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Abstract. A quantum dynamical system, mimicking the classical phase doubling map z 7→
z2 on the unit circle, is formulated and its ergodic properties are studied. We prove that the
quantum dynamical entropy equals the classical value log 2 by using compact perturbations of
the identity as operational partitions of unity.

1. Introduction. In the last few years a lot has been done in connection with the

formulation of a quantum analogue of the classical Kolmogorov Sinai entropy (KS). This

paper is meant as a step forward in the direction of a quantum dynamical entropy as

proposed by R. Alicki and M. Fannes, based on an idea of Lindblad’s [2]. This ALF

entropy has been defined for automorphisms and up till now only invertible dynamics

have been studied, e.g. the shift on a spin chain, the quantum Arnold cat map, . . . One of

our aims is to construct a non-commutative irreversible dynamics, mimicking the classical

map 2x modulo 1 on the unit interval, and to compute its entropy.

In the KS entropy construction the original dynamical system is mapped into a clas-

sical spin chain model by means of a partition of the phase space, referred to as coarse

graining. The supremum, over all possible partitions, of the entropy density of these spin

chains is then the KS invariant. For quantum systems a similar scheme can be performed

by replacing the partitions of phase space by “operational partitions of unity”. We will

briefly sketch it in the preliminaries section.

As a consequence of the non-commutativity, the concept of partition must be treated

with more care: not all partitions of unity will be allowed. To understand this, we have

to look at the physical meaning of a partition of unity. In fact, asking for the proper

partitions of unity is a mathematical matter which can be translated into physical terms
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by considering the question of which measurements are physically allowed. Indeed, a

partition of unity is the theoretical expression of the coupling between the physical system

and a measuring device (an array of quantum spins). For example, measurements that

produce by themselves at a fixed rate a non-zero entropy should not be permitted. So

a second motivation to start this work was to understand better which partitions can

be allowed for in our simple model. It will turn out that the partitions that are only

an “infinitesimal” perturbation of the trivial partition form a reasonable class, i.e. those

partitions which differ only by compact operators from the trivial one.

Our starting point is the map

θ : [0, 1[→ [0, 1[: x 7→ 2x mod 1,

leaving the Lebesgue measure invariant. This map is a standard example of a classical

irreversible dynamical system and it is well known to be chaotic, which means that there

exists a positive Lyapunov exponent λ, defined as

λ := lim
n→∞

1

n
log |Dx(θn(x))| = log 2.

By means of the shift

Tx0
: [0, 1[→ [0, 1[: x 7→ x+ x0 mod 1

we can formulate this notion in a frame suitable for an algebraic description:

θ ◦ Tx0 = T2x0 ◦ θ. (1)

Formulated as such, it expresses the equivalence between first shifting a point over a

distance x0 and then applying the dynamics and, applying θ before shifting over twice

the original distance.

It is our goal to put this map θ in a non-commutative, i.e. quantum framework. More

precisely, we will be looking for an irreversible dynamics Θ on B(L2([0, 1], dx)) satisfying

Θ(Mf ) = Mf◦θ, (2)

Mf being the multiplication operator onH = L2([0, 1], dx) by the function f ∈ L∞([0, 1]).

Let us stress that we consider Θ as a dynamics on the whole of B(H), not only as a map on

the multiplication operators. Requirement (2) by itself is not at all sufficient to determine

a unique homomorphism. Therefore we will ask for extra properties.

Following the setup of [4] it is natural to impose for any x0 ∈ [0, 1[

τx0
◦Θ = Θ ◦ τ2x0

(3)

where τx0
is the automorphism implemented by the unitary operator

(Ux0ϕ)(x) := ϕ(T−x0x) ϕ ∈ H.

Motivated by the observation that (3) restricted to the multiplication operators yields

(1) again, we conclude that there exists a quantum Lyapunov exponent log 2.

One could say that the dynamics stretches the position observable by a factor 2. As Θ

conserves the commutation relation between position and momentum it is to be expected

that the momentum observable will shrink by a factor 2 under the dynamics. To see

this, introduce the group of automorphisms {σk | k ∈ Z} determined by the unitaries
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Mψk , where ψk(x) := exp(i2πkx). σk describes on the level of the observables a shift in

momentum space. It follows then immediately from (2) that

σ2k ◦Θ = Θ ◦ σk, (4)

showing the presence of a second Lyapunov exponent − log 2.

In section 2 we will discuss the definition of dynamical entropy and we will say a few

words about compact operators. Section 3 deals with the construction of the dynamics

and its ergodic properties. In the last section the dynamical entropy is computed. Some

results are stated without proof. For the details we refer to [3].

2. Preliminaries. We will begin this section by reminding the construction of the

dynamical entropy for a discrete dynamical system [2] and stating a continuity property.

Let M be a von Neumann algebra of operators acting on a Hilbert Space H and let

Ω be a normalized cyclic vector for M, defining a state ω on M. The single timestep

evolution is given by an automorphism Θ (later on we will weaken this condition to a

homomorphism) implemented by a unitary operator U such that UΩ = Ω and UMU∗ =

M. In case a dynamical system is given in terms of a C∗-algebra one can make the

GNS construction to obtain the von Neumann algebra picture.

An operational partition of unity of size k is a k-tuple X of elements xi ∈M satisfying

k−1∑
i=0

x∗i xi = 1I.

A partition X = (x0, . . . , xk−1) evolves in time according to

Θ(X ) := (Θ(x0), . . . ,Θ(xk−1)).

It can be composed with another partition Y = (y0, . . . , y`−1) to yield

X ◦ Y := (x0y0, x0y1, . . . , xk−1y`−1)

which is of size k`.

To any partition X of size k we associate a k×k density matrix ρ[X ] with (i, j) matrix

element 〈xjΩ, xiΩ〉. The entropy H(ω)[X ] of the partition X is then

H(ω)[X ] := S(ρ[X ]) = S
( k−1∑
i=0

|xiΩ〉 〈xiΩ|
)
,

where the von Neumann entropy S(ρ) of a density matrix ρ is computed as Tr η(ρ) with

η(0) = 0 and η(x) = −x log x for 0 < x ≤ 1. Equality of the two von Neumann entropies

is a consequence of the fact that both density matrices have, up to multiplicities of

zero, identical spectrum. To see this, one has to consider the vector ΨX =
∑
i ei ⊗

xiΩ, (e0, . . . , ek−1) being a fixed orthonormal basis of Ck. This vector is normalized and

cyclic for Mk ⊗M. The restrictions of the pure vector state |ΨX 〉 〈ΨX | to Mk and M
respectively are exactly ρ[X ] and

∑
i |xiΩ〉 〈xiΩ|.

By composing the partition X with its subsequent time evolutions we can construct

larger and larger density matrices ρ[Θn−1(X ) ◦ · · · ◦Θ(X ) ◦ X ] on M⊗[0,n−1]
k . These are

right-compatible for different n in the sense that the partial trace over the last tensor

factor, corresponding to time n−1, yields the density matrix up to time n−2. Therefore



34 J. ANDRIES AND M. DE COCK

these matrices define a state ωX on M⊗Nk . The dynamical entropy h(Θ,ω)[X ] of the

partition X is then the mean entropy density of ωX , i.e.

h(Θ,ω)[X ] = lim sup
n

1

n
H(ω)[Θ

n−1(X ) ◦ · · · ◦Θ(X ) ◦ X ].

Consider a unital ∗-subalgebra A of M which is globally invariant under Θ. The

dynamical entropy h(Θ,ω,A) is obtained by taking the supremum of the dynamical entropy

over all finite partitions in A:

h(Θ,ω,A) = sup
X⊂A

h(Θ,ω)[X ].

We finally state a continuity property of the entropy H(ω)[X ] of a partition.

Lemma 1. Consider two families X (α) = (x
(α)
0 , . . . , x

(α)
k−1) and Y(α) = (y

(α)
0 , . . . , y

(α)
k−1)

of partitions, α = 0, . . . , n− 1, such that

‖x(α)
i − y(α)

i ‖ < εα (i = 0, . . . , k − 1) and 2k

n−1∑
α=0

εα <
1

3
.

Then ∣∣∣∣ 1nH(ω)

[
X (n−1) ◦ · · · ◦ X (0)

]
− 1

n
H(ω)

[
Y(n−1) ◦ · · · ◦ Y(0)

]∣∣∣∣
≤
(

2k

n−1∑
α=0

εα

)
log(2k) +

1

n
η
(

2k

n−1∑
α=0

εα

)
for any state ω.

For the proof we refer to [6].

The norm closure of the ideal of finite rank operators on a Hilbert space H is the set of

compact operators, K(H). These are the operators mapping uniformly bounded subsets

of H into pre-compact sets. Each element A of K(H) can be expressed in an essentially

unique, norm convergent expansion

A =
∑
n≥1

µn|ξn〉〈φn|.

In this expression, the {ξn} and {φn} are orthonormal sets and the µn > 0 are coefficients

arranged in decreasing order. They are the non-zero eigenvalues of |A| = U∗A, with the

φn the corresponding eigenvectors and ξn = Uφn. The lack of uniqueness comes from the

possibility of degenerate eigenvalues of |A|.
For any p ≥ 1 the Schatten class Lp is defined as

Lp = {A ∈ K(H) | ‖A‖p =
(∑
n≥1

µpn

)1/p

<∞}.

For p = 1 we get the trace class operators and p = 2 corresponds to the Hilbert-Schmidt

operators. Since (µn)n is a decreasing sequence we can write

NµpN ≤
N∑
n=1

µpn < ‖A‖pp,

such that µN ≤ ‖A‖p/N1/p. This allows us to formulate:
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Lemma 2. For any A ∈ Lp and any ε > 0 there exists an operator AN of finite rank

N − 1 such that ‖A−AN‖ ≤ ε and

N =

[(
‖A‖p
ε

)p]
,

where [x] denotes the smallest integer larger than x.

3. Construction of the dynamics. We propose the following form for the ∗-ho-

momorphism Θ on B(H) that we are looking for:

Θ(A) = u0Au
∗
0 + u1Au

∗
1,

where u0, u1 ∈ B(H) satisfy the Cuntz relations

u0 u
∗
0 + u1 u

∗
1 = 1I and u∗0u0 = u∗1u1 = 1I.

Moreover, we want the homomorphism to act on the multiplication operators in the

same way as the classical dynamics and we ask for a quantum Lyapunov exponent log 2

(expressed by (2) and (3)).

Writing the first condition more explicitly, we have

u0Mf u
∗
0 + u1Mf u

∗
1 = Mf◦θ.

Multiplying this relation by u0 on the right and using the Cuntz relations we find

u0Mf = Mf◦θ u0.

Let us denote the constant function with value 1 by 1. Applying the previous line to 1

and evaluating this at a point x ∈ [0, 1] we see that

(u0 f)(x) = f(θ(x)) [u0(1)](x).

Let w ∈ B(H) be the operator (wϕ)(x) := ϕ(θ(x)). A small computation shows that w

is an isometry: w∗w = 1I. We use this to write f = w∗g with w f = g. This implies

(u0 w
∗g)(x) = [u0(1)](x) (wf)(x)

= [u0(1)](x) g(x).

From this, we can conclude that u0(1) ∈ L∞([0, 1]) and that u0 w
∗ = Mu0(1). A similar

argument can be given for u1 leading to the existence of two essentially bounded functions

f0 and f1 such that

uj = Mfjw (j = 0, 1).

The fact that Θ is a unity preserving homomorphism will impose some conditions on f0

and f1.

Because the multiplication operators Mf and the shifts Ux0 generate a strongly dense

subalgebra of B(H) and we consider strongly continuous homomorphisms, it is sufficient

to check (3) for the Mf and Ux0 . Using θ ◦ Tx0 = T2x0 ◦ θ, the relation

(τx0 ◦Θ)(Mf ) = (Θ ◦ τ2x0)(Mf )

follows immediately. On the other hand

(τx0
◦Θ)(Ux1

) = (Θ ◦ τ2x0
)(Ux1

)
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is, using the definition of τx0 , equivalent to

Ux0 Θ(Ux1) = Θ(Ux1)Ux0

for all x0, x1. Writing the shift Ux0
in its spectral decomposition reads

Ux0
=
∑
k∈Z

ei2πkx0
∣∣ψk〉 〈ψk∣∣ .

The time evolved shift is then

Θ(Ux1
) =

∑
k

ei2πkx1Θ
(∣∣ψk〉 〈ψk∣∣)

=
∑
k

ei2πkx1
(∣∣u0ψ

k
〉 〈
u0ψ

k
∣∣+
∣∣u1ψ

k
〉 〈
u1ψ

k
∣∣)

=
∑
k

ei2πkx1
(∣∣Mf0ψ

2k
〉 〈
Mf0ψ

2k
∣∣+
∣∣Mf1ψ

2k
〉 〈
Mf1ψ

2k
∣∣)

which is the spectral decomposition of Θ(Ux1). If we want Ux0 and Θ(Ux1) to commute,

they should have the same spectral projections which means that we have to impose

f0 = ψl0 and f1 = ψl1 . The earlier mentioned conditions on f0 and f1 are only valid iff

l0 an l1 have different parity.

Writing the action of u∗j explicitly

(u∗jϕ)(x) =
1

2
exp(−iπ lj x)

(
ϕ

(
x

2

)
+ (−1)lj ϕ

(
x+ 1

2

))
(j = 0, 1),

the validity of both imposed conditions is easily checked if Θ is of the derived form.

We have put the phase doubling in a non-commutative algebraic framework and we are

also interested in the ergodic properties of the system. In order to arrive at a dynamical

system with optimal ergodic and mixing properties, we will make a particular choice for

the integers l0 and l1 in the definition of u0 and u1.

Consider therefore the inner product

(ρ,A) 7→ 〈ρ,A〉 := Tr ρA

between the trace class operators L1(H) and B(H). The map Θ has a pre-adjoint Θ∗
which, from 〈Θ∗(ρ), A〉 = 〈ρ,Θ(A)〉, is explicitly given by

Θ∗(ρ) = u∗0ρu0 + u∗1ρu1 ρ ∈ L1(H).

We are interested in density matrices invariant under Θ∗ and, more generally, in the

long time behaviour of the perturbed normal states ωρ ◦ Θn. If we want the system

to converge to an invariant state, we should avoid periodic behaviour. To obtain this,

we have to exclude the case |l0 − l1| > 1. Indeed, we easily see that
∣∣ψ−l0〉 〈ψ−l0∣∣ and∣∣ψ−l0−1

〉 〈
ψ−l0−1

∣∣ are both invariant under Θ∗ but suppose ∃m : l0 < m < l1 with l0
even. It is then easy to check that Θ∗(|ψm〉 〈ψm|) = |ψr〉 〈ψr| where l0 < r < l1 and

r 6= m. This implies that subsequent applications of Θ∗ transform |ψm〉 〈ψm| into itself

via at least one intermediate |ψr〉 〈ψr| (l0 < r < l1).

In order to obtain a unique invariant state we consider the following projections

P− =
∑

k≤−l0−1

∣∣ψk〉 〈ψk∣∣ and P+ =
∑
k≥−l0

∣∣ψk〉 〈ψk∣∣ ,
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such that P−+P+ = 1I. It takes a straightforward calculation to see that u∗εψ
k ∈ P±H as

soon as ψk ∈ P±H (ε = 0, 1), meaning that P±Θ(A)P± = Θ(A) as soon as P±AP± = A.

This allows us to consider only the subalgebraA of those operators for which P+AP+ = A,

or equivalently B(P+H). This restriction gives us the existence of the desired unique

invariant state
∣∣ψ−l0〉 〈ψ−l0 ∣∣ . From now on we choose l0 = 0 and hence l1 = 1. This

particular choice is quite convenient as it agrees well with the binary expansion of a

natural number. All subsequent results will be independent of the value of l0. Taking into

account the foregoing remarks, we finally defined the following rather simple dynamical

system: consider in `2(N) the canonical orthonormal basis {ψ0, ψ1, . . .} of sequences ψj =

(δjn)n∈N and the isometries u0 and u1 defined by

u∗0 ψ
2k = ψk

ψ2k+1 = 0
and

u∗1 ψ
2k = 0

ψ2k+1 = ψk

for k ∈ N. The single step time evolution on A = B(`2(N)) is given by

A 7→ u0Au
∗
0 + u1Au

∗
1.

The ergodic and mixing properties are stated in the following theorems and lemma (only

the lemma is proved, the other proofs use the same techniques):

Theorem 1. For any normal state ωρ on A given by ωρ(·) = Tr (ρ ·) we have

lim
n→∞

∥∥ (Θ∗)
n(ρ)−

∣∣ψ0
〉 〈
ψ0
∣∣ ∥∥

1
= 0.

Theorem 2. The spectrum of Θ with respect to the algebra A consists of the closed

unit disc.

Theorem 3. The only eigenvalues of Θ are 0 and 1. Up to scalar multiples, the only

eigenvector of Θ corresponding to the eigenvalue 1 is the unit operator.

Lemma 3. The pure state ω0 : A 7→ 〈ψ0, Aψ0〉 is mixing under Θ, i.e.

lim
n→∞

ω0(Θn(A)B) = ω0(A)ω0(B)

for any two operators A,B ∈ A.

P r o o f. For any two operators A and B in A, we have

ω0(Θn(A)B) =
∑

εin−1
,...,εi0=0,1

〈ψ0, uεin−1
. . . uεi0Au

∗
εi0
. . . u∗εin−1

Bψ0〉

=
∑

εin−1
,...,εi0=0,1

〈u∗εi0 . . . u
∗
εin−1

ψ0, Au∗εi0 . . . u
∗
εin−1

Bψ0〉.

The left-hand side of the scalar product is different from zero iff εi0 = . . . = εin−1
= 0

since u∗0ψ
0 = ψ0 and u∗1ψ

0 = 0 so

ω0(Θn(A)B) = 〈ψ0, Au∗n0 Bψ0〉 =
∑
k≥0

〈ψ0, Au∗n0 ψk〉〈ψk, Bψ0〉.

u∗n0 ψk will be different from zero only if k is a multiple of 2n, say k = k′2n. Using the
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fact that u∗n0 ψk
′2n

= ψk
′

we get

ω0(Θn(A)B) =
∑
k′≥0

〈ψ0, Aψk
′
〉〈ψk

′2n

, Bψ0〉.

So, separating out the term k = 0, we see

|ω0(Θn(A)B)− ω0(A)ω0(B)| ≤
∑
k≥1

|〈ψ0, Aψk〉| |〈ψ2nk, Bψ0〉|

≤
(∑
k≥1

|〈ψ0, Aψk〉|2
) 1

2
(∑
k≥1

|〈ψ2nk, Bψ0〉|2
) 1

2

≤ ‖A∗ψ0‖
( ∑
k≥2n

|〈ψk, Bψ0〉|2
) 1

2

which tends to zero as n goes to infinity.

4. Dynamical entropy. In this paragraph we compute the dynamical entropy of the

introduced dynamics Θ. As we mentioned before, we use this model to understand a bit

more about which partitions are allowed. In particular, we will show that partitions gen-

erated by elements that are, up to compact perturbations, multiples of the identity, form

a reasonable class. We prove that the dynamical entropy of the proposed homomorphism

Θ equals the classical value if we consider partitions of this specific form.

In order to prove this result we show that log 2 is an upperbound and that we can

find a partition in which this bound is reached.

Before coming to the main result of this paper, we need a more technical lemma stating

that every partition of unity of the above form can be approximated by another partition

of unity of which the elements are finite rank perturbations of the identity-operator. The

proof of this result is quite lengthy and technical. Therefore we only give the main idea.

Lemma 4. An operator x = α1I + K (α ∈ C, K ∈ Lp) on a Hilbert space H can be

written in the form x = U |x| where U is unitary and U, |x| ∈ C1I + Lp.

Lemma 5. For any partition of unity X = (x0, . . . , xk−1) ⊂ B(H) with elements of

the form

xi = αi1I +Ki αi ∈ C, Ki ∈ Lp,
there is a constant C such that we can construct for every ε > 0 a partition Y with

‖xi − yi‖ < ε (i = 0, . . . , k − 1). Furthermore Y is of the form

yi = βi1I + K̃i βi ∈ C, K̃i finite rank

with K̃i = PfinK̃iPfin where Pfin is a projection of dimension

N = 2k

[(
C

ε2

)p]
at most.

Proof (sketch). The operators (y0, . . . , yk−2) are constructed by approximating the

compact operators Ki, appearing in the xi, by finite rank operators K̃i. The rank of these

operators can be controlled by lemma 2.
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To construct yk−1, we use lemma 4 to write

xk−1 = U |xk−1| = U

√
1I−

∑k−2
i=0 x

∗
i xi,

where U = eiθ01I + L (L ∈ Lp) is a unitary operator. Because of the unitarity of U , the

structure of L will be

L =
∑
n≥1

(eiθn − eiθ0) |ϕn〉 〈ϕn| =
∑
n≥1

|eiθn − eiθ0 | |ξn〉〈ϕn|

which gives us the canonical decomposition of L provided that we arranged the ϕn in such

a way that | exp(iθ0)−exp(iθn)| is a decreasing sequence, converging to 0. Approximating

L by a finite rank operator L̃, i.e. restricting the norm convergent sum to a finite number

of terms, we get a new unitary Ũ = exp(iθ0)1I + L̃. We now put

yk−1 := Ũ

√
1I−

∑k−2
i=0 y

∗
i yi.

Note that Y is a partition of unity because Ũ∗Ũ = 1I. The full proof takes care of the

fact that the argument of this square root could be non positive.

Lemma 6. For any partition of unity X = (x0, . . . , xk−1) in A of the form

xi = αi1I +Ki (αi ∈ C,Ki ∈ Lp),

we have:

h(Θ,ω0)[X ] ≤ log 2.

P r o o f. Choose ε > 0 and consider the decreasing sequence εα := ε/(α + 1)2. By

taking ε sufficiently small we can make

2k
∑
α≥0 εα

arbitrary small. Using lemma (5) we can find a sequence of partitions (ŷ
(α)
0 , . . . , ŷ

(α)
k−1)

(denoted by Ŷ(α)) and a sequence of projections P̂α (α ≥ 0) satisfying

‖xi − ŷ(α)
i ‖ < εα (i = 0, . . . , k − 1)

ŷ
(α)
i = P̂α ŷ

(α)
i P̂α + βiP̂

⊥
α (i = 0, . . . , k − 1)

dim(P̂α(H)) = N̂α = 2k

[(
C(α+ 1)4

ε2

)p]
.

We now consider the sequence X (α) = Θα(X ) and Y(α) = Θα(Ŷ(α)). Since Θ is not norm

increasing

‖x(α)
i − y(α)

i ‖ < εα (i = 0, . . . , k − 1)

still holds. Furthermore, because

Θ(|ξ〉〈χ|) = |u0ξ〉〈u0χ|+ |u1ξ〉〈u1χ|,

there exists a sequence of projections Pα such that

y
(α)
i = Pα y

(α)
i Pα + βiP

⊥
α (i = 0, . . . , k − 1)
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dim(Pα(H)) = Nα = 2α+1k

[(
C(α+ 1)4

ε2

)p]
.

From this we can conclude that the density matrix ρ[Y(n−1) ◦ · · · ◦ Y(0)] will be living

on a subspace of dimension bounded by

1 +

n−1∑
α=0

Nα ≤ 2 + k 2n
(
C

ε2

)p n−1∑
α=0

(α+ 1)4p ≤ 2 + k 2n
(
C

ε2

)p
n4p+1

and hence

lim
n→∞

1

n
H(ω0)

[
Y(n−1) ◦ · · · ◦ Y(0)

]
≤ lim
n→∞

1

n
log

(
2 + k 2n

(
C

ε2

)p
n4p+1

)
≤ log 2.

Since we can make the right-hand side of the estimate of lemma 1 arbitrary small, this

finishes the proof.

Lemma 7. X 7→ h(Θ,ω0)[X ] reaches its upperbound log 2 on the partition X = (x0, x1)

given by

xk =
1√
2

(1I + (i− 1) |ξk〉 〈ξk|)

ξk =
1√
2

(ψ0 + (−1)kψ1) k = 0, 1.

From the last two lemmas we can conclude:

Theorem 4. The dynamical entropy of Θ with respect to the state ω0 is

h(Θ,ω0) = log 2,

where the partition supremum is taken over the Lp perturbations of unity.
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