orientable
closed surface of genus g.

Let G be a finitely generated group and φ : G→ Fr be an epimorphism.
The number r is called the rank of φ. The corank of G is defined as the
largest rank of an epimorphism from G onto a free group and it is denoted
by corank(G). Since G is finitely generated, its corank is well-defined and

corank(G) ≤ rankZAb(G),

where Ab(G) is the abelianization of G. For more information about the
corank and its properties we refer to [5, 7, 9, 15, 23]. When G = π1(X)
the corank of G is also called the first non-commutative Betti number of X
(cf. [7]). We only recall that corank(π1(Σg)) = g and corank(π1(Sg)) =
⌊g/2⌋.

Grigorchuk, Kurchanov and Zieschang [10, 12] studied epimorphisms onto
free groups from fundamental groups of compact surfaces. As in their papers,
we call two homomorphisms φ,ψ : G → H equivalent, and write φ ∼ ψ, if
there exist isomorphisms ν : G→ G and η : H → H such that φ ◦ ν = η ◦ψ;
and φ,ψ are strongly equivalent if one can choose η = idH , in which case we
write φ ≃ ψ. Obviously, φ ≃ ψ implies φ ∼ ψ. We are interested in the case
H = Fr.

G

G

Fr

Fr
φ //

ν ∼=
��

ψ //

η∼=
��

(a)

G

G

Fr

ψ

**
ν ∼=
�� φ

44

(b)

Fig. 2. Equivalence (a) and strong equivalence (b) of epimorphisms onto free groups.

In this section we apply the results of the previous section to the problem
of classification of epimorphisms onto free groups up to equivalence and
strong equivalence. In particular, we give an alternative proof of the following
theorem.
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Theorem 3.1 (Grigorchuk–Kurchanov–Zieschang [10, 11, 12]). If Σ is
a closed surface of Euler characteristic χ(Σ) = 2 − k and 1 ≤ r ≤ ⌊k2⌋ =
corank(π1(Σ)), then there are finitely many, say p and q, classes of epi-
morphisms π1(Σ) → Fr with respect to equivalence and strong equivalence,
respectively. More precisely,

(1) if Σ is orientable, then p = q = 1,
(2) if Σ = Sk is nonorientable, then

(a) p = q = 1 if k = 2m+ 1 is odd,
(b) p = 2 and q = 2r if k = 2m is even and r < m,
(c) p = 1 and q = 2r − 1 if k = 2m is even and r = m.

Proposition 3.2 ([11]). For m ≥ r there exists only one class of epi-
morphisms Fm → Fr up to strong equivalence.

Note that the Poincaré conjecture is equivalent to the classification of
some pairs of epimorphisms onto free groups, which shows the importance
of such studies.

Theorem 3.3 (Stallings–Jaco–Waldhausen–Hempel, [13, 14]). The Poin-
caré conjecture holds if and only if for each g ≥ 2 any two epimorphisms
π1(Σg) → Fg × Fg are equivalent.

3.1. Systems of hypersurfaces up to framed cobordism and dif-
feomorphism. Let us denote by Hr(M) the set of all independent and
regular systems of hypersurfaces in M of size r which omit the basepoint,
and by Hfr

r (M) the set of framed cobordism classes of elements of Hr(M).
On each of these sets there is a natural action of Diff•(M), the set of self-
diffeomorphisms of M which preserve the basepoint, so we may form the
orbit space Hfr

r (M)/Diff•(M). Note that if h ∈ Diff•(M), then a system
N = (N1, . . . , Nr) and its image h(N ) = (h(N1), . . . , h(Nr)) induce strongly
equivalent homomorphisms.

Moreover, for groups G and H denote by Epi(G,H) the set of all epi-
morphisms G→ H.

We have the natural map Θ : Hr(M) → Epi(π1(M), Fr) which sends a
system N into the induced epimorphism φN . By Proposition 2.4 it factor-
izes through an injective map Θ : Hfr

r (M) → Epi(π1(M), Fr). Theorem 2.10
states that both these mappings are also surjective.

Corollary 3.4. The map Θ : Hfr
r (M) → Epi(π1(M), Fr) is a bijection

between the set of all framed cobordism classes of regular and independent
systems of hypersurfaces of size r in M and the set of all epimorphisms from
π1(M) onto the free group of rank r.
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Now, let us consider the strong equivalence relation ≃ on Epi(G,Fr). The
composition

Hfr
r (M) → Epi(π1(M), Fr) → Epi(π1(M), Fr)/≃

is still surjective and it factorizes through a map Θ : Hfr
r (M)/Diff•(M) →

Epi(π1(M), Fr)/≃.

Corollary 3.5. The number of strong equivalence classes of epimor-
phisms π1(M) → Fr is not greater than the cardinality of Hfr

r (M)/Diff•(M).

The question is when the latter set is finite. It is for example the case for
the surface groups.

Proposition 3.6. For a closed surface Σ the map Θ : Hfr(Σ)/Diff•(Σ)→
Epi(π1(Σ), Fr)/≃ is a bijection.

Proof. We know that the map is surjective. For injectivity it suffices
to note that by the Dehn–Nielsen Theorem (see [4]) any automorphism of
π1(Σ) can be represented by a self-diffeomorphism of Σ. If φN and φN ′

are strongly equivalent via η = h# induced by h ∈ Diff•(Σ), then φN =
φN ′ ◦ η = (fN ′ ◦ h)# = (fh−1(N ′))# = φh−1(N ′), so N and h−1(N ′) are
framed cobordant.

Remark 3.7. The same is true for any manifold M for which any auto-
morphism of π1(M) is induced by some element of Diff•(M). By the Mostow
Rigidity Theorem it is the case for hyperbolic manifolds of dimension at
least 3.

Now, our aim is to calculate Hfr
r (Σ)/Diff•(Σ). We need the following

series of three lemmas.

Lemma 3.8. Let Σ be a non-orientable compact surface with ∂Σ ̸= ∅
and S ⊂ ∂Σ be a connected component. Then there exists h ∈ Diff•(Σ) such
that h(S) = S, h|S is orientation-reversing and h|∂Σ\S = id∂Σ\S.

Proof. First, assume that Σ is the projective plane RP2 with one disc B
removed, i.e. Σ = RP2 \ IntB and S = ∂B. Let D ⊂ IntΣ be another disc
and Σ′ = (Σ\D)∪B be a Möbius band. Fix a parametrization Σ′ ∼= [−1, 1]×
[0, 1]/(t, 0) ∼ (−t, 1) for t ∈ [−1, 1] such that S ⊂ IntΣ′ is symmetric with
respect to the core {0} × [0, 1], i.e. if (t, x) ∈ S, then (−t, x) is also in S.
Then h′ : Σ′ → Σ′ defined by h′(t, x) = (−t, x) is a self-diffeomorphism such
that h′|S : S → S has degree −1, so it is orientation-reversing, but on ∂Σ′ it
is orientation-preserving, so isotopic to the identity. Thus we can extend h′

to h : RP2 → RP2 such that h(B) = B and h|S has degree −1, and take h|Σ .
In the general case, glue a disc B and Σ along S and take a diffeomor-

phism Σ ∪S B → Σ′′ #RP2 such that B ⊂ Σ′ ⊂ RP2 as before. The lemma
follows from the first case.
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Lemma 3.9. Let N = (N1 ∪N2) be a system of size 1 in a manifold M
such that N1 and N2 are connected. If M \ N1 and M \ N2 are connected,
but M |N is disconnected, then φN : π1(M) → Z is not surjective.

Proof. Assume that φN is an epimorphism. Then there is a loop α in
general position relative to N such that φN ([α]) = ±1. As in Lemma 2.6
write α as a concatenation α1 . . . αk of paths αi, each of which intersects N
in a single point. Therefore

1 ≡ ±1 = φN ([α]) ≡ k mod 2,

so k is odd. By assumption M |N has exactly two components. Since N1, N2,
M \ N1 and M \ N2 are connected, each αi joins both the components of
M |N . Thus k is even, because α is a loop, so it starts and ends at the same
point. This gives a contradiction, so φN is not surjective.

Remark 3.10. While we know that independent systems induce surjec-
tive homomorphisms, non-independent systems can induce both surjective
and non-surjective homomorphisms. The above lemma shows when φN is
not an epimorphism, and it can be generalized to other similar situations.

Lemma 3.11. For an independent system N = (N1 ∪ · · · ∪Nr) of size 1
in a manifold M there exists a regular and independent system N ′ = (N ′)
which is framed cobordant to N , so φN = φN ′ . Moreover:

(1) The complement M |N ′ can be non-orientable if M |N is non-orientable.
(2) The complement M |N ′ is orientable if M |N is orientable and

M |N ∪ P (Ni) is non-orientable for each i.

Proof. The construction of N ′ is performed as in the proof of Lemma 2.7
by using arcs γ connecting components of N . They can be found since N is
independent.

Consider a two-sheeted orientation cover π : M̃ →M , where

M̃ := {µx |x ∈M and µx ∈ Hn(M,M \ {x}) is a local orientation at x}.
For (1), if M |N is non-orientable, then there is a loop α in M |N which

reverses orientation, which means that it lifts to a path in M̃ which joins two
different local orientations at the basepoint. Since M |N \ Imα is connected,
we may perform the construction of N ′ in this space. Then α is also contained
in M |N ′, so it is non-orientable.

Now, assume that M |N is orientable, but M |N ∪P (Ni) is non-orientable
for each i. To obtain a contradiction, suppose that M |N ′ is non-orientable,
so there is a loop α in M |N ′ which reverses orientation and we may assume
that it is in general position relative to N . Using Lemma 2.6 write α as a
concatenation α1 . . . αk of paths αi, each intersecting N in a single point.
Note that since α is in M |N ′, it intersects N only when it goes into or leaves
a tubular neighbourhood P (γ) of some arc γ, as mentioned at the beginning
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of the proof. Therefore, as in the proof of Lemma 2.7, if α intersects N going
inside P (γ), then it needs to leave P (γ) again intersecting N . Thus k is
even.

For any i consider αi which intersects Ni in a point x and take a small
closed disc D in M around x such that the cover π is trivial over D and
∂D∩ Imαi = {x1, x2}, where x1 and x2 lie on different sides of Ni such that
αi goes from x1 to x2. By the assumption, there is a reversing-orientation
loop βi in M |N ∪ P (Ni) intersecting N only once at x and we may assume
that its image agrees with the image of αi on D. We take a loop α′ which
differs from α only on the segment of αi between x1 and x2, where it goes
like βi outside D. Note that the local orientations at x2 assigned by lifts of
α and α′ are opposite. Repeating this for each αi we obtain a loop α′′ which
omits N and which is still orientation-reversing since we changed the local
orientations by βi an even number of times. This contradicts the fact that
M |N is orientable and proves (2).

Remark 3.12. In fact, in (1) the complement M |N ′ is always non-
orientable if M |N is non-orientable. Indeed, if N ′′ is any other regular and
independent system framed cobordant to N such that M |N ′′ is orientable,
then it is also framed cobordant to N ′, but this is a contradiction by the
next proposition.

Proposition 3.13. Let M be a non-orientable manifold and let N and
N ′ be two regular and independent systems of hypersurfaces in M of the
same size r such that M |N is orientable, but M |N ′ is non-orientable. Then
N and N ′ are not framed cobordant.

Proof. Let N = (N1, . . . , Nr) and N ′ = (N ′
1, . . . , N

′
r). It is clear that

we may assume that N satisfies the conditions in Lemma 3.11(2) since
framed cobordism between N and N ′ implies framed cobordism between
N∗ = (Ni1 , . . . , Nik) and N ′

∗ = (N ′
i1
, . . . , N ′

ik
), where i1 < . . . < ik are all

indices such that M |N ∪ P (Nij ) is non-orientable. We will show that N∗
and N ′

∗ are not framed cobordant even as submanifolds, let alone as sys-
tems of hypersurfaces. For this we use Lemma 3.11 for (Ni1 ∪ · · · ∪Nik) and
(N ′

i1
∪ · · · ∪N ′

ik
) to assume that r = 1.

So now, each of N and N ′ is just a non-separating connected 2-sided
submanifold in M , M |N is orientable and M |N ′ is non-orientable. Suppose
that W ⊂ M × [0, 1] is a framed cobordism between N and N ′. Consider
the orientation cover π : M̃ → M and the lifts Ñ := π−1(N ) and Ñ ′ :=

π−1(N ′). Moreover, by the property of π the complement M̃ |Ñ has two
connected components since M |N is orientable, and M̃ |Ñ ′ is connected since
M |N ′ is non-orientable. The cobordism W lifts to the framed cobordism
W̃ := (π × id[0,1])

−1(W ) ⊂ M̃ × [0, 1] between Ñ and Ñ ′. Therefore φÑ =
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φÑ ′ : π1(M̃) → Z and φÑ ′ is surjective, because Ñ ′ is independent. However,
we will show φÑ is not surjective, which gives a contradiction.

To see this, note that Ñ can have one or two components. If Ñ is con-
nected, then φÑ is evidently not surjective, since M̃ |Ñ is not connected.
If Ñ has two components, we use Lemma 3.9 together with the fact that
M̃ |Ñ →M |N , the restriction of π, is also the orientation cover of M |N .

Thus N and N ′ are not framed cobordant.

Remark 3.14. The above proposition is easily seen not to be true for
non regular systems of hypersurfaces. To construct an example, it suffices
to take a system N = (N1 ∪ N2) of size 1 consisting of two non-separating
framed circles in M = Σ1#S2, the connected sum of the torus and the Klein
bottle, such that N1 ⊂ Σ1 and N2 ⊂ S2 are disjoint from the discs used in
the connected sum operation. Since N2 has trivial normal bundle and S2|N2

is orientable, there is an orientation-reversing loop β in S2 intersecting N2

in a single point. Obviously, there is also an orientation-preserving loop α in
Σ1 intersecting N1 in a single point. Moreover, one can take an arc γ in M
joining α ∩N1 and β ∩N2 and disjoint from α and β outside these points.
Performing the connected sum of N1 and N2 along γ we obtain N ′ = (N ′)
such that φN = φN ′ by Lemma 2.7, so N and N ′ are framed cobordant.
However, M |N is orientable, but M |N ′ is not because the concatenation
α · γ · β is an orientation-reversing loop which can be homotoped to lie in
M |N ′.

Now, we can provide an alternative proof of the Grigorchuk–Kurchanov–
Zieschang Theorem (Theorem 3.1) for strong equivalence. First, let us make
a short preparation.

Let N = (N1, . . . , Nr) and N ′ = (N ′
1, . . . , N

′
r) be two arbitrary regular

and independent systems of hypersurfaces in a closed surface Σ. Thus all
Ni, N ′

i are circles. Assume that Σ|N and Σ|N ′ are diffeomorphic. By ho-
mogeneity, take a diffeomorphism h′ : Σ|N → Σ|N ′ which sends P±1(Ni)
onto P±1(N

′
i). Glue all tubes P (Ni) ∼= [−1, 1]×Ni to Σ|N along {−1}×Ni

to obtain a surface Σ with 2r boundary components {1} ×Ni and P1(Ni),
i = 1, . . . , r. Let

ξi : P1(Ni) → {1} ×Ni

be a gluing map which leads to Σ. Analogously, we define Σ′ and take ξ′i
for N ′. Extend h′ to a diffeomorphism h̄ : Σ → Σ′ using P (Ni) ∼= [−1, 1] ×
S1 ∼= P (N ′

i), so h̄(N ) = N ′. It follows easily that h̄ induces h ∈ Diff•(Σ)
after performing gluing operations via ξi and ξ′i if and only if h̄−1◦ξ′i◦h̄|P1(Ni)

is isotopic to ξi for each i = 1, . . . , r. If that is the case, then h(N ) = N ′, so
N and N ′ are the same elements in Hfr

r (Σ)/Diff•(Σ).
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Theorem 3.15. Let Σ be a closed surface, let r be an integer such that
1 ≤ r ≤ corank(π1(Σ)) and set q = |Hfr

r (Σ)/Diff•(Σ)|.
(1) If Σ is orientable or non-orientable of odd genus, then q = 1.
(2) If Σ = S2m is non-orientable of genus 2m, then

• if r < m, then q = 2r,
• if r = m, then q = 2r − 1.

As a consequence, q is the number of strong equivalence classes of epimor-
phisms π1(Σ) → Fr as in Theorem 3.1.

Proof. We use the above notation. If Σ is orientable, then Σ|N and Σ|N ′

are diffeomorphic surfaces and we may assume that the diffeomorphism h′

is orientation-preserving. Since Σ is orientable, all maps ξi and ξ′i are also
orientation-preserving, so we obtain h ∈ Diff•(Σ) such that h(Ni) = N ′

i .
Therefore q = 1.

Now assume that Σ is non-orientable of odd genus. Then Σ|N and Σ|N ′

are compact surfaces with 2r boundary components and of the same odd
Euler characteristic, so they are also non-orientable. Using Lemma 3.8 we
may change h′, by composing it with another diffeomorphism, so that h̄−1 ◦
ξ′i ◦ h̄|P1(Ni) and ξi are isotopic. As before, this implies that q = 1.

Finally, let Σ = S2m be non-orientable of even genus 2m. For any non-
empty subset I ⊂ {1, . . . , r} it is easy to construct a system NI such that
Σ|NI is orientable and the gluing maps ξIi (defined as before) are orientation-
reversing only for i ∈ I. We omit the case when I = ∅ since then Σ would be
orientable. Moreover, for r < m we denote by N0 a system for which Σ|N0

is non-orientable. Note that if r = m, then Σ|N is always a sphere with 2r
open discs removed, so it is orientable.

By the previous considerations it is clear that the systems NI for ∅ ̸=
I ⊂ {1, . . . , r} and N0 for r < m represent all elements of Hfr

r (Σ)/Diff•(Σ)
(when Σ|N is non-orientable we use Lemma 3.8 as before). Thus q ≤ 2r

for r < m and q ≤ 2r − 1 for r = m. We will show that they are different
elements of Hfr

r (Σ)/Diff•(Σ). This will follow if we show that the systems
are not framed cobordant to each other.

By Proposition 3.13 we know that N0 is not framed cobordant to any NI .
If we have two systems NI = (N I

1 , . . . , N
I
r ) and NJ = (NJ

1 , . . . , N
J
r ) for

I ̸= J , then we may assume that there is an index 1 ≤ j ≤ r such that
j /∈ I, but j ∈ J , so ξIj is orientation-preserving, but ξJj is orientation-
reversing. If I = {i1, . . . , ik}, form the systems N ∗

I = (N I
i1
, . . . , N I

ik
) and

N ∗
J = (NJ

i1
, . . . , NJ

ik
). By construction, Σ|N ∗

I is orientable, but Σ|N ∗
J is not.

Again Proposition 3.13 shows that N ∗
I and N ∗

J are not framed cobordant, so
NI and NJ cannot be framed cobordant either and the proof is complete.

The last statement follows by Proposition 3.6.
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Corollary 3.16. With the above notation,

Hfr
r (S2m)/Diff•(S2m) =

{
{[N0], [NI ] : ∅ ̸= I ⊂ {1, . . . , r}} for r < m,

{[NI ] : ∅ ̸= I ⊂ {1, . . . , r}} for r = m.

3.2. Analogues of Nielsen transformations for systems of hyper-
surfaces. We have found that strong equivalence classes of epimorphisms
π1(M) → Fr can be described by elements of Hfr

r (M)/Diff•(M). In this
section we show how to get equivalence classes from them.

It is known that the automorphism group Aut(Fr) of a finitely gener-
ated free group Fr is generated by elementary Nielsen transformations (see
e.g. [2]). On a given ordered basis (a1, . . . , ar) on Fr we define them as fol-
lows:

(T1) nσ : (a1, . . . , ar) 7→ (aσ(1), . . . , aσ(r)) for some permutation σ ∈ Sr;
(T2) ni : (a1, . . . , ar) 7→ (a1, . . . , ai−1, a

−1
i , ai+1, . . . , ar) for i ∈ {1, . . . , r};

(T3) nij : (a1, . . . , ar) 7→ (a1, . . . , ai−1, aiaj , ai+1, . . . , ar) which replaces ai
by aiaj for some i ̸= j.

Note that (T1) can be obtained from the other two, but it is convenient
to use. Thus we have three types of automorphisms: nσ, ni, nij ∈ Aut(Fr).

Definition 3.17. Let N = (N1, . . . , Nr) be an independent and regu-
lar system of hypersurfaces in a closed manifold M . We define analogous
operations on Hr(M):

(H1) N 7→ N σ := (Nσ(1), . . . , Nσ(r)) for some permutation σ ∈ Sr;
(H2) N 7→ N i is obtained by changing the framing of the submanifold Ni

to the one with opposite orientation;
(H3) N 7→ N ij is obtained for i ̸= j by replacing Nj by Nj#γP1(Ni), where

γ is an arc as in Lemma 2.7 which intersects N only in two points and
joins Nj and P1(Ni) from the same side.

An arc γ in (H3) always exists since N is independent. For the result-
ing system N ij we take smaller tubular neighbourhoods to be disjoint, e.g.
P[−1,1/2](Ni) ∼= [−1, 1/2]×Ni. By Lemma 2.7 the homomorphism φN ij is the
same as the one induced by the system (N1, . . . , Ni, . . . , Nj∪P1(Ni), . . . , Nr),
so it is clear by the definition that φN ij = nij ◦ φN . Therefore φN ij is sur-
jective and since obviously N ij is regular, by Proposition 2.8 it is also inde-
pendent, so operation (H3) on Hr(M) is well defined: it does not depend on
the choice of γ up to framed cobordism.

In the same way, (H1) and (H2) are analogues of (T1) and (T2):

φNσ = nσ ◦ φN and φN i = ni ◦ φN .
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Nj

Ni

P1(Ni)

γ

N = (Nj , Ni)

Nj #γ P1(Ni)

Ni

N ij = (Nj #γ P1(Ni), Ni)

Fig. 3. Operation (H3) which transforms N = (Nj , Ni) into N ij = (Nj #γ P1(Ni), Ni).

Since elementary Nielsen transformations generate Aut(Fr), we have the
following straightforward conclusion.

Proposition 3.18. Two epimorphisms φN and φN ′ induced by N ,N ′ ∈
Hr(M) are equivalent if and only if N ′ can be transformed by applying a
finite number of operations (H1)–(H3) to a system N ′′ such that φN and
φN ′′ are strongly equivalent.

In particular, if M is a manifold for which the map

Θ : Hfr
r (M)/Diff•(M) → Epi(π1(M), Fr)/≃

is a bijection, then φN and φN ′ are equivalent if and only if N ′′ can be
obtained so as to represent the same element of Hfr

r (M)/Diff•(M) as N .

Lemma 3.19. Operations (H1)–(H3) on N do not change the orientability
of M |N .

Proof. This is clear for (H1) and (H2). For (H3), if α is an orientation-
reversing loop in M |N , then M |N \ Imα is also connected and a path γ
between Nj and P1(Ni) can be taken to be disjoint from α, so M |N ij is
also non-orientable by Proposition 3.13. If M |N is orientable, but α is an
orientation-reversing loop in M |N ij , then it intersects Nj and P1(Ni) in
P (γ), the tubular neighbourhood of γ. When α intersects Nj and goes into
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P (γ), it may pass through P (γ) and P[0,1](Ni) ∼= [0, 1] ×Ni or again inter-
sect Nj . Note that P[0,1](Ni) is orientable, because P1(Ni) is orientable as a
submanifold of the orientable manifold M |N . Thus α may be changed to an-
other orientation-reversing loop lying outside N , a contradiction. Therefore
M |N ij is also orientable.

Theorem 3.20. Let Σ be a closed surface and let 1 ≤ r ≤ corank(π1(Σ))
be an integer. Denote by p the number of equivalence classes of epimorphisms
π1(Σ) → Fr.

(1) If Σ is orientable or non-orientable of odd genus, then p = 1.
(2) If Σ = S2m is non-orientable of genus 2m, then

• if r < m, then p = 2,
• if r = m, then p = 1.

Proof. For the first part note that 1 ≤ p ≤ q, where q is the number of
strong equivalence classes of epimorphisms π1(Σ) → Fr, and q = 1 if Σ is
orientable or non-orientable of odd genus. If Σ is non-orientable of genus 2m,
then by Theorem 3.15 and Proposition 3.18 we need to investigate operations
(H1)–(H3) on the systems N0 and NI for ∅ ̸= I ⊂ {1, . . . , r}. Since by the
above lemma the operations do not change the orientability of complements
of systems, φN0 and φNI

cannot be equivalent for any I, so p ≥ 2 if r < m.
We will show that all NI induce equivalent epimorphisms.

Apply operation (H3) to NJ = N = (N1, . . . , Nr), for i /∈ J and j ∈ J , to
obtain the system N ij which represents the same element in Hfr

r (Σ)/Diff•(Σ)
as NI for some I. We will show that I = J ∪ {i}.

First, note that l ∈ J if and only if Σ|N ∪ P (Nl) is non-orientable. Let
us divide the proof into four steps:

• j ∈ I: Use the fact that Σ|N ij ∪ P (Nj #γ P1(Ni)) = Σ|N ∪ P (Nj) is
non-orientable, since j ∈ J .

• J \ {j} ⊂ I: Let l ∈ J \ {j}. Thus there is an orientation-reversing loop
α in Σ|N ∪ P (Nl) which intersects Nl in a single point. Since a tubular
neighbourhood of α is a Möbious band, Σ|N \ Imα is also connected and
γ in (H3) can be taken to be disjoint from α. Thus Imα ⊂ Σ|N ij ∪P (Nl),
so the latter subspace is non-orientable. Therefore l ∈ I since (H3) does
not depend on the choice of γ up to framed cobordism.

• i ∈ I: Take an orientation-reversing loop α in Σ|N ∪ P (Nj) intersecting
Nj in a single point x, which is the starting point of an arc γ joiningNj and
P1(Ni), and intersecting ∂P (γ) in a single point y. Thus we may write α =
α1 ·α2, where α1 is a path outside P (γ) joining y and x. Let the endpoint
of γ in P1(Ni) correspond to (1, z) ∈ {1}×Ni and take a path τ : [−1, 1] →
P (Ni) ∼= [−1, 1] × Ni defined by τ(t) = (−t, z). Moreover, take a path β
from τ(1) ∈ P−1(Ni) to y, which is contained in Σ|N \ Im γ (such a path
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exists since γ does not disconnectΣ|N ). Now, form the loop α′ = α1·γ·τ ·β,
which is contained in Σ|N ij ∪ P[−1,1/2](Ni) by taking a smaller tubular
neighbourhood of γ used in the connected sum Nj #γ P1(Ni). Remember
that the neighbourhood ofNi should be considered smaller than P (Ni), say
P[−1,1/2](Ni), after performing (H3). The loop α′ is orientation-reversing
since it is homotopic to α · α2 · γ · τ · β, where α2 is the inverse path for
α2, and α2 · γ · τ ·β is orientation-preserving as it can be homotoped to lie
in Σ|N ∪ P (Ni), which is orientable. Therefore i ∈ I.

• l /∈ I if l /∈ J ∪ {i}: If Σ|N ij ∪ P (Nl) contains an orientation-reversing
loop, then by Lemma 3.19 so does Σ|N ∪ P (Nl), a contradiction.

Thus using (H3) we may transform any NJ to be the same element of
Hfr
r (Σ)/Diff•(Σ) as N{1,...,r}, so they all induce equivalent epimorphisms.

4. Reeb graphs and Reeb epimorphisms. In this section we estab-
lish relations between Reeb graph theory and the earlier results. First, let us
recall basic notions.

A smooth triad is a triple (W,W−,W+), where W is a manifold with
boundary ∂W =W− ⊔W+ (possibly W± = ∅). A smooth function f : W →
[a, b] is a function on the smooth triad (W,W−,W+) if f−1(a) = W−,
f−1(b) =W+ and all its critical points are in IntW .

Let f : W → R be a function with finitely many critical points on
a smooth triad (W,W−,W+). We say that x, y ∈ W are in Reeb relation
∼R if they belong to the same connected component of a level set of f . The
quotient space W/∼R is denoted by R(f) and called the Reeb graph of f .

The Reeb graph of the function f as above is homeomorphic to a finite
graph, i.e. to a one-dimensional finite CW-complex (see [28, 33]). The vertices
of R(f) correspond to the components of W± and to the components of
level sets of f containing critical points. The homomorphism q# : π1(W ) →
π1(R(f)) ∼= Fr induced by the quotient map q : W → R(f) is surjective
(see [16]) and is called the Reeb epimorphism of f . The number r as above
is called the cycle rank of R(f) and it is equal to the first Betti number
β1(R(f)).

For an oriented graph (i.e. each edge has a chosen direction), the indegree
and outdegree of a vertex v are the numbers of incident edges which income
to and outgo from v, respectively. The degree deg(v) is the number of all
incident edges to v.

With R(f) equipped with the quotient topology, f induces a continuous
function f : R(f) → R such that f = f ◦ q. It is strictly monotonic on each
edge of R(f) and has extrema only at vertices of degree 1. A function on a
graph satisfying these properties induces an orientation of the graph called a
good orientation (see Sharko [33]). Thus any Reeb graph is considered with
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a good orientation. The graphs in the figures in this paper are oriented from
the bottom to the top.

Recall that f : W → R is a Morse function if it is smooth and all its
critical points are non-degenerate. A Morse function f is simple if each of
its critical levels contains only one critical point, and it is ordered if for any
two critical points p and p′ of f , if ind(p) < ind(p′) then f(p) < f(p′), where
ind(p) is the index of the non-degenerate critical point p. Note that the Reeb
graph of an ordered Morse function on a manifold of dimension at least 3
is a tree. The same is also true for a surface W and a self-indexing Morse
function f : W → R, i.e. f(p) = ind(p) for each critical point p (see [23]).

It is convenient to use a slightly different condition on a Morse function
than its simplicity. Namely, we say that a Morse function f is R-simple if any
vertex of R(f) corresponds to exactly one critical point of f . Equivalently,
each connected component of any level set of f contains at most one critical
point. Obviously, a simple Morse function is R-simple. Moreover, every R-
simple Morse function can easily be slightly perturbed to get a simple Morse
function without changing the Reeb graph.

Let f : W → R be an R-simple Morse function on the triad (W,W−,W+)
of dimension n = dimW . The vertices of degree 1 in R(f) correspond to
components of ∂W and to the extremum points of f , the critical points
of indices 0 and n. If W is an orientable surface, then all other vertices
have degree 3 (see [22]). However, if W is not an orientable surface, then
the other vertices of R(f) have degrees 2 and 3. In addition, for n ≥ 3,
vertices of degree 3 correspond to critical points of index 1 (with indegree
2) or index n− 1 (with outdegree 2), and vertices of degree 2 correspond to
indices 1, . . . , n− 1 (see [22, 23, 28]).

In [23] the second author defined combinatorial modifications of Reeb
graphs of simple (or R-simple) Morse functions, labelled (1)–(9), (11), (12),
and a modification (10) transforming the Reeb graph of a simple Morse
function to the Reeb graph of a Morse function, which accumulates some
critical points to one connected component of a level set. We will use them
extensively in the proofs. They were introduced for manifolds of dimension
at least 3, but they can also be well-defined for non-orientable surfaces be-
cause of the same degree-index correspondence as mentioned above (with
some caution for modification (7)). For orientable surfaces we have to omit
modifications with vertices of degree 2. In fact, for orientable surfaces Fabio
and Landi [6] introduced such operations called elementary deformations. In
order not to separate these cases, we will use the term combinatorial modi-
fication for Reeb graphs of functions on any manifold, having in mind that
for orientable surfaces there are no modifications with vertices of degree 2.
Moreover, modification (6) for orientable surfaces works in both ways since
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it deals with critical points of the same index 1 (it corresponds to elementary
deformations (K2) and (K3) of [6]).

The considerations in this section are motivated by and based on the fol-
lowing theorem of the second author [23] which summarized previous results.

Theorem 4.1 ([23, Theorem 5.2]). Let M be a closed, smooth and con-
nected manifold of dimension at least 2. The following are equivalent:

(a) There exists a Morse function f : M → R (simple if M is not an ori-
entable surface) such that β1(R(f)) = r.

(b) There exists an epimorphism π1(M) → Fr.
(c) There exists a regular and independent system of hypersurfaces of size r

in M .

Remark 4.2. The equivalence of conditions (b) and (c) has been estab-
lished by Cornea [5, Theorem 1] and for combinatorial manifolds by Jaco [15,
Theorem 2.1]. It is evident that condition (a) implies (b) and (c) (see [16]).
Moreover, Gelbukh [8] showed the equivalence of (a) and (b) for orientable
manifolds by using foliation theory. In [23, Theorem 5.2] there is a crucial
proof that (c) implies (a). Theorems 4.6 and 2.10 provide a direct proof that
(b) and (c) each imply (a).

Remark 4.3. A characteristic feature of orientable surfaces is that a
simple (and also an R-simple) Morse function on a triad of an orientable
surface of genus g has Reeb graph with cycle rank g (see [3, 22]).

Combinatorial modifications of Reeb graphs together with the construc-
tion of the initial graph (see Figure 4) are the main ingredients in the solution
of the realization problem for Reeb graphs in [23]. It was a natural problem
to determine which graph can be the Reeb graph of a smooth function with
isolated critical points on a given manifold (cf. [30]; see Remark 4.20 below).

Proposition 4.4 ([23]). For any finite graph Γ with good orientation
there is a finite sequence of combinatorial modifications (1)–(12) which trans-
form the initial graph to Γ up to vertices of degree 2.

Theorem 4.5 ([23, Theorem 6.4]). Let M be a closed, connected mani-
fold of dimension n ≥ 2 and Γ be a finite connected oriented graph. There
exists a Morse function f : M → R such that R(f) is orientation-preserving
homeomorphic to Γ if and only if Γ has a good orientation and β1(Γ ) ≤
corank(π1(M)). Moreover, if M is not an orientable surface and the degree
of each vertex in Γ is no greater than 3, then f can be taken to be simple.

In this section we resolve the realization problem for a manifold with
boundary together with representation of an epimorphism as the Reeb epi-
morphism of a Morse function. We do it by constructing a Morse function
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with certain components of level sets prescribed by a system of hypersur-
faces.

4.1. The initial graph and factorization through a Reeb epi-
morphism. Recall that π0(X) is the set of path components of a space X
and their number is denoted by |π0(X)|. Since all the spaces X discussed
by us are locally path connected, π0(X) is equal to the set of connected
components of X.

We call a graph Γ admissible for a triad (W,W−,W+) if Γ has at least
|π0(W−)| vertices of degree 1 and indegree 0 and at least |π0(W+)| vertices
of degree 1 and outdegree 0.

The graph in Figure 4(a) is called the initial graph (with cycle rank r).
Recall that by our convention it is oriented from the bottom to the top. We
distinguish a spanning tree in the initial graph, coloured red in the figure.
Moreover, we order the edges e1, . . . , er outside the tree as in the figure.
We also define a version of the initial graph which is admissible for a triad
(W,W−,W+) (see Figure 4(b)).

...

...

e1 e2 e3 ... er

(a)

...

...

...

...

e1 e2 e3 ... er

(b)

Fig. 4. (a) The initial graph with distinguished tree and ordered edges outside it. (b) The
initial graph admissible for (W,W−,W+).

The initial graph with cycle rank g occurs easily as the Reeb graph of a
height function on an orientable surface of genus g. In fact, by [22, Theorem
5.6] it can be the Reeb graph of a Morse function on any closed surface with
Euler characteristic at most 2− 2g.



Reeb graphs, hypersurfaces and epimorphisms 25

Theorem 4.6. Let ∂W =W− ⊔W+ and N = (N1, . . . , Nr) be a system
of hypersurfaces without boundary in W . Then the induced homomorphism
φN factorizes through the Reeb epimorphism of a simple Morse function
f : W → R on the smooth triad (W,W−,W+) such that all connected compo-
nents of N are components of some regular level set f−1(c) = N ⊔ V , where
V is a non-empty submanifold. Moreover, if we allow f to be not necessarily
simple for dimW = 2, then we can construct f in such a way that

β1(R(f)) = |π0(N )| − |π0(W |N )|+ 1.

Furthermore, if N is regular and independent, then R(f) can be taken to be
homeomorphic to the initial graph admissible for (W,W−,W+), with cycle
rank r and such that Ni corresponds to the edge ei for each i as in Figure 4.

Proof. The construction of the desired function is analogous to that in
Theorem 4.1 (c)⇒(a) (of [23]), but here N may not be independent and
regular. For details on the existence of Morse functions and gluing operations
we refer to [24].

Take an ordered Morse function h : W |N → R on the triad

(W |N , P−1(N ) ⊔W+, P1(N ) ⊔W−)

and a regular value d from [23, Lemma 3.3] such that V := h−1(d) has the
same number of connected components as W |N . Let

P (V ) := h−1([d− ε, d+ ε]) ∼= V × [−1, 1],

Q− := h−1((−∞, d− ε]) and Q+ := h−1([d+ ε,∞)).

Then

∂Q− = P−1(V ) ⊔ P−1(N ) ⊔W+ and ∂Q+ = P1(V ) ⊔ P1(N ) ⊔W−.

Thus V , Q+ and Q− all have the same number of connected components.
Now, take simple and ordered Morse functions

g− : Q− → [−2,−1] on the triad (Q−, ∅, ∂Q−),

g+ : Q+ → [1, 2] on the triad (Q+, ∂Q+, ∅).
Let us glue them together with suitable projections P (N ⊔ V ) → [−1, 1]

obtaining a simple Morse function f : W → R with regular value 0 such that
f−1(0) = N ⊔ V .

Let q : W → R(f) and g : R(f) → R(f)/q(W |N ) =
∨r
i=1 S

1
i be the

quotient maps. The map g sends q(W |N ) to the basepoint, and q(P (Ni)) ∼=
[−1, 1] linearly and preserving orientation onto S1i . It is clear that φN =
(fN )# = (g ◦q)# = g# ◦q#, so φN factorizes through the Reeb epimorphism
q# of f .

Now, let us compute β1(R(f)). The subset q(W |N ) of R(f) is homeo-
morphic to the Reeb graph R(f |W |N ), so it has |π0(W |N )| connected compo-
nents. If dimW ≥ 3, then the components of R(f |W |N ) are trees, because the
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components of R(f |Q±) are trees by [23, Proposition 3.2] (since the Morse
functions on Q± are ordered) and they are gluing, through R(f |P (V )) ∼=
[−1, 1], one component of R(f |Q±) with the unique component of R(f |P (V )).
In the case of surfaces by the same fact we may define Morse functions (self-
indexing, not simple) on components of Q± whose Reeb graphs are trees.
In both cases, q(W |N ) has |π0(W |N )| components which are trees, and so
they are contractible.

Thus the quotient R(f)/q(W |N ) can be obtained from R(f) by first con-
tracting each component of q(W |N ), and then gluing the resulting points to
one point. The first operation does not change the first Betti number, but the
second increases it by 1 for each gluing of two points. Hence R(f)/q(W |N )
has cycle rank β1(R(f))+ |π0(W |N )|−1. On the other hand, it is clear that
R(f)/q(W |N ) is homeomorphic to the wedge product of |π0(N )| circles.
Therefore

|π0(N )| = β1(R(f)) + |π0(W |N )| − 1.

Now, let N be a regular and independent system of hypersurfaces. Let
dimW ≥ 3. Since W |N and V are connected, the manifolds Q± are also
connected, so we may assume that g± has only one critical point, which is an
extremum point. Then by [23, Proposition 3.2] the Reeb graph R(g−) (resp.
R(g+)) is a tree with one minimum (resp. maximum) and so all vertices
of degree 3 have indegree 1 (resp. outdegree 1). By the above formula on
the cycle rank we have β1(R(f)) = r. We proceed as in the proof of [23,
Proposition 6.2]. By means of combinatorial modifications we move up (resp.
move down) all vertices of degree 2 in R(g−) (in R(g+)). Then by applying
modification (4) to f |Q− = g− and (5) to f |Q+ = g+ we can obtain a simple
Morse function onW whose Reeb graph is homeomorphic to the initial graph
admissible for (W,W−,W+) with the desired correspondence between Ni and
its edges ei.

The last statement in the case of surfaces can be obtained similarly with
some additional effort, or it follows from Theorem 4.15 (Theorem 4.6 is not
used in the proof of Theorem 4.15 for surfaces).

Remark 4.7. For dimW = 2 note that the components of Q± can be
either orientable or non-orientable, even if W is non-orientable. Since on
an orientable component a simple Morse function has a Reeb graph with
maximum cycle rank, simplicity of a Morse function in the theorem is also
excluded if W is a non-orientable surface – the components of R(f |G±) then
could not be trees.

Using the above theorem we may easily prove the last part of Propo-
sition 2.8. If N is regular and φN is surjective, then by Theorem 4.6 the
induced epimorphism φN factorizes through a Reeb epimorphism of rank
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r′ = r− |π0(W |N )|+1. Since r ≤ r′, this implies that |π0(W |N )| ≤ 1, so N
is independent.

This theorem can also be used to easily prove the following known fact
for orientable surfaces.

Corollary 4.8. Any epimorphism φ : π1(Σg) → Fr factorizes through
an epimorphism π1(Σg) → Fg.

Proof. By Theorem 4.6, φ factorizes through the Reeb epimorphism of
a simple Morse function f : Σg → R, whose rank is equal to β1(R(f)). By [3]
(cf. [22]) the Reeb graph of a simple Morse function on Σg always has cycle
rank g, so β1(R(f)) = g.

In fact, since any two epimorphisms π1(Σg) → Fg are strongly equivalent
by Theorem 3.1, for a fixed ψ : π1(Σg) → Fg any φ : π1(Σg) → Fr factorizes
through ψ ◦ η for some η ∈ Aut(π1(Σg)).

4.2. Reeb number of manifolds with boundary. The Reeb number
R(M) of a closed manifold M was an object of study in [22, 23] and without
using this name in [3, 8, 9]. It is defined as the maximum cycle rank among
the Reeb graphs of functions with finitely many critical points on M . By
Theorem 4.1 ([23, Theorem 5.2]) and [22, Lemma 3.5] we have R(M) =
corank(π1(M)) (see also [9]).

For a compact manifold W , possibly with boundary, following Cornea [5]
we define C(W ) to be the maximum number of connected components in a
proper, 2-sided submanifold N of W such that W \N is connected. In other
words, it is the maximum size of an independent and regular system in W .
It is clear by Theorem 4.1 that R(M) = C(M) for a closed manifold M .

The following fact was proven by Jaco [15] for combinatorial manifolds.
Cornea announced only inequality C(W ) ≥ corank(π1(W ))− |π0(∂W )|+ 1
if ∂W ̸= ∅, but the theorem also holds in the smooth category.

Theorem 4.9. C(W ) = corank(π1(W )).

Proof. If there is an independent and regular system N of size k = C(W ),
then the induced homomorphism φN is onto Fk, so

C(W ) ≤ corank(π1(W )).

On the other hand, any epimorphism onto the free group of rank
corank(π1(W )) is by Theorem 2.10 induced by a regular and independent
system, so C(W ) = corank(π1(W )).

Now, we extend the definition of the Reeb number to manifolds with
boundary. First, define R(W,W−,W+), where ∂W = W− ⊔W+, to be the
maximum cycle rank among the Reeb graphs of smooth functions with
finitely many critical points on the smooth triad (W,W−,W+). By [22,
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Lemma 3.5] applied to smooth triads this maximum is attained by simple
Morse functions.

Proposition 4.10. R(W,W−,W+) is equal to the maximum size of an
independent and regular system without boundary in W . Thus it does not
depend on the partition ∂W =W− ⊔W+.

Proof. By Theorem 4.6, if N is a regular and independent system without
boundary in W of size r, then φN factorizes through the Reeb epimorphism
of rank |π0(N )| − |π0(W |N )|+ 1 = r, which gives an inequality in one di-
rection. On the other hand, if f is a simple Morse function on (W,W−,W+)
such that R(f) has cycle rank R(W,W−,W+), then the components of the
level sets of f corresponding to the edges of R(f) outside some spanning
tree form a regular and independent system of hypersurfaces in W of size
R(W,W−,W+).

Definition 4.11. For a compact manifold W with boundary we define
its Reeb number as R(W ) := R(W,W−,W+) for any ∂W =W− ⊔W+.

It is obvious that R(W ) ≤ C(W ).

Remark 4.12. Note that R(W ) can be defined as the maximum cycle
rank among the Reeb graphs of Morse functions on W which are constant
on connected components of ∂W . We use triads for simplicity.

Let Cone(X) := X × [0, 1]/X × {1} denote the cone over the space X.
The point corresponding to X × {1} is called the vertex of the cone.

For a compact manifold W with the boundary divided into two parts,
∂W = A⊔B, if A1, . . . , Ak are all the connected components of A, we define

ConeA(W ) :=W ∪A
k⋃
i=1

Cone(Ai),

that is, we glue the cones Cone(Ai) and W along A. Let vi be the vertex of
Cone(Ai). Clearly, we may identify

ConeA(W ) \ {v1, . . . , vk} ∼=W \A.
Hereafter, we denote by ⟨π1(A)⟩π1(W ) the normal subgroup of π1(W )

generated by the images of π1(Ai) in π1(W ) by the homomorphisms induced
by the inclusions Ai ⊂W . By the Seifert–van Kampen theorem,

π1(ConeA(W )) ∼= π1(W )/⟨π1(A)⟩π1(W ).

It is clear that up to isomorphism this group is well-defined for any choice
of basepoints.

The following proposition describes properties of an epimorphism onto
a free group in terms of its factorization and a system of hypersurfaces,
generalizing [34, Proposition 4.2] of Stallings.
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Proposition 4.13. Let W be a compact manifold and ∂W = A⊔B. Then
an epimorphism φ : π1(W ) → Fr factorizes through π1(W )/⟨π1(A)⟩π1(W ) if
and only if it is induced by an independent and regular system N such that
N ∩A = ∅.

Proof. SetH := ⟨π1(A)⟩π1(W ). If N is an independent and regular system
such that N ∩ A = ∅, then clearly the images in π1(W ) of loops in A are
contained in the kernel of φN , so φN factorizes through π1(W )/H.

Conversely, assume that φ = ψ ◦ η, where η : π1(W ) → π1(W )/H and
ψ : π1(W )/H → Fr. We proceed as in the proof of Proposition 2.2. Let ψ
be induced by f : ConeA(W ) →

∨r
i=1 S

1
i which is a smooth map outside

{v1, . . . , vk} and the inverse image of the basepoint. Take regular values
ai ∈ S1i and define

Ni = f−1(ai) ⊂ ConeA(W ) \ {v1, . . . , vk} ∼=W \A.

Thus N = (N1, . . . , Nr) is a system in ConeA(W ) which induces ψ such
that N ∩ A = ∅. Clearly, as a system in W , it induces φ. It is easy to
check that the procedures in the proofs of Lemma 2.7 and Theorem 2.10
give an independent and regular system N ′ inducing φ which also satisfies
N ′ ∩A = ∅.

The following theorem is a generalization of [23, Theorem 4.1].

Theorem 4.14. For an epimorphism φ : π1(W ) → Fr the following are
equivalent:

(1) φ = φN for an independent and regular system N without boundary;
(2) φ factorizes through π1(W )/⟨π1(∂W )⟩π1(W );
(3) there is a Morse function f (simple if dimW ≥ 3) on any smooth triad

(W,W−,W+) and a spanning tree T in R(f) such that φ = (pT ◦ q)#,
where q : W → R(f) and pT : R(f) → R(f)/T =

∨r
i=1 S

1 are quotient
maps.

Thus
R(W ) = corank(π1(W )/⟨π1(∂W )⟩π1(W )).

Proof. The equivalence of (1) and (2) follows from the above propo-
sition for A = ∂W . If φ = φN for an independent and regular system
N = (N1, . . . , Nr) without boundary, then by Theorem 4.6 there is a Morse
function f (simple if dimW ≥ 3) on (W,W−,W+) whose Reeb graph has
cycle rank r and all components of N are components of the same level set
f−1(c). Thus the edges corresponding to the components of N are outside
some spanning tree T of R(f), and so (pT ◦ q)# = φN . This proves that (1)
implies (3), and the converse is clear.

By Proposition 4.10 we get R(W ) = corank
(
π1(W )/⟨π1(∂W )⟩π1(W )

)
.
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4.3. Realization of a system of hypersurfaces as components of
level sets of a function. For a further study of Reeb epimorphisms of
Morse functions we would like to have prescribed components of level sets
of the function corresponding to edges outside a spanning tree of the graph.

Theorem 4.15. Let (W,W−,W+) be a smooth triad, let

W± =W±
1 ⊔ · · · ⊔W±

|π0(W±)|

be a decomposition into connected components and consider a regular and
independent system N = (N1, . . . , Nr) of hypersurfaces without boundary in
W . Let Γ be a finite connected graph with good orientation, whose cycle rank
is equal to r and which is admissible for (W,W−,W+). Distinguish vertices
a±1 , . . . , a

±
|π0(W±)| of degree 1 in Γ , where all a−i have indegree 0 and all a+i

have outdegree 0. Moreover, take a spanning tree T of Γ and order the edges
outside T as e1, . . . , er. Then there is a Morse function f : W → R on the
triad (W,W−,W+), such that R(f) is orientation-preserving homeomorphic
to Γ , each Ni is a component of a level set of f which corresponds to the
edge ei and each W±

i corresponds to a±i . Moreover, if dimW ≥ 3 and the
degree of each vertex in Γ is no greater than 3, then f can be taken to be
simple.

Proof. Let Γ ′ be a tree obtained from Γ by cutting along all edges ei
as in Figure 5. Denote by c−i and c+i the vertices of Γ ′ of outdegree 0 and
indegree 0, respectively, obtained by cutting Γ along the edge ei.

ei
c−i

c+i

Fig. 5. Cutting along edge.

For dimW = 2 consider the closed surface Q which is formed from W |N
by attaching discs to all its boundary components. By [22, Theorem 5.4
and Remark 5.5] there is a Morse function g : Q → R whose Reeb graph is
orientation-preserving homeomorphic to Γ ′.

For each vertex from a±1 , . . . , a
±
|π0(W±)| and all c±i consider a disc Dl in Q

centred at the corresponding extremum point of g and whose boundary is a
component of a level set of g. Clearly, there is a diffeomorphism

h : W |N → Q \
⋃
l

IntDl
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and by homogeneity we may assume that it maps W±
i (resp. the circle

P±1(Ni)) to the boundary of Dl corresponding to a±j (resp. correspond-
ing to c±i ). Thus we define a Morse function f : W |N → R by f = g ◦ h.
Obviously, we can rescale f to assume that its value on P−1(Ni) is smaller
than its value on P+1(Ni) for each i. Thus we may extend f from P (N ) to
a Morse function on W whose Reeb graph, by construction, is orientation-
preserving homeomorphic to Γ , and Ni corresponds to the edge ei for each
i. Again, it can be rescaled to be a function on the triad (W,W−,W+).

Now, let dimW ≥ 3. We proceed as in the proof of Theorem 4.5 (i.e.
[23, Theorem 6.4]) with the difference that the manifold has a boundary.
However, we deal with the simplest case when the graph is a tree. Steps
1 and 2 of the proof in [23] reduce the problem to the case when Γ ′ has
only vertices of degrees 1 and 3 and is primitive, i.e. there is no oriented
(directed) path from a vertex with indegree 2 to a vertex with outdegree 2.
By Theorem 4.6 for the empty system of hypersurfaces in W |N there is a
simple Morse function g : W |N → R whose Reeb graph is the initial graph
admissible for the triad (W |N ,W−⊔P1(N ),W+⊔P−1(N )). We may increase
(or decrease if necessary) the number of vertices of degree 1 by using modifi-
cations (8) and (9), so that R(g) is the initial graph with the same numbers
of vertices of indegree 0 and vertices of outdegree 0 as Γ ′. Moreover, since
Γ ′ and R(g) are primitive trees, this forces the same numbers of vertices of
indegree 2 and of outdegree 2. Thus it suffices to appropriately rearrange
vertices of degree 3 to produce Γ ′ from R(g).

For this purpose, we introduce a combinatorial modification (13) of Fig-
ure 6, which, loosely speaking allows us to transfer a vertex v of indegree
2 to the other edge outgoing from a vertex w of outdegree 2 adjacent to v.
The analogous modification for graphs with opposite orientations is labelled
(14). Since the graphs Γ ′ and R(g) are primitive, small neighbourhoods of
two adjacent vertices of degree 3 look like in modifications (4), (5), (13) or
(14). Note that these modifications are two-sided, i.e. they work in both di-
rections. We will show that Γ ′ can be transformed to the initial graph by
using them, and so R(g) can be transformed to Γ ′ obtaining a simple Morse
function f ′ : W |N → R whose Reeb graph is orientation-preserving homeo-
morphic to Γ ′. Moreover, previously rearranging vertices in the initial graph
R(g) using modifications (4) and (5) we may ensure that the distinguished
vertices of degree 1 in the homeomorphic graphs Γ ′ and R(f ′) correspond
to appropriate components of ∂(W |N ). Again, as in the case of surfaces, we
can rescale f ′ to assume that its value on P−1(Ni) is smaller than its value
on P+1(Ni) for each i and extend f ′ on P (N ) to a Morse function f on W
whose Reeb graph, by construction, is orientation-preserving homeomorphic
to Γ , and which satisfies all the desired conditions.
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v

w

V1

V2

(i)

v

w

V1 V2

(5)

(ii)

v

w

V1 V2

(iii)

v

w

V1

V2

(iv)

(13)

Fig. 6. The combinatorial modification (13) of the Reeb graph of a simple Morse function.
It transfers a vertex v of degree 3 and indegree 2 to the other outgoing edge from a vertex
w of degree 3 and outdegree 2. The situation with opposite directions of graphs leads to
modification (14).

Thus, take an oriented path τ in Γ ′ between vertices of degree 1 and with
maximum number of vertices of degree 3. Assume that there is a vertex v of
degree 3 outside τ , which is adjacent to a vertex w of degree 3 on τ . Without
loss of generality assume that w has outdegree 2. If v also has outdegree 2,
then use modification (5) to move v on the path τ . For the second case when
v has indegree 2, first use (5) to move w up along τ as far as possible. Then
apply (13) to v and w to move v on τ . The resulting graph is still primitive
and has more vertices of degree 3 on τ . Repeating this procedure as long as
there is a vertex of degree 3 outside τ we obtain the initial graph.

It only remains to describe modification (13). Suppose g : Q → R is a
simple Morse function on a triad (Q,Q−, Q+) such that R(g) is isomorphic
to the graph in Figure 6(i). Let v and w be adjacent vertices of R(g) as
in the figure and let v1 be a vertex of degree 1 in R(g) adjacent to v and
corresponding to the submanifold V1 of Q, so V1 is a single point (an ex-
tremum point of g) or a component of Q−. If it is an extremum point, then
use modification (8) and then (9) to obtain the graph from Figure 6(ii).
Now assume V1 is a component of Q−. First, rescale the function along the
edge between v and v1 so that the value at v1 is greater than the value
at w. Take a neighbourhood U of this edge containing no other vertices than
v and v1 such that the corresponding submanifold S of Q forms a triad
(S, V1 ⊔S1, S2). Change g on S by defining a new simple and ordered Morse
function on (S, S1, V1 ⊔ S2) with no critical points being extremum points.
By [23, Proposition 3.2] this produces a function with Reeb graph as in (ii).
Modification (5) leads to case (iii), and an analogous argument allows us to
pass to (iv). Finally, modification (14) for a simple Morse function g can be
obtained from (13) for the function −g.

Remark 4.16. Note that in the case of surfaces the function f con-
structed in the proof of the above theorem can be simple if W |N is non-
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orientable or has genus 0 since then the function g in the proof can be taken
to be simple (see [22]). This is the case for example if W is non-orientable
of odd genus.

4.4. Realization of epimorphisms onto free groups as Reeb epi-
morphisms. The previous theorem allows us to realize an epimorphism
π1(W )→π1(Γ ) as theReeb epimorphismof aMorse function on (W,W−,W+).
Note that by Theorem 4.14 we need to assume that the original epimorphism
factorizes through π1(W )/⟨π1(∂W )⟩π1(W ).

Theorem 4.17. Let Γ be a finite connected graph with good orientation,
let (W,W−,W+) be a smooth triad and assume that φ : π1(W ) → π1(Γ ) is
an epimorphism factorizing through π1(W )/⟨π1(∂W )⟩π1(W ). Then there is a
Morse function f : W → R on (W,W−,W+) such that R(f) is orientation-
preserving homeomorphic to Γ and under this identification the Reeb epi-
morphism of f is equal to φ. Moreover, if W is not a surface and the degree
of each vertex in Γ is no greater than 3, then f can be taken simple.

Proof. Take a spanning tree T of Γ and label the edges outside T by
e1, . . . , er. Take the quotient map pT : Γ → Γ/T =

∨r
i=1 S

1 which maps ei
onto the ith circle. By Theorem 4.14 the epimorphism (pT )# ◦ φ is induced
by an independent and regular system N = (N1, . . . , Nr) of hypersurfaces
without boundary in W of size r. By Theorem 4.15 there is a Morse function
f : W → R whose Reeb graph is Γ up to vertices of degree 2, and Ni cor-
responds to ei. If q : W → R(f) is the quotient map, then by construction
(pT )# ◦ q# = φN = (pT )# ◦φ. Since (pT )# is an isomorphism, φ = q# is the
Reeb epimorphism of f .

Corollary 4.18. Let φ : π1(M) → π1(Γ ) be an epimorphism, where M
is a closed manifold and Γ is a finite connected graph with good orientation.
Then there is a Morse function f : M → R such that R(f) is orientation-
preserving homeomorphic to Γ and under this identification the Reeb epi-
morphism of f is equal to φ.

Remark 4.19. The Reeb epimorphism of f does not represent a unique
epimorphism π1(W ) → π1(Γ ) in general, because it depends on the homeo-
morphism between Γ and R(f). It is unique for oriented graphs such that
the identity map is the only orientation-preserving automorphism. Other-
wise, Theorem 4.15 provides a more rigorous representation of a Reeb epi-
morphism if some additional data is given. For instance, assume that there
are distinguished edges e1, . . . , er outside a spanning tree T of Γ and a reg-
ular and independent system N of hypersurfaces inducing (pT )# ◦ φ. Then
the condition that each Ni corresponds to ei implies the uniqueness of an
epimorphism π1(W ) → π1(Γ ) represented by the Reeb epimorphism of f .
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Remark 4.20. Independently, O. Saeki [30] has proven a similar result
for a closed manifold M , which provides a representation of an epimorphism
φ : π1(M) → π1(Γ ), for any finite graph Γ without loops, as the Reeb epi-
morphism of a smooth function with finitely many critical values. In addition,
since the function has degenerate critical points, it can realize Γ as the Reeb
graph up to isomorphism of graphs. However, the number of vertices of de-
gree 2 in the Reeb graph of a Morse function cannot be arbitrary (see for
instance [22, Theorem 5.6]), thus we need to ignore them in our construction
of a Morse function. Moreover, the above theorem together with Theorem
4.15 provides a more rigorous representation of φ as the Reeb epimorphism,
since we control the components of level sets of the function. This may be
crucial in applications of Reeb epimorphisms, e.g. when dealing with topo-
logical conjugacy of Morse functions (see Section 4.6). Finally, our result also
covers manifolds with boundary.

We showed that for manifolds of dimension at least 3 any epimorphism
π1(M) → π1(Γ ) can be represented as the Reeb epimorphism of a simple
Morse function provided that Γ satisfies some necessary conditions: it has a
good orientation and the degrees of its vertices are ≤ 3. Now, let us investi-
gate when in Theorem 4.17 one can take a simple Morse function in the case
of surfaces.

Lemma 4.21. Let Σ be a closed surface of Euler characteristic χ(Σ) =
2 − 2g, so it is orientable of genus g or non-orientable of genus 2g, and let
f : Σ → R be a Morse function such that the degree of each vertex in R(f)
is no greater than 3. Then β1(R(f)) = g if and only if f is R-simple and
R(f) has no vertices of degree 2.

Proof. Let V and E be the sets of vertices and edges of R(f), respectively.
Then β1(R(f)) = |E|−|V |+1. Moreover, if ki is the number of critical points
of f of index i, then χ(Σ) = k0−k1+k2 and the number of vertices of degree 1
in R(f) is k0 + k2. Let ∆2 and ∆3 be the numbers of vertices of degree 2
and 3, respectively. Note that 2|E| =

∑
v∈V deg(v) = k0 + k2 + 2∆2 + 3∆3

by Euler’s handshaking lemma. Combining these equalities we obtain

2(β1(R(f))− g) = 2|E| − 2|V |+ χ(Σ) = ∆3 − k1.

Thus β1(R(f)) = g if and only if k1 = ∆3. However, k1 ≥ ∆2 + ∆3, so
k1 = ∆3 if and only if ∆2 = 0 and each vertex of R(f) corresponds to a
single critical point of f , so f is R-simple.

Note that a simple Morse function on a non-orientable surface of odd
genus always has a vertex of degree 2 in its Reeb graph.

We know that the Reeb graph of a simple Morse function on a closed
orientable surface of genus g has cycle rank g. For a non-orientable surface Σ
one can construct simple Morse functions with Reeb graphs having arbitrary
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cycle rank between 0 and R(Σ) (cf. Theorem 4.1). However, simple Morse
functions on non-orientable surfaces of even genus also have a feature which
can be described in terms of Reeb epimorphisms.

Proposition 4.22. Let Γ be a finite connected graph with good orienta-
tion such that β1(Γ ) < g. Then there is a unique strong equivalence class Ξ
of epimorphisms π1(S2g) → π1(Γ ) such that for any simple Morse function
f : S2g → R with R(f) = Γ its Reeb epimorphism belongs to Ξ.

Proof. Let r := β1(R(f)) and N = (N1, . . . , Nr) be an independent and
regular system of hypersurfaces in S2g which are connected components of
level sets of f and which correspond to edges outside some spanning tree of
R(f). We claim that S2g|N is non-orientable. Indeed, assume it is orientable.
Note that f |S2g |N is a simple Morse function and its Reeb graph R(f |S2g |N )
is a tree. Therefore S2g|N has genus 0 as a surface with boundary, i.e. it is
a sphere with discs removed. This implies that r = g, a contradiction.

Therefore, as in the proof of Theorem 3.15, any two Reeb epimorphisms of
simple Morse functions S2g → R with Reeb graph Γ are strongly equivalent
and Ξ is represented by a system of hypersurfaces whose complement is
non-orientable.

Note that in fact the above proposition is also true for any non-orientable
surface S2g+1 of odd genus since by Theorem 3.1 there is only one strong
equivalence class of epimorphisms π1(S2g+1) → π1(Γ ).

The following corollary follows from Remark 4.16, Theorem 4.17, Lemma
4.21 and Proposition 4.22.

Corollary 4.23. Let Γ be a finite connected graph with good orientation
such that the degree of each vertex is no greater than 3, let Σ be a closed
surface and Repi(Σ) be the set of all Reeb epimorphisms of simple Morse
functions on Σ. Take an epimorphism ψ : π1(Σ) → π1(Γ ).

• If Σ is orientable of genus g, then ψ ∈ Repi(Σ) if and only if β1(Γ ) = g.
• If Σ is non-orientable of odd genus, then ψ ∈ Repi(Σ).
• If Σ is non-orientable of even genus 2g, then ψ ∈ Repi(Σ) if and only if

either β1(Γ ) = g, or β1(Γ ) < g and ψ belongs to a unique strong equiva-
lence class Ξ of epimorphisms π1(Σ) → π1(Γ ) represented by systems of
hypersurfaces whose complements are non-orientable.

4.5. Extendability of independent systems of hypersurfaces. Let
N = (N1, . . . , Nr) be an independent and regular system of hypersurfaces
in W . We say that N is extended by a system N ′ if N ′ is also a regular and
independent system such that N ⊂ N ′ and their framings determine the
same orientation of the normal bundle of N in W .
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Proposition 4.24. Let N be an independent and regular system without
boundary in W of size r. Then

corank
(
π1(W )/⟨π1(N )⟩π1(W )

)
=corank

(
π1(W |N )/⟨π1(∂P (N ))⟩π1(W |N )

)
+r

and it is the maximum size of an independent and regular system of hyper-
surfaces without boundary in W which extends N . In particular, for a closed
manifold M we get

R(M |N ) = corank
(
π1(M)/⟨π1(N )⟩π1(M)

)
− r.

Proof. Suppose we have a 2-sided connected submanifold N = N1 with-
out boundary with product neighbourhood P (N) in a compact manifold
W such that W |N is connected. Thus W is obtained from W |N be glu-
ing the components of ∂(W |N) = P−1(N) ⊔ P1(N) ⊔ ∂W using a diffeo-
morphism h : P−1(N) → P1(N). It is known (see [20, Chapter IV]) that
π1(W ) is the HNN extension of π1(W |N) relative to h# : H−1 → H1, where
Ht = π1(Pt(N)) < π1(W |N). In other words, π1(W ) is the free product
π1(W |N) ∗Z divided by the normal closure of {uωu−1h#(ω)

−1 : ω ∈ H−1},
where u is the stable letter which generates Z. The group π1(W |N) is a
subgroup of π1(W ) and the groups H−1 and H1 are conjugate in π1(W ). In
fact, the normal subgroup π1(N)π1(W ) in π1(W ) is equal to ⟨H−1⟩π1(W ) =
⟨H1⟩π1(W ) = ⟨H−1, H1⟩π1(W |N). Therefore π1(W )/π1(N)π1(W ) is isomorphic
to

π1(W )/⟨H−1, H1⟩π1(W |N) ∼= π1(W |N)/⟨H−1, H1⟩π1(W |N) ∗ Z.
This gives the first part of the proposition for r = 1 since corank(G ∗H) =
corank(G)+ corank(H) (see [5]). The general case follows by considering all
submanifolds Ni simultaneously and HNN extension with r stable letters.

The description of the number on both sides of the first equality of the
statement follows by Proposition 4.13.

Example 4.25. The Reeb number of a compact manifold W with non-
empty boundary can be smaller than C(W ). For example, let M = Σ × S1,
where Σ is a closed surface with χ(Σ) = 2− k ≤ 0. Then

R(M) = corank(π1(Σ)× Z) = max(⌊k/2⌋, 1) = ⌊k/2⌋ ≥ 1

(see [7, 22]). Let N =(Σ×{1}) and W :=M |N ∼=Σ×[0, 1]. Then C(W )=
corank(π1(Σ))=⌊k/2⌋. However, R(W )=corank((π1(Σ)×Z)/π1(Σ))−1=0
by Proposition 4.24. Therefore N cannot be extended to a regular and in-
dependent system of hypersurfaces in M of a larger size.

Example 4.26. Let Σg,h and Sg,h denote, respectively, an orientable and
non-orientable surface of genus g with h ≥ 1 open discs removed. Then

• R(Σg,h) = g and C(Σg,h) = 2g + h− 1,
• R(Sg,h) = ⌊g/2⌋ and C(Sg,h) = g + h− 1.
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Indeed, by Proposition 4.13 we have R(W ) = corank(π1(Cone∂W (W ))).
This gives the desired Reeb numbers since Cone∂Σg,h

(Σg,h) ∼= Σg and
Cone∂Sg,h

(Sg,h) ∼= Sg. The calculation of C(W ) follows from Theorem 4.9
and the fact that π1(Σg,h) = F2g+h−1 and π1(Sg,h) = Fg+h−1.

Corollary 4.27. Any independent, regular system N of hypersurfaces
without boundary in a compact surface Σ can be extended to such a system
of size R(Σ).

Proof. Let r be the size of N . Since Σ is two-dimensional, N consists
of circles in Σ. By the classification of compact surfaces, if Σ = Σg,h then
Σ|N ∼= Σg−r,h+2r, and if Σ = Sg,h then Σ|N ∼= Sg−2r,h+2r or Σ|N ∼=
Σg/2−r,h+2r (the latter case can only occur if g is even). By the above exam-
ple, in all these cases we have R(Σ|N ) = R(Σ)− r, so N can be extended
to the size R(Σ).

4.6. Topological conjugacy of Morse functions. Now, we focus on
relations between Reeb epimorphisms and Morse functions. The main issue
is that in general different Reeb epimorphisms have different codomains.
Although the fundamental groups of Reeb graphs with the same cycle ranks
are isomorphic, they are not isomorphic in the canonical way. However, this
ambiguity can be omitted for oriented graphs for which the identity map is
the only orientation-preserving automorphism (see Remark 4.19).

Let us restrict our attention to the case of a closed manifold M . Func-
tions f1 and f2 on M are called topologically conjugate if there are a self-
homeomorphism h : M →M and an orientation-preserving homeomorphism
η : R → R such that f1 = η ◦ f2 ◦ h. In this case h induces a unique homeo-
morphism h : R(f1) → R(f2) such that h ◦ q1 = q2 ◦ h and f1 = η ◦ f2 ◦ h.

Lemma 4.28. If f1 and f2 are simple Morse functions topologically con-
jugate by h, then their Reeb graphs are isomorphic through h.

Proof. If there were a vertex with degree 2 in R(f1) mapped by h to
a point on an edge in R(f2), then some smooth product triad would be
mapped by h−1 homeomorphically onto a smooth triad with exactly one
non-degenerate critical point. This is a contradiction by comparing the Euler
characteristics.

M

M

R(f1)

R(f2) R

R
q1 //

h

�� q2 //

h

��

f1 //

f2 //

η

��

Fig. 7. Topologically conjugate simple Morse functions have isomorphic Reeb graphs.
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We cannot speak directly about equivalence and strong equivalence of
Reeb epimorphisms since they have distinct codomains, even if the relevant
Reeb graphs are isomorphic. By the diagram in Figure 7 we see that if f1 and
f2 are topologically conjugate by h, then h# ◦ (q1)# and (q2)# are strongly
equivalent. Thus we say that two Reeb epimorphisms

φi : π1(M) → π1(R(fi))

are strongly equivalent if they are strongly equivalent with respect to an
isomorphism k : R(f1) → R(f2), i.e. k# ◦φ1 and φ2 are strongly equivalent.

The following theorem is a classical result in the theory of Morse func-
tions.

Theorem 4.29 (Kulinich [18], Sharko [32]; cf. [6]). Two simple Morse
functions on a closed orientable surface Σ are topologically conjugate by
h : Σ → Σ if and only if their Reeb graphs are isomorphic as oriented graphs
through h.

This theorem allows us to give another proof of a part of Theorem 3.1 for
orientable surfaces which uses Reeb graphs. First, for any two epimorphisms
π1(Σg) → Fr we need to take systems of hypersurfaces which induce them.
Then we extend them to systems of maximum size R(Σg) = g by Corollary
4.27 and now we can represent the induced epimorphisms π1(Σg) → Fg by
Reeb epimorphisms of simple Morse functions whose Reeb graphs are the
initial graphs (they have no vertices of degree 2). Thus by Theorem 4.29 the
isomorphism of the Reeb graphs is induced by a self-homeomorphism of Σg
that maps one system to the other and gives a strong equivalence between
the epimorphisms.

Remark 4.30. Theorem 3.1 for non-orientable surfaces of even genus
shows that the analogue of Theorem 4.29 does not hold for them in general. In
fact, we may construct two simple Morse functions on S2g whose Reeb graphs
are isomorphic, but their Reeb epimorphisms are not strongly equivalent.
Thus we must endow Reeb graphs with additional information.

Lychak–Prishlyak [19] equipped the Reeb graphs of simple Morse func-
tions on non-orientable surfaces with signs + or − near vertices of degree 3,
which come from the compatibility of orientations when attaching handles
in the corresponding critical levels. More precisely, each sign is assigned to
a pair of incident edges (one incoming and one outgoing) at a vertex v of
degree 3. For the procedure of assignment of signs we refer the reader to [19].
Two Reeb graphs with signs are called equivalent if they are isomorphic and
it is possible to obtain identical signs by the following operation: for a given
edge, reverse all signs assigned to it.
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Theorem 4.31 (Lychak–Prishlyak [19]). Two simple Morse functions on
a closed non-orientable surface are topologically conjugate if and only if their
Reeb graphs with signs are equivalent.

Lemma 4.32. Let Γ be a graph with good orientation whose vertices have
degrees 1 or 3. Then there are exactly 2r equivalence classes of graphs with
signs, where r = β1(Γ ).

Proof. First, look at the case of the canonical graph, presented in Figure
8(a). It is an easy exercise to show that any such graph with signs is equiva-
lent to a configuration of the form shown in the figure, where in the r places
of “?” we can put arbitrary signs. Moreover, all such 2r configurations are
pairwise non-equivalent. The same can be shown for the initial graph with
configurations of signs as in Figure 8(b).

Now, note that by [6, 23] there is a sequence of modifications of Reeb
graphs which transform Γ to the canonical graph. It is left to the reader to
check that for graphs with some vertices of degree 1 or 3, these modifications
do not change the number of non-equivalent configurations of signs.

+ +

+ ?

+ +

+ ?

+ +

+ ?

...

(a)

+ +

+ +

+ +

+ +
+ +

+ ?

+ ?

+ ?

+ ?

+ ?

...

...

(b)

Fig. 8. The canonical and initial graphs with signs.

Remark 4.33. For a graph with some vertices of degree 2 the number of
non-equivalent configurations of signs may vary depending on the position of
these vertices in the graph. Moreover, note that the Reeb graph of a simple
Morse function on a non-orientable surface of odd genus always has a vertex
of degree 2. The same is true if a surface is non-orientable of even genus
2g and the Reeb graph has cycle rank smaller than g. In view of Lemma
4.21 it is only reasonable to consider the case of simple Morse functions on
a non-orientable surface of genus 2g whose Reeb graphs have cycle rank g.
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Theorem 4.34. Let f1, f2 : S2g → R be simple Morse functions on
a closed non-orientable surface of genus 2g such that β1(R(f1)) = g =
β1(R(f2)). Then they are topologically conjugate if and only if their Reeb
graphs are isomorphic and their Reeb epimorphisms are strongly equivalent.

Proof. For a manifold M and a graph Γ , denote by M(M,Γ ) the set
of all simple Morse functions f on M whose Reeb graphs are isomorphic
to Γ , and by M(M,Γ )/t. c. the set of their topological conjugacy classes.
Moreover, let Signs(Γ ) be the set of equivalence classes of configurations of
signs in Γ . By Theorem 4.31 the natural map M(S2g, Γ )/t. c. → Signs(Γ )
associating with a function the configuration of signs in its Reeb graph as
in [19] is injective. Now, suppose Γ has some vertices of degrees 1 and 3 and
β1(Γ ) = g. Then for any configuration of signs in Γ except the one with
pluses only, we can produce a simple Morse function on S2g which realizes it
(see [22] for the procedure). The configuration of signs with pluses only leads
to a function on an orientable surface. By Lemma 4.32 the set Signs(Γ ) has
2r elements, so M(S2g, Γ )/t. c. has 2r − 1 elements.

Now, by Theorem 4.17 and Corollary 4.23 the map from M(S2g, Γ )/t. c.
to the set of strong equivalence classes of Reeb epimorphisms of functions
from M(S2g, Γ ) is surjective. Since the latter set also has 2r−1 elements by
Theorem 3.1, the map is a bijection and the theorem is proved.

5. Final remarks. The approach we presented could be used to study
C1-functions with finitely many critical points, since it assigns to such a
function a combinatorial invariant (the Reeb graph) or a non-commutative
algebraic invariant (the Reeb epimorphism). Conversely, it gives a geometric
description of the set of homomorphisms from the fundamental group of
a compact manifold into a finitely generated free group. As of now, the
following problems seem to be the next natural steps in such studies.

1. One of the problems we wish to focus on in future work is extendability
of independent systems of hypersurfaces (cf. Section 4.5). For an indepen-
dent and regular system N let us denote by E(N ) the maximum size of an
independent and regular system which extends N , and by F (φN ) the max-
imum rank of a free group onto which there is an epimorphism which φN
factorizes through. It is clear that E(N ) ≤ F (φN ). We would like to know
for which closed manifolds M equality holds for any independent system of
hypersurfaces in M . Using Theorem 2.10 it can be shown that N is framed
cobordant to a system which can be extended to size F (φN ), but we do not
know whether N itself can be extended. In particular, we wish to investigate
the case when all numbers F (φN ) are equal to corank(π1(M)). This problem
can also be seen more algebraically. By Proposition 4.24 the extendability of
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N to the size of corank(π1(M)) is equivalent to the equality

corank(π1(M)) = corank
(
π1(M)/⟨π1(N )⟩π1(M)

)
.

Moreover, since E(N ) = R(M |N)+r, where r is the size of N , this problem
is related to the computability of the corank and Reeb number.

2. The last section shows that the relations between conjugacy of simple
Morse functions and strong equivalence of Reeb epimorphisms are quite com-
plicated even for surfaces. These relations deserve a careful investigation for
higher-dimensional manifolds, especially for 3-manifolds. However, in con-
trast to surfaces, the problem of conjugacy of Morse functions on manifolds
of dimension at least 3 is much more difficult due to their more complicated
surgery description (see [26]). One approach is to equip Reeb graphs with
labels on edges, which correspond to diffeomorphism types of submanifolds
corresponding to them. Isomorphism of Reeb graphs which preserves these
labels is the first necessary condition for conjugacy of functions. In par-
ticular, for orientable 3-manifolds regular level sets are orientable surfaces,
so we equip edges only with non-negative integers corresponding to their
genera. Thus the problem is how many strong equivalence classes of Reeb
epimorphisms of simple Morse functions with fixed Reeb graph with labels
are there and how many of them correspond to a single conjugacy class of
these functions. In particular, we ask whether there are finitely many such
classes.

It should be noted that there are some results regarding genera of regular
level sets of Morse functions on closed orientable 3-manifolds. For example,
O. Saeki [29, Theorem 6.5] showed that there is a Morse function f : M → R
with maximum genus among labels in R(f) at most 1 if and only if M is
the connected sum of copies of S3, S2×S1 and lens spaces. Moreover, N.
Kitazawa [17, Theorem 1] described a realization of such a labelled graph as
the Reeb graph of a Morse function on a 3-manifold.

3. The structure of the set Hom(G,Fr) for G a finitely generated group
has been intensively studied by several authors by the use of Makanin–
Razborov diagrams theory (see [21, 27]). It led to the solution of the Tarski
problem on the existence of solution to a system of equations in a free finitely
generated group and culminated in Sela’s works (cf. [31] and more recent ar-
ticles of that author; see also [1] for a nice and relatively uncomplicated
introduction to this theory). The Makanin–Razborov diagram of a group G
consists of its quotients and quotient maps in such a way that every ho-
momorphism φ : G → Fr can be M-R factorized through some branch of
quotients G q1−→ L1

q2−→ · · · qk−→ Lk, where Lk is a free group. This means
that there is an element ψ ∈ Hom(Lk, Fr) and modular automorphisms
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α ∈ Mod(G) and αi ∈ Mod(Li) for 1 ≤ i < k such that

φ = ψ ◦ qk ◦ αk−1 ◦ · · · ◦ α1 ◦ q1 ◦ α.
The equivalence and strong equivalence relations in Hom(G,Fr) cannot be
derived from Makanin–Razborov diagrams in general. However, these no-
tions are closely related for groups with branches of length 1 in their M-R
diagrams, e.g. for surface groups.

The computation of the set Epi(π1(M), Fr) of epimorphisms π1(M) → Fr
and the set Epi(π1(M), Fr)/≃ of their strong equivalence classes may also
rely on calculating framed cobordism classes of independent systems of hy-
persurfaces. By Theorem 2.10 there is a bijection Epi(π1(M), Fr) ∼= Hfr

r (M),
and Θ : Hfr

r (M)/Diff•(M) → Epi(π1(M), Fr)/≃ is surjective. Moreover, in
some cases it is bijective, e.g. for hyperbolic manifolds. More generally, there
are bijections

Hom(π1(M), Fr) ∼= [M,
∨r S1] ∼= Ωfr,1

r (M)

between the sets of all homomorphisms π1(M) → Fr, the set of homotopy
classes of maps M →

∨r S1 and the set Ωfr,1
r (M) of all framed cobordism

classes of systems of hypersurfaces of size r in M (1 stands for codimen-
sion 1). Consequently, any description of the latter set would give informa-
tion about the corresponding set of homomorphisms.
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