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Abstract. We give upper and lower estimates of the heat kernels for Schrödinger
operators H = −∆+ V with nonnegative and locally bounded potentials V in Rd, d ≥ 1.
We observe a factorization: the contribution of the potential is described separately for
each spatial variable, and the interplay between the spatial variables is seen only through
the Gaussian kernel – optimal in the lower bound and nearly optimal in the upper bound.
In some regimes we observe the exponential decay in time with the rate corresponding to
the bottom of the spectrum of H. The upper estimate is more local; it applies to general
potentials, including confining ones (i.e. V (x) → ∞ as |x| → ∞) and decaying ones (i.e.
V (x) → 0 as |x| → ∞), even if they are nonradial, and their mixtures. The lower bound
is specialized to the confining case, and the contribution of the potential is described in
terms of its radial upper profile. Our results take the sharpest form for confining potentials
that are comparable to radial monotone profiles with sufficiently regular growth – in this
case they lead to two-sided qualitatively sharp estimates. In particular, we describe the
large-time behaviour of nonintrinsically ultracontractive Schrödinger semigroups – this
has been a long-standing open problem. Our methods combine probabilistic techniques
with analytic ideas.

1. Introduction. We consider the Schrödinger operator H = −∆ + V
acting in L2(Rd, dx), d ≥ 1, where the potential V : Rd → [0,∞) is a locally
bounded function. The corresponding Schrödinger semigroup

{
e−tH : t ≥ 0

}
consists of integral operators, i.e.

e−tHf(x) =
�

Rd

ut(x, y)f(y) dy, f ∈ L2(Rd, dx), t > 0.

It is known that (0,∞) × Rd × Rd ∋ (t, x, y) 7→ ut(x, y) is a continuous
function, symmetric in (x, y). It satisfies the inequality ut(x, y) ≤ gt(x, y),
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where

gt(x, y) =
1

(4πt)d/2
exp

(
−|y − x|2

4t

)
is the Gauss–Weierstrass kernel, the heat kernel of the free kinetic term −∆.
Our standard references for Schrödinger operators and semigroups are the
paper by Simon [27] and the monographs by Reed and Simon [23], Demuth
and van Casteren [11], and Chung and Zhao [8].

The main goal of the paper is to find upper and lower estimates of the
integral kernels ut(x, y), as uniform and informative as possible. We want
to understand the contribution of the potential and the relation between
ut(x, y) and the heat kernel gt(x, y) of the kinetic term −∆.

Estimates of Schrödinger heat kernels have been widely studied in the
literature. For a class of nonnegative and locally bounded potentials, re-
search concentrated mainly on two extremal situations: when the potential
is confining (i.e. V (x) → ∞ as |x| → ∞) and decaying (i.e. V (x) → 0 as
|x| → ∞). Note that confining potentials are locally bounded and unbounded
at infinity, while decaying ones are always bounded.

Known results for confining potentials include classical intrinsic ultra-
contractivity estimates by Davies and Simon [9, 10], on-diagonal estimates
for polynomial potentials obtained by Sikora [26], and short-time bounds by
Metafune, Pallara and Rhandi [20], Metafune and Spina [21], and Spina [30].
For the decaying case we refer to the paper by Zhang [32]. See also further
references in those papers. It is known to be a challenging problem to identify
the actual contribution of the potential in a sharp and clear way. For both
cases, the sharpest results were obtained for rather restricted classes of po-
tentials, mainly of polynomial type. Moreover, when the potential is bounded
or it grows at infinity not too fast, a connection with the original Gaussian
kernel is expected as well. Some estimates include the term gct(x, y), but the
optimality of the constant c for the class of potentials we are interested in
this paper is still an open issue. In this connection, we mention the recent
papers by Bogdan, Dziubański and Szczypkowski [2] and Jakubowski and
Szczypkowski [13] which thoroughly analyze the problem of uniform compa-
rability of the Schrödinger heat kernel with the original heat kernel gt(x, y)
of the kinetic term −∆, and give sharp conditions for this property. We also
refer to these papers for an extensive discussion of the related literature.

Theorems 2.1 and 2.2 – the main results of this paper – give estimates of
the kernel ut(x, y) global in time and space.

The upper estimate in Theorem 2.1 applies to every nonnegative locally
bounded potential, i.e. it allows one to analyze in the same framework the
functions V of various types, including confining and decaying potentials,
functions bounded away from zero or even mixtures of all of these types.
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For instance, in the one-dimensional case it covers highly nonsymmetric po-
tentials which are confining on one half-line, and decaying or bounded on
the other. This is the first novelty of our paper. Interestingly, Theorem 2.1
easily extends to singular V ’s. Moreover, this bound matches structurally
the lower estimate in Theorem 2.2 which is specialized to confining poten-
tials or potentials with confining components in unbounded subsets of the
space. These two theorems lead to qualitatively sharp two-sided estimates
for confining potentials that are comparable to radial monotone profiles with
sufficiently regular growth – this is the strongest result of the paper; see
Examples 6.2 and 6.3 for the statement and illustration. A similar result has
also been obtained independently by Chen and Wang in the recent interesting
preprint [5], which we discuss in Remark 6.7 below. These estimates clar-
ify the large-time properties of nonintrinsically ultracontractive Schrödinger
semigroups. This problem has been solved just recently for a large class of
nonlocal operators [16], but it remained open for classical Schrödinger semi-
groups.

We remark that our estimates identify in a fairly informative and uni-
form way the dependence on the potential and the dimension of the space.
Moreover, we find an optimal Gaussian term in the lower bound and show
that the Gaussian term in the upper bound can be made nearly optimal. We
propose a novel approach which leads to fairly short and direct proofs. It
combines probabilistic and analytic ideas, and does not require any further
regularity or smoothness assumptions on the potential. To the best of our
knowledge, the estimates of this type, global in time and space, have not
been available in the literature so far.

The structure of the paper is as follows. In Section 2 we present The-
orems 2.1 and 2.2, discuss the structure of estimates, uniform rates and
constants, and explain the ideas of proofs. Section 3 contains preliminaries.
In Sections 4 and 5 we give the proofs of the upper bound and the lower
bound, respectively. Finally, in Section 6, we discuss applications of our es-
timates and connections to the literature. In particular, Subsection 6.1 is
devoted to analysis of confining potentials, and the two-sided estimates we
get for this class. In Subsection 6.2 we illustrate the upper bound for de-
caying potentials. In Subsections 6.3 and 6.4 we analyze the examples of
potentials that are bounded away from zero, and some more general cases,
including mixtures and nonradial potentials. In Subsection 6.5 we show that
Theorem 2.1 extends to singular potentials.

Notation. For x∈Rd and r > 0 we denote Br(x)={y ∈ Rd : |y−x| < r}
and Br(x) = {y ∈ Rd : |y − x| ≤ r}. For x = 0 we write Br, Br. Also,
a ∧ b := min {a, b}, a ∨ b := max {a, b}.
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2. Presentation of results. Our first main result gives an upper esti-
mate in terms of the lower profile of the potential,

V∗(x) := inf
z∈B|x|/2(x)

V (z), x ∈ Rd.

We use the following notation:

H(t, x) := exp

(
−
√
2

32

((
V∗(x) +

µ0

4|x|2

)
t ∧ 2|x|

√
V∗(x) +

µ0

4|x|2

))
,

for x ̸= 0, H(t, 0) := exp
(
−

√
2µ0

32

)
, and

γ1 := λ0/2.

The number 0 ≤ λ0 := inf σ(H) is the bottom of the spectrum of the
Schrödinger operator H, and µ0 > 0 is the principal eigenvalue of the oper-
ator −∆B1 , the (positive) Dirichlet Laplacian on the ball B1.

Theorem 2.1. There exists a constant c1 = c1(d) such that for every
0 ≤ V ∈ L∞

loc(Rd), x, y ∈ Rd and t > 0 we have

ut(x, y) ≤ c1H(t, x)H(t, y)
(
g2t(x, y) ∧ e−γ1tgt(0, 0)

)
.

We note that c1 can be chosen to be

c1 = 2(3d+4)/2e
√
µ0/8(C0 ∨ C),

where the constants C0 and C (independent of V ) come from (3.2) and
Lemma 4.3 below.

The upper bound in Theorem 2.1 is uniform in 0 ≤ V ∈ L∞
loc(Rd) in the

sense that the rate
√
2/32 in H(t, x) and the constant c1 are independent

of V . This estimate is a version of a more general result, stated as Theo-
rem 4.1, which allows one to get an upper bound with the Gaussian term
gat(x, y) with a > 1 arbitrarily close to 1, i.e. the Gaussian term can be
made nearly optimal. Note, however, that this can be done at the cost of
the absolute constant in the exponent of H(t, x). For simplicity, here we just
choose a = 2. The rate

√
2/32 is not optimal, but we state it here explicitly

in order to show the uniform structure of the estimate. For applications of
Theorem 2.1, examples and further discussions we refer the reader to Sec-
tion 6. We remark that the theorem gives qualitatively sharp bounds for a
large class of potentials.

Our second main result gives a lower estimate of the kernel ut(x, y) in
terms of the radial upper profile of the potential,

V ∗(r) := sup
z∈B2r

V (z), r ≥ 0.
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We use the shorthand notation

tρ :=
ρ

2
√

V ∗(ρ) + µ0

4|x|2
, ρ ≥ 1,

K(t, ρ) := exp

(
−9

4

((
V ∗(ρ) +

µ0

4ρ2

)
t ∧ 2ρ

√
V ∗(ρ) +

µ0

4ρ2

))
,

ρx := |x| ∨ 1,

γ2 := d+ V ∗(1) + µ0/4.

Theorem 2.2. There exists c2 = c2(d) such that for every 0 ≤ V ∈
L∞
loc(Rd), x, y ∈ Rd and t > 0 we have the following estimates:

(1) If 4tρx∨ρy ≤ t, then

ut(x, y) ≥ c2e
−γ2tgt(0, 0)K(t, ρx)K(t, ρy).

(2) If 4tρx∨ρy ≥ t, then

ut(x, y) ≥ c2K(t, ρx ∨ ρy)gt(x, y).

The constant c2 in the above theorem can be taken to be

c2 =
(C̃/4)4

4dΓ (d/2 + 1)3
,

where C̃ is the constant (independent of V ) from the auxiliary estimate (5.1)
below.

As before, the estimate in Theorem 2.2 is uniform in 0 ≤ V ∈ L∞
loc(Rd)

– the rate 9/4 in K(t, ρ) and the constant c2 are independent of V , and
the Gaussian term gt(x, y) in this bound is optimal. This result is rather
specialized to confining potentials for which it leads to a global estimate in
terms of the upper profile V ∗ – this estimate is the most informative for po-
tentials with radial profiles. Together with Theorem 2.1, it also immediately
gives two-sided estimates; see Corollary 6.1. These bounds are qualitatively
sharp for potentials that are comparable to radial monotone functions with
sufficiently regular growth; see Examples 6.2 and 6.3. However, it can still
be useful in less regular situations. For example, if V is a potential with
confining component in some unbounded subset D of Rd, then our result
may give a sharp lower estimate for x, y ∈ D. On the other hand, due to
the appearance of the exponential time rate which is always present in our
bound, the theorem seems to be useless for decaying potentials. In this case,
it just leads to the obvious estimate ut(x, y) ≥ e−Ctgt(x, y).

Observe that the estimate in Theorem 2.2(1) can be equivalently rewrit-
ten as

ut(x, y) ≥ c2e
−γ2tgt(0, 0)K(t, ρx ∨ ρy)K(t, ρx ∧ ρy),

and the termK(t, ρx∨ρy) is already determined by the assumption 4tρx∨ρy ≤ t.
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Also, we note that in part (2) we get an estimate with the kernel K
in which the rate 9/4 is replaced by 1. However, for more clarity, in the
statement we keep the same rate in both (1) and (2).

Structure of our estimates and the uniform rates and constants.
Our estimates show a factorization: the terms H and K are separate for each
spatial variable, and if λ0 > 0, then additional decay in time is present as
well. The interaction between spatial variables is described by the Gaussian
kernel.

The structure of H and K is exactly the same; for small spatial variables
these functions are less than 1 and bounded away from zero, uniformly in
t > 0. However, for large z and t > 0, they clearly show a competition
between the two factors

(2.1) exp

(
−c

(
V (z) +

µ0

4|z|2

)
t

)
and exp

(
−2c|z|

√
V (z) +

µ0

4|z|2

)
.

At the technical side, the contribution of the potential is described by the
profiles V∗ and V ∗, and the constant c is equal to 9/4 in the lower bound
and

√
2/32 in the upper bound. Of course, these numerical constants are

not optimal, but they are explicit and absolute numbers, independent of the
potential V and the dimension d; the dependence on d is expressed through
µ0 only, and our proofs show that the presence of the term µ0/|x|2, at least
in the first expression in (2.1), is correct and it makes the exponent sharper.
This term plays an important role in the proof of the lower estimate. Of
course, in the case of confining potentials, the expression V (z) + µ0/(4|z|2)
can be replaced by V (z) for large z’s, but this is possible only at the cost of
the constant depending on V and d – this would destroy the absoluteness of
the rate 9/4 appearing in the lower bound. Also the multiplicative constants
c1, c2 are independent of V (c1, c2 depend on d only). In this sense our results
are uniform with respect to V . On the other hand, the time rates γ1, γ2,
giving the estimates of λ0 (in the confining case, λ0 is the ground state
eigenvalue), are necessarily dependent on the potential and the dimension.

The effect of the competition in (2.1) strongly depends on the type of the
potential and the rate of its growth or decay at infinity. Further discussion
in Section 6 will be divided into separate parts, including confining and
decaying cases.

A few words about the proofs. Our proofs are based on the Feynman
–Kac representation of the Schrödinger semigroup {e−tH : t ≥ 0} with re-
spect to Brownian motion, some general estimates for the exit time of this
process from a ball, and the recent sharp estimate for the semigroup of the
corresponding killed process. We develop a new approach which allows us to
find a rather direct and short argument.
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Theorem 2.1 follows from more general Theorem 4.1. The key step in the
proof is based on the observation that the Laplace transform of the exit time
from a ball mentioned above, evaluated at λ = V (x) (formally we see here
the lower profile of the potential) takes the form of the second term appearing
in (2.1). We use for this the classical result of Wendel [31]. Interestingly, this
is exactly the shape of the ground state φ0 of the Schrödinger operator H
[28, 3]. These steps are made in Lemmas 4.5 and 4.3. The proof of Theo-
rem 4.1 is concluded by symmetrizing the estimate obtained in Lemma 4.5,
through the Chapman–Kolmogorov (semigroup) property – this leads to the
factorization of the estimate in a very natural way.

Proving Theorem 2.2 seems to be a more challenging problem, because
we want to find a lower estimate matching the upper bound. More precisely,
we want to get a factorization and keep the same structure of the terms
appearing in the estimate. First, in Lemma 5.1, we prove a general estimate
which covers part (2) of the theorem. The structure of the upper bound and
the estimate in this lemma suggest the structure of tρx – the space-dependent
threshold time which determines the shape of the estimate. We observe that
the correct form of the estimate, matching the upper bound, is determined
by the position of the time t with respect to tρx∨ρy . The key technical step
is made in Lemma 5.2 which allows us to get part (1) of the theorem. The
tricky estimates in the proof of this lemma show in a clear way the interplay
between the time and the spatial variables. One can say that the key idea
used in the proof of the lower bound is to reduce the problem to estimating
the semigroup of the process in a ball, without losing too much information.
Interestingly, we do not use the joint distribution of the exit position and
the exit time of the process from a ball. The only tool we need is the lower
estimate for the kernel of the semigroup of the killed process with sharp
Gaussian term, recently obtained by Małecki and Serafin [19].

3. Preliminaries. Let (Xt)t≥0 be the Brownian motion running at twice
the speed, with values in Rd, d ≥ 1, over a probability space (Ω,F ,P). This
is the stochastic process with continuous paths, starting from 0, such that

P(Xt ∈ dy) =
1

(4πt)d/2
exp

(
−|y|2

4t

)
dy, t > 0,

Note that the process (Xt)t≥0 has the scaling property: Xat has the same
distribution as

√
aXt, a > 0. We denote by Px the probability measure for

the process starting from x ∈ Rd, i.e.

Px(Xt ∈ dy) := P(Xt + x ∈ dy) = gt(x, y) dy,

where

gt(x, y) =
1

(4πt)d/2
exp

(
−|y − x|2

4t

)
,
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and by Ex the expected value with respect to Px. We use the notation
Ex[F ; A] =

	
A F dPx.

Let 0 ≤ V ∈ L∞
loc(Rd) and consider the Schrödinger operator H =

−∆ + V . The semigroup operators e−tH , t > 0, can be represented via
the Feynman–Kac formula:

e−tHf(x) = Ex

[
exp

(
−

t�

0

V (Xs) ds
)
f(Xt)

]
, f ∈ L2(Rd, dx)

(see Simon [29], Demuth and van Casteren [11], or Chung and Zhao [8]).
Consequently, the corresponding integral kernels ut(x, y) can be expressed
as

(3.1) ut(x, y) = lim
s↗t

Ex

[
e−

	s
0 V (Xu) dugt−s(Xs, y)

]
, x, y ∈ Rd, t > 0

(see [11, Proposition 2.7]). In particular, ut(x, y) ≤ gt(x, y).
Let τD := inf {t ≥ 0 : Xt /∈ D} be the first exit time of the process

(Xt)t≥0 from an open and bounded set D ⊂ Rd. In this paper we mainly
consider the case when D = Br, r > 0. Recall that the transition semigroup
of the Brownian motion killed upon exiting Br consists of the operators

GBr
t f(x) = Ex[f(Xt); t < τBr ] =

�

Br

f(y)gBr
t (x, y) dy, f ∈ L2(Br, dy), t > 0,

with continuous and bounded transition densities gBr
t (x, y). Due to the scal-

ing property, it is sufficient to analyze the case r = 1. All these operators
are of Hilbert–Schmidt type; in particular, the spectra of GB1

t , t > 0, consist
of eigenvalues e−µnt, where the numbers 0 < µ0 < µ1 ≤ µ2 ≤ · · · → ∞ are
eigenvalues of −∆B1 , the (positive) Dirichlet Laplacian on the ball B1. The
operator ∆B1 is the infinitesimal generator of the semigroup {GB1

t : t ≥ 0}.
The number µ0 := inf spec(−∆B1) is called the ground state (or principal)
eigenvalue; the corresponding eigenfunction ϕ0 ∈ L2(B1, dx) is bounded,
continuous and strictly positive on B1.

It is known that due to intrinsic ultracontractivity (see Davies and Simon
[10, 9]), there exists a constant c > 0 such that

gB1
t (x, y) ≤ ce−µ0tϕ0(x)ϕ0(y), x, y ∈ B1, t ≥ 1.

By integrating this inequality over y ∈ B1, we get

Px(t < τB1) ≤ ce−µ0tϕ0(x)∥ϕ0∥1, x ∈ B1, t ≥ 1.

Consequently,

(3.2) P0(t < τB1) ≤ C0e
−µ0 t, t > 0,

where C0 := eµ0 ∨ cϕ0(0)∥ϕ0∥1 > 1.
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4. The proof of the upper bound. Throughout this section we use
the following constants: for a > 1 we define

C1 = C1(a) :=

(
2(C0 ∨ C)(a−1)/aad/2

(
a

a− 1

) (a−1)d
2a

)2

(the constant C0 comes from (3.2) above and C (independent of a and V ) is
determined in Lemma 4.3 below) and

C2 = C2(a) :=
1

2a
, C3 = C3(a) :=

2µ0(a− 1)

a2
, C4 = C4(a) :=

1

4

√
a− 1

a
.

We first prove the most general Theorem 4.1, and then we come back to
Theorem 2.1.

Theorem 4.1. Let 0 ≤ V ∈ L∞
loc(Rd) and let x, y ∈ Rd, t > 0, a > 1.

Then
ut(x, y) ≤ C1h(t, x)h(t, y)gat(x, y)

and

ut(x, y) ≤
√

C1
1

(2aπt)d/2
exp

(
−λ0

2
t

)√
h(t, x)

√
h(t, y),

where

h(t, x) := exp

(
−
((

C2V∗(x) +
C3

|x|2

)
t ∧ C4

√
V∗(x) |x|

))
.

We use the convention that 1/|x|2 = +∞ for x = 0, so that h(t, 0) = 1.
The proof of the theorem will be given after a sequence of lemmas. We start
with a remark.

Remark 4.2. The constants appearing in the estimates in Theorem 4.1
are not optimal, but they are explicit. In many cases, it is enough to take
e.g. a = 2. Nevertheless, depending on applications, one can choose the
parameter a to be arbitrarily close to 1, which makes the Gaussian term
gat(x, y) nearly optimal. Recall that the lower bound in Theorem 2.2 holds
with gt(x, y). Note, however, that C3, C4 ↓ 0 as a ↓ 1.

Lemma 4.3. There exists a constant C = C(d) ≥ 1 such that for every
λ ≥ 0 and r > 0 we have

E0[e
−λτBr ] ≤ Ce−

√
λr/2.

Proof. First note that for λ = 0 the equality is trivial. Assume that
λ > 0. If d = 1, then the assertion simply follows from the classical formula
for the Laplace exponent of the first passage time for the one-dimensional
Brownian motion (see e.g. [24, Theorem 5.13]). If d ≥ 2, then we use the
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result of Wendel [31, (4)], which says that

(4.1) E0[e
−λτBr ] =

1

2(d−2)/2Γ (d/2)

(
√
λ r)(d−2)/2

I(d−2)/2(
√
λ r)

,

where

(4.2) Iν(u) =
∞∑
k=0

(u/2)ν+2k

k!Γ (ν + k + 1)
, u, ν ≥ 0,

is the modified Bessel function of the first kind (see e.g. [12, 10.25.2]). Note
that Wendel considered the standard Brownian motion while we work with
the Brownian motion running at twice the speed, and τBr is the exit time of
our process. Therefore the right hand side of (4.1) is the original formula of
Wendel with r replaced by r/

√
2 (or equivalently with λ replaced by λ/2).

It is known (see [12, 10.30.4]) that

lim
u→∞

Iν(u)
√
2πu

eu
= 1, ν ≥ 0.

This implies that there exists u0 = u0(d) > 0 such that

u(d−2)/2

2(d−2)/2Γ (d/2)I(d−2)/2(u)
≤ e−u/2, u ≥ u0.

On the other hand, by keeping only the term for k = 0 in the series (4.2),
we get

u(d−2)/2

2(d−2)/2Γ (d/2)I(d−2)/2(u)
≤ 1 ≤ eu0/2e−u/2, u ∈ (0, u0].

The assertion of the lemma then follows from the representation (4.1) with
C = eu0/2.

Remark 4.4. By direct inspection of the last lines of the proof, we can
easily obtain the estimate of Lemma 4.3 in this form: for every ε ∈ (0, 1)
there exists a constant C = C(d, ε) ≥ 1 such that

E0[e
−λτBr ] ≤ Ce−(1−ε)

√
λr,

i.e. the constant in the exponent can be arbitrarily close to 1 at the cost of
the multiplicative constant C. For clarity, we keep the statement and the
proof in the present, simpler form.

Lemma 4.5. Let 0 ≤ V ∈ L∞
loc(Rd) and let x, y ∈ Rd, t > 0, a > 1. Then

ut(x, y) ≤
√

C1 exp

(
−
(
2

(
C2V∗(x) +

C3

|x|2

)
t ∧ C4

√
V∗(x) |x|

))
gat(x, y).

Proof. Let x, y ∈ Rd, t > 0 and let a > 1. If x = 0, then e−C4

√
V∗(x)|x|=1.

Consequently,
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ut(x, y) ≤ gt(x, y) ≤ ad/2gat(x, y) = ad/2e−C4

√
V∗(x)|x|gat(x, y)

and the estimate trivially holds. Let x ̸= 0 and denote b = a/(a− 1) so that
1/a+ 1/b = 1. We have

ut(x, y) =
�

Rd

ut/a(x, z)ut/b(z, y) dz

= Ex

[
e−

	t/a
0 V (Xs)dsut/b(Xt/a, y)

]
= Ex

[
e−

	t/a
0 V (Xs)dsut/b(Xt/a, y); t/a < τB|x|/2(x)

]
+ Ex

[
e−

	t/a
0 V (Xs)dsut/b(Xt/a, y); t/a ≥ τB|x|/2(x)

]
=: I1 + I2.

Clearly,
I1 ≤ e−(t/a)V∗(x)Ex[gt/b(Xt/a, y); t/a < τB|x|/2(x)]

and

I2 ≤ Ex

[
e−

	τB|x|/2(x)
0 V (Xs)dsgt/b(Xt/a, y)

]
≤ Ex

[
e
−V∗(x)τB|x|/2(x)gt/b(Xt/a, y)

]
,

and, by Hölder’s inequality, we get

I1 ≤ e−(t/a)V∗(x)Px(t/a < τB|x|/2(x))
1/bEx[(gt/b(Xt/a, y))

a]1/a,(4.3)

I2 ≤ Ex[e
−bV∗(x)τB|x|/2(x) ]1/bEx[(gt/b(Xt/a, y))

a]1/a.(4.4)

By space homogeneity and scaling of the Brownian motion, and the estimate
(3.2), we obtain

Px(t/a < τB|x|/2(x))
1/b = P0

(
4t

a|x|2
< τB1

)1/b

≤ C
1/b
0 exp

(
− 4t

ab|x|2
µ0

)
.

Similarly, Lemma 4.3 applied to λ = bV∗(x) and r = |x|/2 gives the estimate

Ex

[
e
−bV∗(x)τB|x|/2(x)

]1/b
= E0

[
e
−bV∗(x)τB|x|/2(0)

]1/b ≤ C1/be
−
√

V∗(x) |x|
4
√
b .

Moreover,

Ex[(gt/b(Xt/a, y))
a]1/a =

( �

Rd

gt/a(x, z)gt/b(z, y)(gt/b(z, y))
a−1 dz

)1/a

≤
(

b

4πt

) (a−1)d
2a ( �

Rd

gt/a(x, z)gt/b(z, y) dz
)1/a

=

(
b

4πt

) (a−1)d
2a

(gt(x, y))
1/a = ad/2b

(a−1)d
2a gat(x, y).
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With these estimates we can now come back to (4.3) and (4.4) and write

I1 ≤ C
(a−1)/a
0 ad/2

(
a

a− 1

) (a−1)d
2a

exp

(
− t

a
V∗(x)−

4(a− 1)t

a2|x|2
µ0

)
gat(x, y),

I2 ≤ C(a−1)/aad/2
(

a

a− 1

) (a−1)d
2a

exp

(
−1

4

√
a− 1

a

√
V∗(x) |x|

)
gat(x, y).

We conclude the proof by putting together the estimates for the expectations
I1 and I2.

Proof of Theorem 4.1. Let x, y, z ∈ Rd, t > 0 and a > 1. First observe
that by Lemma 4.5 and the symmetry of the kernel, we have

ut/2(x, z)

≤
√

C1 exp

(
−
((

C2V∗(x) +
C3

|x|2

)
t ∧ C4

√
V∗(x) |x|

))
g(a/2)t(x, z)

and

ut/2(z, y)

≤
√
C1 exp

(
−
((

C2V∗(y) +
C3

|y|2

)
t ∧ C4

√
V∗(y) |y|

))
g(a/2)t(z, y).

The first estimate of the theorem follows directly from these bounds and the
Chapman–Kolmogorov identity ut(x, y) =

	
Rd ut/2(x, z)ut/2(z, y) dz.

One more use of the Chapman–Kolmogorov property and the symmetry
of the kernel, and the Cauchy–Schwarz inequality, give us

ut(x, y) =
�

Rd

ut/2(x, z)ut/2(y, z) dz

≤
( �

Rd

u2t/2(x, z) dz
)1/2( �

Rd

u2t/2(y, z) dz
)1/2

= (ut(x, x))
1/2(ut(y, y))

1/2

and

ut(x, x) =
�

Rd

u2t/2(x, z) dz = ∥e−(t/4)Hut/4(x, ·)∥22

≤ ∥e−(t/4)H∥22,2∥ut/4(x, ·)∥22 = e−
λ0
2
tut/2(x, x).

Consequently,

(4.5) ut(x, y) ≤ (ut/2(x, x))
1/2(ut/2(y, y))

1/2e−
λ0
2
t.
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Now, from Lemma 4.5 we have

ut/2(x, x)

≤
√
C1 exp

(
−
((

C2V∗(x) +
C3

|x|2

)
t ∧ C4

√
V∗(x) |x|

))
g(a/2)t(x, x).

By applying this estimate to both the diagonal terms on the right hand side
of (4.5), we obtain the second claimed bound of the theorem.

Proof of Theorem 2.1. By setting a = 2 in Theorem 4.1, we have C2 =
1/4, C3 = µ0/2, C4 =

√
2/8, and consequently

h(t, x) ≤ exp

(
−
√
2

16

((
V∗(x) +

µ0

4|x|2

)
t ∧ 2|x|

√
V∗(x)

))
and √

h(t, x) ≤ exp

(
−
√
2

32

((
V∗(x) +

µ0

4|x|2

)
t ∧ 2|x|

√
V∗(x)

))
.

Moreover, recall that

H(t, x) = exp

(
−
√
2

32

((
V∗(x) +

µ0

4|x|2

)
t ∧ 2|x|

√
V∗(x) +

µ0

4|x|2

))
,

for x ̸= 0, and H(t, 0) = exp
(
−

√
2µ0

32

)
. We will prove that

(4.6)
√

h(t, x) ≤ exp

(√
µ0

16

)
H(t, x).

Once this is done, the assertion follows from Theorem 4.1 with a = 2 and
the obvious inequality h(t, x) ≤

√
h(t, x). Since√

h(t, 0) = 1 ≤ exp

(
(2−

√
2)
√
µ0

32

)
= exp

(√
µ0

16

)
H(t, 0),

(4.6) holds for x = 0. We assume that x ̸= 0 and consider two cases.
If V∗(x) ≥ µ0/(4|x|2), then by the Taylor approximation,

0 < |x|
(√

V∗(x) +
µ0

4|x|2
−
√
V∗(x)

)
≤ |x|

2
√

V∗(x)

µ0

4|x|2

≤ |x|
2
√

µ0

4|x|2

µ0

4|x|2
=

√
µ0

4
.

This gives

exp

(
−
√
2

16
|x|

√
V∗(x)

)
≤ exp

(√
µ0

32

)
exp

(
−
√
2

16
|x|

√
V∗(x) +

µ0

4|x|2

)
.

On the other hand, if V∗(x) ≤ µ0/(4|x|2), then
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exp

(√
2

16
|x|

√
V∗(x) +

µ0

4|x|2

)
≤ exp

(√
2

16
|x|

√
µ0

2|x|2

)
= exp

(√
µ0

16

)
,

and consequently

exp

(
−
√
2

16
|x|

√
V∗(x)

)
≤ 1 ≤ exp

(√
µ0

16

)
exp

(
−
√
2

16
|x|

√
V∗(x) +

µ0

4|x|2

)
.

These estimates show that (4.6) holds true.

5. The proof of the lower bound. The proof of Theorem 2.2 consists
of several auxiliary results. The only technical tool we use in our reasoning is
the lower estimate with sharp Gaussian term of the density of the Brownian
motion killed upon exiting a ball. This bound has recently been obtained for
small times by Małecki and Serafin [19] (see also the classical result for more
general domains by Zhang [33] and the newest paper for convex domains by
Serafin [25]). By combining it with the classical intrinsic ultracontractivity
estimate (see Davies and Simon [9, 10]) and by using the scaling property,
one gets an estimate in the following form which is useful for our purposes:
there exists a constant C̃ ∈ (0, 1] such that

(5.1) gBr
t (x, y) ≥ C̃

1 ∧ (r−|x|)(r−|y|)
t(

1 ∧ r2

t

)(d+2)/2
exp

(
−µ0

t

r2

)
gt(x, y),

r, t > 0, x, y ∈ Br,

see [19, Corollary 1].

Lemma 5.1. Let 0 ≤ V ∈ L∞
loc(Rd). For all x, y ∈ Rd and ρ > 0 such that

|x|, |y| ≤ ρ, and all t > 0, we have

(5.2) ut(x, y) ≥ (C̃/4) exp

(
−
(
V ∗(ρ) +

µ0

4ρ2

)
t

)
gt(x, y).

Proof. We first observe that by (3.1), for all r > 0 and x, y ∈ Br, we
have

ut(x, y) ≥ lim
s↗t

Ex

[
e−

	s
0 V (Xu) dugt−s(Xs, y); s < τBr

]
≥ e−t supz∈Br

V (z) lim
s↗t

Ex[g
Br
t−s(Xs, y); s < τBr ]

= e−t supz∈Br
V (z)gBr

t (x, y).

By taking r = 2ρ, we see from (5.1) that

gBr
t (x, y) ≥ C̃

1 ∧ ρ2

t(
1 ∧ 4ρ2

t

)(d+2)/2
exp

(
−µ0

t

4ρ2

)
gt(x, y)(5.3)

≥ (C̃/4) exp

(
−µ0

t

4ρ2

)
gt(x, y),
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and consequently

ut(x, y) ≥ (C̃/4) exp

(
−
(
V ∗(ρ) +

µ0

4ρ2

)
t

)
gt(x, y).

Recall the notation

tρ =
ρ

2
√

V ∗(ρ) + µ0

4|x|2
, ρ ≥ 1, and ρx = |x| ∨ 1.

Lemma 5.2. Let 0 ≤ V ∈ L∞
loc(Rd). Then for all x, y ∈ Rd and t > 0

such that ρy ≤ ρx and t ≥ 2tρx , we have

ut(x, y) ≥
(C̃/4)2

4d/2Γ (d/2 + 1)(4πt)d/2
exp

(
−dt

2

)
exp

(
−
(
V ∗(ρy) +

µ0

4ρ2y

)
t

)
× exp

(
−9

2
ρx

√
V ∗(ρx) +

µ0

4ρ2x

)
.

Proof. Since t > tρx , we can write

ut(x, y) = Ex

[
e−

	tρx
0 V (Xs)dsut−tρx (Xtρx , y)

]
(5.4)

≥ Ex

[
e−

	tρx
0 V (Xs)dsut−tρx (Xtρx , y) : tρx < τB2ρx

]
≥ e−tρxV

∗(ρx)Ex[ut−tρx (Xtρx , y) : tρx < τB2ρx
, Xtρx ∈ Bρy ].

By Lemma 5.1, on the set {Xtρx ∈ Bρy} we have

ut−tρx (Xtρx , y) ≥ (C̃/4) exp

(
−
(
V ∗(ρy) +

µ0

4ρ2y

)
t

)
gt−tρx (Xtρx , y)

=
C̃/4

(4π(t− tρx))
d/2

exp

(
−
(
V ∗(ρy) +

µ0

4ρ2y

)
t

)
exp

(
−
|y −Xtρx |

2

4(t− tρx)

)
,

and because tρx ≤ t − tρx ≤ t and ρy ≤ ρx, this estimate can be continued
as follows:

≥ C̃/4

(4πt)d/2
exp

(
−
(
V ∗(ρy) +

µ0

4ρ2y

)
t

)
exp

(
−

4ρ2y
4tρx

)
≥ C̃/4

(4πt)d/2
exp

(
−
(
V ∗(ρy) +

µ0

4ρ2y

)
t

)
exp

(
− ρ2x
tρx

)
=

C̃/4

(4πt)d/2
exp

(
−
(
V ∗(ρy) +

µ0

4ρ2y

)
t

)
exp

(
−2ρx

√
V ∗(ρx) +

µ0

4ρ2x

)
.
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With this bound we can come back to (5.4) and write

ut(x, y) ≥
C̃/4

(4πt)d/2
exp

(
−
(
V ∗(ρy) +

µ0

4ρ2y

)
t

)
exp

(
−2ρx

√
V ∗(ρx) +

µ0

4ρ2x

)
× exp

(
− ρxV

∗(ρx)

2
√

V ∗(ρx) +
µ0

4|x|2

)
Px[tρx < τB2ρx

, Xtρx ∈ Bρy ].

We only need to estimate the last probability. By using (5.3) and tρx < t,
we get

Px[tρx < τB2ρx
, Xtρx ∈ Bρy ] ≥

�

B1

g
B2ρx
tρx

(x, z) dz

≥ C̃|B1|
4(4πtρx)

d/2
exp

(
−µ0

tρx
4ρ2x

)
exp

(
− 4ρ2x
4tρx

)
≥ C̃πd/2

4Γ (d/2 + 1)(4πt)d/2
exp

(
−µ0

tρx
4ρ2x

)
exp

(
− ρ2x
tρx

)
≥ C̃

41+d/2Γ (d/2 + 1)
exp

(
−dt

2
− µ0

tρx
4ρ2x

)
exp

(
−2ρx

√
V ∗(ρx) +

µ0

4ρ2x

)
,

where in the last line we have used the inequality t−d/2 ≥ e−(d/2)t. This leads
to

ut(x, y) ≥
C̃2

42+d/2Γ (d/2 + 1)(4πt)d/2
exp

(
−dt

2

)
exp

(
−
(
V ∗(ρy) +

µ0

4ρ2y

)
t

)
× exp

(
−9

2
ρx

√
V ∗(ρx) +

µ0

4ρ2x

)
.

In the last line we have used the equality

exp

(
− ρxV

∗(ρx)

2
√
V ∗(ρx)+

µ0

4|x|2

)
exp

(
−µ0

tρx
4ρ2x

)
= exp

(
−1

2
ρx

√
V ∗(ρx)+

µ0

4ρ2x

)
.

We are now ready to prove the main result of this section.

Proof of Theorem 2.2. Let x, y ∈ Rd and t > 0. Part (2) follows directly
from Lemma 5.1 with ρ = ρx ∨ ρy and the inequality C̃/4 ≥ c2. We only
need to establish (1).

Assume that 4tρx∨ρy ≤ t and ρx ≥ ρy. In particular, tρx∨ρy = tρx . Observe
that

4tρz ≤ t ⇐⇒ 2ρz

√
V ∗(ρz) +

µ0

4ρ2z
≤

(
V ∗(ρz) +

µ0

4ρ2z

)
t.

In particular,

4tρz ≤ t =⇒ K(t, ρz) = exp

(
−9

2
ρz

√
V ∗(ρz) +

µ0

4ρ2z

)
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and

4tρz ≥ t =⇒ K(t, ρz) = exp

(
−9

4

(
V ∗(ρz) +

µ0

4ρ2z

)
t

)
.

In order to complete the proof, we need to consider two cases and use the
above observations.

Let first 4tρy ≤ t. Since 2tρx ≤ t/2 and 2tρy ≤ t/2, we can use Lemma 5.2
and symmetry to get

ut/2(x, z) ≥
(C̃/4)2

4d/2Γ (d/2 + 1)

1

(2πt)d/2
exp

(
−
(
d

2
+ V ∗(1) +

µ0

4

)
t

2

)
× exp

(
−9

2
ρx

√
V ∗(ρx) +

µ0

4ρ2x

)
and

ut/2(z, y) ≥
(C̃/4)2

4d/2Γ (d/2 + 1)

1

(2πt)d/2
exp

(
−
(
d

2
+ V ∗(1) +

µ0

4

)
t

2

)
× exp

(
−9

2
ρy

√
V ∗(ρy) +

µ0

4ρ2y

)
whenever |z| ≤ 1. By the Chapman–Kolmogorov property and the inequality
t−d/2 ≥ e−(d/2)t, we then obtain the estimate

ut(x, y) ≥
�

B1

ut/2(x, z)ut/2(z, y) dz

≥
(

(C̃/4)2

4d/2Γ (d/2 + 1)

)2 |B1|
πd/2(4πt)d/2

e−λ2tK(t, ρx)K(t, ρy)

= c2e
−λ2tgt(0, 0)K(t, ρx)K(t, ρy).

This is exactly what we wanted to prove.
Suppose now that 4tρy ≥ t. Recall that 2tρx ≤ t and ρx ≥ ρy. Then, by

Lemma 5.2,

ut(x, y) ≥
√
c2

(4πt)d/2
exp

(
−dt

2

)
exp

(
−9

4

(
V ∗(ρy) +

µ0

4ρ2y

)
t

)
× exp

(
−9

2
ρx

√
V ∗(ρx) +

µ0

4ρ2x

)
≥ c2 exp(−λ2t)gt(0, 0)K(t, ρy)K(t, ρx).

This completes the proof.

6. Applications, previous results, discussion and examples

6.1. Qualitatively sharp two-sided bounds for confining poten-
tials. Recall that the Schrödinger operator with confining potential has
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compact resolvent and purely discrete spectrum, 0 < λ0 = inf σ(H) is a
simple eigenvalue, and the corresponding eigenfunction φ0 ∈ L2(Rd, dx) is
continuous, bounded and strictly positive on Rd. We refer to λ0 and φ0 as
the ground state eigenvalue and eigenfunction.

The framework of confining potentials provides important examples
of intrinsically ultracontractive Schrödinger semigroups (see Davies and
Simon [10], Davies [9] and Bañuelos [1]). One of the equivalent definitions
says that the semigroup {e−tH : t ≥ 0} is intrinsically ultracontractive (IUC
for short) if for every t > 0 there exists c = c(t) such that for every x, y ∈ Rd

we have ut(x, y) ≤ cφ0(x)φ0(y). This implies the following two-sided esti-
mates: for every t0 > 0 there exists c̃ = c̃(t0) ≥ 1 such that

1

c̃
e−λ0tφ0(x)φ0(y) ≤ ut(x, y) ≤ c̃e−λ0tφ0(x)φ0(y), x, y ∈ Rd, t ≥ t0

(the lower bound for every fixed t0 > 0 follows from [10, Theorem 3.2,
(iv)⇒(vi)]; the two-sided bound extends to t ≥ t0 by the eigenequation Utφ0

= e−λ0tφ0). For many examples of potentials it is known that φ0 is compara-
ble to exp(−c|x|

√
V (x) ), typically with different constant c from above and

from below (see Simon [28] and Carmona [3], and references in those papers).
Clearly, this leads to qualitatively sharp two-sided estimates for large times.
On the other hand, estimates for non-IUC semigroups have been an open
problem for a long time. For example, if

(6.1) V (x) = |x|α, α > 0,

then IUC holds if and only if α > 2. More recently, this example has been
studied by Sikora [26] who proved upper bounds for the full range of α > 0
and t > 0, and a two-sided on-diagonal estimate. Short time upper estimates
of a similar type for more general potentials were obtained by Metafune and
Spina [21] and Spina [30]. Metafune, Pallara and Rhandi [20] analyzed the
constant in the intrinsic ultracontractivity estimate for small t’s. We also
refer the reader to the paper by Ouhabaz and Rhandi [22] for upper estimates
for uniformly elliptic operators.

Our Theorems 2.1 and 2.2 immediately give the following, global in time
and space, two-sided estimates for general nonnegative locally bounded con-
fining potentials, in both IUC and non-IUC settings. Recall that the func-
tions H and K and the constants γ1, γ2, c1, c2 come from the statements of
these theorems.

Corollary 6.1. For every confining potential 0 ≤ V ∈ L∞
loc(Rd) and

x, y ∈ Rd, t > 0 we have the following estimates:

(1) If 4tρx∨ρy ≤ t, then

c2e
−γ2tK(t, ρx)K(t, ρy)gt(0, 0) ≤ ut(x, y) ≤ c1e

−γ1tH(t, x)H(t, y)gt(0, 0).
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(2) If 4tρx∨ρy ≥ t, then

c2K(t, ρx)K(t, ρy)gt(x, y) ≤ ut(x, y) ≤ c1H(t, x)H(t, y)g2t(x, y).

These estimates take the sharpest form for potentials comparable to ra-
dial monotone functions that grow at infinity sufficiently regularly. The es-
timates are fully uniform if the growth of the potential is not too fast. We
give an illustration with the following two examples. Example 6.2 is general,
and Example 6.3 gives applications to some specific classes of potentials.

Example 6.2 (Potentials with radial monotone profiles). Let 0 ≤ V
∈ L∞

loc(Rd) be a confining potential such that there exists a constant m ≥ 1
satisfying

(6.2) V ∗(|x|) ≤ mV∗(x), |x| ≥ 1.

Define W (r) := V ∗(r). Then W is referred to as the radial monotone profile
of the potential V .

It is convenient to introduce the following rate functions:

K̃(t, x) := exp

(
−9

4

((
W (ρx) +

µ0

4ρ2x

)
t ∧ 2ρx

√
W (ρx) +

µ0

4ρ2x

))
with ρx = |x| ∨ 1,

H̃(t, x) := exp

(
−

√
2

32m

((
W (|x|) + µ0

4|x|2

)
t ∧ 2|x|

√
W (|x|) + µ0

4|x|2

))
for |x| ≥ 1, and H̃(t, x) = 1 for |x| < 1. Moreover, let

γ1 = λ0/2, γ2 = d+W (1) + µ0/4.

Observe that K̃(t, x) and H̃(t, x) take exactly the same form

exp

(
−c

((
W (|x|) + µ0

4|x|2

)
t ∧ 2|x|

√
W (|x|) + µ0

4|x|2

))
for |x| ≥ 1 and t > 0, and they differ only in the value of the constant c in
the exponent. Moreover, we always have

0 < exp

(
−9

2

√
W (1) +

µ0

4

)
≤ K̃(t, x) ≤ H̃(t, x) = 1, |x| < 1, t > 0.

From Corollary 6.1 we obtain the following qualitatively sharp uniform two-
sided estimates:

(1) If
2(ρx ∨ ρy)√

W (ρx ∨ ρy) +
µ0

4(ρx∨ρy)2
≤ t,

then

c2e
−γ2tK̃(t, x)K̃(t, y)gt(0, 0) ≤ ut(x, y) ≤ c1e

−γ1tH̃(t, x)H̃(t, y)gt(0, 0).
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(2) If
2(ρx ∨ ρy)√

W (ρx ∨ ρy) +
µ0

4(ρx∨ρy)2
≥ t,

then
c2K̃(t, x)K̃(t, y)gt(x, y) ≤ ut(x, y) ≤ c1H̃(t, x)H̃(t, y)g2t(x, y).

We now apply Example 6.2 to specific potentials.

Example 6.3 (Polynomial and logarithmic potentials). Consider the fol-
lowing classes of potentials.

(1) Polynomial potentials: Let
V (x) = k|x|α, α, k > 0.

Clearly, we have
V∗(x) = k(|x|/2)α and V ∗(r) = k(2r)α.

Moreover, γ2 = d + k · 2α + µ0/4. Observe that (6.2) is true for m = 4α,
uniformly in k > 0. Consequently, the estimates from Example 6.2 hold with

W (r) = k(2r)α and m = 4α.

Moreover, the rate 9/4 in the function K̃(t, x) (the lower bound) is uniform
in α > 0 and k > 0, and the rate

√
2/(32m) in H̃(t, x) (the upper bound) is

uniform in k > 0 and α ∈ (0, α0], for every fixed α0 > 0 – it can be chosen
to be

√
2/(32 · 4α0).

Our result applies to both IUC (α > 2) and non-IUC (α ∈ (0, 2]) cases. In
the non-IUC setting, the estimates are fully uniform in k > 0 and α ∈ (0, 2].

(2) Logarithmic potentials: Let
V (x) = logα(2 + k|x|), α, k > 0.

One has
V∗(x) = logα(2 + k(|x|/2)), V ∗(r) = logα(2 + k(2r)),

and γ2 = d + logα(2 + 2k) + µ0/4. Moreover, one checks directly that (6.2)
holds with m = 3α, uniformly in k > 0. Consequently, we obtain estimates
as in Example 6.2 with

W (r) = logα(2 + k(2r)) and m = 3α.

In particular, the rate 9/4 in the function K̃(t, x) (the lower bound) is uni-
form in α > 0 and k > 0, and the rate

√
2/(32m) in H̃(t, x) (the upper

bound) is uniform in k > 0 and α ∈ (0, α0], for every fixed α0 > 0 – it can
be chosen to be

√
2/(32 · 3α0).

Note that such potentials lead to non-IUC semigroups for every α > 0.
Our estimates are fully uniform in k > 0 and α ∈ (0, α0], for every fixed
α0 > 0.
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We remark that one of our primary motivations was to understand the
large time properties of the Schrödinger semigroups with confining potentials
which are not IUC. This is related to the recent progress in the field of
nonlocal Schrödinger operators. First note that in order to describe the large
time regularity of the semigroup, it is enough to study the asymptotic version
of IUC (aIUC for short), which is more general; see [15] for more details. For
sharp necessary and sufficient conditions for aIUC in the nonlocal case we
refer the reader to Kulczycki and Siudeja [17], Kaleta and Kulczycki [14],
Kaleta and Lőrinczi [15], and Chen and Wang [6, 7] (see also the related
important paper by Kwaśnicki [18] for stable semigroups on unbounded sets).

In [16], Kaleta and Schilling observed in the nonlocal setting that the
Schrödinger semigroup with confining potential which is not aIUC (no matter
how slow the growth of V at infinity is!) still manifests a weaker version
of regularity, which can be described as follows: there exist an increasing
function ρ (determined by the kinetic term and the potential) such that
ρ(t) ↑ ∞ as t ↑ ∞, and a constant c ≥ 1, such that

(6.3)
1

c
e−λ0tφ0(x)φ0(y) ≤ ut(x, y) ≤ ce−λ0tφ0(x)φ0(y),

|x| ∧ |y| ≤ ρ(t), t ≥ t0

(c is uniform in t and x, y). This is called progressive IUC (pIUC for short).
Our estimates show that such a property does not hold for classical

Schrödinger semigroups. However, we can observe a weaker version of this
two-sided bound which is qualitatively sharp. Suppose we are in the set-
ting of Example 6.2. Moreover, assume that the potential V is a continuous
function such that the map

ρ 7→ τ(ρ) :=
2ρ√

W (ρ) + µ0

4ρ2

is increasing and τ(ρ) → ∞ as ρ → ∞. It then follows from the estimates in
Example 6.2 that there are constants c1, . . . , c6 > 0 such that

c1e
−c2t exp

(
−c3

(
|x|

√
W (|x|) + |y|

√
W (|y|)

))
≤ ut(x, y) ≤ c4e

−c5t exp
(
−c6

(
|x|

√
W (|x|) + |y|

√
W (|y|)

))
whenever

(6.4) τ(ρx ∨ ρy) ≤ t and t ≥ t0 > 0.

Clearly, t 7→ ρ(t) := τ−1(t) is an increasing function such that ρ(t) → ∞
as t → ∞, and the first inequality in (6.4) can be rephrased as ρx∨ρy ≤ ρ(t).
Moreover, there are constants c7, . . . , c10 > 0 such that

c7 exp
(
−c8|x|

√
W (|x|)

)
≤ φ0(x) ≤ c9 exp

(
−c10|x|

√
W (|x|)

)
, x ∈ Rd
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(see Carmona and Simon [3, 4]). This leads to a weaker, qualitative version
of (6.3). On the other hand, the time-space domain ρx∨ρy ≤ ρ(t) cannot be
replaced with ρx ∧ ρy ≤ ρ(t) as in the original pIUC property (6.3). Indeed,
take an arbitrary function ρ(t) as above and suppose that there are constants
c1, c2, c3 > 0 and t0 > 0 such that

(6.5) c1e
−c2t exp

(
−c3

(
|x|

√
W (|x|) + |y|

√
W (|y|)

))
≤ ut(x, y)

for |x| ≤ ρ(t) < |y| and t ≥ t0. If the profile W is strictly subquadratic (e.g.
W (r) = rβ , β ∈ (0, 2)), then this cannot hold as we always have

ut(x, y) ≤ gt(x, y) = (4πt)−d/2 exp

(
|y − x|2

4t

)
, x, y ∈ Rd, t > 0.

Indeed, (6.5) does not hold, which can be easily seen by fixing t > t0 and
letting |y| → ∞.

A similar qualitative property can also be derived from the estimates
obtained by Chen and Wang [5].

6.2. Upper estimate for decaying potentials. Our result immedi-
ately gives an upper estimate for decaying potentials, i.e. when V (x) → 0 as
|x| → ∞. For clarity, we illustrate this with the potential

(6.6) V (x) = k(1 ∨ |x|)−α, α, k > 0

(we remark that for the upper bound it is enough to assume that V is
bounded from below by the expression on the right hand side of (6.6)). The
estimates for potentials of this type were obtained in a more general setting of
manifolds by Zhang [32]. We compare these results with our upper estimate.

We have

V∗(x) = k ·

{
1 for |x| ≤ 2/3,(
3
2 |x|

)−α for |x| ≥ 2/3.

The following estimate can be easily derived from Theorem 2.1.

Example 6.4. Let V be as in (6.6). For all x, y ∈ Rd and t > 0 we have
the following upper bound:

ut(x, y) ≤ c1H̃(t, x)H̃(t, y)g2t(x, y),

where H̃(t, x) = 1 for |x| < 1 and

H̃(t, x) :=

{
exp

(
−

√
2

32 ·
(
2
3

)α( kt
|x|α ∧ 2

√
k|x|1−α/2

))
if α ∈ (0, 2),

1 if α ≥ 2,

for |x| ≥ 1. The rate in the exponent is an explicit constant which is uniform
in the coupling parameter k > 0 and α ∈ (0, α0], for every fixed α0 > 0.

As explained in Section 2, our Theorem 2.2 is not sharp enough to give
a similar lower bound for decaying potentials. This is a much more difficult
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problem that requires a subtle argument. On the other hand, this example
shows that at least for potentials as in (6.6) with α ∈ (0, 2), the function
H̃(t, x) resulting from Theorem 2.1 is sharp in one of the time-space regions.
For small t’s the kernel ut(x, y) is just comparable to gt(x, y), so we only look
at large times. Indeed, if t ≤ (2/

√
k)|x|1+α/2, then H̃(t, x) = exp(−ckt/|x|α),

which is qualitatively the same as the function w2(x, t) in the lower estimate
of [32, Theorem 1.2]; this means that we improve the power in the exponent
of the function w1(x, t) in [32, Theorem 1.1] for this time-space region (see
the comments in [32, Remark 1.2]). In fact, the exponent in our function
H̃(t, x) is qualitatively better in the larger time-space region which is roughly
described by

√
t ≤ |x|1+α/2. We also remark that due to Theorem 4.1 the

Gaussian term in the estimate above can be made nearly optimal at the cost
of the rate in H̃, and we have uniform control with respect to parameter
k > 0 and α ∈ (0, α0]. On the other hand, if

√
t ≥ |x|1+α/2, then the

estimate in [32, Theorem 1.1] is sharper than ours. For α > 2 the estimate
above is trivial, but it is also sharp.

6.3. Upper estimate for potentials bounded away from zero. We
can also give a nontrivial upper estimate for potentials that are bounded away
from zero outside a bounded set, i.e. the functions V for which

there exist κ > 0 and r0 ≥ 0 such that V (x) ≥ κ for |x| ≥ r0.(6.7)

Theorem 2.1 immediately gives the following estimate.

Example 6.5. Let V be as in (6.7). For all x, y ∈ Rd and t > 0 we have

ut(x, y) ≤ c1H̃(t, x)H̃(t, y)g2t(x, y),

where H̃(t, x) = 1 for |x| < 2r0 and

H̃(t, x) = exp
(
−(

√
2/32)(κt ∧ 2

√
κ|x|)

)
for |x| ≥ 2r0.

Moreover, if r0 = 0 or just λ0 > 0, then g2t(x, y) can be replaced with
e−(λ0/2)tgt(0, 0).

6.4. Upper estimate for more general, nonradial potentials. Ob-
serve that by using Theorem 2.1 we can also get an upper estimate of the
same type for highly nonradial potentials, including confining, decaying,
bounded-away-from-zero ones, and mixtures. This follows from the fact that
H(t, x) depends only on the values of the potential V in the ball B|x|/2(x). It
seems to be a novelty even if d = 1. Let α1, α2, c > 0. For a quick overview,
we just list some examples of potentials on R:

(1) (nonsymmetric confining potential):

V (x) =

{
xα1 , x ≥ 0,

(−x)α2 , x ≤ 0,
with α1 ̸= α2.
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(2) (nonsymmetric decaying potential):

V (x) =

{
(1 ∨ x)−α1 , x ≥ 0,

(1 ∨ −x)−α2 , x ≤ 0,
with α1 ̸= α2.

(3) (mixture of confining and decaying potentials):

V (x) =

{
(1 ∨ x)−α1 , x ≥ 0,

(−x)α2 , x ≤ 0,
or V (x) =

{
xα1 , x ≥ 0,

(1 ∨ −x)−α2 , x < 0.

(4) (mixture of confining/decaying and constant potentials):

V (x) =

{
c, x ≥ 0,

(−x)α1 , x < 0,
or V (x) =

{
(1 ∨ x)−α1 , x > 0,

c, x ≤ 0.

For all of the examples of this type we obtain an upper bound similar to
those in Examples 6.3–6.5 above, but with H̃ which takes a different form
for x > 0 and x < 0.

6.5. Upper estimate for singular potentials. We now show that
applications of our Theorem 2.1 go beyond the scope of locally bounded
potentials. Suppose we are given V ≥ 0 such that V ∈ Kloc(Rd) \ L∞

loc(Rd),
where Kloc(Rd) denotes the local Kato class corresponding to the Laplacian
(or the Brownian motion). Recall that a Borel function V belongs to Kloc(Rd)
if for every compact set C ⊂ Rd we have

lim
t→0

sup
x∈Rd

t�

0

�

Rd

gs(x, y)|V 1C |(y) dy ds = 0.

It is known that the Schrödinger operator H = −∆ + V can be defined in
the sense of quadratic forms as a positive selfadjoint operator on L2(Rd)
(see e.g. Simon [27] and Demuth and van Casteren [11]). The semigroup
operators e−tH , t > 0, are integral operators; due to the Feynman–Kac
formula the corresponding integral kernels ut(x, y) are given by (3.1). For
a number m > 0 we define V m := V ∧ m and consider Hm = −∆ + V m.
Clearly, V m ∈ L∞(Rd), and e−tHm , t > 0, are integral operators with kernels
umt (x, y). Since V m ≤ V for m > 0, by (3.1) we get ut(x, y) ≤ umt (x, y) for all
t > 0 and x, y ∈ Rd. Then, by applying Theorem 2.1 to the kernel umt (x, y),
we obtain

ut(x, y) ≤ c1H
m(t, x)Hm(t, y)g2t(x, y), x, y ∈ Rd, t > 0,

where Hm(t, x) is H(t, x) with V∗ replaced with V m
∗ := infz∈B|x|/2(x)

V m(z).
It is now enough to observe that V m

∗ ↗ V∗ as m ↗ ∞, which leads to
Hm → H (all the constants appearing in these shape functions are uniform
with respect to the potential!). Consequently, we get the following upper
bound:
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Corollary 6.6. Let 0 ≤ V ∈ Kloc(Rd). Then
ut(x, y) ≤ c1H(t, x)H(t, y)g2t(x, y), x, y ∈ Rd, t > 0,

where H is defined with V∗ in place of the original V .

Depending on applications, one can also apply the estimate in Theo-
rem 4.1 to get gat(x, y) for any a > 1 instead of g2t(x, y) in this bound.

If d ≥ 3, then typical examples of potentials covered by the above corol-
lary include

V (x) =
c

|x|α
or V (x) =

N∑
k=1

ck
|zk − x|αk

,

where α, αk ∈ (0, 2), c, ck > 0, zk ∈ Rd, N ∈ N, or the sums of such
functions and some nonnegative locally bounded confining potentials (cf.
[27, Section A.2]). We remark that Corollary 6.6 extends to more singular
potentials V (x) = c|x|−α, where α ≥ 2 and c > 0; α = 2 is critical in the
sense that it is the smallest parameter for which V /∈ Kloc(Rd). However,
for such potentials the classical Feynman–Kac formula with respect to the
Brownian motion in the whole Rd does not hold. In order to overcome this
obstacle, one can first consider the process with the restricted state space to
represent the kernel u and then show that u ≤ um.

Remark 6.7. While the presentmanuscriptwas being completed, J.Wang
informed us about his recent preprint [5] with X. Chen, where the authors
provide the two-sided qualitatively sharp estimates for the heat kernels of
Schrödinger operators with nonnegative, locally bounded, confining poten-
tials V , which are comparable to radial and monotone profiles g. This result
is related to our Examples 6.3 and 6.2 which apply to the same class of
potentials.

Our work was performed simultaneously with, and independently of, [5]
(our preprint appeared on the arXiv in February 2023). The estimates in [5]
have a completely different structure from ours, which seems to be related
to the fact that the argument in [5] requires the assumption that s 7→
(1 + s)/

√
g(s) is an almost monotone function. Note that our Theorem 2.1

covers a larger class of potentials, as it applies to general nonnegative locally
bounded potentials or even singular ones. The arguments in [5] and in our
paper are based on completely different ideas. The key step in our proof of
the upper estimate is based on the fact that the Laplace transform of the
exit time from a ball with radius proportional to the norm of x and evaluated
at λ = V (x) takes the shape of the ground state φ0(x) of the Schrödinger
operator H. Here we apply the classical result of Wendel [31]. In the proof
of the lower estimate, we use directly the estimate (with optimal Gaussian
term) for the semigroup of a Brownian motion in a ball, which was recently
discovered by Małecki and Serafin [19], and combine this bound with the
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direct estimates in Lemma 5.2. This is described in more detail at the end of
Section 2. Our proof does not use any information on the joint distribution
of the exit position and the exit time of Brownian motion from a ball, which
is the main tool in [5]. Our approach leads to qualitatively sharp estimates
with explicit numerical rates, uniform in V , with clear dependence on the
dimension d, and optimal or nearly optimal Gaussian terms, which are ob-
tained by rather short and direct proofs. The constants in the estimates of [5]
are not explicit; they seem to depend on V and d in an implicit fashion.
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