On sums of fractional parts

by

W. Duke (Los Angeles, CA)

Dedicated to Henryk Iwaniec with gratitude

1. Introduction. For $\alpha \in \mathbb{R}$ let $\{a\} = a - \lfloor a \rfloor$. For α irrational and a nonnegative integer n define

$$S(\alpha, n) = \sum_{k=1}^{n} \left(\{k\alpha\} - \frac{1}{2} \right).$$

This deceptively simple looking sum has been thoroughly studied for a long time $(^1)$, but it still presents attractive unsolved problems. It is well known (see e.g. [10, p.104]) that $|S(\alpha, n)|$ is unbounded in n for a fixed irrational α . Since it is obvious that $S(\alpha, n) + S(\beta, n) = 0$ if $\alpha + \beta \in \mathbb{Z}$, a natural question arises: is it possible for

$$|S(\alpha, n) + S(\beta, n)|$$

to be bounded when α is irrational and $\alpha + \beta \in \mathbb{Q}$ is not an integer?

THEOREM 1.1. Suppose that α is irrational and that $\alpha + \beta$ is rational. Then the values of $|S(\alpha, n) + S(\beta, n)|$ are unbounded in n unless $\alpha + \beta \in \mathbb{Z}$, in which case the value is zero.

As a consequence, given any (irrational) real quadratic α , we find that $|S(\alpha, n) + S(\alpha', n)|$ is bounded if and only if $\alpha + \alpha' \in \mathbb{Z}$, where α' is the conjugate of α . Under the additional assumption that $\alpha\alpha' = 1$, this consequence was conjectured in [3, Conj. 6.17] in relation to some interesting

²⁰²⁰ Mathematics Subject Classification: Primary 11K31; Secondary 37A99.

Key words and phrases: fractional parts, lattice points in right triangles.

Received 11 April 2023.

Published online 20 July 2023.

⁽¹⁾ See [10, IX, §2] for a summary of the classical literature on S up until about 1935. A more recent source is [11], especially Chapter 2. An elegant elementary approach was given in [15] (see the Math. Review MR0006753 for some corrections). The book [1] contains a striking central limit theorem for $S(\alpha, n)$ when α is real quadratic.

2 W. Duke

problems in symplectic geometry about symplectic embeddings of ellipsoids (see also [12]).

The sum S arises in the problem of counting lattice points in a right triangle whose sides are on the positive axes. This connection is also behind its appearance in [3]. Suppose that $\alpha, \beta > 0$. Consider the counting function of lattice points inside the closed triangle Δ with vertices at $(0,0), (0,\alpha)$ and $(0,\beta)$, when it is scaled by t > 0:

$$F(t) = \#(t\Delta \cap \mathbb{Z}^2).$$

A very special case of a well-known result of Ehrhart (see [2]) implies that for integers α, β and integral ℓ the function $F(\ell)$ is a quadratic polynomial in ℓ . Explicitly, when $gcd(\alpha, \beta) = 1$, we have

(1.1)
$$F(\ell) = \frac{\alpha\beta}{2}\ell^2 + \frac{\alpha+\beta+1}{2}\ell + 1.$$

For general rational α, β , Ehrhart's result is that (1.1) still holds provided we replace 1 and the coefficient of ℓ by certain periodic functions of ℓ having integral periods. Although they need not be constant, these periodic coefficients are clearly still bounded.

Suppose now that α/β is irrational and define, for any t > 0,

(1.2)
$$C(t) = F(t) - \left(\frac{\alpha\beta}{2}t^2 + \frac{1}{2}(\alpha + \beta)t\right).$$

By [7, Theorem A1] we have C(t) = o(t). When is $C(\ell)$ bounded for integers ℓ ? For certain α, β , the answer follows easily from Theorem 1.1.

COROLLARY 1.2. Suppose that $\alpha, \beta = \alpha'$ are the (real quadratic) solutions to

$$ax^2 - bx + b = 0,$$

where $a, b \in \mathbb{Z}^+$ are such that $b^2 - 4ab > 0$ is not a square and $\gcd(a, b) = 1$. Then $|C(\ell)|$ is bounded if and only if α, β are real quadratic integers, in which case $C(\ell) = 1$.

Proof. For general $\alpha, \beta > 0$ and $m, n \in \mathbb{Z}^+$ we have the identity

$$C\left(\frac{m}{\alpha} + \frac{n}{\beta}\right) = 1 - S\left(\frac{\alpha}{\beta}, n\right) - S\left(\frac{\beta}{\alpha}, m\right).$$

For a proof see [16, Theorem I]. Our assumptions imply that $1/\alpha + 1/\beta = 1$, so

$$C(\ell) = 1 - S\left(\frac{\alpha}{\beta}, \ell\right) - S\left(\frac{\beta}{\alpha}, \ell\right).$$

The result now follows from Theorem 1.1 after noting that α, β are real

quadratic integers exactly when a = 1, while

$$\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{(\alpha + \beta)^2}{\alpha\beta} - 2 = \frac{b}{a} - 2. \blacksquare$$

REMARK. Under the assumptions of Corollary 1.2, if α, β are real quadratic integers then for $\ell \in \mathbb{Z}^+$ we have

$$F(\ell) = \frac{b}{2}\ell^2 + \frac{b}{2}\ell + 1,$$

which is an example of the Ehrhart function of a pseudo-integral triangle (see [4]).

2. Proof of Theorem 1.1. The theorem follows without difficulty from a result of Schoißengeier [17], which is a reformulation of one of Oren [13]. These papers give very useful developments of earlier work on local discrepancies of the sequence $\{k\alpha\}$, especially [6, 8, 9, 14]. Here "local" refers to the estimation of the discrepancy from uniform distribution of the sequence when measured with respect to a fixed interval or, more generally, with respect to integration of a fixed function.

Set $D(\alpha, \gamma, n) = S(\alpha + \gamma, n) - S(\alpha, n)$ where α is irrational and γ is rational. We want to show that $|D(\alpha, \gamma, n)|$ is unbounded unless $\gamma \in \mathbb{Z}$. Let $\gamma = p/q \in \mathbb{Q}$ be in reduced form with q > 1. We have

$$D(\alpha, \gamma, n) = \sum_{1 \le \ell \le n} \left\{ \ell \left(\alpha + \frac{p}{q} \right) \right\} - \{ \ell \alpha \}.$$

Write $\ell = qk - r$ and $\delta = q\alpha$. We may assume that $1 \le r \le q - 1$ and $1 \le k \le m$ if n = mq - 1. Note that the terms with r = 0 are zero and can be omitted. By splitting into arithmetic progressions modulo q, it follows that

$$D(\alpha, \gamma, n) = \sum_{1 \le r < q} \sum_{1 \le k \le m} \left\{ k\delta - r\alpha - \frac{pr}{q} \right\} - \{k\delta - r\alpha\}.$$

Next apply the following elementary identity for $x \in \mathbb{R}$:

$$\{k\delta + x\} = \{k\delta\} + \chi_{[0,\{-x\})}(k\delta) - \{-x\},$$

where χ is the usual characteristic function made \mathbb{Z} -periodic. Thus

$$D(\alpha, \gamma, n) = \sum_{1 \le k \le m} \left(\sum_{1 \le r < q} \chi_{[0, \{r\alpha + pr/q\}\})}(k\delta) - \chi_{[0, \{r\alpha\}\})}(k\delta) \right)$$
$$- m \sum_{1 \le r < q} \left\{ r\alpha + \frac{pr}{q} \right\} - \{r\alpha\}$$
$$= \sum_{k \le m} f(k\delta) - m \int_{0}^{1} f(x) dx,$$

4 W. Duke

where f is a periodic step function. It follows from [17, Cor. 3] that $D(\alpha, \gamma, n)$ is bounded if and only if f is in the space of periodic step functions generated by functions of the form $\chi_{I+\mathbb{Z}}(x)$, where $I \subset [0,1)$ is an interval whose length is in $\mathbb{Z} + q\alpha\mathbb{Z}$. Since α is irrational and $1 \leq r < q$, we see that f is not in this space, proving Theorem 1.1. See Figure 1 for an illustration of a step function f that arises.

Fig. 1. The step function f when $\alpha = \sqrt{2}$ and p/q = 4/7

In case q=2 the above calculation is quite transparent and the result is a consequence of [9] or [6]. For this, assume that p/q=1/2 and that $0 < \alpha < 1/2$. Then

$$D\bigg(\alpha,\frac{1}{2},2m-1\bigg) = \sum_{1 \le k \le m} \chi_{[\alpha,\alpha+1/2)}(2k\alpha) - \frac{m}{2},$$

which is the local discrepancy of the sequence $\{2k\alpha\}$ for $1 \leq k \leq m$ in $[\alpha, \alpha + 1/2)$. By [9] this is unbounded since $1/2 \notin \mathbb{Z} + 2\alpha\mathbb{Z}$.

REMARK. An apparently difficult problem is to give criteria for the one-sided boundedness of $D(\alpha, \gamma, n)$. In particular, the possible one-sided boundedness of C from (1.2) is of interest for the problems of [3] mentioned above. This issue does not seem to have been extensively treated for general local discrepancies. Even simple local discrepancies like that of $\{2k\alpha\}$ in the interval $[\alpha, \alpha + 1/2)$ remain mysterious. Some results are given in [5].

Acknowledgements. I thank Peter Sarnak for informing me of the conjecture in [3], and Dan Cristofaro-Gardiner for some helpful comments. I also thank the referee for a useful correction and comment.

References

- [1] J. Beck, Probabilistic Diophantine Approximation. Randomness in Lattice Point Counting, Springer Monogr. Math., Springer, Cham, 2014.
- [2] M. Beck and S. Robins, Computing the Continuous Discretely. Integer-Point Enumeration in Polyhedra, Springer, New York, 2015.
- [3] D. Cristofaro-Gardiner, T. S. Holm, A. Mandini and A. R. Pires, On infinite staircases in toric symplectic four-manifolds, arXiv:2004.13062 (2020).
- [4] D. Cristofaro-Gardiner, T. X. Li and R. P. Stanley, Irrational triangles with polynomial Ehrhart functions, Discrete Comput. Geom. 61 (2019), 227–246.
- [5] Y. Dupain and V. T. Sós, On the one-sided boundedness of discrepancy-function of the sequence {na}, Acta Arith. 37 (1980), 363-374.
- [6] H. Furstenberg, H. Keynes and L. Shapiro, Prime flows in topological dynamics, Israel J. Math. 14 (1973), 26–38.
- [7] G. H. Hardy and J. E. Littlewood, Some problems of Diophantine approximation: the lattice-points of a right-angled triangle, Proc. London Math. Soc. (2) 20 (1921), 15–36.
- [8] E. Hecke, Über analytische Funktionen und die Verteilung von Zahlen mod. eins, Abh. Math. Sem. Univ. Hamburg 1 (1922), 54–76; also in Werke.
- [9] H. Kesten, On a conjecture of Erdös and Szüsz related to uniform distribution mod 1, Acta Arith. 12 (1966), 193–212.
- [10] J. F. Koksma, Diophantische Approximationen, reprint, Springer, Berlin, 1974.
- [11] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Wiley-Interscience, New York, 1974.
- [12] D. McDuff and F. Schlenk, The embedding capacity of 4-dimensional symplectic ellipsoids, Ann. of Math. (2) 175 (2012), 1191–1282.
- [13] I. Oren, Admissible functions with multiple discontinuities, Israel J. Math. 42 (1982), 353–360.
- [14] A. Ostrowski, Notiz zur Theorie der Diophantischen Approximationen, Jahresber. Deutsch. Math.-Verein. 36 (1927), 178–180; Zur Theorie der Diophantischen Approximationen, ibid. 39 (1930), 34–46; also in Collected Math. Papers, Vol. 3.
- [15] S. S. Pillai, On a problem in Diophantine approximation, Proc. Indian Acad. Sci. Sect. A. 15 (1942), 177–189.
- [16] S. S. Pillai, Lattice points in a right-angled triangle. II, Proc. Indian Acad. Sci. Sect. A 17 (1943), 58–61.
- [17] J. Schoißengeier, Regularity of distribution of (na)-sequences, Acta Arith. 133 (2008), 127–157.

W. Duke

Mathematics Department UCLA Los Angeles, CA 90095-1555, U.S.A.

E-mail: wdduke@ucla.edu