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A remark on non-commutative Lp-spaces

by

Shinya Kato and Yoshimichi Ueda (Nagoya)

Abstract. We describe the Haagerup and the Kosaki non-commutative Lp-spaces
associated with a tensor product von Neumann algebra M1⊗̄M2 in terms of ones associated
with Mi and the usual tensor products of unbounded operators. The descriptions are then
shown to be useful in the quantum information theory based on operator algebras.

1. Introduction. Quantum information theory (QIT for short) can be
developed in the infinite-dimensional (even non-type I) setup with the help
of operator algebras (such a general framework is necessary for quantum
field theory for example), although QIT is usually discussed in the finite-
dimensional setup. In the finite-dimensional setup, the primary objects in
QIT are density matrices, which no longer make sense in the non-type I setup.
However, Haagerup’s theory of non-commutative Lp-spaces (see [18]) allows
us to have a certain counterpart of density matrices; actually, the so-called
Haagerup correspondence φ 7→ hφ (the operator hφ is sometimes denoted
by φ itself) between the normal functionals and a class of τ -measurable
operators gives the right counterpart of density matrices in the non-type I
setting.

In QIT, tensor products of systems (i.e., systems consisting of inde-
pendent subsystems) naturally emerges, and hence it is desirable to clar-
ify how Haagerup non-commutative Lp-spaces behave under von Neumann
algebra tensor products. In the commutative setup, the answer is simply
Lp(µ1 ⊗ µ2) = Lp(µ1, L

p(µ2)) = Lp(µ2, L
p(µ1)) with natural identifications,

by utilizing the concept of vector-valued Lp-spaces. However, that concept
has not been established yet in full generality in the non-commutative set-
ting.

The purpose of this short note is to give some descriptions of the Haagerup
and the Kosaki non-commutative Lp-spaces associated with a tensor product
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von Neumann algebra; see Theorem 3.3 and Corollary 3.4. Those descriptions
are rather natural but, to the best of our knowledge, have not been given so
far. We remark that a similar but abstract result based on the interpolation
method was given by Junge [10]. On the other hand, the descriptions we will
give depend on the so-called Takesaki duality [17] and are provided by means
of tensor products of unbounded operators. Consequently, our descriptions are
really concrete, with multiplicativity of the norm. An immediate consequence
of those descriptions is a natural proof of the additivity of sandwiched Rényi
divergences in the non-type I setup, due to Berta et al. [3] and Jenčová [8, 9].
We remark that the additivity was claimed by Berta et al. in a different
approach to non-commutative Lp-spaces (see [3, p. 1860]) and also confirmed
by Hiai and Mosonyi [6, (3.16)] in the injective or AFD von Neumann algebra
case.

2. Preliminaries. The basic references of this short note are [16] (on
modular theory), [18] (on Haagerup non-commutative Lp-spaces), and [13]
(on Kosaki non-commutative Lp-spaces), but the reader can find concise
expositions of those topics in [4, Appendix A] and its expansion [5].

Let M be a von Neumann algebra. Choose a faithful semifinite normal
weight φ on M . The continuous core of M is the crossed product M̃ :=
M ⋊̄σφ R. Let θM : R ↷ M̃ be the dual action, which is characterized by

(2.1) θMs ◦ πφ = πφ, θMs (λφ(t)) = e−itsλφ(t)

for all s, t ∈ R, where πφ : M → M ⋊̄σφ R and λφ : R → M̃ denote
the canonical injective normal ∗-homomorphism from M and the canonical
unitary representation of R into M̃ that is generated by the πφ(a) and λφ(t)
as a von Neumann algebra. In what follows, we will identify a = πφ(a) and
M = πφ(M) when no confusion is possible. Note the covariance relation

(2.2) λφ(t)a = σφt (a)λ
φ(t), t ∈ R, a ∈M.

We remark that (M̃, θM ) is known to be independent of the choice of φ up
to conjugacy.

The canonical trace τM on M̃ is a faithful semifinite normal tracial weight
uniquely determined by

(2.3) [Dφ̃ : DτM ]t = λφ(t), t ∈ R,

where [Dφ̃ : DτM ]t is Connes’ Radon–Nikodym cocycle of φ̃ with respect
to τM . Here, φ̃ is the dual weight of φ defined by

(2.4) φ̃ := φ̂ ◦ TM ,

where φ̂ is the canonical extension of φ to the extended positive part M̂+
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(see, e.g., [16, §11]) and TM : M̃+ → M̂+ is the operator-valued weight

(2.5) TM (a) :=
�

R

θMt (a) dt, a ∈ M̃+.

In what follows, we denote by s(ψ) the support projection of a semifinite
normal weight ψ. We also use Connes’ Radon–Nikodym cocycle with a gen-
eral (not necessarily faithful) semifinite normal weight on the left-hand side;
see [16, §3].

The next lemma immediately follows from the construction of Connes’
Radon–Nikodym derivatives (see [16, §3]) together with [16, §2.22, (1)].

Lemma 2.1. Let ψ be a semifinite normal weight on M and ψ′ be another
semifinite normal weight on M such that s(ψ′) = 1−s(ψ). Then χ := ψ+ψ′

is a faithful semifinite normal weight on M and

[Dψ : Dφ]t = s(ψ)[Dχ : Dφ]t, t ∈ R.

The Haagerup correspondence ψ 7→ hψ is a bijection from the set of all
semifinite normal weights on M onto the positive self-adjoint operators h
affiliated with M̃ , satisfying θMs (h) = e−sh for every s ∈ R. Its construction
will appear in the proof of Lemma 2.2 below.

Lemma 2.2. Let ψ be a semifinite normal weight on M and let

ψ̃ := ψ̂ ◦ TM
be its dual weight. Then

[Dψ̃ : DτM ]t = [Dψ : Dφ]t λ
φ(t) for every t ∈ R,

and the Haagerup correspondence hψ is uniquely determined by

(2.6) hitψ = [Dψ : Dφ]t λ
φ(t), t ∈ R,

where hitψ is the operator ft(hψ) with

ft(λ) :=

{
λit = eit log λ (λ > 0),

0 (λ = 0).

Proof. Let χ = ψ+ψ′ be as in Lemma 2.1. Then χ̃ = ψ̃+ψ̃′ and moreover
s(ψ̃) = s(ψ) and s(ψ̃′) = s(ψ′) by [18, Lemma 1(2)(c)]. By Lemma 2.1 we
observe that

[Dψ : Dφ]t = s(ψ)[Dχ : Dφ]t,

[Dψ̃ : Dφ̃]t = s(ψ)[Dχ̃ : Dφ̃]t,

[Dψ̃ : DτM ]t = s(ψ)[Dχ̃ : DτM ]t,
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for every t ∈ R. By the chain rule for Connes’ Radon–Nikodym cocycles, we
have

[Dψ̃ : DτM ]t = s(ψ)[Dχ̃ : DτM ]t = s(ψ)[Dχ̃ : Dφ̃]t [Dφ̃ : DτM ]t

= [Dψ̃ : Dφ̃]t λ
φ(t)

for every t ∈ R. By [16, Theorem 11.9],

[Dψ̃ : Dφ̃]t = s(ψ)[Dχ̃ : Dφ̃]t = s(ψ)[Dχ : Dφ]t = [Dψ : Dφ]t

for every t ∈ R. Consequently,

[Dψ̃ : DτM ]t = [Dψ : Dφ]tλ
φ(t)

for every t ∈ R.
The hψ is defined to be the Radon–Nikodym derivative of ψ̃ with respect

to the canonical trace τM , that is, ψ̃ = τM (hψ · ) in the sense of [18, Lemma 2]
or [16, §4.4]. By [16, Corollary 4.8] we have [Dψ̃ : DτM ]t = hitψ. Hence we
get (2.6), and it is obvious that equation (2.6) characterizes hφ thanks to
Stone’s theorem.

The Haagerup non-commutative Lp-space Lp(M), 0 < p ≤ ∞, is defined
to be all τM -measurable operators h affiliated with M̃ such that θMt (h) =
e−t/ph for all t ∈ R. The Haagerup correspondence ψ 7→ hψ induces a bijec-
tive linear isomorphism between the predual M∗ and L1(M), and the ‘trace
functional’ tr : L1(M) → C is defined by tr(hψ) := ψ(1) for any ψ ∈ M∗.
The (quasi-)norm ∥x∥p of an x ∈ Lp(M) is defined to be tr(|x|p)1/p, where
|x|p can be shown to lie in L1(M). With the 1-norm ∥ · ∥1 the linear iso-
morphism M∗ ∼= L1(M) clearly becomes an isometric isomorphism. For the
details of Haagerup’s theory we refer to [18].

Here is another lemma, which is probably a known fact, but we give its
proof for the sake of completeness.

Lemma 2.3. Assume that p ≥ 1 and φ is a faithful normal positive linear
functional so that M must be σ-finite. Let A ⊂ M be a σ-weakly dense
∗-subalgebra. Then Ah

1/p
φ is dense in Lp(M).

Proof. We will use the (left) Kosaki non-commutative Lp-space Lp(M,φ)
with norm ∥ · ∥p,φ. It is the complex interpolation space C1/p(Mhφ, L

1(M)),
where the embedding M ∋ a 7→ ahφ ∈ L1(M) gives a compatible pair with
norm Mhφ ∋ ahφ 7→ ∥ahφ∥∞ := ∥a∥M (operator norm) for a ∈ M . By [13,
Theorem 9.1] we have Lp(M,φ) = Lp(M)h

1/q
φ ⊂ L1(M) with 1/p+1/q = 1.

For a given a ∈ M the Kaplansky density theorem enables us to choose
a net aλ ∈ A in such a way that ∥aλ∥M ≤ ∥a∥M for all λ and aλ → a in the
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σ-weak topology. By complex interpolation theory, we obtain

∥aλhφ − ahφ∥p,φ = ∥(aλ − a)hφ∥p,φ ≤ ∥(aλ − a)hφ∥1/q∞ ∥(aλ − a)hφ∥1/p1

= ∥aλ − a∥1/qM ∥h(aλ−a)φ∥
1/p
1 = ∥aλ − a∥1/qM ∥(aλ − a)φ∥1/pM∗

≤ (2∥a∥M )1/q∥φ∥1/(2p)φ((aλ − a)∗(aλ − a))1/(2p) → 0.

Therefore, Ahφ is dense in Lp(M,φ) = Lp(M)h
1/q
φ , because so isMhφ thanks

to a general fact on complex interpolation spaces. Hence, for each x ∈ Lp(M)

there exists a sequence an ∈ A such that ∥anhφ − xh
1/q
φ ∥p,φ → 0 as n→ ∞.

Since anhφ = (anh
1/p
φ )h

1/q
φ and using [13, (21)] (with η = 0 there), we

conclude that ∥anh1/pφ − x∥p → 0 as n → ∞ so that Ah
1/p
φ is dense in

Lp(M).

3. Main results. Let Mi, i = 1, 2, be von Neumann algebras. For each
i = 1, 2, we choose a faithful semifinite normal weight φi on Mi. Let

M̃i :=Mi ⋊̄σφi R, ˜M1 ⊗̄M2 := (M1 ⊗̄M2) ⋊̄σφ1⊗̄φ2 R

be the continuous cores of Mi, i = 1, 2, and M1 ⊗̄M2 together with the dual
actions θ(i) := θMi : R ↷ M̃i, i = 1, 2, and θ := θM1⊗̄M2 : R ↷ ˜M1 ⊗̄M2.

The next fact is known in the structure analysis of type III factors. The
fact is especially known among specialists on type III factors as a key tool
to compute invariants such as flows of weights for tensor product type III
factors.

Lemma 3.1 (Joint flow). We have an identification

˜M1 ⊗̄M2 = (M̃1 ⊗̄ M̃2)
(θ

(1)
−t ⊗̄θ

(2)
t ,R)

=
{
x ∈ M̃1 ⊗̄ M̃2 ; θ

(1)
−t ⊗̄ θ

(2)
t (x) = x for all t ∈ R

}
by

πφ1⊗̄φ2
(a⊗ b) = πφ1(a)⊗ πφ2(b), a ∈M1, b ∈M2,

λφ1⊗̄φ2(t) = λφ1(t)⊗ λφ2(t), t ∈ R.

Via this identification,

θt = (θ
(1)
t ⊗̄ id)↾

M̃1⊗̄M2
= (id ⊗̄ θ

(2)
t )↾

M̃1⊗̄M2
, t ∈ R.

Proof. This follows from the formula σφ1⊗̄φ2
t = σφ1

t ⊗̄ σφ2
t and [16, The-

orem 21.8] that originates in [17]. Let us explain how to apply [16, Theorem
21.8] to our problem.

Let G := R2 > H := {(t, t); t ∈ R}, a closed subgroup, and define σg :=
σφ1
t1

⊗̄ σφ2
t2

for g = (t1, t2) ∈ G. Then we have an action σ : G ↷ M1 ⊗̄M2,
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and its restriction to H is the modular action σφ1⊗̄φ2
t = σφ1

t ⊗̄ σφ2
t . Thus,

M̃1 ⊗̄ M̃2 = (M1 ⊗̄M2) ⋊̄σ G ⊃ (M1 ⊗̄M2) ⋊̄σ H = ˜M1 ⊗̄M2,

where

(πφ1(a)⊗ πφ2(b))(λ
φ1(t1)⊗ λφ2(t2)) = πσ(a1 ⊗ a2)λ

σ(t1, t2),

a ∈M1, b ∈M2, (t1, t2) ∈ G,

in the first identity, the inclusion is the natural one, and

πσ(a1 ⊗ a2)λ
σ(t, t) = πφ1⊗̄φ2

(a1 ⊗ a2)λ
φ1⊗̄φ2(t),

a ∈M1, b ∈M2, (t, t) ∈ H,

in the second identity. Here, πσ :M1 ⊗̄M2 → (M1 ⊗̄M2) ⋊̄σG and λσ : G→
(M1 ⊗̄ M2) ⋊̄σ G denote the canonical injective normal ∗-homomorphism
and the canonical unitary representation, respectively. We have Ĝ = G with
the dual pairing ⟨(t1, t2), (t′1, t′2)⟩ := ei(t1t

′
1+t2t

′
2) between G and its copy,

and Ĥ becomes {(−t, t); t ∈ R} in G. Moreover, the dual action σ̂g with
g = (t1, t2) ∈ G is given by θ(1)t1 ⊗̄θ(2)t2 via the above identification. Hence, the
first assertion immediately follows by [16, Theorem 21.8]. Then the desired
identity for the dual action θt can be easily confirmed by investigating its
behavior on the canonical generators.

In what follows, we use the description in Lemma 3.1 of the continuous
core of M1 ⊗̄M2 equipped with the dual action θ.

We remark that τM1⊗̄M2
cannot be identified with a restriction of the

tensor product trace τM1 ⊗̄ τM2 . However, τM1⊗̄M2
is characterized by

(3.1)
[
Dφ̃1 ⊗̄ φ2 : DτM1⊗̄M2

]
t
= λφ1(t)⊗ λφ2(t), t ∈ R,

in the description of Lemma 3.1. This is indeed a key fact in the discussion
below.

Fix a p ∈ (0,∞]. Choose a pair (x1, x2) ∈ Lp(M1) × Lp(M2), whose
entries can be regarded as unbounded operators on Hilbert spaces Hi, i =
1, 2, on which M̃i are constructed. Let xi = vi|xi|, i = 1, 2, be their polar
decompositions. Then vi ∈ Mi and |xi|p ∈ L1(Mi) for each i = 1, 2. Then,
for each i = 1, 2, there is a unique ψi ∈ (Mi)

+
∗ such that hψi

= |xi|p.
Lemma 3.2. The following hold true:

(1) x1⊗̄x2 = (v1⊗v2)(|x1|⊗̄|x2|) is the polar decomposition, where the tensor
product of τ -measurable operators is understood as that on H1 ⊗̄ H2.

(2) |x1 ⊗̄ x2|p = |x1|p ⊗̄ |x2|p.
(3) hψ1 ⊗̄ hψ2 = hψ1⊗̄ψ2

and (hψ1 ⊗̄ hψ2)
it = hitψ1⊗̄ψ2

.

Proof. Items (1) and (2) can easily be confirmed within theory of un-
bounded operators; see Appendix A.
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Item (3): Observe that

hitψ1⊗̄ψ2
= [Dψ1 ⊗̄ ψ2 : Dφ1 ⊗̄ φ2]t(λ

φ1(t)⊗ λφ2(t))

= ([Dψ1 : Dφ2]t ⊗ [Dψ2 : Dφ2]t) (λ
φ1(t)⊗ λφ2(t))

= ([Dψ1 : Dφ1]t λ
φ1(t))⊗ ([Dψ2 : Dφ2]t λ

φ2(t))

= hitψ1
⊗ hitψ2

by (2.6), (3.1) and [16, Corollary 8.6]. Since (hψ1 ⊗̄ hψ2)
it = hitψ1

⊗ hitψ2
(see

Appendix A), we obtain (3) by Lemma 2.2 (the uniqueness part).

By Lemma 3.2 we have

|x1 ⊗̄ x2|p = |x1|p ⊗̄ |x2|p = hψ1 ⊗̄ hψ2 = hψ1⊗̄ψ2
.

Since ψ1 ⊗̄ ψ2 ∈ (M1 ⊗̄M2)∗, we have x1 ⊗̄ x2 ∈ Lp(M1 ⊗̄M2) and

∥x1 ⊗̄ x2∥pp = tr(|x1 ⊗̄ x2|p) = tr(|x1|p ⊗̄ |x2|p)
= tr(hψ1 ⊗̄ hψ2) = tr(hψ1⊗̄ψ2

)

= (ψ1 ⊗̄ ψ2)(1) = ψ1(1)ψ2(1)

= tr(hψ1)tr(hψ2) = tr(|x1|p)tr(|x2|p) = ∥x1∥pp ∥x2∥pp.
Consequently, we have the first part of the following theorem:

Theorem 3.3. For any pair (x1, x2) ∈ Lp(M1)×Lp(M2) the unbounded
operator tensor product x1 ⊗̄ x2 affiliated with M̃1 ⊗̄ M̃2 actually gives an
element of Lp(M1 ⊗̄M2), and we have

∥x1 ⊗̄ x2∥p = ∥x1∥p ∥x2∥p.
The mapping (x1, x2) 7→ x1⊗̄x2 is clearly bilinear, and induces a natural map
from the vector space tensor product Lp(M1)⊗algL

p(M2) into Lp(M1 ⊗̄M2),
which has dense image when both Mi are σ-finite and p ≥ 1.

Proof. Let us prove the second part. We can assume that both φi are
faithful normal states. Then (M1 ⊗alg M2)h

1/p
φ1⊗̄φ2

is dense in Lp(M1 ⊗̄M2)

by Lemma 2.3. Therefore, elements (ah1/pφ1 ) ⊗̄ (bh
1/p
φ2 ) = (a⊗ b)h

1/p
φ1 ⊗̄h

1/p
φ2 =

(a⊗ b)h
1/p
φ1⊗̄φ2

with a ∈M1 and b ∈M2 are total in Lp(M1 ⊗̄M2). Hence we
are done.

We do not know whether or not the second assertion (the density of the
induced map) in the above theorem holds without σ-finiteness. However,
we think that an approximation by σ-finite projections might give the same
assertion without σ-finiteness. We leave this question to the interested reader.

Here is a corollary for the Kosaki non-commutative Lp-space Lp(M,φ)η
with 1 ≤ p ≤ ∞ and 0 ≤ η ≤ 1, which is defined as the complex
interpolation space C1/p(h

η
φMh1−ηφ , L1(M)), where the embedding M ∋
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a 7→ hηφah
1−η
φ ∈ L1(M) gives a compatible pair with norm hηφMh1−ηφ ∋

hηφah
1−η
φ 7→ ∥hηφah1−ηφ ∥∞ := ∥a∥M .

Corollary 3.4. Assume that both Mi are σ-finite, and both φi are faith-
ful normal positive linear functionals. For each 1 ≤ p ≤ ∞ and 0 ≤ η ≤ 1,
the mapping L1(M1) × L1(M2) ∋ (x1, x2) 7→ x1 ⊗̄ x2 ∈ L1(M1 ⊗̄ M2) in
Theorem 3.3 induces a bilinear map from the vector space tensor product
Lp(M1, φ1)η⊗algL

p(M2, φ2)η into Lp(M1 ⊗̄M2, φ1 ⊗̄φ2)η with dense image,
and we have

∥x1 ⊗̄ x2∥p,φ1⊗̄φ2,η = ∥x1∥p,φ1,η∥x2∥p,φ2,η.

Proof. Note that the Kosaki non-commutative Lp-spaces Lp(Mi, φi)η and
Lp(M1 ⊗̄M2, φ1 ⊗̄ φ2)η are

hη/qφi
Lp(Mi)h

(1−η)/q
φi

⊂ L1(Mi),

h
η/q
φ1⊗̄φ2

Lp(M1 ⊗̄M2)h
(1−η)/q
φ1⊗̄φ2

⊂ L1(M1 ⊗̄M2),

respectively, where q is the dual exponent of p, that is, 1/p+ 1/q = 1.
Each (x1, x2) ∈ Lp(M1, φ1)η×Lp(M2, φ2)η ⊂ L1(M1)×L1(M2) is of the

form
(hη/qφ1

x′1h
(1−η)/q
φ1

, hη/qφ1
x′2h

(1−η)/q
φ2

)

with unique x′1 ∈ Lp(M1) and x′2 ∈ Lp(M2). Then we have, by Lemmas A.1
and 3.2(2, 3),

x1⊗̄x2 = (hη/qφ1
⊗̄hη/qφ2

)(x′1⊗̄x′2)(h(1−η)/qφ1
⊗̄h(1−η)/qφ2

) = h
η/q
φ1⊗̄φ2

(x′1⊗̄x′2)h
(1−η)/q
φ1⊗̄φ2

,

which clearly lies in Lp(M1 ⊗̄M2, φ1 ⊗̄ φ2)η since x′1 ⊗̄ x′2 ∈ Lp(M1 ⊗̄M2)
by Theorem 3.3. Moreover, we observe that

∥x1 ⊗̄ x2∥p,φ1⊗̄φ2,η = ∥hη/qφ1⊗̄φ2
(x′1 ⊗̄ x′2)h

(1−η)/q
φ1⊗̄φ2

∥p,φ1⊗̄φ2,η

= ∥x′1 ⊗̄ x′2∥p = ∥x′1∥p∥x′2∥p (by Theorem 3.3 again)

= ∥hη/qφ1
x′1h

(1−η)/q
φ1

∥p,φ1,η∥hη/qφ1
x′2h

(1−η)/q
φ2

∥p,φ2,η

= ∥x1∥p,φ1,η∥x2∥p,φ2,η.

That the map from Lp(M1, φ1)η⊗algL
p(M2, φ2)η into Lp(M1 ⊗̄M1, φ1 ⊗̄φ2)η

has dense image follows from Theorem 3.3 together with the definition of
norm ∥ · ∥p,φ1⊗̄φ2,η.

Here is a question. Let (x1, x2) ∈ L1(M1, φ1)η×L1(M2, φ2)η be arbitrar-
ily given with xi ̸= 0. Does x1 ⊗̄ x2 ∈ Lp(M1 ⊗̄M2, φ1 ⊗̄ φ2)η imply that
xi ∈ Lp(Mi, φi)η for both i = 1, 2?

4. A sample application in QIT. We illustrate how our description
of the non-commutative Lp-space Lp(M1 ⊗̄M2) is useful.
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Let α ∈ [1/2,∞) \ {1} be given. The sandwiched α-Rényi divergence
D̃α(ψ ∥φ) for ψ,φ ∈M+

∗ with ψ ̸= 0 has several definitions, one of which is

D̃α(ψ ∥φ) := 1

α− 1
log

Q̃α(ψ ∥φ)
ψ(1)

,

where

Q̃α(ψ ∥φ) :=


tr[(h

(1−α)/(2α)
φ hψh

(1−α)/(2α)
φ )α] (1/2 ≤ α < 1),

∥hψ∥αα,φ,1/2 (α > 1, s(ψ) ≤ s(φ)

and hψ ∈ Lα(M,φ)1/2),

+∞ (otherwise).

This formulation is mainly due to Jenčová [4, 3.3].
The sandwiched α-Rényi divergence Q̃α(ψ ∥φ) admits a two-parameter

extension, called the α-z-Rényi divergence, in the finite-dimensional or more
generally the infinite-dimensional type I setup. See [7, 2, 14] in historical
order. Here we propose a possible definition of its non-type I extension, for
which we want to show that the present description of non-commutative
Lp-spaces associated with tensor product von Neumann algebras works. Let
α, z > 0 with α ̸= 1 be arbitrarily given. For each pair φ,ψ ∈ M+

∗ with
ψ ̸= 0 we define Q̃α,z(ψ ∥φ) to be

tr[(h
(1−α)/(2z)
φ h

α/z
ψ h

(1−α)/(2z)
φ )z] (α < 1),

∥x∥zz (α > 1 and (♠) holds
with x ∈ s(φ)Lz(M)s(φ)),

+∞ (otherwise),

where

(♠) h
α/z
ψ = h(α−1)/2z

φ xh(α−1)/2z
φ .

Lemma 4.1. Identity (♠) uniquely determines x ∈ s(φ)Lz(M)s(φ) (if it
exists). Hence Q̃α,z(ψ ∥φ) is well defined.

Proof. Choose another y ∈ s(φ)Lz(M)s(φ) with

h
α/z
ψ = h(α−1)/(2z)

φ yh(α−1)/(2z)
φ .

Since all the τ -measurable operators form a ∗-algebra, we have

0 = h(α−1)/(2z)
φ xh(α−1)/(2z)

φ − h(α−1)/(2z)
φ yh(α−1)/(2z)

φ

= h(α−1)/(2z)
φ (x− y)h(α−1)/(2z)

φ .

Moreover, hφ is a τ -measurable operator and non-singular affiliated with
s(φ)M̃s(φ). In addition, f(t) = t(α−1)/(2z) is a continuous strictly increasing
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function on [0,∞) with f(0) = 0 if α > 1. Hence, h(α−1)/(2z)
φ is also τ -

measurable (see, e.g., [5, Proposition 4.19]; but this fact is implicitly utilized
in the general theory of Haagerup non-commutative Lp-spaces that we have
employed) and non-singular. Thus, x− y = 0 by [12, Lemma 2.1], and hence
x = y.

Then

D̃α,z(ψ ∥φ) := 1

α− 1
log

Q̃α,z(ψ ∥φ)
ψ(1)

is called the α-z-Rényi divergence.

Lemma 4.2. Q̃α,α(ψ ∥φ) = Q̃α(ψ ∥φ) for every α ≥ 1/2 with α ̸= 1.

Proof. When α ∈ [1/2, 1), the identity clearly holds by the definitions of
Q̃α,α(ψ ∥φ) and Q̃α(ψ ∥φ).

We then consider the case α= z > 1. Then identity (♠) holds with x∈
s(φ)Lα(M)s(φ) if and only if hψ ∈h

(α−1)/2α
φ Lα(M)h

(α−1)/2α
φ =Lα(M,φ)1/2,

where the dual exponent of α is α/(α − 1). Moreover, in this case, we have
∥hψ∥αα,φ,1/2= ∥x∥αα.

The next fact was claimed for the sandwiched α-Rényi divergence
Q̃α(ψ ∥φ) in [3, p. 1860] without a detailed proof. Its detailed proof when
both Mi are injective or AFD was given by Hiai and Mosonyi [6, (3.16)] by
using the finite-dimensional result and also the martingale convergence prop-
erty that they established. We believe that the proof below is more natural
than those.

Proposition 4.3. For any ψi, φi ∈ (Mi)
+
∗ with ψi ̸= 0, i = 1, 2, we have

Q̃α,z(ψ1 ⊗̄ ψ2 ∥φ1 ⊗̄ φ2) = Q̃α,z(ψ1 ∥φ1)Q̃α,z(ψ2 ∥φ2),

D̃α,z(ψ1 ⊗̄ ψ2 ∥φ1 ⊗̄ φ2) = D̃α,z(ψ1 ∥φ1) + D̃α,z(ψ2 ∥φ2),

when α < 1 or both Q̃α,z(ψi ∥φi) are finite.
When α = z ∈ [1/2, 1) ∪ (1,∞), the identities hold without any assump-

tions.

Proof. We first consider the case when α < 1. By Lemma 3.2(2, 3) to-
gether with Lemma A.1, we have

(h
(1−α)/(2z)
φ1⊗̄φ2

h
α/z
ψ1⊗̄ψ2

h
(1−α)/(2z)
φ1⊗̄φ2

)z

= ((h(1−α)/(2z)φ1
⊗̄ h(1−α)/(2z)φ2

)(h
α/z
ψ1

⊗̄ h
α/z
ψ2

)(h(1−α)/(2z)φ1
⊗̄ h(1−α)/(2z)φ2

))z

= ((h(1−α)/(2z)φ1
h
α/z
ψ1

h(1−α)/(2z)φ1
) ⊗̄ (h(1−α)/(2z)φ2

h
α/z
ψ2

h(1−α)/(2z)φ2
))z

= (h(1−α)/(2z)φ1
h
α/z
ψ1

h(1−α)/(2z)φ1
)z ⊗̄ (h(1−α)/(2z)φ2

h
α/z
ψ2

h(1−α)/(2z)φ2
)z
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as unbounded operators on H1 ⊗̄H2, on which M̃1 ⊗̄M̃2 naturally acts. Since
both the tensor components of the above right-most side fall into L1(Mi),
i = 1, 2, respectively, we conclude, by Theorem 3.3, that the desired multi-
plicativity of Q̃α,z holds true.

We then consider the case of α > 1. Assume first that Q̃α,z(ψi ∥φi) < +∞
for i = 1, 2. Then there are xi ∈ s(φi)L

z(Mi)s(φi), i = 1, 2, such that
h
α/z
ψi

= h
(α−1)/(2z)
φi xih

(α−1)/(2z)
φi . By Lemmas 3.2(2, 3) and A.1, we have

h
(α−1)/(2z)
φ1⊗̄φ2

x1 ⊗̄ x2 h
(α−1)/(2z)
φ1⊗̄φ2

= (h(α−1)/(2z)
φ1

⊗̄ h(α−1)/(2z)
φ2

)(x1 ⊗̄ x2)(h
(α−1)/(2z)
φ1

⊗̄ h(α−1)/(2z)
φ2

)

= (h(α−1)/(2z)
φ1

x1h
(α−1)/(2z)
φ1

) ⊗̄ (h(α−1)/(2z)
φ2

x2h
(α−1)/(2z)
φ2

)

= h
α/z
ψ1

⊗̄ h
α/z
ψ2

= h
α/z
ψ1⊗̄ψ2

.

Therefore,

Q̃α,z(ψ1 ⊗̄ ψ2 ∥φ1 ⊗̄ φ2)

= ∥x1 ⊗̄ x2∥zz = ∥x1∥zz∥x2∥zz = Q̃α,z(ψ1 ∥φ1)Q̃α,z(ψ2 ∥φ2)

by Theorem 3.3.
We finally assume that α = z > 1. By Lemma 4.2, Q̃α,z(ψ1⊗̄ψ2 ∥φ1⊗̄φ2)

= Q̃α(ψ1 ⊗̄ ψ2 ∥φ1 ⊗̄ φ2) and Q̃α,z(ψi ∥φi) = Q̃α(ψi ∥φi), i = 1, 2. We also
assume that at least one of the Q̃α(ψi ∥φi) is infinite, say Q̃α(ψ1 ∥φ1) = +∞.
Then we apply the monotonicity property (see [4, Theorem 3.16(4)]) to the
unital ∗-homomorphism (i.e., unital normal positive map) γ :M1 →M1⊗̄M2

sending a ∈M1 to a⊗ 1 and obtain

Q̃α(ψ1 ⊗̄ ψ2 ∥φ1 ⊗̄ φ2) ≥ Q̃α(ψ2(1)ψ1 ∥φ2(1)φ1).

If φ2(1) = 0, then φ2(1)φ1 = 0 and thus Q̃α(ψ2(1)ψ1 ∥φ2(1)φ1) = +∞.
Hence we may and do assume that φ2(1) ̸= 0. Then s(ψ2(1)ψ1) ≤ s(φ2(1)φ1)
if and only if s(ψ1) ≤ s(φ1), and we easily see that hψ2(1)ψ1

= ψ2(1)hψ1 ∈
Lα(M1, φ2(1)φ1)1/2 if and only if hψ1 ∈ Lα(M1, φ1)1/2. Hence

Q̃α(ψ2(1)ψ1 ∥φ2(1)φ1) = +∞,

and thus the desired multiplicative property of Q̃α holds as +∞ = +∞.

Proving the above additivity property in full generality, i.e., without as-
suming Q̃α,z(ψi ∥φi) < +∞, needs the monotonicity property (the so-called
data processing inequality) or other similar property. It is an important ques-
tion to determine the range of (α, z) for which the monotonicity property
holds. (This question was completely settled by Zhang [19] in the finite-
dimensional case.) Moreover, general properties of Q̃α,z(ψ ∥φ) will be dis-
cussed in a subsequent work [11] by the first-named author.
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Appendix. Simple tensors of (τ-measurable) unbounded opera-
tors. Let P and Q be semifinite von Neumann algebras which act on Hilbert
spaces H and K, respectively. Let τP and τQ be faithful semifinite normal
tracial weights on P and Q. We are interested in the tensor product of a
τP -measurable x and a τQ-measurable y. Recall that x is said to be a τP -
measurable operator if it is a closed densely defined operator affiliated with
P (denoted by xηP ) such that for each δ > 0 there is a projection e ∈ P
such that eH ⊂ D(x) and τP (1− e) < δ, where D(x) denotes the domain of
x as an operator on H.

By, e.g., [15, Lemma 7.21] the algebraic tensor product of x and y becomes
a densely defined closable operator, whose closure is denoted by x ⊗̄ y. It
is also known (see, e.g., [15, Proposition 7.26]) that (x ⊗̄ y)∗ = x∗ ⊗̄ y∗

in general. Let x = u|x| and y = v|y| be the polar decompositions (see,
e.g., [15, Theorem 7.2]). Then we have the polar decomposition x ⊗̄ y =
(u ⊗ v)(|x| ⊗̄ |y|), and in particular |x ⊗̄ y| = |x| ⊗̄ |y|; see [15, Exercise
7.6.13]. This is indeed Lemma 3.2(1). Again by, e.g., [15, Proposition 7.26] we
observe that |x| ⊗̄ |y| is self-adjoint. Moreover, by, e.g., [15, Section 5.5.1 and
Lemma 7.24], there is a unique spectral measure e|x|,|y| over [0,∞)2 such that
e|x|,|y|(Λ1 × Λ2) = e|x|(Λ1) ⊗ e|y|(Λ2) for any Borel subsets Λ1, Λ2 ⊂ [0,∞),
and more importantly,

|x| ⊗̄ |y| =
�

[0,∞)2

λ1λ2 e|x|,|y|(dλ1, dλ2)

in the sense of spectral integrals. Here, e|x| and e|y| are the spectral measures
of |x| and |y|, respectively. Define

e|x|⊗̄|y|(Λ) :=
�

[0,∞)2

1Λ(λ1λ2) e|x|,|y|(dλ1, dλ2), Λ ⊂ [0,∞).

Then it is not hard to see that e|x|⊗̄|y| gives a unique spectral measure of
|x| ⊗̄ |y|. Thus, we have

f(|x| ⊗̄ |y|) =
�

[0,∞)

f(λ) e|x|⊗̄|y|(dλ) =
�

[0,∞)2

f(λ1λ2) e|x|,|y|(dλ1, dλ2)

for every non-negative Borel function f on [0,∞). If f(λ1λ2) = f(λ1)f(λ2),
then

f(|x| ⊗̄ |y|) =
�

[0,∞)2

f(λ1)f(λ2) e|x|,|y|(dλ1, dλ2) = f(|x|) ⊗̄ f(|y|).

This also holds even if the non-negativity of f is replaced with the bounded-
ness of f . Thus, the above formula is applicable to the ft in Lemma 2.2. Hence
what we have established indeed includes Lemma 3.2(2). The properties we
have explained so far are valid for just closed densely defined (unbounded)
operators, without τ -measurability and even affiliation with P and Q.
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Using the monotone class theorem in measure theory we can easily see
that the spectral measure e|x|,|y| takes values in P ⊗̄Q since e|x|,|y|(Λ1×Λ2) =
e|x|(Λ1) ⊗ e|y|(Λ2) ∈ P ⊗̄ Q by affiliation. Therefore, |x ⊗̄ y| = |x| ⊗̄ |y| is
affiliated with P ⊗̄Q. It is non-trivial whether or not x ⊗̄ y, or equivalently,
|x| ⊗̄ |y|, is τP ⊗̄ τQ-measurable. In fact, this is not the case in general; see
[1, Examples 3.14, 3.15].

Let x′ and y′ be τP - and τQ-measurable operators, respectively. It is
known that the usual products xx′ and yy′ are densely defined closable, and
hence the closures xx′ and yy′ become τP - and τQ-measurable again. By [15,
Lemma 7.22] we have (xx′)⊗̄(yy′) = (xx′)⊗̄(yy′), where the right-hand side
coincides with the closure of (x ⊗̄ y)(x′ ⊗̄ y′). Thus, the following holds:

Lemma A.1. All the linear combinations of ‘simple tensors’ x ⊗̄ y with
τP - and τQ-measurable xηP and yηQ form a ∗-algebra with strong sum and
strong product. We simply understand (x ⊗̄ y)(x′ ⊗̄ y′) as the strong product
of x ⊗̄y and x′ ⊗̄y′ without the use of closure sign. With this notational rule,

(x ⊗̄ y)(x′ ⊗̄ y′) = (xx′) ⊗̄ (yy′)

for any τP - and τQ-measurable x, x′ηP and y, y′ηQ, where xx′ and yy′ are
understood as the strong product.
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