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Projective Fraïssé limits and generalized Ważewski dendrites

by

Alessandro Codenotti (Münster) and
Aleksandra Kwiatkowska (Münster and Wrocław)

Abstract. We continue the study of projective Fraïssé limits of trees initiated by
Charatonik and Roe and further continued by Charatonik, Kwiatkowska, Roe and Yang.
We construct many generalized Ważewski dendrites as topological realizations of projective
Fraïssé limits of families of finite trees with (weakly) coherent epimorphisms. Moreover,
we use the categorical approach to Fraïssé limits developed by Kubiś to construct all
generalized Ważewski dendrites as topological realizations of Fraïssé limits of suitable
categories of finite structures. As an application, we recover a homogeneity result for
countable dense sets of endpoints in generalized Ważewski dendrites.

1. Introduction. Projective Fraïssé limits were introduced by Irwin
and Solecki in [13] by dualizing the classical construction of Fraïssé limits
from model theory, as a tool to study the pseudo-arc. Panagiotopolous and
Solecki generalised their construction in [22] by allowing strict subcollec-
tions of epimorphisms, instead of considering all of them. They used this
approach to study the Menger curve by approximating it with finite graphs
with monotone epimorphisms. Projective Fraïssé limits have since been used
to study various compact spaces, for example the Lelek fan by Bartošová
and Kwiatkowska [3], the Poulsen simplex by Kubiś and Kwiatkowska [17],
P -adic pseudo-solenoids (for a set P of primes) by Bartoš and Kubiś [2], the
universal Knaster continuum by Iyer [14] (which has independently been con-
structed from a projective Fraïssé limit in Wickman’s PhD thesis [23]) and
the generic object for a new class of compact metric spaces named fences by
Basso and Camerlo [4]. Recently, Charatonik, Kwiatkowska, Roe and Yang
studied projective Fraïssé limits of trees with monotone and confluent epi-
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morphisms, which are adaptations to topological graphs of corresponding
well-established notions from continuum theory; see [6].

Dendrites are one-dimensional continua which have been widely studied
in topological dynamics [9, 10, 1, 20, 11]. By a result of Charatonik and
Dilks [5], for any P ⊆ {3, . . . , ω}, there exists a unique dendrite WP such
that:

(1) every ramification point of WP has order in P ;
(2) for every p ∈ P the set of ramification points of WP of order p is arcwise

dense in WP .

The spaces WP are known as the (generalized) Ważewski dendrites, they
are universal for appropriate classes of dendrites and enjoy good homogene-
ity properties. Because of these regularity properties they are of particular
interest among dendrites. Their homeomorphism groups have been studied
by Duchesne [8], while the universal minimal flows of those groups were
computed by Kwiatkowska [19].

Among the spaces constructed in [6] there is the Ważewski dendrite W3

(denoted by D3 in that paper), obtained from the projective Fraïssé limit of
the family of finite trees with ramification points of order 3 and all monotone
epimorphisms; we build on that work to realize many generalized Ważewski
dendrites WP for P ⊆ {3, . . . , ω} as the topological realizations of projective
Fraïssé limits of appropriately chosen families of finite trees and epimor-
phisms between them.

In particular, we obtain the following theorem. See Definition 4.14, the
remarks following it, and Theorems 4.19 and 4.20 for details.

Theorem 1.1. Let P ⊆ {3, . . . , ω} be coinfinite. Then the Ważewski
dendrite WP can be constructed as the topological realization of the projective
Fraïssé limit of finite trees with monotone maps with additional properties.

By moving to the more general setting of Fraïssé categories developed
in [16] we remove the coinfiniteness assumption from the previous result
and obtain the following general statement; see Theorems 5.10 and 5.23 for
details.

Theorem 1.2. Let P ⊆ {3, . . . , ω} and let E ⊆WP be a countable dense
set of endpoints. Then the pair (WP , E) can be constructed as the topological
realization of the limit of a Fraïssé category ‡FP of pairs (T, F ), where T
is a finite tree and F is a set of endpoints in T , with projection-embedding
pairs of maps.

Moreover, we show in Theorem 5.22 that any sequence in the category
‡FP whose limit has as topological realizationWP must be a Fraïssé sequence
for ‡FP .
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A Fraïssé-theoretic approach to the study of Ważewski dendrites has al-
ready been employed successfully by Kwiatkowska in [19], where a Fraïssé
structure AP with Aut(AP ) ≃ Homeo(WP ) is constructed. While this ap-
proach is well-suited to study properties of Homeo(WP ), it cannot be used
to study the endpoints of WP , since the injective Fraïssé limit construc-
tion produces a countable structure corresponding to the ramification points
of WP . In contrast, we use the uniqueness of Fraïssé sequences in the last
section to recover a homogeneity result for the endpoints of WP from [5], see
Theorem 5.11.

The paper is structured as follows. In Sections 2 and 3 we recall some
background notions concerning projective Fraïssé limits and topological
graphs. In Section 4 we introduce a new class of maps between finite trees
and use it to prove Theorem 1.1. Finally, in Section 5 we describe projection-
embedding Fraïssé categories of finite trees that can be used to prove Theo-
rem 1.2.

2. Projective Fraïssé limits. In this section we recall the necessary
background on projective Fraïssé limits. Most definitions and results are
from either [13] or [22].

Definition 2.1. Let L be a first-order language consisting of a set
{Ri}i∈I of relation symbols, with Ri of arity ni ∈ N, and a set {fj}j∈J of
function symbols, with fj of aritymj ∈ N. A topological L-structure is a zero-
dimensional, compact, metrizable topological space A together with closed
subsets RAi ⊆ Ani for every i ∈ I and continuous functions fAj : Amj → A
for every j ∈ J .

Definition 2.2. Given two topological L-structures A and B we say
that g : B → A is an epimorphism if g is a continuous surjection satisfying:

(1) For all j ∈ J , fAj (g(b1), . . . , g(bmj )) = g(fBj (b1, . . . , bmj )).
(2) For all i ∈ I, we have RAi (a1, . . . , ani) if and only if there are b1 ∈

g−1(a1), . . . , bni ∈ g−1(ani) such that RBi (b1, . . . , bni) holds.

We can now give the definition of a projective Fraïssé family and its pro-
jective Fraïssé limit. We follow the construction from [22]. The main differ-
ence compared to the original construction from [13] is allowing a restricted
class of epimorphisms between the structures under consideration.

Definition 2.3. Let F be a class of finite topological L-structures with
a fixed class of epimorphisms between them. We say that F is a projective
Fraïssé family if it satisfies the following conditions:

(1) There are countably many L-structures in F up to isomorphism.
(2) The epimorphisms in F are closed under composition and the identity

epimorphisms are in F .
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(3) For all A,B ∈ F there are C ∈ F and epimorphisms f : C → A and
g : C → B in F . In analogy with the classical Fraïssé limits this property
is known as the joint projection property.

(4) For all A,B,C ∈ F and epimorphisms f : B → A and g : C → A in
F , there exist D ∈ F and epimorphisms h : D → B and k : D → C
in F such that f ◦ h = g ◦ k. This property is known as the projective
amalgamation property.

Following [22] we introduce Fω as the class of structures that can be
approximated in F . The projective Fraïssé limit will be an element of Fω
satisfying appropriate universality and homogeneity properties.

Definition 2.4. Let F be a class of finite topological L-structures. We
define Fω to be the class of all topological L-structures in F that are realized
as the inverse limit of an ω-indexed inverse system of topological L-structures
with bonding epimorphisms in F . More explicitly, F ∈ Fω iff there is an
inverse system of topological L-structures ⟨Fi, fnm : Fn → Fm | i, n,m < ω⟩
with Fi, f

n
m ∈ F , such that F = lim←−Fi (in particular, F ⊆ Fω by picking

constant sequences).
Note that, given an inverse system ⟨Fi, fnm : Fn → Fm | i, n,m < ω⟩ in F

as above, F = lim←−Fi exists. Its underlying space is the inverse limit of the Fi
in the category of topological spaces, while for fn : F → Fn, the continuous
maps obtained by construction of the limit of topological spaces, we have

RFi (a1, . . . , ani) ⇐⇒ ∀n RFn
i (fn(a1), . . . , f

n(ani))

and

fFj (a1, . . . , amj ) = a ⇐⇒ ∀n fFn
j (fn(a1), . . . , f

n(amj )) = fn(a).

If F = lim←−Fi ∈ F
ω and E ∈ F , an epimorphism f : F → E is in Fω if

and only if there exist i ∈ N and an epimorphism f ′ : Fi → E with f = f ′◦f i.
If G is another object in Fω an epimorphism g : G→ F is in Fω iff f i ◦ g is
in Fω for all i.

Theorem 2.5 ([22, Theorem 3.1]). Let F be a projective Fraïssé family
of topological L-structures. Then there exists a unique topological L-structure
F ∈ Fω satisfying the following properties:

(1) For every A ∈ F there is an epimorphism f : F→ A in Fω.
(2) For all A,B ∈ Fω and all epimorphisms f : F→ A and g : B → A in Fω,

there exists an epimorphism h : F→ B in Fω such that f = g ◦ h.

Moreover, as pointed out in [13, Lemma 2.2] in terms of covers, we have:

(3) For every ε > 0 there is A ∈ F and an epimorphism f : F → A in Fω
such that diam(f−1(a)) ≤ ε for every a ∈ A.
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Proof. We give a sketch of the argument; the details can be found in
[13, 22]. The idea is to obtain F as the inverse limit of a sequence ⟨Fi | i ∈ N⟩
with maps fnm : Fn → Fm of elements and epimorphisms of F . We will call
this sequence a Fraïssé sequence for F . Since there are only countably many
finite structures in F up to isomorphism, we can build two countable lists
⟨Ai | i ∈ N⟩ and ⟨en : Bn → Cn⟩ such that:

• Every structure in F is isomorphic to Ai for some i.
• Every epimorphism type e : B → C in F appears infinitely many times in
⟨en | n ∈ N⟩.

Now set F0 = A0. Inductively assume that Fn together with the epimor-
phisms fnm : Fn → Fm for all m < n have been defined. By the joint pro-
jection property we can find H ∈ F with epimorphisms g : H → An+1

and f : H → Fn. Since H is finite there are only finitely many epimor-
phism types si : H → Cn+1, i = 1, . . . , k. Using the projective amalgamation
property, we can find H ′

1 and epimorphisms h1 : H ′
1 → H, c1 : H ′

1 → Bn+1

such that s1 ◦ h1 = en+1 ◦ c1. Iterating this construction, for all n ≤ k
we can find H ′

n with epimorphisms hn : H ′
n → H ′

n−1 and cn : H
′
n → Bn+1

such that sn ◦ h1 ◦ · · · ◦ hn = en+1 ◦ cn. Setting now H ′ = H ′
k ∈ F ,

h = h1 ◦ · · · ◦ hk : H ′ → H, di = ci ◦ hi+1 ◦ · · · ◦ hk : H ′ → Bn+1, i = 1, . . . , k,
we find that the following diagram commutes, that is, si ◦ h = en+1 ◦ di for
all i.

Fn H ′ Bn+1 Bn+1 Bn+1

An+1 H Cn+1 Cn+1 Cn+1

h

d1
d2

dk

en+1 en+1 . . . en+1

s1

s2

sk

g

f

Once this is done, set Fn+1 = H ′ and set fn+1
m = fnm◦f ◦h for all m < n. It is

easy to verify that F = lim←−Fi satisfies the first two properties of a projective
Fraïssé limit of F . The third one follows from the definition of the product
metric on

∏
Fi.

From the proof of Theorem 2.5 we extract the following important notion.

Definition 2.6. Let F be a projective Fraïssé family of topological L-
structures. A sequence ⟨Fn | n ∈ N⟩ with epimorphisms fmn : Fm → Fn is
called a Fraïssé sequence for F if the following conditions hold:
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• For every A ∈ F there exists n ∈ N such that there is an epimorphism
f : Fn → A in F .

• Whenever f : A → Fm is an epimorphism in F , there exists n ∈ N such
that there is an epimorphism g : Fn → A in F with f ◦ g = fnm.

3. Topological graphs and monotone epimorphisms. In this sec-
tion we reproduce for convenience definitions and results about topological
graphs that will be used in Sections 4 and 5. They are mostly taken from [6].

Theorems 3.7, 3.14–3.17 first appeared in the preprint of Charatonik–
Roe [7], but since that preprint is unpublished, we include the proofs for
completeness with the permission of the authors. Those results will appear
in [6].

3.1. Topological graphs and epimorphisms

Definition 3.1. A graph G is a pair (V (G), E(G)) consisting of a set of
vertices V (G) and a set of edges E(G) ⊆ V (G)2 such that:

• For all a, b ∈ V (G), ⟨a, b⟩ ∈ E(G)⇒ ⟨b, a⟩ ∈ E(G).
• For all a ∈ V (G), ⟨a, a⟩ ∈ E(G).

A finite graphT is a tree if there are no pairwise distinct vertices a1, . . . , an∈T ,
n ≥ 3, such that ⟨ai, ai+1⟩ ∈ E(T ) for i = 1, . . . , n− 1, and ⟨an, a1⟩ ∈ E(T ).
We will interchangeably write a ∈ V (A) and a ∈ A and we call the edges
⟨a, b⟩ ∈ E(A) with a ̸= b nontrivial. A topological graph is a graph G
equipped with a compact, Hausdorff, zero-dimensional, metrizable topology
on V (G) such that E(G) is a closed subspace of V (G)2. Every topological
graph is a topological L-structure for the language L = {R} consisting of
a single binary relation in an obvious way. We will keep using the notation
⟨a, b⟩ ∈ E(G) rather than aRb even though we will often think about topo-
logical graphs as topological L-structures. An epimorphism f : A → B of
topological graphs is an epimorphism in the sense of Definition 2.2, so in
particular it maps edges to edges.

Let us point out that in this context requiring topological graphs to be
zero-dimensional is a natural property, since we are interested in inverse
limits of finite discrete structures. We warn the reader that in the literature
there also exists different definitions of topological graphs, where edges are
embedded as arcs into the topological structure.

If A is a topological graph and B ⊆ A, A \ B denotes the topological
graph with V (A \B) = V (A) \ V (B) and for all a1, a2 ∈ V (A \B),

⟨a1, a2⟩ ∈ E(A \B) ⇐⇒ ⟨a1, a2⟩ ∈ E(A).

A topological graph G is said to have a transitive set of edges if

⟨a, b⟩, ⟨b, c⟩ ∈ E(G) =⇒ ⟨a, c⟩ ∈ E(G).



Projective Fraïssé limits and Ważewski dendrites 7

It is called a prespace if the edge relation aRb⇔ ⟨a, b⟩ ∈ E(G) is an equiva-
lence relation, equivalently a prespace is a topological graph with a transitive
set of edges. In that case we call the quotient topological space |G| = V (G)/R
the topological realization of G.

Example 3.2. Let C ⊆ [0, 1] be the standard middle-thirds Cantor set.
Consider the topological graph G with V (G) = C and for distinct x, y ∈ C
we have ⟨x, y⟩ ∈ E(G) if and only if x, y are the endpoints of one of the
intervals removed from [0, 1] in the construction of C (see the picture below
for the first few stages of the construction, with the edges represented by
solid black lines).
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Then G is a prespace, in particular |G| ∼= [0, 1].

Definition 3.3. A topological graph G is called disconnected if one can
partition G into two nonempty disjoint closed sets A,B such that whenever
a ∈ A, b ∈ B, we have ⟨a, b⟩ ̸∈ E(G). A topological graph is called connected
if it is not disconnected. A topological graph A is called an arc if it is con-
nected, but for all a ∈ A, except at most two vertices called the endpoints,
A \ {a} is disconnected.

Example 3.4. The Cantor graph of Example 3.2 is a connected topolog-
ical graph. In fact, it is an arc. Note that while there is a unique topological
arc, namely the interval [0, 1], there are many nonisomorphic topological
graphs which are arcs. Indeed, there are finite, countable and uncountable
topological graphs which are arcs.

The notion of a monotone map from continuum theory, where a con-
tinuous map f : X → Y between continua is called monotone if f−1(y) is
connected for every y ∈ Y , was adapted to topological graphs by Pana-
giotopoulos and Solecki in [22] (where those maps were called connected
epimorphisms instead) and studied in detail by Charatonik, Kwiatkowska,
Roe, and Yang [6]. The epimorphisms we will consider in the following sec-
tions will always be monotone, so we will use various results from [6], whose
statements and proofs we include here for completeness.

Definition 3.5. An epimorphism f : G→ H between topological graphs
is called monotone if f−1(h) is connected in G for every h ∈ H.

By [22, Lemma 1.1] we can equivalently require that f−1(C) is connected
in G whenever C ⊆ H is closed connected in H. From this equivalent defi-
nition it is clear that if f : G→ H is monotone and H is connected then G
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is too. The converse actually holds for arbitrary epimorphisms, an observa-
tion repeatedly used in both [22] and [6]:

Remark 3.6. Let f : G → H be an epimorphism between topological
graphs. If G is connected then H is connected as well.

Theorem 3.7 ([6, Theorem 2.17]). Let G be a projective Fraïssé family
of graphs such that for every G ∈ G and a, b, c ∈ G pairwise distinct with
⟨a, b⟩, ⟨b, c⟩ ∈ E(G), there is a graph H ∈ G and an epimorphism fHG :
H → G for which whenever p, q, r ∈ H are such that fHG (p) = a, fHG (q) = b
and fHG (r) = c, we have ⟨p, q⟩ ̸∈ E(H) or ⟨q, r⟩ ̸∈ E(H). If G denotes
the projective Fraïssé limit of G, then for every a ∈ G there is at most one
b ∈ G \ {a} with ⟨a, b⟩ ∈ E(G). In particular, the edge relation of G is an
equivalence relation, that is, G is a prespace.

Proof. Suppose on the contrary that there are distinct vertices a, b, c ∈ G
such that ⟨a, b⟩, ⟨b, c⟩ ∈ E(G). Let a graph G ∈ G and an epimorphism
fG : G → G be such that fG(a), fG(b), and fG(c) are three distinct ver-
tices of G. Then ⟨fG(a), fG(b)⟩, ⟨fG(b), fG(c)⟩ ∈ E(G), and thus, by our
assumption, there is a graph H and an epimorphism fHG : H → G such
that for an epimorphism fH : G → H satisfying fG = fHG ◦ fH we have
⟨fH(a), fH(b)⟩ /∈ E(H) or ⟨fH(b), fH(c)⟩ /∈ E(H). This contradicts the fact
that fH maps edges to edges.

Definition 3.8. Let T be a projective Fraïssé family of finite graphs.
We say that T allows splitting edges if for all G ∈ T and all distinct a, b ∈ G
with ⟨a, b⟩ ∈ E(G) the graph H defined by V (H) = V (G) ⊔ {∗} and

E(H) = (E(G) \ {⟨a, b⟩}) ∪ {⟨a, ∗⟩, ⟨∗, b⟩}
and the two morphisms H → G that map ∗ to either a or b and are the
identity otherwise, are in T .

Allowing splitting edges is a basic closure property that will be satisfied
by all the projective Fraïssé families considered in what follows. Despite its
simplicity it has important consequences, such as the following lemma, and
it will be used for some arguments in the next sections.

Lemma 3.9. Suppose that T is a projective Fraïssé family of finite graphs
that allows splitting edges. If G is the projective Fraïssé limit of T , then G
is a prespace.

Proof. We will show that T satisfies the hypothesis of Theorem 3.7,
from which the conclusion follows immediately. Fix G ∈ T and pairwise
distinct a, b, c ∈ G with ⟨a, b⟩, ⟨b, c⟩ ∈ E(G) and let H be the graph obtained
from G by splitting the edge ⟨a, b⟩ twice. More formally, we have V (H) =
V (G) ⊔ {a′, b′} and
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E(H) = (E(G) \ {⟨a, b⟩}) ∪ {⟨a, a′⟩, ⟨a′, b′⟩, ⟨b′, b⟩},
with the epimorphism fHG such that fHG (a′) = a, fHG (b′) = b and fHG is the
identity otherwise. We find that H and fHG are in T since T allows splitting
edges, but if p, q, r ∈ H are such that fHG (p) = a, fHG (q) = b and fHG (r) = c,
then either ⟨p, q⟩ ̸∈ E(H), or ⟨q, r⟩ ̸∈ E(H).

3.2. Dendrites. We begin this section by recalling some facts concern-
ing dendrites. A compact connected metrizable space is called a dendrite if it
is locally connected and contains no simple closed curve [21, Definition 10.1].
Equivalently dendrites are locally connected dendroids [12, p. 218]. For more
characterizations of dendrites see [21, Section 10.1]. Therefore a dendrite X
is uniquely arcwise connected, that is between any x ̸= y ∈ X there is a
unique arc. In a dendrite X there are three types of points x ∈ X, based on
how many connected components X \ {x} has:

• If X \ {x} is connected, then x is called an endpoint of X.
• If X \ {x} has two connected components, then x is called a regular point

of X.
• If X \ {x} has more than two connected components, then x is called a

ramification point of X.

In all of those cases the (potentially infinite) number of connected compo-
nents of X \ {x} is called the order or degree of x, denoted by ord(x), and it
coincides with the Menger–Urysohn order of x in X, that is the maximum
number of arcs in X meeting only in x [18, §46, I]. For P ⊆ {3, . . . , ω} the
generalized Ważewski dendrite WP is a dendrite satisfying the following two
properties:

• If x ∈WP is a ramification point, ord(x) ∈ P .
• If p ∈ P , the set of ramification points in WP of order p is arcwise dense.

This means that for all x, y ∈WP distinct, there is a ramification point of
order p in the unique arc joining x and y.

For a fixed P those two properties characterize a unique dendrite up to hom-
eomorphism [5, Theorem 6.2], so we can actually talk about the generalized
Ważewski dendrite WP .

These notions were adapted to topological graphs in [6], from which the
remaining definitions and results of this section are taken.

Definition 3.10. A topological graph A is called arcwise connected if
for all a, b ∈ A, there is a subgraph of A containing a and b which is an arc.
A topological graph A is called locally connected if every a ∈ A has an open
neighbourhood which is connected. A topological graph G is hereditarily
unicoherent if for any two nonempty closed connected topological graphs, P
and Q, with V (P ), V (Q) ⊆ V (G) and E(P ), E(Q) ⊆ E(G), the intersection
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P ∩Q = (V (P )∩V (Q), E(P )∩E(Q)) is connected. The topological graph G
is unicoherent if the above holds for all P and Q such that V (P ) ∪ V (Q)
= V (G).

Definition 3.11. A topological graph G is called a graph-dendroid if
it is hereditarily unicoherent and arcwise connected. A graph-dendroid G is
called a graph-dendrite if it is locally connected.

Definition 3.12. Let G be a topological graph. A vertex x ∈ G is called
an endpoint of G if whenever H is a topological graph which is an arc and
f : H → G is an embedding with x ∈ f(H), then x is in the image of an
endpoint of H. Note that, when G is an arc, this notion agrees with the one
in Definition 3.3.

Definition 3.13. Let X be a graph-dendrite. We say that x ∈ X is a
ramification point if X \ {x} has at least three components, in which case
we call the (possibly infinite) number of components of X \ {x} the order
of x in X.

Theorem 3.14 ([6, Lemma 3.7]). If f : G → H is a monotone epimor-
phism between topological graphs and G is an arc, then H is an arc and the
images of endpoints of G are endpoints of H.

Proof. Denote the endpoints of G by a and b. We need to show that every
vertex in H\{f(a), f(b)} disconnects H. Let y ∈ H\{f(a), f(b)}; then, since
G is an arc, the graph G\f−1(y) is disconnected. Let G\f−1(y) be the union
of two disjoint graphs, G \ f−1(y) = U ∪ V . Thus H \ {y} = f(U) ∪ f(V )
and f(U) ∩ f(V ) = ∅, so H \ {y} is disconnected as needed.

Our goal is to construct a large class of dendrites from projective Fraïssé
limits of finite graphs. The following results from [6] will be crucial.
Lemma 3.15 is only stated in [6], below we supplement a proof.

Lemma 3.15 ([6, Lemma 3.8]). Let T be the inverse limit of finite arcs
with monotone epimorphisms. Then T is an arc.

Proof. Let ⟨In | n < ω⟩ with monotone epimorphisms fmn : Im → In be
such that T = lim←− In, and let fn : T → In be the induced projections. Note
that, since monotone epimorphisms map endpoints to endpoints, there are
two points a = (an) and b = (bn) in T such that an, bn are endpoints of In
for every n. In particular, for any x ∈ T \ {a, b} there is N < ω such that
fk(x) ̸∈ {ak, bk} for all k ≥ N . We want to show that every x ∈ T \ {a, b}
disconnects T. Let N be as above for x and for k ≥ N let Uka and Ukb be
the connected components of Ik \ {fk(x)} containing ak and bk respectively.
Since fk is monotone, f−1

k (Uka ) and f−1
k (Ukb ) are connected. Moreover, for
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k′ ≥ k we have f−1
k (Uka ) ⊆ f−1

k′ (Uk
′

a ) (and analogously for b), so that the set

T \ {x} =
⋃
k≥N

f−1
k (Uka ) ⊔

⋃
k≥N

f−1
k (Ukb )

is disconnected.

Theorem 3.16 ([6, Theorem 2.18]). Let G be the inverse limit of trees
with monotone epimorphisms. Then G is hereditarily unicoherent.

The proof below is an adaptation of the proof in Nadler [21, Theo-
rem 10.36] of the fact that the inverse limit of dendrites is hereditarily uni-
coherent. It is different from the proof given in [6].

Proof. Let P,Q be closed connected subgraphs with V (P ), V (Q) ⊆ V (G)
and E(P ), E(Q) ⊆ E(G). We want to show that C = P ∩ Q is con-
nected. By assumption G = lim←−Gn is an inverse limit of trees with mono-
tone epimorphisms fn+1

n : Gn+1 → Gn. Let Pn = fn(P ), Qn = fn(Q) and
Cn = Pn ∩ Qn, where fn : G → Gn is the canonical projection. If Cn = ∅
for some n there is nothing to prove, so we can assume that Cn ̸= ∅
for all n. Since every Gn is a tree, hence hereditarily unicoherent, Cn is
connected and nonempty for every n. It is now not hard to check that
P ∩ Q = lim←− fn(P ∩ Q) = lim←−(fn(P ) ∩ fn(Q)), i.e. C = lim←−Cn. This im-
plies that C is connected, since it is the inverse limit of closed connected
sets.

Theorem 3.17 ([6, Corollary 3.11 and Observation 2.16]). Let T be a
projective Fraïssé family of trees with monotone epimorphisms and let G be
its projective Fraïssé limit. Then G is a graph-dendrite. Moreover, if G has
a transitive set of edges, then |G| is a dendrite.

Proof. It is already proved in [22, Proposition 2.1] that G is connected
and locally connected, and it is proved in [22, Theorem 2.1] that |G| is a
Peano continuum (i.e. it is a locally connected compact connected space).

Peano continua are arcwise connected [21, Theorem 8.23]. It follows from
Lemma 3.15 that G is arcwise connected (see also [6, Proposition 3.10]), and
it follows from Theorem 3.16 that G is hereditarily unicoherent. An argument
by contradiction can be used to show that |G| is hereditarily unicoherent
whenever G is, which concludes the proof.

Note that combining Lemma 3.9 and Theorem 3.17 we find that all pro-
jective Fraïssé families of trees that allow splitting edges, with monotone
maps, have as their limit a prespace whose topological realization is a den-
drite. In particular, this will be true for all projective Fraïssé families con-
sidered in the following sections. The result below, which is contained in [22,
Proposition 2.1], will also be important.
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Lemma 3.18. Let T be a projective Fraïssé family of graphs with mono-
tone epimorphisms. Let ⟨Ti | i < ω⟩ with maps f i+1

i : Ti+1 → Ti be a Fraïssé
sequence for T and let T be its projective Fraïssé limit. Then for G ∈ T all
epimorphisms T→ G in T ω are monotone.

Proof. Since the epimorphisms f i+1
i are monotone, it is not hard to see

that the projection epimorphisms f i : T → Ti are monotone. Any epimor-
phism T → G is a composition of a projection epimorphism fi, for some i,
and a monotone epimorphism from Ti to G.

4. Weakly coherent epimorphisms and generalized Ważewski
dendrites. In this section, we introduce a new class of maps between trees,
which we call (weakly) coherent, and study the relationship between weakly
coherent points in a prespace and ramification points of its topological re-
alization. Once this is done we will show how to construct many general-
ized Ważewski dendrites as the topological realization of a projective Fraïssé
limit.

4.1. Weakly coherent epimorphisms

Definition 4.1. Let A,B be finite trees and f : B → A a monotone
epimorphism. Fix a ∈ A with ord(a) = n ≥ 3 and enumerate the connected
components of A \ {a} as A0, . . . , An−1. We say that a is a point of weak
coherence for f if there exists b ∈ f−1(a) such that m = ord(b) ≥ n and an
injection p : n→ m such that if B0, . . . , Bm−1 are the connected components
of B\{b}, then f−1(Ai) ⊆ Bp(i) for all 0 ≤ i ≤ n−1. In this case we call b the
witness for the weak coherence of f at a. We say that f is weakly coherent
if every a ∈ A with ord(a) ≥ 3 is a point of weak coherence for f .

This notion can be strengthened by requiring ord(b) = ord(a) and p to
be a bijection. In that case we say that a is a point of coherence of f and
that b is a witness for the coherence of f at a. We say that f is coherent if
every a ∈ A with ord(a) ≥ 3 is a point of coherence for f .

Remark 4.2. The definitions of a weakly coherent and of a coherent
epimorphism can be extended (in the obvious way) to epimorphisms between
inverse limits of trees.

Remark 4.3. Let A,B be inverse limits of trees, f : B → A a monotone
epimorphism and a ∈ A a ramification point. There exists at most one b ∈ B
witnessing the weak coherence of f at a. Consider now a third tree C with
a monotone epimorphism g : C → B. If f ◦ g is weakly coherent at a with
witness c, then f is weakly coherent at a. Then b = g(c) witnesses the weak
coherence of f at a, and c witnesses the weak coherence of g at b. If f ◦ g
and g are coherent, then f is coherent.
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Example 4.4.

a1

b c

a2

d e

f

a

b c

d e

The map f defined by f(a1) = f(a2) = a and mapping any other node to the
node with the same name is a monotone epimorphism which is not weakly
coherent at a.

Example 4.5.

a1

b c

d a2

f a

b c

d

The map f defined by f(a1) = f(a2) = a and mapping any other node to
the node with the same name is a weakly coherent epimorphism which is not
coherent at a.

Example 4.6. Let A,B be finite trees in which every vertex has degree
at most 3. Then any monotone epimorphism f : A→ B is coherent. Indeed,
fix b ∈ B of order 3 and let b1, b2 and b3 be its distinct neighbours. Let
b′1 ∈ f−1(b1), b

′
2 ∈ f−1(b2) and let P = (p0 = b′1, p1, . . . , pn = b′2) be the

unique arc from b′1 to b′2. By Remark 3.6, f(P ) is connected and since it
contains b1, b2 and B is uniquely arcwise connected, it must also contain b.
Hence P ∩ f−1(b) ̸= ∅. Let b′3 ∈ f−1(b3) and let Q be the shortest arc from
b′3 to a point in P , let {pi} = P ∩ Q and note that, by another application
of Remark 3.6, similar to the one above, pi ∈ f−1(b). It is now easy to check
that pi witnesses the coherence of f at b.

Remark 4.7. Note that if A,B,C are finite trees and f : A → B, g :
B → C are (weakly) coherent epimorphisms, then g ◦ f : A → C is also
(weakly) coherent. Indeed, if c ∈ C with ord(c) ≥ 3 then there is some
b ∈ g−1(c) witnessing the (weak) coherence of g at c and some a ∈ f−1(b)
witnessing the (weak) coherence of f at b. It is easy to check that a also
witnesses the (weak) coherence of g ◦ f at c.
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Remark 4.8. Note also that if A is a finite tree with at least two vertices
and B with V (B) = V (A) ⊔ {∗} is obtained from A by splitting an edge as
in Definition 3.8, then the two maps B → A mapping ∗ to either endpoint
of the split edge are coherent.

Definition 4.9. Given an inverse system ⟨Ai | i < ω⟩ of graphs and
monotone epimorphisms f ij : Ai → Aj we say that a = (ai)i ∈ lim←−Ai ⊆

∏
Ai

is a point of weak coherence or a weakly coherent point if there is a k ∈ ω
such that for all l > k, al is a point of weak coherence of f l+1

l and al+1

witnesses this. We say that a is a point of coherence or a coherent point if
there is a k ∈ ω such that for all l > k, al is a point of coherence of f l+1

l ,
and al+1 witnesses this.

Lemma 4.10. Let T be a projective Fraïssé family of finite trees that
allows splitting edges with monotone epimorphisms, let G be its projective
Fraïssé limit and let π : G → |G| be its topological realization, which is a
dendrite by Theorem 3.17. Moreover, let p ∈ |G| be a ramification point.
Then there is a unique p′ ∈ G with π(p′) = p.

Proof. Suppose for a contradiction that |π−1(p)| > 1 and, using the fact
that equivalence classes in G have at most two elements by Theorem 3.7,
write π−1(p) = {p1, p2}. Let {A′

i | i ≤ n} be the connected components of
|G| \ {p}, where ord(p) = n ∈ N ∪ {ω}. Let Ai = A′

i ∪ {p} for i = 1, . . . , n
and note that {π−1(Ai) | i ≤ n} are connected sets in G intersecting only in
{p1, p2}. Find a finite tree G and a monotone epimorphism fG : G→ G such
that fG(π−1(Ai)) is nontrivial (meaning not contained in {fG(p1), fG(p2)})
for i ∈ {1, 2, 3} and such that fG(p1) ̸= fG(p2). This is possible because
epimorphisms in T ω are monotone by Lemma 3.18. We claim that

fG(π
−1(Ai)) ∩ fG(π−1(Aj)) ⊆ {fG(p1), fG(p2)},

for all distinct i, j ∈ {1, 2, 3}. Suppose for a contradiction that

r ∈ fG(π−1(A1)) ∩ fG(π−1(A2)) \ {fG(p1), fG(p2)}.

Then f−1
G (r) and {p1, p2} are disjoint, nonempty, closed, connected subsets

of G. However f−1
G (r) meets both π−1(A1) \ {p1, p2} and π−1(A2) \ {p1, p2},

a contradiction since f−1
G (r) is connected and (π−1(A1)∪π−1(A2))\{p1, p2}

is not.
The idea now is that we can always move to a bigger graph H obtained

from G by splitting an edge in order to force fH(π−1(A1)) ∩ fH(π−1(A3))
̸⊆ {fH(p1), fH(p2)}. Indeed, at least two of fG(π−1(A1)), fG(π−1(A2)),
fG(π

−1(A3)) are connected to the same vertex, fG(p1) or fG(p2); suppose
without loss of generality that fG(π−1(A1)) and fG(π−1(A3)) are both con-
nected to fG(p2). Now construct a graph H by taking H = G ⊔ {r}, where
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r is a vertex not in G and

E(H) = (E(G) \ {⟨fG(p1), fG(p2)⟩}) ∪ {⟨fG(p1), r⟩, ⟨r, fG(p2)⟩},
together with the epimorphism fHG : H → G defined by fHG (r) = fG(p2)
and the identity otherwise. Denote a = (fHG )−1(fG(p1)) and let b be the
vertex in (fHG )−1(fG(p2)) distinct from r. Note that H, fHG ∈ T since T
allows splitting edges. By definition of projective Fraïssé limit there must
be an epimorphism fH : G → H such that fHG ◦ fH = fG. The last identity
combined with the fact that fH maps edges to edges forces fH(p1) = a and
fH(p2) = r. Now we can use the same argument as above to show that

fH(π
−1(A1)) ∩ fH(π−1(A3)) ⊆ {fH(p1), fH(p2)}.

This is a contradiction, since by construction those sets also meet in b.

Theorem 4.11. Let T be a projective Fraïssé family of trees with mono-
tone epimorphisms that allows splitting edges, let ⟨Gi | i < ω⟩ with epimor-
phisms fmn : Gm → Gn be a Fraïssé sequence for T , let G = lim←−Gi be the
projective Fraïssé limit of T and let π : G→ |G| be its topological realization,
which is a dendrite by Theorem 3.17. Then π maps points of weak coherence
of G ⊆

∏
Gi to ramification points of |G|.

Proof. Suppose that p = (pi) is a point of weak coherence of G; we want
to show that π(p) is a ramification point of |G|. Let fk : G→ Gk be the pro-
jection epimorphisms obtained by construction of the inverse limit, and let
A1
k, . . . , A

nk
k be the connected components of Gk \ {pk}, enumerated so that

(fk+1
k )−1(Aik) ⊆ Aik+1 for all i. Let k(i) be the least k such that Gk \ {pk} has

at least i connected components, if such an i exists, and k(i) = ω otherwise.
Note that {p} =

⋂
f−1
k (pk) and that

Ai =
⋃

k≥k(i)

{f−1
k (Aik) | 1 ≤ i < ω}

are the connected components of G \ {p} (with Ai being empty if k(i) = ω).
We will show that the equivalence class of p in G is a singleton, from which
we can conclude that π(Ai) are the connected components of |G| \{π(p)}, so
that π(p) is a ramification point of |G| of order equal to the least n such that
k(n+ 1) = ω or to ω if there is no such n. Suppose for a contradiction that
there exists q = (qi) ∈ G with ⟨p, q⟩ ∈ E(G), so in particular ⟨pi, qi⟩ ∈ E(Gi)

for all i. Let k be large enough so that pk ̸= qk and let Ajk be the component
of Gk \ {pk} containing qk. Note that by weak coherence qm ∈ Ajm for all
m ≥ k. Consider the tree H obtained from Gk by splitting the ⟨pk, qk⟩ edge
into two edges ⟨pk, p′k⟩ and ⟨p′k, qk⟩, with the epimorphism fHk : H → Gk such
that fHk (p′k) = pk and the identity otherwise. Note that fHk is coherent at
pk ∈ Gk, as witnessed by pk ∈ H. By definition of Fraïssé sequences we can
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find l large enough and an epimorphism f lH : Gl → H such that f lk = fHk ◦f lH ,
which implies that f lH(ql) = qk ∈ H. On the one hand, we now must have
f lH(pl) = pk ∈ H by weak coherence, since pl witnesses the weak coherence
of f lk at pk ∈ Gk and pk ∈ H witnesses the weak coherence of fHk at pk ∈ Gk;
on the other hand we must have f lH(pl) = p′k, since f lH maps edges to edges,
a contradiction.

Remark 4.12. Note in particular that if x = (xi) is a point of weak
coherence in

∏
Gi then either ord(xi) stabilizes to some finite value n or it

grows unboundedly. In the former case π(x) also has order n as a ramification
point of |G|, while in the latter, π(x) is a ramification point of |G| of infinite
order.

The converse to Theorem 4.11 is false in general, but it is true when
monotone epimorphisms are replaced with weakly coherent ones, as shown
in the following theorem.

Theorem 4.13. Let T be a projective Fraïssé family of trees with weakly
coherent epimorphisms, let ⟨Gi | i < ω⟩ with epimorphisms fmn : Gm → Gn
be a Fraïssé sequence for T and let π : G→ |G| be its topological realization,
which is a dendrite by Theorem 3.17. Then π−1 maps ramification points of
|G| to points of weak coherence of G ⊆

∏
Gi.

Proof. As above let fk : G → Gk be the projection epimorphisms ob-
tained by construction of the limit and let x′ ∈ |G| be a ramification point.
By Lemma 4.10 there is a unique x = (xi) ∈ π−1(x′) and we want to show
that it is a point of weak coherence in

∏
Gi. Let {Ai | i < ord(x)} with

ord(x) ∈ N ∪ {ω} be the connected components of G \ {x} and let k be
large enough so that fk(A1), fk(A

2), fk(A
3) are not singletons in Gk. Let

A1
k, A

2
k and A3

k be the connected components of Gk \ {xk}, numbered so
that f−1

k (Aik) ⊆ Ai for i = 1, 2, 3, which is always possible since f−1
k (Aik)

is connected by Lemma 3.18 and does not meet f−1
k (xk) by construction.

By assumption fk+1
k : Gk+1 → Gk is weakly coherent at xk, as witnessed by

some vertex a ∈ Gk+1. Suppose for a contradiction that xk+1 ̸= a. Note that
if Aik+1 is a connected component of Gk+1 \ {xk+1}, then there is a unique j
such that f−1

k+1(A
i
k+1) ⊆ Aj , once again because f−1

k+1(A
i
k+1) is connected

and does not meet f−1
k+1(xk+1). Since xk+1 ̸= a and Gk+1 is a tree, there

is a connected component Ank+1 of G \ {xk+1} that contains all connected
components of G \ {a} except at most one, so it also contains (fk+1

k )−1(Aik)
for at least two distinct i. Assume without loss of generality that

(fk+1
k )−1(A1

k) ⊆ Ank+1,

(fk+1
k )−1(A2

k) ⊆ Ank+1,
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and let j be the unique index such that f−1
k+1(A

n
k+1) ⊆ Aj . But now we have

both fk+1
k ◦ fk+1 = fk and

(f−1
k+1 ◦ (f

k+1
k )−1)(A1

k) ⊆ Aj , f−1
k (A1

k) ⊆ A1,

(f−1
k+1 ◦ (f

k+1
k )−1)(A2

k) ⊆ Aj , f−1
k (A2

k) ⊆ A2,

which cannot all hold at the same time regardless of the value of j, a con-
tradiction.

4.2. Generalized Ważewski dendrites from projective Fraïsse
families. We now introduce some families of finite trees. The remainder of
this section will be dedicated to showing that these are projective Fraïssé
families and that the topological realizations of their projective Fraïssé limits
are generalized Ważewski dendrites.

Definition 4.14. Let P ⊆ {3, . . . , ω}. We consider two cases. If ω ∈ P
we consider the family FP whose elements are finite trees with no vertices
of order 2. Given A,B ∈ FP , an epimorphism of graphs f : B → A is in FP
if:

(1) f is monotone.
(2) If a ∈ A is such that ord(a) ∈ P , then f is coherent at a.
(3) If a ∈ A is such that ord(a) ̸∈ P and ord(a) ≥ 3 then f is weakly

coherent at a, and if b ∈ f−1(a) is the witness for the weak coherence
of f at a, then ord(b) ̸∈ P .

On the other hand, if ω ̸∈ P , we consider the family GP whose elements are
finite trees all of whose vertices either are endpoints or have order in P , with
coherent monotone epimorphisms.

Remark 4.15. The families FP and GP do not allow splitting edges as
defined earlier, since the trees in those families do not have any vertices of
degree 2. However, if T is a tree in FP or GP and a, b ∈ T with ⟨a, b⟩ ∈ E(T ),
it is still possible to split the edge ⟨a, b⟩ by removing it and then adding a new
point x connected to a and b. We have to also add enough new neighbours xi
to x until ord(x) ∈ P . This is enough for all the arguments in the previous
sections that used the edge splitting property.

We will now verify that FP and GP are projective Fraïssé families and
later we will identify the topological realizations of their projective Fraïssé
limits. It seems natural to guess that if FP and GP are the projective Fraïssé
limits of FP and GP , then |FP | ∼= WP and |GP | ∼= WP , but unfortunately
this is not always the case. It is true for all families of the form GP , but for
families of the form FP it only holds when {3, . . . , ω} \ P is infinite, as we
will see later. Clearly, FP and GP each contain countably many structures
up to isomorphism, contain the identity morphisms and their morphisms are
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closed under composition by Remark 4.7. We begin by verifying the joint
projection property for FP and GP , with a construction that works for both
families.

Lemma 4.16. Let A,B ∈ FP (respectively A,B ∈ GP ). Then there exists
C ∈ FP (respectively C ∈ GP ) with epimorphisms f1 : C → A, f2 : C → B
in FP (respectively in GP ).

Proof. Let a ∈ A, b ∈ B be two endpoints. Consider the tree C ′ obtained
by taking the disjoint union of A and B and identifying a with b. Let C be
the tree obtained from C ′ by adding new vertices xi connected only to x until
ord(x) ∈ P , where x is the vertex a and b have been identified in. Define
f1 : C → A to be the identity on V (A), while any other vertex is mapped
to x. Analogously define f2 : C → B to be the identity on V (B), while any
other vertex is mapped to x. It is immediate to check that C witnesses the
joint projection property for A,B.

It remains to verify that the projective amalgamation property is sat-
isfied. We do so for families of the form FP and note that the procedure
described to produce an amalgam D from a diagram C → A← B of struc-
tures in FP can also be applied to diagrams of the same shape in GP , and
the amalgam D produced in that case is itself an element of GP .

Lemma 4.17. The family FP satisfies the projective amalgamation prop-
erty, so it is a projective Fraïssé family. Explicitly, for all A,B,C ∈ FP with
epimorphisms f : B → A and g : C → A in FP , there exists D ∈ FP with
epimorphisms h1 : D → B and h2 : D → C in FP such that f ◦ h1 = g ◦ h2.

Proof. We proceed by induction on |E(B)| + |E(C)|. If there are no
nontrivial edges in B and C, then A must also be a singleton and we can take
D to be a singleton as well. For the inductive step, suppose now that B and C
are not both singletons and that the lemma is proved for all diagrams in FP of
the form F → A← G with |E(F )|+|E(G)| < |E(B)|+|E(C)|. If A = B = C
and f = g = IdA we can simply take D = A and h1 = h2 = IdA, so we can
assume that at least one of f and g is nontrivial. Suppose without loss of
generality that f is nontrivial. Find a ∈ A such that |f−1(a)| > 1. There are
two possibilities now: a could be a ramification point or an endpoint of A,
and we deal with those two cases separately.

Case 1: a is a ramification point. Let b ∈ B be the witness for the
(weak) coherence of f at a and let B1 be a component of B \ {b} with
B1 ∩ f−1(a) ̸= ∅. Let B2 = B1 ∩ f−1(a). We need to distinguish two cases,
based on whether B2 = B1 or not.

Case 1a: B2 ̸= B1. We start with the harder case, that is B2 ̸= B1 and
explain how to deal with the easier case later. Let b1 be the only element
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of B2 with ⟨b, b1⟩ ∈ E(B) and let b2 be the only element of B2 for which
there exists a b3 ∈ B1 \ B2 with ⟨b2, b3⟩ ∈ E(B) (uniqueness of b1, b2, b3
follows from B being a tree). Consider now the graph B′ obtained from B
by collapsing B2 to b, formally V (B′) = V (B) \ V (B2) and

E(B′) = (E(B) \ (E(B2) ∪ {⟨b, b1⟩, ⟨b2, b3⟩})) ∪ {⟨b, b3⟩},
see Figure 1. There is a natural map π : B → B′ given by π(x) = b if x ∈ B2

and the identity otherwise. Note that B′ ∈ FP since both b and b3 have
the same orders as π(b) and π(b3), and π is a coherent epimorphism, so in
particular it is in FP . Let f ′ : B′ → A be the unique map with f ′ ◦π = f and
note that f ′ is still in FP by construction. We reach the situation in Figure 1,
where the important vertices and edges are drawn, while the dashed sections
represent parts of the trees whose precise structure is not important.

A

aa1

f

BB2

b3 b2 b1 b

g

C

c
c1

B′

π(b3) π(b)

πf ′

Fig. 1. The construction of B′ from B

Since |E(B′)| < |E(B)| we can amalgamate f ′ and g over A by inductive
hypothesis, so we can find D′ ∈ FP and epimorphisms h′1 : D′ → B′ and
h′2 : D

′ → C in FP such that f ′ ◦ h′1 = g ◦ h′2. Now we want to construct
D together with h1 : D → B and h2 : D → C from D′, h′1 and h′2. The
intuitive idea is that we just need to paste back B2 in D′ in the right spot,
in particular B2 should be inserted on the edge of D′ that corresponds to
the edge ⟨π(b), π(b3)⟩ in B′ (analogously to how B is obtained from B′

by inserting B2 on the ⟨π(b), π(b3)⟩ edge). Let a1 be the unique vertex of
A with ⟨a, a1⟩ ∈ E(A) and f−1(a1) ⊆ B1 and let A1 be the connected
component of A\{a} containing a1. Let c ∈ C witness the (weak) coherence
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of g at a and let C1 be the connected component of C \ {c} containing
g−1(a1). Let c1 ∈ C1 be the unique vertex of C with ⟨c, c1⟩ ∈ E(C). Let
d ∈ D′ witness the (weak) coherence of h′2 at c and let D1 be the connected
component of D′ \{d} containing (h′2)

−1(c1). Note that, since f ′ ◦h′1 = g◦h′2
and witnesses for (weak) coherence are unique, d also witnesses the (weak)
coherence of h′1 at b and (h′1)

−1(π(B1)) ⊆ D1 by Remark 4.3. Now let d1 ∈
{d} ∪ (D1 ∩ (h′1)

−1(π(b))) and d2 ∈ D1 ∩ (h′1)
−1(π(b3)) be the unique such

vertices with ⟨d1, d2⟩ ∈ E(D′). We can now construct D by inserting B2

between d1 and d2, formally V (D) = V (D′) ⊔ V (B2) and

E(D) = (E(D′) \ {⟨d1, d2⟩}) ∪ E(B2) ∪ {⟨b1, d1⟩, ⟨b2, d2⟩}.

Note that B2 ∈ FP and we did not change the degrees of d1 and d2, so
D ∈ FP as well. Now consider the projection π′ : D → D′ collapsing B2

to d1, so π′(x) = d1 if x ∈ B2 and π′(x) = x otherwise, which is also an
epimorphism in FP . We are now in a situation that looks like Figure 2.
Define h2 = h′2 ◦ π′ and h1 : D → B by

h1(x) =

{
x if x ∈ B2,

h′1(x) otherwise,

D′ (h′
1)

−1(π(b))

(h′
1)

−1(π(b3))

d d1 d2

D

d d1 b1 b2 d2

π′

Fig. 2. The construction of D′ from D

where we identify points of B \B2 with their images in B′ through π. Note
that h1 is an epimorphism in FP , indeed it is (weakly) coherent at points
of B2 because they are witnesses for their own (weak) coherence and it is
(weakly) coherent elsewhere because h′1 is. Moreover, we have h′1◦π′ = π◦h1,
so that the following diagram commutes:
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D B

D′ B′ A

C

h1

π′ π

h′1

h′2

f ′

g

It only remains to check that (f ◦ h1)(x) = (g ◦ h2)(x) for all x ∈ D, for
which there are two cases:

• If x ∈ B2 then h1(x) = x and f(h1(x)) = a, while h2(x) = h′2(π
′(x)) =

h′2(d1), but g ◦ h′2 = f ′ ◦ h′1 and f ′(h′1(d1)) = a, so g(h2(x)) = a.
• Otherwise, h1(x) and h2(x) agree with h′1(x) and h′2(x) respectively, so we

immediately obtain f(h1(x)) = g(h2(x)) by construction.

This concludes the argument when B2 ̸= B1.

Case 1b: B2 = B1. Let b ∈ B be the witness for the (weak) coherence
of f at a and let c ∈ C be the witness for the (weak) coherence of g at a.
Suppose now that for every component B̂ of B \ {b} that meets f−1(a),
we have B̂ ⊆ f−1(a), otherwise by choosing a different component B1 of
B \ {b} we would be in the previous case. Similarly, we can assume that
for every component Ĉ of C \ {c} that meets g−1(a), we have Ĉ ⊆ g−1(a),
since otherwise we would be in the previous case after possibly renaming
B and C. Let aA1 , . . . , aAn enumerate the connected components of A \ {a}.
By the weak coherence of f we can find components aB1 , . . . , aBn of B \ {b}
such that f−1(aAi ) ⊆ aBi for all i. We define aC1 , . . . , aCn analogously. Now let
B1 = f−1(a) and C1 = g−1(a).

The idea now is to amalgamate the diagram

(1) aBi ∪ {b} → {a} ∪ {aAi } ← aCi ∪ {c}

for every i, then to obtain D1 from B1 and C1 by the joint projection prop-
erty, and to glue everything back together at the end. By inductive hypothesis
we can amalgamate diagrams of the form (1) (note that the trees involved
are still members of FP and so are the maps) obtaining an amalgam aDi with
maps hi1 : aDi → aBi ∪ {b} and hi2 : a

D
i → aCi ∪ {c}. Note that, since b and c

are the only preimages of a in aBi ∪{b} and aCi ∪{c} respectively, there must
be an endpoint xi ∈ aDi such that hi1(xi) = b and hi2(xi) = c for every i.

We now need to deal with B1 and C1. Enumerate the components of
C1 \ {c} as ĉ1, . . . , ĉr and those of B1 \ {b} as b̂1, . . . , b̂s. Assume without
loss of generality s ≤ r. For i ≤ r, let ci be the only vertex of ĉi such that
⟨ci, c⟩ ∈ E(C) and let bi, for i ≤ s, be defined analogously. Consider now the



22 A. Codenotti and A. Kwiatkowska

tree D1 built from (⊔
i≤r

ĉi

)
⊔
(⊔
i≤s

b̂i

)
by adding r + 1 new vertices z, z1, . . . , zr and edges ⟨zi, ci⟩ for all i ≤ r,
⟨zi, bi⟩ for all i ≤ s and ⟨z, zi⟩ for all i ≤ r.

Finally, build a tree D by identifying z ∈ D1 and xi ∈ aDi for every i,
and denote by d the image of all those points in D. Then add neighbours to
zi, bi and ci until they have orders in P . Define a map h1 : D → B by

h1(y) =


hi1(y) if y ∈ aDi ,
y if y ∈ b̂i,
b otherwise.

Similarly, define a map h2 : D → C by

h2(y) =


hi2(y) if y ∈ aDi ,
y if y ∈ ĉi,
c otherwise.

It is easy to check that D together with the maps h1, h2 is an amalgam of
B and C over A.

This concludes the argument for a ramification point a ∈ A.

Case 2: a is an endpoint. Suppose now that a ∈ A is an endpoint. The
construction is essentially an easier version of the one we just carried out for
the case B1 ̸= B2. Since B \f−1(a) is connected we can let b ∈ f−1(a) be the
unique vertex for which there is a b′ ∈ B \f−1(a) with ⟨b, b′⟩ ∈ E(B) and let
B2 be f−1(a). As in the previous case, consider π : B → B′ collapsing B2 to
b and let f ′ : B′ → A be the unique map with f ′ ◦ π = f . Moreover, let D′

be an amalgam of f ′ and g over A with maps h′1 : D′ → B′ and h′2 : D′ → C
such that g ◦ h′2 = f ′ ◦ h′1. Once again we build D from D′ by glueing B2 to
D′ in the right spot. Let α ∈ (h′1)

−1(b) be an endpoint and take the disjoint
union of B2 and D′, identifying α ∈ D′ and b ∈ B2. Let d be the image of α
and b through this identification.

As in the previous case, we obtain a map π′ : D → D′ by mapping the
whole of B2 to d, and a map h1 : D → B defined by

h1(x) =

{
x if x ∈ B2,

h′1(x) otherwise.

Now, by considering h2 = h′2 ◦ π′ we see that D with the maps h2 : D → C
and h1 : D → B defined above gives an amalgam of f and g over A, as
desired.
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As mentioned before Lemma 4.17, the construction in its proof also shows
the following:

Lemma 4.18. The family GP satisfies the projective amalgamation prop-
erty, so it is a projective Fraïssé family.

Now that we know that FP and GP are projective Fraïssé families, let
FP and GP denote their projective Fraïssé limits. We know from Lemma 3.9
and Theorem 3.17 that |FP | and |GP | are dendrites, and in the rest of this
section we will identify which dendrites they are exactly. Let us start with
the easiest case, namely ω ̸∈ P , so that we are looking at the family GP with
projective Fraïssé limit |GP |.

Theorem 4.19. Fix P ⊆ {3, 4, . . .}. Then |GP | ∼=WP .

Proof. For the remainder of this proof we fix a Fraïssé sequenceGi for GP ,
with epimorphisms f ij : Gi → Gj . We consider GP as a subspace of

∏
Gi,

and call fi : GP → Gi the canonical projections. We know that |GP | is a
dendrite, so we need to check that all ramification points of |GP | have orders
in P , and that for all p ∈ P the set

{x ∈ |GP | | ord(x) = p}
is arcwise dense in |GP |. The first part follows quickly from previous results:
if x ∈ |GP | is a ramification point, then π−1(x) = (xi) is a coherent point
in GP by Theorem 4.13, where π : GP → |GP | is the topological realization.
Note that ord(xi) ∈ P for large enough i, so by Remark 4.12 we know that,
for k large enough, ord(x) = ord(xk) ∈ P .

It remains to show that for every p ∈ P the set of ramification points in
|GP | is arcwise dense in |GP |. Fix p ∈ P and X ⊆ |G| an arc. Let a′, b′ ∈ X
be distinct and fix a ∈ π−1(a′), b ∈ π−1(b′). Let i be large enough to have
fi(a) ̸= fi(b) and let ⟨w, y⟩ be any edge on the unique arc in Gi joining
fi(a) and fi(b). Consider the graph H obtained from Gi by splitting the
edge ⟨w, y⟩ into two edges ⟨w, xip⟩,⟨xip, y⟩ and by adding p − 2 new vertices
z1, . . . , zp−2 with edges ⟨xip, zj⟩ for all 1 ≤ j ≤ p. Note that there is an
epimorphism fHi : H → Gi in GP with fHi (v) = w for all v ∈ V (H) \ V (Gi)
and the identity otherwise, and in H there is a point of order p on the arc
connecting fi(a) to fi(b). We can now find k large enough so that there is
an epimorphism fkH : Gk → H in GP with fHi ◦ fkH = fki and note that in Gk
there is a point of order p on the arc connecting fk(a) and fk(b), namely the
point xkp ∈ (fkH)

−1(xip) witnessing the coherence of fkH at xip. This is because
fk(a), fk(b) are in different components of Gk \ {xkp} by coherence, and Gk
is uniquely arcwise connected. Now for all m > k let xmp ∈ Gm be a point
witnessing the coherence of fmm−1 : Gm → Gm−1 at xm−1

p and note that for
all m > k, xmp is a point of order p on the unique arc in Gm joining fm(a)



24 A. Codenotti and A. Kwiatkowska

and fm(b). Since x = (xmp )m∈N ∈ GP is a coherent sequence, it determines a
ramification point of order p in |GP | by Theorem 4.11 and Remark 4.12. By
construction, a and b belong to different connected components of GP \ {x},
and since GP is hereditarily unicoherent this implies that any connected set
in GP containing both a and bmust also contain x. In particular, x ∈ π−1(X)
and so π(x) ∈ X.

We can now analyze what happens in the case ω ∈ P , so that we are
looking at the families FP with projective Fraïssé limit FP instead. The
situation is more subtle.

Theorem 4.20. Fix P ⊆ {3, . . . , ω}. If {3, . . . , ω} \ P is infinite and
ω ∈ P , then |FP | ∼=WP .

Proof. The proof is very similar to that of Theorem 4.19. For the remain-
der of this proof we fix a Fraïssé sequence Fi for FP , with epimorphisms
f ij : Fi → Fj . We consider FP as a subspace of

∏
Fi, and call fi : FP → Fi

the canonical projections. We already know that |FP | is a dendrite so we
need to check that all ramification points of |FP | have orders in P , and that
for all p ∈ P the set

{x ∈ |FP | | ord(x) = p}
is arcwise dense in |FP |. The first part is very similar to the argument in the
proof of Theorem 4.19: if x ∈ |FP | is a ramification point, then π−1(x) = (xi)
is a weakly coherent point of FP by Theorem 4.11, where π : FP → |FP | is
the topological realization. Now the way the family FP is constructed allows
two options: either ord(xi) becomes constant for large enough i, so that (xi)
is actually a coherent point of FP and we are in the same case as in the
proof of Theorem 4.19, or ord(xi) → ∞ as i → ∞, which by Remark 4.12
implies that x is a ramification point of |FP | of infinite order. In either case
ord(x) ∈ P .

It remains to show that for every p ∈ P the set of ramification points
in |FP | is arcwise dense in |FP |. If p ̸= ω we can repeat verbatim the ar-
gument given in the proof of Theorem 4.19, so we need to show that the
ramification points of infinite order are arcwise dense in |FP |. Fix an arc
X ⊆ |FP |, distinct a′, b′ ∈ X, a ∈ π−1(a′), b ∈ π−1(b′) and i large enough to
have fi(a) ̸= fi(b). Fix also a strictly increasing sequence (nj)j∈N of natural
numbers such that nj ̸∈ P for all j and nj →∞ as j →∞. Let ⟨w, y⟩ be any
edge on the unique arc in Fi joining fi(a) and fi(b). Consider the graph H
obtained from Fi by splitting the edge ⟨w, y⟩ into two edges ⟨w, x1⟩,⟨x1, y⟩
and by adding n1 − 2 new vertices z1, . . . , zn1−2 with edges ⟨x1, zj⟩ for all
1 ≤ j ≤ n1 − 2. Note that there is an epimorphism fHi : H → Fi in FP with
fHi (v) = w for all v ∈ V (H) \ V (Fi) and the identity otherwise, and note
that in H there is a point of order exactly n1 on the arc connecting fi(a)
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to fi(b). We can now find k large enough so that there is an epimorphism
fkH : Fk → H in FP with fHi ◦ fkH = fki and note that in Fk there is a point
of order at least n1 on the arc connecting fk(a) and fk(b), namely the point
x2 ∈ (fkH)

−1(x1) witnessing the weak coherence of fkH at x1.
Now we can iterate this construction, by considering the tree H2 ob-

tained from Fk by adding at least ns − n1 − 2 neighbours to x2, with the
map f : H2 → Fk sending all of those new vertices to x2, where s is large
enough to have ord(x2) < ns − n1 − 2. Then we can find some l > k and an
epimorphism f lH : Fl → FH such that fH2

k ◦ f lH2
= f lk and as above we can

find a point x3 ∈ Fl of order at least ns on the arc between fl(a) and fl(b).
Repeating this construction we build a weakly coherent sequence (xi) such
that ord(xi)→∞ and xi lies on the unique arc in Fi between fi(a) and fi(b).
The same argument as at the end of the proof of Theorem 4.19 allows us to
conclude that the ramification point of infinite order π(xi) ∈ |FP | belongs
to the arc X.

Remark 4.21. In Theorem 4.20 we had to assume that {3, . . . , ω} \ P
is infinite, which was used to find a sequence nj of natural numbers with
limnj → ∞ and nj ̸∈ P , in order to construct weakly coherent points of
FP corresponding to ramification points of |FP | of infinite order. When P
is cofinite in {3, . . . , ω}, the family FP is still a projective Fraïssé family,
as we showed above, but the problem is that the order of the points in
weakly coherent sequences must stabilize instead of growing unboundedly.
Indeed, the techniques used in the proof of Theorem 4.20 easily establish that
|FP | =WP ′ where P ′ = P \ {ω} if P = {3, . . . , ω} and P ′ = (P \ {ω})∪ {a}
otherwise, where a is the smallest integer such that n ∈ P for all n > a.

5. Fraïssé categories and projection-embedding pairs. In this sec-
tion, we construct all generalized Ważewski dendrites as projective Fraïssé
limits by moving to the more general setting of Fraïssé categories devel-
oped by Kubiś [16]. These are categories in which the amalgamation and
joint embedding properties hold (when expressed in terms of appropriate di-
agrams). As an application, we recover a countable dense homogeneity result
for End(WP ). We quickly recall some definitions from [16], but we stress that
the approach followed there is far more general than what we need. In par-
ticular, since we are only working with countable collections of finite objects
(with finitely many morphisms between any two of them) we can ignore all
the issues regarding existence of Fraïssé sequences and uniqueness of Fraïssé
limits that arise when looking at the uncountable case. Of particular interest
to us is Section 6 of [16] in which projection-embedding pairs are introduced
as a tool to produce objects that are universal both in an injective and a
projective sense.
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5.1. Fraïssé categories. The following definitions and results are taken
from [16, Sections 2–3], where they are presented in a more general way,
which works in the uncountable case as well.

As a warning, let us point out that while Kubiś’s approach is phrased in
terms of injective Fraïssé limits, we decided to phrase everything in terms
of projective Fraïssé limits. There is no real difference between the two ap-
proaches, since it is enough to look at the opposite category Kop to translate
between the two.

Given a category K and two objects a, b ∈ K, let K(a, b) denote the set of
morphisms a→ b in K.

Definition 5.1. Let K be a category. We say that K has the amalgama-
tion property if for all a, b, c ∈ K and all morphisms f ∈ K(b, a), g ∈ K(c, a),
there exist d ∈ K and morphisms f ′ ∈ K(d, b), g′ ∈ K(d, c) with f ◦f ′ = g ◦g′.
We say that K is directed or that K has the joint projection property if for
all a, b ∈ K there exists c ∈ K such that K(c, a) ̸= ∅ ̸= K(c, b).

We now wish to define a category of projective sequences in K, which we
denote by σK, whose morphisms will be defined in a way that guarantees the
following property. Suppose that x̄, ȳ ∈ σK and K is embedded in a category
in which these two sequences have a limit. Given an arrow in σK(x̄, ȳ) we
want an induced arrow lim←− x̄ → lim←− ȳ. Given x̄ ∈ σK we denote x(n) by xn
and the morphism x(n)→ x(m) for n ≥ m by xnm. By definition a sequence
in K is a functor ω → K, where we think about the former as a poset
category with the reverse order, so a transformation x̄ → ȳ is by definition
a natural transformation F : x̄→ ȳ ◦φ, where φ : ω → ω is order-preserving.
To define an arrow x̄ → ȳ in σK we need to identify some of those natural
transformations.

Definition 5.2. Let F : x̄ → ȳ ◦ φ and G : x̄ → ȳ ◦ ψ be two natural
transformations. We say that F and G are equivalent if

(1) For every n there exists m ≥ n such that φ(m) ≥ ψ(n) and

y
φ(m)
ψ(n) ◦ F (m) = G(n) ◦ xmn ;

(2) For every n there exists m ≥ n such that ψ(m) ≥ φ(n) and

y
ψ(m)
φ(n) ◦G(m) = F (n) ◦ xmn .

An arrow x̄ → ȳ in σK is an equivalence class of natural transformations
x̄→ ȳ.

Note that the category σK in Kubiś’s approach is the analogue of the
class of structures Fω in the approach by Panagiotopolous and Solecki. We
can now define a Fraïssé sequence for a category K, which is the analogue of
the Fraïssé sequence in the classical or projective Fraïssé limit constructions.
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Kubiś defined in an analogous manner a category of sequences of length κ
for any cardinal κ. Similarly, the following definition is a special case of the
definition of a κ-Fraïssé sequence from [16].

Definition 5.3. Let K be a category. A Fraïssé sequence in K is a pro-
jective sequence ū : ω → K satisfying:

(1) For every x ∈ K there exists n < ω with K(un, x) ̸= ∅.
(2) For every n < ω and every arrow f ∈ K(y, un), with y ∈ K, there exist

m ≥ n and g ∈ K(um, y) such that f ◦ g = umn .

Note that if K has the amalgamation property then ū also satisfies:

(3) For all arrows f ∈ K(a, b), g ∈ K(un, b), there exist m ≥ n and h ∈
K(um, a) with g ◦ umn = f ◦ h.
The following is a special case of [16, Corollary 3.8] and shows existence

of Fraïssé sequences:

Lemma 5.4. Let K be a category with the amalgamation and joint embed-
ding properties with countably many objects and such that between any two
objects there are finitely many arrows. Then K has a Fraïssé sequence.

The following is [16, Theorem 3.15] and shows the uniqueness (up to
isomorphism) of Fraïssé sequences, hence also the uniqueness of Fraïssé limits
when we embed into a category in which the Fraïssé sequence has a limit:

Theorem 5.5. Assume u and v are Fraïssé sequences in a given cate-
gory K. Assume further that k, l < ω and f ∈ K(uk, vl). Then there exists an
isomorphism F : u→ v in σK such that the diagram

u v

uk vl

uk

F

vl

f

commutes. In particular u ≈ v.

5.2. Generalized Ważewski dendrites from Fraïssé categories.
We now have all the tools needed to talk about projection-embedding cat-
egories and construct the generalized Ważewski dendrites not obtained in
previous sections.

Definition 5.6. Given P ⊆ {3, . . . , ω}, let L′P denote the language with
a binary relation R and unary relations Up for every p ∈ P . Let LR = {R}
⊆ L′P and let LP ={Up | p ∈ P}⊆L′P . Let ‡FP denote the following category:

• A ∈ ‡FP iff A is a finite tree (with R as the edge relation), A contains at
least one ramification point and every vertex of A is either an endpoint or
a ramification point. Moreover, for every ramification point a ∈ A there
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is exactly one p ∈ P such that Up(a) holds, and in that case ord(a) ≤ p.
When a is a ramification point we will refer to the unique p ∈ P for which
Up(a) holds as the label of a. If a instead is an endpoint of A, then Up(a)
does not hold for any p ∈ P .

• Given A,B ∈ ‡FP , an arrow f ∈ ‡FP (B,A) is a pair (p(f), e(f)) where
p(f) : B → A is a weakly coherent epimorphism from B to A viewed as LR-
structures with the discrete topology. Moreover if for a ∈ A, Up(a) holds
and b ∈ B witnesses the weak coherence of p(f) at a, then Up(b) holds. In
particular, we are not requiring that if Up(b) holds, then Up(p(f)(b)) also
holds. On the other hand, e(f) : End(A)→ End(B) is a map associating
to every a ∈ End(A) a b ∈ End(B) with p(f) ◦ e(f) = IdEnd(A), where
End(X) is the set of endpoints of X. In other words, p(f) is a weakly
coherent epimorphism between the LR-reducts, while e(f) is a partial
right inverse defined on the endpoints.

Given two arrows f : B → A and g : C → B in ‡FP we define their composi-
tion in the obvious way: f ◦ g is the pair (p(f) ◦ p(g), e(g) ◦ e(f)). It is clear
that composition is associative and that the pair (IdA, IdA) is the identity
morphism for A in ‡FP , so ‡FP is a category.

Remark 5.7. The argument used to prove Lemma 4.16 shows that ‡FP
is directed, so in order to check that it is a Fraïssé category we only need to
check that it has the amalgamation property.

Lemma 5.8. The category ‡FP has amalgamation. In other words, when-
ever we have arrows f ∈ ‡FP (B,A), g ∈ ‡FP (C,A), there exists D ∈ ‡FP
with arrows h1 ∈ ‡FP (D,B), h2 ∈ ‡FP (D,C) such that f ◦ h1 = g ◦ h2.

Proof. The proof is very similar to the proof of amalgamation given in the
previous section for FP , so we do not write all the details. Instead, we point
out the extra steps that need to be taken to adapt the proof of Lemma 4.17
to the current setting.

Let A,B,C, f, g be as in the statement of the lemma. We proceed by
induction on |E(B)|+|E(C)|. The smallest structures in ‡FP are trees with a
single ramification point labelled with any p ∈ P , that has three neighbours.
Clearly if B and C are of that form, then A must be the same tree on four
vertices as well, and all the ramification points in A,B,C must have the
same label, so we can take D = A = B = C with identity maps to be the
amalgam. Our induction hypothesis now becomes that not only diagrams of
the form B → A ← C with smaller |E(B)| + |E(C)| can be amalgamated
in ‡FP , but that the amalgamation can be carried out in a way that preserves
labels and is compatible with the embedding part of the arrows. With this
assumption we can use the same construction as in the proof of Lemma 4.17.
Indeed, as in that lemma, suppose without loss of generality that p(f)−1(a)
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is nontrivial for some a ∈ A. Suppose first that a is a ramification point
and we are in the B2 ̸= B1 case. We can produce B′ with π ∈ ‡FP (B,B′),
f ′ ∈ ‡FP (B′, A) and D′ with h′1 ∈ ‡FP (D′, B′) and h′2 ∈ ‡FP (D′, C) as in
the proof of Lemma 4.17. Note that in this case p(π) is the identity map
between End(B) and End(B′), so that e(f ′) can be defined to agree with
e(f). We then build D from D′ by glueing back B2 along an edge. Points in
D are already labelled correctly, with labels coming from either B2 or D′,
and since glueing B2 into D′ does not collapse any endpoints in D′ we can
take e(h2) = e(h′2), while e(h1) = e(h′1) on End(B′) and is the identity on
End(B2) \ {b1, b2}.

The B2 = B1 case is easier to deal with: we follow the same construction
as in the proof of Lemma 4.17 and we never run into issues with the embed-
ding part of the morphisms, since endpoints are never collapsed during the
construction.

If instead a is an endpoint, there are still no issues mimicking the con-
struction from Lemma 4.17 as far as labels are concerned, but a little more
care is needed for the embedding part of the arrows, so we will write out
some of the details. Let b ∈ p(f)−1(a) be the unique vertex for which there
is a b′ ∈ B \ p(f)−1(a) with ⟨b′, b⟩ ∈ E(B) and let B2 be p(f)−1(a). As in
the previous case, we construct B′ from B by collapsing B2 to b through the
map p(π) : B → B′, but now we also need to define the embedding part e(π)
in order to get a morphism in ‡FP . Let e(π) be the identity on End(B′)\{b}
and e(π)(p(π)(b)) = e(f)(a). Similarly, we obtain a coherent epimorphism
p(f ′) : B′ → A as the only such morphism satisfying p(f ′) ◦ p(π) = p(f).
There is only one choice for e(f ′), namely

e(f ′)(x) =

{
e(f)(x) if x ∈ End(A) \ {a},
p(π)(b) if x = a.

Once again we obtain, by inductive hypothesis, an amalgam D′ with h′1 ∈
‡FP (D′, B′) and h′2 ∈ ‡FP (D′, C) such that f ′ ◦ h′1 = g ◦ h′2. We now have
to glue back B2 to D′ in order to build an amalgam D with maps h1 ∈
‡FP (D,B) and h2 ∈ ‡FP (D,C). We already know how to build D as a
graph and how to define p(h1), p(h2), since the construction is the same as
the one in the proof of Lemma 4.17. As in the previous section, we obtain D
from D′ and B2 by identifying b ∈ B2 with an endpoint of D′. Here we take
α ∈ End(D′) to be e(h′1)(b) which is also equal to e(h′2)(e(g)(a))). Points of
D are already labelled correctly, with labels coming from either B2 or D, and
we define p(h1), p(h2) exactly as above. We only need to define e(h1), e(h2).
There is nothing to be done for e(h2) which we simply define to be equal to
e(h′2) on all endpoints except e(g)(a) ∈ B2, where it now takes value e(f)(a).
To define e(h1) there are a few cases to consider:
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e(h1)(x) =

{
e(h′1)(x) if x ∈ End(B) \ End(B2),

x if x ∈ End(B2).

It is now easy to check that the resulting square diagram is commutative,
as desired.

Since ‡FP has countably many objects and between any two objects of
‡FP there are finitely many arrows, Lemma 5.4 and Theorem 5.5 immedi-
ately imply the following:

Theorem 5.9. The category ‡FP has a Fraïssé sequence u and any two
Fraïssé sequences are isomorphic as elements of σ‡FP . In particular, when-
ever ‡FP is embedded in a category in which Fraïssé sequences have colimits,
the colimits arising from two Fraïssé sequences are isomorphic.

As mentioned in the introduction to this section, we want to embed σ‡FP
in a category in which those sequences actually have a limit. We do so by
considering σ‡FP as a subcategory of a category G of labelled topological
graphs defined as follows: The objects of G are pairs G = (B,E) where B is
a graph-dendrite, equipped with unary predicates Un, for n ∈ P , such that
if a is a ramification point of G, there is a unique n for which Un(a) holds
and n ≤ ord(a), and E is a countable subset of U. The morphisms of G from
(B,E) to (A,F ) are pairs f = (p(f), e(f)) such that e(f) : F → E is an
injection, while p(f) : B → A is an epimorphism of topological graphs such
that p(f) ◦ e(f) = IdF .

To a sequence u ∈ σ‡FP we associate the pair (U, E), where U is the
topological graph obtained as the projective limit of the projection part
of u, while E is the direct limit of the embedding part of u. Moreover,
every ramification point x of U is labelled with its order as label, where the
order of x is the (potentially infinite) number of components of U \ {x}.
Given another v ∈ σ‡FP , a morphism ψ : u → v is by definition a natural
transformation ψ from u to v ◦ φ, where φ : ω → ω is order-preserving. It is
easy to check that if (U, E) and (V, F ) are the objects associated to u and v
as described above, then the projection part of ψ converges to a continuous
surjection p(ψ) : U→ V, while the embedding part converges to an injection
e(ψ) : F → E such that p(ψ) ◦ e(ψ) = IdF . Note that, since in Definition 5.6
we required that the witness of weak coherence at a point a has the same
label as a, p(ψ) has the property that if v ∈ V is a ramification point with
label l, then there is a ramification point u ∈ p(ψ)−1(v) with the same label.
This describes the desired functor σ‡FP → G.

To a sequence u ∈ σ‡FP we associated a pair (U, E), where U is a topo-
logical graph. We will show that whenever u is a Fraïssé sequence for ‡FP ,
then |U| is the generalized Ważewski dendrite WP , where π : U→ |U| is the
topological realization.
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Note that the embedding part of u plays no role in the following theorem.
This observation will be made precise and become relevant later.

Theorem 5.10. Let u = ⟨Fi | i < ω⟩ with maps f i+1
i ∈ ‡FP (Fi+1, Fi) be

a Fraïssé sequence for ‡FP and let (FP , E) be its limit. Then |FP | =WP .

Proof. Even though ‡FP does not allow splitting edges, we can proceed
as in Remark 4.15 to use all the results that required splitting edges. Be-
cause of this, we know that |FP | is a dendrite thanks to Theorem 3.17
since p(f i+1

i ) is monotone and (weakly) coherent; moreover, we still have
the correspondence between (weakly) coherent points of FP and ramifica-
tion points of |FP | established in Theorems 4.11 and 4.13. The fact that
each ramification point has order in P follows from an argument similar to
the one in the proof of Theorem 4.20: if x = (xn) ∈ FP is labelled with Up,
then xn must be labelled with Up from some n on. If p < ω, then ord(xn)
must also be p from some (possibly bigger) n onward, which implies that
ord(x) = p, and so ord(π(x)) = p. If x = (xn) ∈ FP is labelled with Uω in-
stead, then ord(xn)→∞ as n→∞ as in the proof of Theorem 4.20, hence
ord(π(x)) = ω. The fact that the ramification points of each order in P are
arcwise dense in |Fp| follows from exactly the same argument as the one at
the end of the proof of Theorem 4.20.

5.3. A countable dense homogeneity result for End(WP ). We now
want to prove the following homogeneity result for the endpoints of WP , first
stated in [5] for W3:

Theorem 5.11. Let P ⊆ {3, . . . , ω} and let Q1, Q2 be countable dense
subsets of End(WP ). Then there is a homeomorphism h : WP → WP with
h(Q1) = Q2.

We begin with a more precise description of the endpoints of a projective
Fraïssé limit of trees; in particular, we want to show that if (U, E) is the
projective Fraïssé limit of ‡FP , then π(E) is a dense set of endpoints in |U|.
We first show that endpoints are edge-related only to themselves.

Proposition 5.12. Let F be a projective Fraïssé family of trees with
(weakly) coherent epimorphisms that allows splitting edges and let F be its
projective Fraïssé limit. If e ∈ End(F), then there is no e′ ∈ F \ {e} with
⟨e, e′⟩ ∈ E(F).

Proof. Suppose for a contradiction that there is e ̸= e′ ∈ F with ⟨e, e′⟩ ∈
E(F). Let Fn with maps fmn : Fm → Fn be a Fraïssé sequence for F and
let gn : F → Fn be the canonical projections. Let en, e′n be gn(e) and gn(e

′)
respectively.

First, we claim that for all but finitely many n, en ∈ End(Fn). Indeed,
suppose for a contradiction that this is not the case and let m be large
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enough so that em ̸= e′m and em is not in End(Fm). Let am be a point
in Fm such that em is on the unique arc joining am and e′m. Without loss
of generality we can assume that am is a ramification point (we can for
example take am = em) and, for k > m, let ak denote the vertex of Fk
witnessing the (weak) coherence of fkm at am. By monotonicity of fkm and
since ⟨ek, e′k⟩ ∈ E(Fk), we find that for all k > m, ek is on the unique arc
joining ak and e′k. Indeed, (fkm)−1([am, e

′
m]) is connected by monotonicity of

fkm and, since Fk is a tree, there is a unique edge between (fkm)
−1([am, em])

and (fkm)
−1([em, e

′
m]) which must be the edge between ek and e′k. Since the

unique arc from ak to e′k goes from (fkm)
−1([am, em]) to (fkm)

−1([em, e
′
m]), it

must go through this edge, showing that ek lies on the arc from ak to e′k.
As in the proof of arcwise density in Theorem 4.19 we obtain a ramification
point a ∈ F such that e is contained in the arc [a, e′]. Since e ̸= a, as the
latter is a ramification point, and e ̸= e′ by assumption, this contradicts the
fact that e is an endpoint of F.

We have thus shown that, if e ∈ End(F) and e′ ∈ F is such that
⟨e, e′⟩ ∈ E(F), then for all but finitely many n ∈ N, en is an endpoint of Fn.

Now let H be the tree obtained by splitting the ⟨em, e′m⟩ edge, so that
V (H) = V (Fm) ⊔ {x} and

E(H) = (E(Fm) \ {⟨em, e′m⟩}) ∪ {⟨em, x⟩, ⟨x, e′m⟩}

and consider the epimorphism φ : H → Fm defined by φ(x) = em and φ is
the identity on H otherwise (when applying this result to the F = ‡FP case
we will also need to add neighbours to x until it has the correct order). By
assumption, we can find n > m and an epimorphism ψ : Fn → H such that
φ ◦ ψ = fnm. Since ψ respects the edge relation we must have ψ(en) = x,
ψ(e′n) = e′m. But now, since en ∈ End(Fn) and ψ is monotone, it is im-
possible for em to be in the image of ψ, contradicting that the latter is an
epimorphism.

Lemma 5.13. Let F be a projective Fraïssé family of trees with (weakly)
coherent epimorphisms that allows splitting edges. Let ⟨Fi | i < ω⟩ be a
Fraïssé sequence for F and let F ⊆

∏
Fi be its projective Fraïssé limit. Let

e = (en)n∈N ∈ F. If there is N ∈ N such that for every m ≥ N , em is an
endpoint of Fm, then e ∈ End(F).

Proof. Assume that (en)n∈N is such that em is an endpoint of Fm for
all m ≥ N . Suppose for a contradiction that e is not an endpoint of F and
let A ⊆ F be an arc with e ∈ A, but e ̸= a1, a2, where a1, a2 are the end-
points of A. Let k be large enough so that ek is an endpoint of Fk, and
fk(a1), fk(a2), fk(e) are pairwise distinct. By Theorem 3.18 fk is monotone,
so by Lemma 3.14 fk(a1), fk(a2) and ek all belong to End(fk(A)), a contra-
diction.
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Lemma 5.14. Let ‡FP be as above, let u = ⟨Fi | i < ω⟩ be a Fraïssé se-
quence for ‡FP with maps fmn ∈ ‡FP (Fm, Fn) and let (F, E) be its projective
Fraïssé limit. Then E ⊆ End(F) and E is dense in F.

Proof. It follows from Lemma 5.13 that E ⊆ End(F). Let now U ⊆ F be
a nonempty open set. We want to show that E ∩U ̸= ∅. Let n ∈ ω be suffi-
ciently large so that there is x ∈ Fn such that f−1

n (x) ⊆ U . Consider any fi-
nite tree T ∈ ‡FP with an epimorphism f ∈ ‡FP (T, Fn) such that p(f)−1(x)
contains an endpoint of T . By definition of a Fraïssé sequence we can find
m ≥ n and g ∈ ‡FP (Fm, T ) such that f ◦ g = fmn . Since the preimage of an
endpoint through a (weakly) coherent map always contains an endpoint, this
implies that there is an endpoint y ∈ End(Fm) with f−1

m (y) ⊆ U . Now the
point of F determined by the sequence e(fkm)(y) for k ≥ m is an endpoint
by Lemma 5.13 and is contained in both E and U by construction.

As a consequence of the previous two lemmas and Proposition 5.12, we
obtain the following corollary:

Corollary 5.15. If (U, E) is the projective Fraïssé limit of ‡FP , then
π(E) is a dense set of endpoints in |U| ≃ WP , where π : U → |U| is the
topological realization.

The last piece we need before being able to prove the desired countable
dense homogeneity result for the endpoints of WP is Theorem 5.22. Intu-
itively, this theorem will say that the embedding part of the morphisms is
not important in determining whether a sequence is Fraïssé for ‡FP . This is
not surprising, since in Theorem 5.10 the embedding part of the morphisms
played no role. We first need to introduce new definitions and make a few
simple remarks.

Definition 5.16. Let X be a dendrite. Given any three distinct x, y, z
∈ X, their centre C(x, y, z) is the unique point in [x, y]∩ [y, z]∩ [x, z]. A set
F ⊆ X is called centre-closed if C(f1, f2, f3) ∈ F whenever f1, f2, f3 ∈ F
are distinct. Given a finite set A ⊆ X, its centre closure is the smallest
centre-closed B ⊆ X with A ⊆ B. Given a finite centre-closed F ⊆ X and
a ∈ F let âF denote the set of connected components of X \{a} that contain
no point of F . Given distinct a, b ∈ F let Ca(b) be the connected component
of X \{a} containing b, Cb(a) the connected component of X \{b} containing
a, and Ca,b = Cb(a) ∩ Ca(b). The partition associated to F is then

ΩF =
⋃
a∈F

âF ∪
{
Ca,b

∣∣ a ̸= b ∈ F with [a, b] ∩ F = {a, b}
}
,

which is exactly the set of connected components of X \ F .
If X is a graph-dendrite instead, we have analogous notions: for any

three distinct points x, y, z ∈ X we define their centre C(x, y, z) to be the
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unique point in [x, y] ∩ [y, z] ∩ [x, z], where those are now arcs in the sense
of topological graphs. The other notions are defined similarly.

Definition 5.17. An immersion of a finite tree A in a graph-dendrite
B is a map f : A → B (which will usually not be a graph homomorphism)
such that for all distinct a, b, c ∈ A,

b ∈ [a, c] ⇐⇒ f(b) ∈ [f(a), f(c)].

In other words, there exist a topological graph A′ obtained from A by replac-
ing every edge of A with an arc (as in Definition 3.3) and a graph embedding
f ′ : A′ → B with f = f ′

∣∣
A
.

Note that the image of an immersion f : A → B is centre-closed, so it
determines a partition Ωf = Ωf(A) of B \ f(A) as above. There are two
particular instances of immersions that will be relevant. They are described
in the following examples.

Example 5.18. An arrow f ∈ ‡FP (B,A) determines an immersion
i(f) : A→ B by setting

i(f)(a) =

{
e(f)(a) if a ∈ End(A),

w(a) otherwise,

where w(a) ∈ B is the witness for the (weak) coherence of p(f) at a.

Example 5.19. Let ⟨Fn | n < ω⟩ with maps fmn ∈ ‡FP (Fm, Fn) be a
sequence in ‡FP and let F with maps f∞n ∈ ‡FP (F, Fn) be its limit. We have
immersions hn : Fn → F given by

x 7→ (p(fn0 )(x), p(f
n
1 )(x), . . . , p(f

n
n−1)(x), x, w

n
n+1(x), w

n
n+2(x), . . .),

where wij(x) denotes the witness for the (weak) coherence of f ji : Fj → Fi at
x for x a ramification point. For endpoints we follow the embeddings instead
of the witnesses, that is

x 7→ (p(fn0 )(x), p(f
n
1 )(x), . . . , p(f

n
n−1)(x), x, e(f

n+1
n )(x), e(fn+2

n )(x), . . .),

when x is an endpoint.

Remark 5.20. Let i : A → B be an immersion of finite trees. Suppose
that f : B → A is a monotone map such that

• for every a ∈ A, f(i(a)) = a,
• for every a ∈ A and every b ∈

⋃
î(a)i(A), f(b) = a,

• for every a ̸= a′ ∈ A with ⟨a, a′⟩ ∈ E(A) and every b ∈ Ci(a),i(a′), f(b) ∈
{a, a′}.

Then f is weakly coherent.

Definition 5.21. We say that a topological graph G is a WP -prespace if
G is a prespace, G is a graph-dendrite, for every p ∈ P the set of ramification
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points of order p is arcwise dense in G and every ramification point of G has
order in P . In particular if G is a WP -prespace, then |G| =WP .

We can now characterize Fraïssé sequences in ‡FP .

Theorem 5.22. A sequence ⟨Fn | n < ω⟩ with maps fmn ∈ ‡FP (Fm, Fn)
is Fraïssé if and only if the inverse limit of p(fmn ) considered as a topological
graph is a WP -prespace.

Proof. The if part of the statement was already proved in Theorem 5.10.
Suppose that ⟨Fn | n < ω⟩ with epimorphisms fmn ∈ ‡FP (Fm, Fn) is a
sequence such that

F = lim←−
(
· · · → Fn+1

p(fn+1
n )

−−−−−→ Fn
p(fnn−1)−−−−−→ · · ·

p(f10 )−−−→ F0

)
is a WP -prespace. We want to show that ⟨Fn |< ω⟩ is a Fraïssé sequence
for ‡FP . In other words, given A ∈ ‡FP and an epimorphism g ∈ ‡FP (A,Fn),
we want to find m ≥ n and an epimorphism h ∈ ‡FP (Fm, A) such that
g ◦ h = fmn . As in Example 5.19, we obtain an immersion hn : Fn → F. More-
over, we also have an immersion j : Fn → A as in Example 5.18. Using the
fact that F is a WP -prespace we can find an immersion k : A→ F such that
k ◦ j = hn. We construct k inductively on elements of A. There is only one
choice for the value of k on j(Fn) such that k◦j = hn. Enumerate A\j(Fn) as
{a1, . . . , ar}. We define k(a1) to be any point of F with ord(a1) = ord(k(a1))
such that k is an isomorphism of trees with the betweenness relation from
j(Fn) ∪ {a1} to hn(A) ∪ {k(a1)}. Such a point k(a1) ∈ F exists because F is
a WP -prespace. Proceeding inductively in a similar manner, we define k(ai)
for all i ≤ r. Now we can find m ≥ n such that, calling f∞m ∈ ‡FP (F, Fm) the
canonical projection, all vertices in k(A) have distinct images through f∞m .
We check that i = p(f∞m ) ◦ k is an immersion of A in Fm.

If a, b, c ∈ A are such that b ∈ [a, c], then k(b) ∈ [k(a), k(c)] because
k is an immersion, and i(b) ∈ [i(a), i(c)] because p(f∞m ) is monotone, so it
must map arcs to arcs. Conversely, suppose for a contradiction that i(b) ∈
[i(a), i(c)] but b ̸∈ [a, c]. Let d ∈ [a, c] be the only point of [a, c] which belongs
to the shortest arc from b to [a, c]. If d = a, then a ∈ [b, c], which, arguing as in
the previous implication, implies k(a) ∈ [k(b), k(c)] and so i(a) ∈ [i(b), i(c)],
a contradiction. If d = c we reach a contradiction in the same manner, which
only leaves the case d ∈ (a, c). But then we have k(d) ∈ [k(a), k(c)] and k(b)
is in a component of k̂(d) that contains neither k(a) nor k(c), since k is an
immersion. By assumption, p(f∞m )(a), p(f∞m )(b), p(f∞m )(c) and p(f∞m )(d) are
pairwise distinct, so we must have i(d) ∈ (i(a), i(c)), since p(f∞m ) maps arcs
to arcs, but i(b) must also be in a component of î(d) containing neither i(a)
nor i(c), a contradiction.
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We can now define a weakly coherent map from Fm to A. We only need
to be careful and make sure that it makes the appropriate diagram commute.
Explicitly, we define h ∈ ‡FP (Fm, A) as follows. Let x ∈ Fm. If x = i(a) for
some a ∈ A, then p(h)(x) = a. If x ∈ âi(A) (as defined in Definition 5.16)
for some a ∈ A, then p(h)(x) = a. If x ∈ Ci(a),i(a′) for some a, a′ ∈ A with
⟨a, a′⟩ ∈ E(A), then we check whether p(g)(a) = fmn (x) or p(g)(a′) = fmn (x)
and define p(h)(x) accordingly. Since the map we have just defined is mono-
tone, it must also be weakly coherent by Remark 5.20. For the embedding
part of h consider a ∈ End(A). If a ∈ e(g)(End(Fn)) set e(h)(a) = e(fmn )(b),
where b ∈ End(Fn) is such that e(g)(b) = a. If instead a is not in the
image of e(g), then e(h)(a) can be any endpoint in p(h)−1(a). Note that
p(h) ◦ e(h)(a) = a for any a ∈ End(A) and g ◦ h = fmn .

We conclude by proving the following theorem, from which Theorem 5.11
follows immediately by the uniqueness of Fraïssé limits.

Theorem 5.23. Let P ⊆ {3, . . . , ω} and let Q ⊆ End(WP ) be a countable
dense set of endpoints. Then ‡FP has a Fraïssé sequence u = ⟨Fi | i < ω⟩
with morphisms fmn ∈ ‡FP (Fm, Fn) such that if (U, D) is its Fraïssé limit,
then π(D) = Q, where π : U→ |U| ∼=WP is the topological realization.

Proof. EnumerateQwithout repetitions as {qi}i∈N. LetA0={q1, q2, q3, c}
where c = C(q1, q2, q3) and, for all 0 < n < ω, let An be the centre closure
of {q1, . . . , qkn}, where (kn)n<ω is an increasing sequence chosen so that
|An+1 ∩ (a, a′)| ≥ 2, whenever a, a′ ∈ An are such that [a, a′] ∩An = {a, a′},
which is possible since Q is dense. We now build a finite graph Fn with a
vertex va for every a ∈ An, and an edge ⟨va, va′⟩ iff [a, a′]∩An = {a, a′}. We
label every vc ∈ Fn that comes from a ramification point c ∈ An with the
order of c inWP . It only remains to define morphisms fn+1

n ∈ ‡FP (Fn+1, Fn).
Since we have An ⊆ An+1, we also get an immersion i : Fn → Fn+1 that
maps va ∈ Fn to va ∈ Fn+1, for every a ∈ An. The embedding part of fn+1

n

is exactly i
∣∣
End(Fn)

. For the projection part, for all pairs a, a′ ∈ An with
[a, a′] ∩ An = {a, a′}, we partition Cva,va′ ∪ {va, va′} ⊆ Fn+1 into two sets
H,H ′ such that

(1) va ∈ H, va′ ∈ H ′,
(2) H,H ′ are connected,
(3) |H|, |H ′| ≥ 2.

Note that the last condition is easily satisfied since we have assumed that
|(a, a′)∩An+1| ≥ 2. We then define p(fn+1

n )(H) = va and p(fn+1
n )(H ′) = va′ .

By construction, p(fn+1
n ) is monotone and satisfies the hypothesis of Re-

mark 5.20, so it must be weakly coherent.
Thanks to Theorem 3.7 and the condition |(a, a′) ∩ An+1| ≥ 2, the limit

of this sequence is a prespace. Since Q is dense we know that
⋃
nAn =
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Br(WP )∪Q. Using this fact it is easy to check that the limit of this sequence
is a WP -prespace, so that the sequence is Fraïssé by Theorem 5.22. Denoting
by (U, D) its limit, we now only need to identify (|U|, π(D)) with (WP , Q).
To any a ∈ An+1 \An we have associated the point

ra = (p(fn+1
0 )(va), . . . , p(f

n+1
n−1 )(va), p(f

n+1
n )(va), va, va, . . .)

of U, which is a ramification point by Theorem 4.11 if a is a ramification
point of An+1, and which is an endpoint if a is an endpoint of An+1. We
define a continuous function h : Br(WP ) ∪Q → |U| by setting h(a) = π(ra)
for every a ∈

⋃
nAn. To verify the continuity of h note that if xn → x is a

convergent sequence of points in the domain of h whose limit is also in the
domain of h, then for any m ∈ N we can find N ∈ N large enough so that Am
does not separate xk and x, for any k ≥ N . In other words, rxk and rx agree
in at least the first m coordinates, which implies that rxk → rx, since m was
arbitrary. This shows that the function a 7→ ra is continuous, from which
the continuity of h follows immediately, since h is obtained by composition
of that function with π, which is continuous. Note that the image of h is
dense in |U| (in particular, any ramification point of |U| is in the image), h is
injective, and h preserves the betweenness relation. We will now extend h to
a continuous function h̃ : WP → |U| and then verify that h̃ is injective and
surjective. For x ∈WP , let

osc(h, x) = inf {diamh(U) | U is an open neighbourhood of x},
where h(U) means h(U∩(Br(WP )∪Q)). By Kuratowski’s extension theorem
(see Theorem 3.8 and its proof in [15]), in order to extend the continuous
function h to a continuous function h̃ : WP → |U|, it suffices to show that
osc(h, x) = 0 for every x ∈ End(WP ) \Q or when x is a regular point.

• In the first case, let (xi)i<ω be a sequence in Br(WP ) with xi+1 ∈ [xi, x]
for every i, xi → x and, for every i < ω, let Cxi(x) be the compo-
nent of WP \ {xi} containing x. Then {x} =

⋂
i<ω Cxi(x) and we have⋂

i<ω h(Cxi(x)) = ∅. Indeed, if y ∈ Br(WP ) ∪ Q and w is the unique
point in [y, x0] ∩ [y, x] ∩ [x0, x], then there is an i large enough so that
w ̸∈ Cxi(x), y ̸∈ Cxi(x) and, since h preserves the betweenness relation,
h(y) ̸∈ Cxi(x). Since Cxi+1(x) ⊆ Cxi(x) for every i (because xi+1 ∈ [xi, x]),
this shows that

⋂
i<ω h(Cxi(x)) = ∅. Therefore by compactness of WP we

have diam(h(Cxi(x)))→ 0 and hence osc(h, x) = 0.
• If ord(x) = 2 let (yi)i<ω and (zi)i<ω be two sequences in Br(WP ) with
yi+1 ∈ [yi, x], yi → x, zi+1 ∈ [x, zi], zi → x and x ∈ [yi, zi] for every i < ω.
Letting Cyi,zi(x) denote the component of X \{yi, zi} containing x, we can
argue as in the previous case to find that {x} =

⋂
i<ω Cyi,zi(x) and that⋂

i<ω h(Cyi,zi(x)) = ∅. Similarly to the previous case, since Cyi+1,zi+1(x)
⊆ Cyi,zi(x) for every i, this shows that osc(h, x) = 0.
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By the discussion above we can now extend h to a continuous function
h̃ : WP → |U|. Note that h̃ preserves the betweenness relation. Indeed, the
betweenness relation {(x, y, z) ∈W 3

P | x ∈ [y, z]} is closed in W 3
P . Therefore

if xn → x, yn → y, zn → z, xn ∈ [yn, zn], x ∈ [y, z], xn, yn, zn ∈ Br(WP ),
we see that h̃(xn) ∈ [h̃(yn), h̃(zn)], and by continuity of h̃, we get h̃(x) ∈
[h̃(y), h̃(z)].

Since h̃(WP ) ⊇ h(Br(WP ) ∪Q) = |U|, h̃ must be surjective.
To show injectivity of h̃ take x ̸= y ∈ WP such that none of the x, y is

a ramification point. Since the ramification points are arcwise dense in WP ,
pick t ∈ Br(WP ) with t ∈ [x, y]. Then h̃(t) ∈ [h̃(x), h̃(y)] and since none of
the h̃(x), h̃(y) is a ramification point, we obtain h̃(t) ̸= h̃(x), h̃(y). Therefore
h̃(x) ̸= h̃(y).

Moreover, we have h̃(Q) = π(D) by construction, since h̃(Q) = h(Q),
which concludes the proof.
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