## Billiards with countably many scatterers under no eclipse

by

## Haruyoshi Tanaka (Naruto)

**Abstract.** We consider a billiard flow with countably infinitely many scatterers on the plane without eclipse. We show that the non-wandering set of the billiard flow is in one-to-one correspondence with a two-sided topological Markov shift with countably many states. We also give a sufficient condition for the Euler product formula for the zeta function with respect to the billiard flow.

- 1. Introduction and the outline of the main results. Let S be a countable set with  $\#S \geq 3$  and  $\{Q_j : j \in S\}$  a countable number of bounded closed domains in  $\mathbb{R}^2$  such that  $\operatorname{dist}(Q_i,Q_j)>0$  for all distinct  $i,j \in S$  and  $\sup_{j \in S} \operatorname{diam} Q_j < \infty$ . Each  $Q_i$  is called a scatterer and the set  $Q = \mathbb{R}^2 \setminus \bigcup_{j \in S} \overline{Q_j}$  is called the billiard table, where  $\overline{Q_j}$  means the closure of  $Q_j$ . Consider a billiard flow  $(S_t)$  on  $\overline{Q}$ . This flow advances along straight lines on Q with unit speed, and if it knocks against the boundary  $\partial Q$  of Q, it rebounds with the condition that the incidence angle and the reflection angle coincide. We introduce the following conditions (A.1)–(A.3):
- (A.1) (Dispersing) The boundary  $\partial Q_j$  of  $Q_j$  is a smooth simple closed curve with positive curvature for each  $j \in S$ .
- (A.2) (No eclipse) For distinct elements  $i, j, k \in S$ ,  $\operatorname{conv}(\overline{Q}_i \cup \overline{Q}_j) \cap \overline{Q}_k = \emptyset$ , where  $\operatorname{conv}(A)$  denotes the convex hull of the set A.
- (A.3) The number  $\eta := \inf_{i,j \in S: i \neq j} \inf_{q \in \partial Q_i} k(q) \operatorname{dist}(Q_i, Q_j)$  is positive, where k(q) is the curvature at  $q \in \partial Q$ .

If S is finite then (A.3) is automatically satisfied, so our setting is a countable version of the billiard flow without eclipse treated in [4]. In Section 3, we will give many examples satisfying conditions (A.1)–(A.3) under  $\#S = \infty$ .

The outline of the first main result is as follows:

2020 Mathematics Subject Classification: Primary 37C83; Secondary 37C30, 37B10. Key words and phrases: billiard flow, zeta function, topological Markov shift. Received 28 July 2023; revised 19 January 2024.

DOI: 10.4064/fm230728-23-1

(1) Assume that conditions (A.1)–(A.3) are satisfied. Then there is a one-to-one correspondence between the non-wandering set of the flow  $(S_t)$  on  $\overline{Q}$  and a suitable countable Markov shift (see Theorem 2.3).

In addition to (A.1)–(A.3), we consider the following condition:

(A.4) There exists  $s_0 > 0$  such that  $\sum_{i \in S} \exp(-s_0 \inf_{j \in S: j \neq i} \operatorname{dist}(Q_i, Q_j))$  is finite.

Then the outline of the second main result is as follows:

(2) Assume that conditions (A.1)–(A.4) are satisfied. Then the zeta function with respect to the length spectrum of  $(S_t)$  on  $\overline{Q}$  has radius of convergence equal to the inverse of the maximal simple eigenvalue of the Ruelle operator of a suitable potential. Moreover, the Euler product formula for the zeta function holds under some natural condition (see Theorem 2.8).

We show (1) by developing the technique given in [4]. On the other hand, the various properties of zeta functions for  $(S_t)$  in the finite case,  $\#S < \infty$ , may not extend to the infinite case,  $\#S = \infty$ . In fact, there may be no solution of the equation  $P(-s\xi) = 0$  for s > 0, where  $\xi$  is a potential with respect to the length spectrum (see (2.5) for definition) and where  $P(-s\xi)$  is the topological pressure of  $-s\xi$  which is defined by (2.9). We will obtain (2) as a part of the results in the case  $\#S < \infty$  under the additional condition (A.4) and by using the thermodynamic formalism for topological Markov shifts. The complete statements and the proofs are given in Section 2. In future work generalizing [6], we shall consider singular perturbation from perturbed billiards with infinite scatterers to the unperturbed billiard with finitely many scatterers. In order to study this, we need to investigate precise properties for  $(S_t)$  under  $\#S = \infty$  and these are given in Section 3.

**2. Results and proofs.** In this section, we give all the auxiliary propositions and main results with the proofs. We begin with some notation. Let  $\pi: \mathbb{R}^2 \times \{z \in \mathbb{R}^2: |z|=1\} \to \mathbb{R}^2$  be the natural projection. Denote by  $n(q) \in \mathbb{R}^2$  the unit normal at  $q \in \partial Q$ , directed to the inside of Q. We set

$$M^{+} = \{x = (q, v) \in \mathbb{R}^{2} \times \mathbb{R}^{2} : q \in \partial Q, |v| = 1, \langle v, n(q) \rangle \ge 0\}$$

and  $M = \pi^{-1}Q \cup M^+$ , where  $\langle \cdot, \cdot \rangle$  denotes the inner product in  $\mathbb{R}^2$ . Fix a base point  $q(j) \in \partial Q_j$  for each  $j \in S$ . For  $x = (q, v) \in \pi^{-1}\partial Q$ ,  $\omega_0(x) = j$  if  $\pi(x) = q \in \partial Q_j$ , r(x) is the arclength distance from  $q(\omega_0(x))$  to q measured counterclockwise along the curve  $\partial Q_j$ , and  $\varphi(x)$  is the angle between the vector v and n(q) measured counterclockwise from n(q) to v. We may assume that the angle  $\varphi(x)$  of  $x \in M^+$  satisfies  $-\pi/2 \leq \varphi(x) \leq \pi/2$ . Also if no confusion can arise, we may write a point  $x \in M^+$  as  $(\omega_0(x), r(x), \varphi(x))$ ,

 $(r(x), \varphi(x))$  or  $(r, \varphi)$  for short. For  $x \in M$  we let

$$t^+(x) = \inf\{t > 0 : S_t x \in M^+\}, \quad t^-(x) = \sup\{t < 0 : S_t x \in M^+\}.$$

Note that these may be  $+\infty$  and  $-\infty$ , respectively. Put

$$\mathcal{D}_1 = \{ x \in M^+ : t^+(x) < \infty \}, \quad \mathcal{D}_{-1} = \{ x \in M^+ : t^-(x) > -\infty \}.$$

Then we can define the map  $T: \mathcal{D}_1 \to M^+$  by  $Tx = S_{t^+(x)}x$  and the map  $T^{-1}: \mathcal{D}_{-1} \to M^+$  by  $T^{-1}x = S_{t^-(x)}x$ . Note that T (resp.  $T^{-1}$ ) is a diffeomorphism from int  $\mathcal{D}_1$  (resp. int  $\mathcal{D}_{-1}$ ) onto int  $\mathcal{D}_{-1}$  (resp. int  $\mathcal{D}_1$ ). By induction, we set

$$\mathcal{D}_n = \{ x \in \mathcal{D}_{n-1} : t^+(T^{n-1}x) < \infty \},$$

$$\mathcal{D}_{-n} = \{ x \in \mathcal{D}_{-n+1} : t^-(T^{-n+1}x) > -\infty \},$$

and define  $T_n: \mathcal{D}_n \to M^+$  by  $T^n x = T(T^{n-1}x)$  and  $T_{-n}: \mathcal{D}_{-n} \to M^+$  by  $T^{-n}x = T^{-1}(T^{-n+1}x)$ . Clearly,  $T^{-n} = (T^n)^{-1}$  if  $T^n$  is defined. Consider the non-wandering set

$$\Omega = \{x \in M : \pi(S_t x) \in \partial Q \text{ for both infinitely many } t > 0$$
and infinitely many  $t < 0\}$ 

and  $\Omega^+ = \Omega \cap M^+$ . Observe the equation  $\Omega^+ = \bigcap_{n \in \mathbb{Z}} \mathcal{D}_n$ , where  $\mathcal{D}_0 := M^+$ . Let A = (A(ij)) be a zero-one matrix indexed by S with  $A(ij) = 1 - \delta_{ij}$ . Consider the set

$$\hat{X} = \left\{ \omega = (\omega_n)_{n \in \mathbb{Z}} \in \prod_{n = -\infty}^{\infty} S : A(\omega_n \omega_{n+1}) = 1 \text{ for all } n \in \mathbb{Z} \right\}.$$

We call  $\hat{X}$  the two-sided topological Markov shift (two-sided TMS for short) with state space S and transition matrix A. Denote by  $\sigma$  the left shift transformation on  $\hat{X}$  defined by  $(\sigma\omega)_i = \omega_{i+1}$  for all  $i \in \mathbb{Z}$ . For  $0 < \theta < 1$ , we define a metric  $d_{\theta}$  on  $\hat{X}$  by  $d_{\theta}(\omega, v) = \theta^n$  for  $n = \min\{n \geq 0 : \omega_n \neq v_n \text{ or } \omega_{-n} \neq v_{-n}\}$  if  $\omega \neq v$ , and  $d_{\theta}(\omega, v) = 0$  otherwise. For  $x \in M^+$ , we put  $\omega_i(x) = \omega_0(T^i x) \in S$  if  $T^i$  is defined. The coding map  $\Pi : \Omega^+ \to \hat{X}$  is defined by  $x \mapsto (\omega_n(x))_{n=-\infty}^{\infty}$ . The value  $\Pi(x)$  is called the *itinerary* of  $x \in \Omega^+$ .

We first check that the map  $\Pi$  is bijective. To do this, we recall previous results in [2, 5]. We put

$$L_{\sup} = \sup_{i \in S} \{ \text{the perimeter of } \partial Q_i \}.$$

Note that since  $\{Q_i\}$  is uniformly bounded and has positive curvature at all points in the boundary,  $L_{\sup}$  is finite. For simplicity, for  $x = (q, v) \in M^+$ , we write  $k_i = k(T^i x)$ ,  $r_i = r(T^i x)$ ,  $\varphi_i = \varphi(T^i x)$ ,  $c_i = c(T^i x)$ ,  $t_i^+ = t^+(T^i x)$ ,  $t_i^- = t^-(T^i x)$  and  $c = c(x) = \cos \varphi$ .

PROPOSITION 2.1 ([2], [5, Lemma 2.1]). Let  $\gamma$  be a curve on  $\partial M_j^+$  which is expressed as  $\{(j,r,\varphi(r)): a \leq r \leq b, \varphi = \varphi(r)\}$  and  $\varphi(r)$  is of class  $C^1$ . Assume that T and  $T^{-1}$  are defined on  $\gamma$ . Denote by  $\gamma_1$  (resp.  $\gamma_{-1}$ ) the image  $T^1\gamma$  (resp.  $T^{-1}\gamma$ ) and express it by  $\{(j_1,r_1,\varphi_1): a_1 \leq r_1 \leq b_1, \varphi_1 = \varphi_1(r_1)\}$  (resp.  $\{(j_{-1},r_{-1},\varphi_{-1}): a_{-1} \leq r_{-1} \leq b_{-1}, \varphi_{-1} = \varphi_{-1}(r_{-1})\}$ ), where  $\varphi_1$  and  $\varphi_{-1}$  are of class  $C^1$ . Then

(2.1) 
$$\frac{dr_1}{dr} = -\frac{c}{c_1} \left( 1 + \frac{t^+(d\varphi/dr + k)}{c} \right),$$

(2.2) 
$$\frac{dr_{-1}}{dr} = -\frac{c}{c_{-1}} \left( 1 + \frac{-t^{-}(-(d\varphi/dr) + k)}{c} \right),$$

(2.3) 
$$\frac{d\varphi_1}{d\varphi} = -k_1 \frac{c}{c_1} \frac{dr}{d\varphi} - \left(1 + \frac{t^+ k}{c_1}\right) \left(1 + k \frac{dr}{d\varphi}\right),$$

(2.4) 
$$\frac{d\varphi_{-1}}{d\varphi} = k_{-1}\frac{c}{c_{-1}}\frac{dr}{d\varphi} - \left(1 - \frac{t^{-}k}{c_{-1}}\right)\left(1 - k\frac{dr}{d\varphi}\right).$$

For  $x \in M^+$ , we let  $\eta_i = \inf_{j \neq \omega_i(x)} \operatorname{dist}(Q_{\omega_i(x)}, Q_j) \inf \{k(q) : q \in \partial Q_{\omega_i(x)}\}.$ 

PROPOSITION 2.2. Assume that condition (A.1) is satisfied. Let  $x, y \in M^+$  and  $n \ge 1$ . Assume that for each  $-n \le i \le n$ , the map  $T^i$  is defined and  $\omega_i(x) = \omega_i(y)$ . Let r(x,y) be the arclength between  $\pi(x)$  and  $\pi(y)$  on  $\partial Q_{\omega_0(x)}$ . Then

(1) 
$$r(x,y) \le L_{\sup} \eta_0^{-1} \prod_{i=1}^{n-1} (1 + \min \{ \eta_i, \eta_{-i} \})^{-1};$$

(2) 
$$|\varphi(x) - \varphi(y)| \le \pi \prod_{j=0}^{n-1} (1 + \min\{\eta_j, \eta_{-j}\})^{-1}$$
.

Consequently, if (A.3) is satisfied, then  $r(x,y) \leq C_1(1+\eta)^{-n}$  with  $C_1 = (1+\eta)L_{\sup}/\eta$  and  $|\varphi(x) - \varphi(y)| \leq \pi(1+\eta)^{-n}$ .

*Proof.* (1) We may assume r(x) < r(y). We refer to the technique of the proof of [4, Lemma 2.1]. First we consider the case when  $\varphi(x) \le \varphi(y)$ . Let  $\gamma = \{(r, \varphi(r)) : a \le r \le b, \varphi = \varphi(r)\}$  be an increasing  $C^1$ -curve from x to y. Here the curve  $\gamma$  is called increasing if  $d\varphi(r)/dr \ge 0$ . We see that the curve  $\gamma_1 = T\gamma$  is also increasing and therefore so is  $\gamma_i = T^i\gamma$  for all  $1 \le i \le n$ . We write  $\gamma_i = (r_i, \varphi_i) = \{(r_i, \varphi(r_i)) : a_i \le r_i \le b_i, \varphi_i = \varphi_i(r_i)\}$ . By virtue of (2.1) and (2.2), we have

$$\left| \frac{dr_n}{dr} \right| = \left| \frac{dr_n}{dr_{n-1}} \frac{dr_{n-1}}{dr_{n-2}} \cdots \frac{dr_1}{dr_0} \right|$$

$$= \left| (-1)^n \frac{c_{n-1}}{c_n} \frac{c_{n-2}}{c_{n-1}} \cdots \frac{c_0}{c_1} \prod_{i=0}^{n-1} \left( 1 + \frac{t_i^+(d\varphi_i/dr_i + k_i)}{c_i} \right) \right|$$

$$\geq \left| \frac{c_0}{c_n} \prod_{i=0}^{n-1} \left( 1 + \frac{\eta_i}{c_i} \right) \right| \quad (\because d\varphi_i/dr_i \ge 0 \text{ and } t_i^+ k_i \ge \eta_i)$$

$$= \left| \frac{1}{c_n} (c_0 + \eta_0) \prod_{i=1}^{n-1} \left( 1 + \frac{\eta_i}{c_i} \right) \right| \ge \eta_0 \prod_{i=1}^{n-1} (1 + \eta_i) \quad (\because 0 < c_i \le 1),$$

where  $r_0 := r$ ,  $c_0 := c$ ,  $\varphi_0 := \varphi$ ,  $k_0 := k$  and  $t_0^+ := t^+$ . Thus we obtain

$$r(x,y) = \int_{a}^{b} dr = \int_{a_{n}}^{b_{n}} \left| \frac{dr}{dr_{n}} \right| dr_{n} \le \left( \int_{a_{n}}^{b_{n}} dr_{n} \right) \eta_{0}^{-1} \prod_{i=1}^{n-1} (1 + \eta_{i})^{-1}.$$

Next we prove the assertion in the case  $\varphi(x) > \varphi(y)$ . We take a decreasing  $C^1$ -curve  $\gamma = \{(r, \varphi(r))\}$  from x to y, that is,  $d\varphi(r)/dr \leq 0$ . By using (2.1) and (2.2) for the maps  $T^{-1}, \ldots, T^{-n}$ , and by noting  $-t_i^- k_i \geq \eta_i$ , a similar argument implies the same assertion. Hence the proof of (1) is complete.

(2) We may assume  $\varphi(x) < \varphi(y)$ . First we study the case  $r(x) \le r(y)$ . Take an including  $C^1$ -curve  $\gamma = \{(r(\varphi), \varphi) : r = r(\varphi), \ a \le \varphi \le b\}$  from x to y. Here including means  $dr/d\varphi \ge 0$ . In this case, the image  $\gamma_i = T^i \gamma$  is also including  $C^1$ -curve for each  $1 \le i \le n$  and therefore if we write  $\gamma_i = \{(r_i(\varphi_i), \varphi_i) : r_i = r_i(\varphi_i), \ a_i \le \varphi_i \le b_i\}$ , then  $dr_i/d\varphi_i \ge 0$ . By using (2.3) and (2.4), we find that for each  $i = 0, 1, \ldots, n-1$ 

$$\left| \frac{d\varphi_{i+1}}{d\varphi_i} \right| = k_{i+1} \frac{c_i}{c_{i+1}} \frac{dr_i}{d\varphi_i} + \left( 1 + \frac{t_i^+ k_i}{c_{i+1}} \right) \left( 1 + k_i \frac{dr_i}{d\varphi_i} \right) \ge 1 + \frac{t_i^+ k_i}{c_{i+1}} \ge 1 + \eta_i$$

since  $dr_i/d\varphi_i \geq 0$ . Thus we get

$$|\varphi(x) - \varphi(y)| = \int_{\gamma_0} d\varphi_0 = \int_{\gamma_0} \left| \frac{d\varphi_0}{d\varphi_1} \frac{d\varphi_1}{d\varphi_2} \cdots \frac{d\varphi_{n-1}}{d\varphi_n} \right| d\varphi_n$$

$$\leq \left( \int_{\gamma_n} d\varphi_n \right) \prod_{i=1}^{n-1} (1 + \eta_i)^{-1}.$$

Consequently, the assertion holds when  $\varphi(x) < \varphi(y)$ . If  $\varphi(x) \ge \varphi(y)$ , we obtain the assertion again by a similar argument.

Now we can show the following:

THEOREM 2.3. The coding map  $\Pi$  from  $\Omega^+$  to  $\hat{X}$  is bijective.

*Proof.* For the proof, we mainly refer the proof of [4, Theorem 0]. The inclusion  $\Pi(\Omega^+) \subset \hat{X}$  is clear. To show the converse inclusion, let  $\omega = (\omega_i)_{i=-\infty}^{\infty} \in \hat{X}$ . We consider the following two cases:

Case I:  $\omega$  is periodic, i.e.  $\omega = \sigma^k \omega$  for some  $k \geq 1$ . In this case, the existence and uniqueness of x with  $\Phi(x) = \omega$  are proven in a quite similar way in the finite case  $\#S < \infty$  (see [4, proof of Theorem 0]). Note that conditions (A.1) and (A.2) are used in this argument.

CASE II:  $\omega$  is not periodic. Choose any periodic element  $\omega^m \in \hat{X}$  such that  $d_{\theta}(\omega, \omega^m) \to 0$  as  $m \to \infty$ , and the period p(m) of  $\omega^m$  is strictly

increasing in m. By Case I, there exists a unique  $x^m \in \Omega^+$  such that  $\omega(x^m) = \omega^m$  for each  $m \geq 1$ . Let  $i \in \mathbb{Z}$ . Then, there exists  $m_0 \geq 1$  such that  $p(m_0) > |i| + 1$ . For any  $m \geq m_0$  and  $k \geq 1$ , it follows from Proposition 2.2(1) that

$$r(T^i x^m, T^i x^{m+k}) \le C_1 (1+\eta)^{-p_m+|i|}$$
.

Together with Proposition 2.2(2), this fact implies that  $x^m$  converges to an element x which satisfies  $T^i x = \omega_i$  for all i. Uniqueness is also guaranteed by Proposition 2.2. Hence the theorem is valid.  $\blacksquare$ 

We say that a function  $f: \hat{X} \to \mathbb{R}$  is semi-weak  $d_{\theta}$ -Lipschitz continuous if there exists a constant  $C_2 > 0$  such that for any  $\omega, v \in \hat{X}$  with  $\omega_0 \omega_1 = v_0 v_1$ ,  $|f(\omega) - f(v)| \leq C_2 d_{\theta}(\omega, v)$ . Consider the function  $\hat{\xi}: \hat{X} \to \mathbb{R}$  defined by  $\hat{\xi}(\omega) = \tau^+ \circ \Pi^{-1}(\omega)$ . Put  $\theta = (1 + \eta)^{-1}$ .

PROPOSITION 2.4. Assume that conditions (A.1)–(A.3) are satisfied. Then the potential  $\hat{\xi}$  is semi-weak  $d_{\theta}$ -Lipschitz continuous with  $C_2 = \max\{2L_{\sup}\theta^{-2}, C_1(\theta^{-1} + \theta^{-2})\}$ .

*Proof.* Denote  $x = \Pi^{-1}(\omega)$  and  $y = \Pi^{-1}(v)$ . First assume that  $d_{\theta}(\omega, v) \ge \theta^2$ , in other words,  $\omega_{-1} \ne v_{-1}$ ,  $\omega_{-2} \ne v_{-2}$  or  $\omega_2 \ne v_2$ . Then by basic geometry,

$$|\tau^{+}(x) - \tau^{+}(y)| \le |\pi(x) - \pi(y)| + |\pi(Tx) - \pi(Ty)|$$

$$\le r(x, y) + r(Tx, Ty) \le 2L_{\sup}\theta^{-2}d_{\theta}(\omega, v).$$

If  $d_{\theta}(\omega, v) < \theta^2$ , then Proposition 2.2(1) says that

$$r(T^i x, T^i y) \le C_1 \theta^{-1-i} d_{\theta}(\omega, v)$$
 for  $i = 0, 1$ .

Thus we get  $|\tau^+(x) - \tau^+(y)| \le C_1(\theta^{-1} + \theta^{-2})d_\theta(\omega, \upsilon)$ , and the assertion follows.

We recode the two-sided TMS  $\hat{X}$  using a one-sided TMS. We define

$$X = \left\{ \omega = (\omega_n)_{n=0}^{\infty} \in \prod_{n=0}^{\infty} S : A(\omega_n \omega_{n+1}) = 1 \text{ for all } n \ge 0 \right\}.$$

The set X is called a one-sided topological Markov shift (one-sided TMS for short) with state space S and transition matrix A. A word  $w = w_1 \cdots w_n \in S^n$  is called A-admissible if  $A(w_i w_{i+1}) = 1$  for any  $1 \leq i < n$ . Denote by [w] the cylinder set  $\{\omega \in X : \omega_0 \omega_1 \cdots \omega_{n-1} = w\}$ . By the definition of A, the matrix A becomes finitely primitive, that is, there exist an integer  $N \geq 1$  and a finite subset  $F \subset S^N$  such that for any  $a, b \in S$  there exists  $w \in F$  such that  $a \cdot w \cdot b$  is A-admissible. Indeed, we can take  $F = \{123, 321, 131, 313\}$ . For the metric on X we use the same notation as for the metric on  $\hat{X}$ . Here for  $\omega, v \in X$ ,  $d_{\theta}(\omega, v)$  is defined to be  $\theta^n$  if  $n = \min\{n \geq 0 : \omega_n \neq v_n\}$ . For

 $f: X \to \mathbb{C}$  and an integer  $k \geq 1$ , we define

$$[f]_{k,\theta} := \sup_{w \in S^k} \sup \left\{ \frac{|f(\omega) - f(v)|}{d_{\theta}(\omega, v)} : \omega, v \in X, \ \omega \neq v, \ \omega, v \in [w] \right\}.$$

If  $[f]_{1,\theta} < \infty$  then f is locally  $d_{\theta}$ -Lipschitz continuous, and if  $[f]_{2,\theta} < \infty$  then it is weak  $d_{\theta}$ -Lipschitz continuous. We use the following fact.

PROPOSITION 2.5 ([1, 7]). Let  $\hat{X}$  and X be the two-sided TMS and the one-sided TMS, respectively, with transition matrix A and with countable state space S. Assume that there exists an element  $\tau^a \in \hat{X}$  with  $\tau_0^a = a$  for all  $a \in S$ . For  $\omega \in \hat{X}$ , we write an element  $\hat{\omega} \in \hat{X}$  as  $\hat{\omega} = \cdots \tau_{-2}^{\omega_0} \tau_{-1}^{\omega_0} \omega_0 \omega_1 \cdots$ . For a semi-weak  $d_{\theta}$ -Lipschitz continuous function  $\hat{f}: \hat{X} \to \mathbb{C}$ , define

$$V(\hat{f})(\omega) = \sum_{n=0}^{\infty} (\hat{f}(\sigma^n \hat{\omega}) - \hat{f}(\sigma^n \omega))$$

for  $\omega \in \hat{X}$ . Then  $V(\hat{f})$  is a bounded  $d_{\sqrt{\theta}}$ -Lipschitz continuous function and the function  $f := \hat{f} + V(\hat{f}) - V(\hat{f}) \circ \sigma$  does not depend on the past, so it can be regarded as a function on X. Moreover,  $[f]_{2,\sqrt{\theta}} < \infty$ .

For the function  $\hat{\xi} = t^+ \circ \Pi^{-1} : \hat{X} \to \mathbb{R}$ , we put

(2.5) 
$$\xi := \hat{\xi} + V(\hat{\xi}) - V(\hat{\xi}) \circ \sigma.$$

Consider closed orbits of the billiard flow  $(S_t)$  on the table  $\overline{Q}$ . For  $f: X \to \mathbb{C}$ , we put  $S_n f(\omega) := \sum_{k=0}^{n-1} f(\sigma^k \omega)$ . The following is an easy consequence of Theorem 2.3.

COROLLARY 2.6. Assume that conditions (A.1)–(A.3) are satisfied. Then for any periodic element  $\omega \in X$  with  $\sigma^n \omega = \omega$ , there exists a unique prime closed orbit  $\gamma$  of  $(S_t)$  such that the length  $l(\gamma)$  of  $\gamma$  is equal to  $S_n \xi(\omega)/m$  with m = n/p, where p denotes the least period of  $\omega$ .

We will consider dynamical zeta functions for the billiard flow  $(S_t)$ . Recall that Ruelle's dynamical zeta function for a potential  $f: X \to \mathbb{R}$  is given by

(2.6) 
$$\zeta_f(t) = \exp\left(\sum_{n=1}^{\infty} \frac{t^n}{n} Y_n(f)\right),$$

where  $Y_n(f) = \sum_{\omega \in X: \sigma^n \omega = \omega} \exp(S_n f(\omega))$ . It is known [8] that if f is weak  $d_{\theta}$ -Lipschitz continuous, then the radius of convergence of  $\zeta$  is equal to  $e^{-Q_G(f)}$ , where

$$Q_G(f) = \overline{\lim_{n \to \infty}} \frac{1}{n} \log Y_n(f).$$

Consider the zeta function  $\zeta_{-s\xi}(t)$  for some number s. In view of Corollary 2.6, we can rewrite

(2.7) 
$$\zeta_{-s\xi}(t) = \exp\left(\sum_{p=1}^{\infty} \frac{t^p}{p} \sum_{m=1}^{\infty} \sum_{\gamma} \frac{\exp(-msl(\gamma))}{m}\right),$$

where the innermost summation is taken over all prime closed orbits of  $(S_t)$  which hit exactly p obstacles.

To state some properties of  $\zeta_{-s\xi}$ , we introduce two pressures and Ruelle operators. For a function  $f: X \to \mathbb{R}$ , the Gurevich pressure  $P_G(f)$  of f and the topological pressure P(f) are defined by

(2.8)

$$P_G(f) = \lim_{n \to \infty} \frac{1}{n} \log Z_{n,a}(f) \text{ with } Z_{n,a}(f) = \sum_{\omega \in X: \sigma^n \omega = \omega, \omega_0 = a} \exp(S_n f(\omega))$$

(2.9)

$$P(f) = \lim_{n \to \infty} \frac{1}{n} \log Z_n(f) \text{ with } Z_n(f) = \sum_{w \in S^n: [w] \neq \emptyset} \exp\left(\sup_{\omega \in [w]} S_n f(\omega)\right),$$

respectively. Since  $Z_{n,a}f(\omega) \leq Y_nf(\omega) \leq Z_nf(\omega)$ , we see that  $P_G(f) \leq Q_G(f) \leq P(f)$ . Denote by  $F_{\theta}$  the Banach space consisting of all bounded locally  $d_{\theta}$ -Lipschitz continuous functions  $f: X \to \mathbb{C}$  endowed with the Lipschitz norm  $\|\cdot\|_{\infty} + [\cdot]_1$ , where  $\|f\|_{\infty} = \sup_{\omega \in X} |f(\omega)|$ . For a function  $g: X \to \mathbb{R}$ , the Ruelle operator  $\mathcal{L}_g$  of g is a linear operator defined formally by

$$\mathcal{L}_g f(\omega) = \sum_{a \in S: A(a\omega_0) = 1} e^{g(a \cdot \omega)} f(a \cdot \omega)$$

for  $f: X \to \mathbb{C}$  and  $\omega \in X$ , where  $a \cdot \omega$  means  $a\omega_0\omega_1 \cdots \in X$ . It is known that if g is weak Lipschitz continuous with  $\|\mathcal{L}_g\|_{\infty} < \infty$ , then  $\mathcal{L}_g$  is a bounded linear operator acting on  $F_{\theta}$  (see [8, 10]).

If S is finite, then  $Q_G(-s\xi) = P_G(-s\xi) = P(-s\xi)$  and these are finite for all s > 0. In particular, the radius of convergence of  $\zeta$  is the inverse of the simple maximal eigenvalue of the Ruelle operator of  $-s\xi$ . Moreover, when we take a solution s = H(Q) of  $P(-s\xi) = 0$  under  $\#S < \infty$ , the following hold (see [4, 7]):

- (i) the function  $z \mapsto \zeta_{-z\xi}(1)$  in the half-plane Re z > H(Q) has the Euler product formula  $\zeta_{-z\xi}(1) = \prod_{\gamma} (1 e^{-zl(\gamma)})^{-1}$  and defines an analytic function without zeros;
- (ii) the function  $z \mapsto \zeta_{-z\xi}(1)$  has a meromorphic extension without zeros in some half-plane containing the closed half-plane Re  $z \geq H(Q)$ ;
- (iii) z = H(Q) is a unique pole on the axis  $\operatorname{Re} z = H(Q)$  and it is simple;
- (iv)  $\lim_{u\to\infty} \pi_Q(u)(H(Q)u)/e^{H(Q)u} = 1$ , where we put  $\pi_Q(u) = \#\{\gamma : \gamma \text{ a prime closed orbit with } l(\gamma) \leq u\}$ .

On the other hand, if S is infinite, then  $Q_G(-s\xi)$  may not be finite, and may be neither  $P_G(-s\xi)$  nor  $P(-s\xi)$  (see also [8]). This implies that the radius of convergence of  $\zeta(t)$  may not be the inverse of an eigenvalue of the Ruelle operator of the potential  $-s\xi$ . Furthermore, even if these three quantities are identical, there is no solution of the equation  $P(-s\xi) = 0$  in general. In [8], an alternative zeta function, called the *local dynamical zeta function*, was introduced as (2.6) with  $Y_n(f)$  replaced by  $Z_{n,a}(f)$ :

$$\zeta_{f,a}(t) = \exp\left(\sum_{n=1}^{\infty} \frac{t^n}{n} Z_{n,a}(f)\right)$$

for each  $a \in S$ . Then the radius of convergence of  $\zeta_{f,a}$  is independent of a, and is equal to  $\exp(-P_G(f))$ . If f is recurrent and has finite Gurevich pressure, then  $\exp(-P_G(f))$  becomes the inverse of the maximal eigenvalue of the Ruelle operator of f. Moreover, [8] gave a necessary and sufficient condition for positive recurrence (or null recurrence) of f using the notion of the local dynamical zeta function  $\zeta_{f,a}$ . The zeta function  $\zeta_{-s\xi,a}(t)$  has the form

$$\zeta_{-s\xi,a}(t) = \exp\left(\sum_{p=1}^{\infty} \frac{t^p}{p} \sum_{m=1}^{\infty} \sum_{\gamma_a} \frac{\exp(-msl(\gamma_a))}{m}\right),\,$$

where  $\gamma_a$  is taken over all prime closed orbits which hit exactly p scatterers with  $Q_a$ .

In the remainder of this section, we will show that if the potential  $-s_0\xi$  is summable for some  $s_0 > 0$ , then  $Q_G(-s\xi) = P_G(-s\xi) = P(-s\xi)$  and this is finite for all  $s \geq s_0$ . Here a function  $f: X \to \mathbb{R}$  is summable if  $\sum_{a \in S} \exp(\sup_{\omega \in [a]} f(\omega)) < \infty$  (see [3, 10]). Moreover, if  $P(-s\xi) = 0$  for some s, then we will give an Euler product formula for  $z \mapsto \zeta_{-z\xi}(1)$ .

PROPOSITION 2.7. Let X be a one-sided topological Markov shift whose shift is topologically mixing. Let  $g: X \to \mathbb{R}$  be weak Lipschitz continuous and summable. Then  $P_G(g) = Q_G(g) = P(g)$  and these are finite.

Proof. The finiteness of P(g) is guaranteed since g is summable. It suffices to show that  $P(g) = P_G(g)$ . By [10, Theorems 3.1(1), 3.4] with k := 1 and M := A, we see that g is positive recurrent, namely there exists a triple  $(\lambda, g, \nu)$  such that  $\lambda$  is a positive simple eigenvalue of the Ruelle operator  $\mathcal{L}_g$  of g and equals  $\exp(P(g))$ , g is a positive continuous function and the corresponding eigenfunction, and  $\nu$  is a Borel probability measure on X and the corresponding eigenvector of the dual  $\mathcal{L}_g^*$  of  $\mathcal{L}_g$  with  $\nu(g) < \infty$ . Thus the generalized Ruelle–Perron–Frobenius theorem [9] also yields  $\lambda = \exp(P_G(g))$ . Hence the assertion follows.  $\blacksquare$ 

Then we have the following:

Theorem 2.8. Assume that conditions (A.1)–(A.4) are satisfied. Then for any  $s \geq s_0$ , the zeta function  $t \mapsto \zeta_{-s\xi}(t)$  has radius of convergence  $\exp(-P(-s\xi))$  and this is the inverse of the maximal eigenvalue of the Ruelle operator of the potential  $-s\xi$ . Moreover, if there exists  $s_1 \geq s_0$  such that  $P(-s_1\xi) = 0$ , then the function  $z \mapsto \zeta_{-z\xi}(1)$  has the Euler product form

(2.10) 
$$\zeta_{-z\xi}(1) = \prod_{\substack{\tau \text{ a prime closed orbit of } (S_t)}} (1 - e^{-zl(\tau)})^{-1}$$

in the half-plane  $\operatorname{Re} z > s_1$ .

*Proof.* By the Cauchy–Hadamard theorem, the radius of convergence of  $t \mapsto \zeta_{-s\xi}(t)$  is equal to  $(\overline{\lim}_{n\to\infty}(|Y_n(-s\xi)|/n)^{1/n})^{-1} = \exp(-Q_G(-s\xi))$ . Moreover, the inequality  $-s\xi(\omega) \le -s_0\xi(\omega) \le -s_0\operatorname{dist}(Q_{\omega_0},Q_{\omega_1})$  and condition (A.4) imply the summability of  $-s\xi$ . Therefore it follows from Proposition 2.7 that the radius equals  $\exp(-P(-s\xi))$ . Thus the first assertion is valid.

To check (2.10), we note that for any  $z \in \mathbb{C}$  with  $\text{Re } z > s_1$ , the number  $\exp(-P(-\text{Re }(z)\xi))$  is larger than 1. Therefore the series  $\zeta_{-s\xi}(t)$  at t=1 is convergent. In view of the absolute convergence of  $\zeta_{-s\xi}(1)$ , we obtain

$$\begin{split} \zeta_{-z\xi}(1) &= \exp\biggl(\sum_{p=1}^{\infty} \frac{1}{p} \sum_{n=1}^{\infty} \sum_{\gamma} \frac{e^{-nzl(\gamma)}}{n}\biggr) = \exp\biggl(\sum_{p=1}^{\infty} \frac{1}{p} \sum_{\gamma} \sum_{n=1}^{\infty} \frac{e^{-nzl(\gamma)}}{n}\biggr) \\ &= \exp\biggl(\sum_{p=1}^{\infty} \frac{1}{p} \sum_{\gamma} - \log(1 - e^{-zl(\gamma)})\biggr) \\ &= \exp\biggl(\sum_{p=1}^{\infty} - \log(1 - e^{-zl(\gamma)})\biggr) = \prod_{p=1}^{\infty} (1 - e^{-zl(\gamma)})^{-1}, \end{split}$$

where the innermost summation in the first expression is taken over all prime closed orbits  $\gamma$  of  $(S_t)$  which hit exactly p obstacles, and the last summation is taken over all prime closed orbits  $\tau$  (cf. [7, p. 100]). Hence all assertions follow.

REMARK 2.9. Since  $Q_i$  is uniformly bounded for all  $i \in S$ , condition (A.4) holds if and only if  $-s\xi$  is summable.

**3. Examples.** We will exhibit countably many scatterers satisfying conditions (A.1)–(A.4).

PROPOSITION 3.1. There is an example satisfying conditions (A.1)–(A.4) and  $P(-s\xi) = 0$  for some s > 0.

*Proof.* Put  $S = \{1, 2, ...\}$ . Let  $\gamma = \{c(t) \in \mathbb{R}^2 : a \le t < b\}$  be a strictly convex, simple, smooth, parametrized curve on  $\mathbb{R}^2$  with  $b \le \infty$  which may

have infinite length. Assume also that the straight line parallel to the normal at c(a) and passing through c(a) does not intersect  $\gamma$  outside c(a). Choose any infinitely many distinct points  $c_i = c(t_i)$  on  $\gamma$  ( $t_1 < t_2 < \cdots$ ). Note that there are no other points on the line segment between any two points. Now consider placing a closed ball centered at each point. By induction as in (a)–(c) below, we determine the radius  $r_i$  of each ball  $\overline{B(c_i, r_i)}$ :

- (a) Denote by  $L_1$  the line through two points  $c_2$  and  $c_3$ . Then we take  $r_1 > 0$  so that  $Q_1 := \overline{B(c_1, r_1)}$  does not intersect the line  $L_1$  (see Figure 1(a)).
- (b) Denote by  $L_2^1$  the line through  $c_3$  and  $c_4$ . Among the tangents to  $Q_1$  passing through  $c_3$  (there are two), let  $L_2^2$  be the one closest to  $c_2$ . Then we take  $r_2 > 0$  so that  $Q_2 := \overline{B(c_2, r_2)}$  does not intersect  $L_2^1$  and  $L_2^2$  (see Figure 1(b)).
- (c) For  $k \geq 3$ , assume that  $Q_{k-2}$  and  $Q_{k-1}$  are decided. Denote by  $L_k^1$  the line through  $c_{k+1}$  and  $c_{k+2}$ . Among the tangents to  $Q_{k-1}$  passing through  $c_{k+1}$ , let  $L_k^2$  be the one closest to  $c_k$ . Among the tangents to  $Q_{k-2}$  and  $Q_{k-1}$  (there are four), let  $L_k^3$  be the one closest to  $c_k$ . Then we take  $r_k > 0$  so that  $Q_k := \overline{B(c_k, r_k)}$  does not intersect  $L_k^1$ ,  $L_k^2$  and  $L_k^3$  (see Figure 1(c)).



The sequence  $\{Q_i\}$  so constructed satisfies conditions (A.1) and (A.2). If  $\inf_{i\neq j}\operatorname{dist}(Q_i,Q_j)>0$  then condition (A.3) is also satisfied since the scatterers  $\{Q_i\}$  are uniformly bounded. In case  $\inf_{i\neq j}\operatorname{dist}(Q_i,Q_j)=0$ , by reducing  $r_i$  if necessary,  $\inf_{j\in S}\inf_{q\in\partial Q_i}k(q)\operatorname{dist}(Q_i,Q_j)\geq C_3$  can be satisfied for some  $C_3>0$  which is independent of i (so (A.3) is satisfied). Finally, if we take a curve  $\gamma$  with infinite length and points  $c_i$  satisfying  $\min_{1\leq j< i}\operatorname{dist}(c_i,c_j)\geq i$  for each  $i=1,2,\ldots$ , then

$$\sum_{i=1}^{\infty} \exp\left(-s \inf_{j \in S: j \neq i} \operatorname{dist}(Q_i, Q_j)\right) \le \sum_{i} \exp(-si) = e^s/(e^s - 1) < \infty$$

for any s>0. In this case, condition (A.4) is fulfilled (see Figure 1(d)). We also see that  $P(-s\xi) \leq \log(e^s/(e^s-1)) < \infty$  for all s>0. By using the facts that  $\inf \xi > 0$ ,  $s \mapsto P(-s\xi)$  is strictly decreasing and continuous,  $\lim_{s\to+0} P(-s\xi) = +\infty$  and  $\lim_{s\to+\infty} P(-s\xi) = -\infty$ , there is a unique solution of the equation  $P(-s\xi) = 0$  for s>0.

We can easily find an example of  $Q_G(-s\xi) = +\infty$  for all s > 0: we may take a curve  $\gamma$  with finite length in Proposition 3.1. In this case,  $Z_{n,a}(-s\xi) = +\infty$  for all n, a, s.

**Acknowledgments.** This study was partially supported by JSPS KAK-ENHI Grant Number 23K03134.

## References

- [1] R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Math. 470, Springer, Berlin, 1975.
- [2] I. Kubo, Perturbed billiard systems I, Nagoya Math. J. 61 (1976), 1–57.
- [3] R. D. Mauldin and M. Urbański, Graph Directed Markov Systems: Geometry and Dynamics of Limit Sets, Cambridge Univ. Press, 2003.
- [4] T. Morita, The symbolic representation of billiards without boundary condition, Trans. Amer. Math. Soc. 325 (1991), 819–828.
- [5] T. Morita, Construction of K-stable foliations for two-dimensional dispersing billiards without eclipse, J. Math. Soc. Japan 56 (2004), 803–831.
- [6] T. Morita and H. Tanaka, Singular perturbation of symbolic dynamics via thermodynamic formalism, Ergodic Theory Dynam. Systems 28 (2008), 1261–1289.
- [7] W. Parry and M. Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque 187-188 (1990), 268 pp.
- [8] O. M. Sarig, Thermodynamic formalism for null recurrent potentials, Israel J. Math. 121 (2001), 285–311.
- [9] O. M. Sarig, Phase transitions for countable Markov shifts, Comm. Math. Phys. 217 (2001), 555-577.
- [10] H. Tanaka, Quasi-compactness of transfer operators for topological Markov shifts with holes, Discrete Contin. Dynam. Systems, to appear; arXiv:2207.08085v2.

Haruyoshi Tanaka Course of Mathematics Education Graduate School of Education Naruto University of Education Naruto, Tokushima, 772-8502, Japan E-mail: htanaka@naruto-u.ac.jp