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Abstract. By applying the Hamiltonian reduction technique we derive a matrix first order
differential equation that yields the classical r-matrices of the elliptic (Euler—) Calogero-Moser
systems as well as their degenerations.

1. Introduction. The r-matrix of the elliptic Calogero-Moser (CM) model was first
found in [1, 2] by direct computations. In [3] the same r-matrix was obtained from the
r-matrix of the Euler-Calogero-Moser (ECM) model by the Hamiltonian reduction. In
this lecture we derive, following [4], a new matrix first order differential equation on an
unknown linear operator r acting on the space F of sl(n, C)-valued functions on a torus
Y., with a modular parameter 7:

X = [r(X), D] = kor(X) + Q(X), (1)

where D and @ are constant diagonal matrices, X = X (z,%) € F, and k is a number. We
show that its solution r obeying a specific boundary condition is precisely the r-matrix
of the elliptic CM model with a spectral parameter. The trigonometric and rational r-
matrices correspond to degenerations of this equation when X, degenerates into a circle
and into a point respectively. We observe that choosing another boundary condition one
also gets the r-matrix of the elliptic ECM model [3] and its degenerations. In this sense
eq.(1) can be treated as the generating equation for the family of dynamical r-matrices
related to the CM systems.

The main tool we use to deduce (1) is the Hamiltonian reduction technique!. A
hamiltonian action of a group G with a Lie algebra G on a symplectic manifold P gives
rise to a moment map p: P — G*, G* is the dual to G with respect to a pairing <, >. Let
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J € G* and Gy C G be the isotropy subgroup of J under the coadjoint action. Then
a quotient Preq = pu~1(J)/Gs admits under some natural assumptions a symplectic
structure [5]. The rational and trigonometric CM models are obtained according to this
scheme by reducing the geodesic motions on the cotangent bundles of semi-simple Lie
groups [6]. Their L-operators arise as the matrix functions of coordinates on the reduced
phase space P,.q, while the Lax representation - as the equation of motion on P,..q. As
usual r-matrices are defined by computing the Poisson bracket of two L-operators and
arranging it in the form {Lq, Lo} = [r12, L1] — [ro1, Lo], where L1 = L ® 1, Lo = 1 ® L.
The computation of the Poisson bracket can be considerably simplified by using the Dirac
bracket construction. According to [7], the Poisson bracket on the reduced phase space
can be presented in the following convenient form

{f; h}red = {f&h}_ < ja [Vf,Vh] >, (2)

where f,h are functions on P whose restrictions on p~(J) are G s-invariant and Vj
denotes the solution of < 7, [X,Vy] >= {x f, where {x is the hamiltonian vector field
generated by X € G.

The elliptic CM model with the spectral parameter can be obtained starting from
an infinite-dimensional phase space. Namely, the Hamiltonian reduction procedure runs
as follows [8, 9]. The infinite-dimensional phase space P is parametrized by the set
p = (¢,¢; A k), where ¢, A € F, ¢,k € C and is equipped with the standard Poisson
(symplectic) structure:

B _ of 0h  6f 6h of 0h  0f oh
With a pairing
<A, (60) >= [ dedetr(ad) + ke, (1)
s,

P can be identified with the cotangent bundle over the centrally extended sl current
algebra (¢,c) on ;. The current group ¥, x SL(n) acts on P as

(02.2).0) = (226, 2)f 1 (2), o+ [ dndy trod) (5)
(A(2,2), k) = (f(2,2)A(2,2) [ (2,2) = kOf (2,2) [ 1(2,2), k). (6)

This action preserves the Poisson structure (3). The moment map is fixed to be
w(p) = kdp +[A,¢] =T, T =vJd(z2), (7)

where J denotes some element of the coadjoint sl orbit to be specified later (Sec.3) and
v is a coupling constant. Explicitly, P,eq is described by a pair (L, D), where D is a
constant diagonal matrix and L is a solution of (7) with A = D. L appears to be the
L-operator of the elliptic CM system.

2. Generating equation. To start with we note that generically an element A € F
is gauge equivalent to a complex constant diagonal matrix D(A) [9], i.e.

A= g(A)D(A)g(A)~" — kdg(A)g(A)~". (8)



CONSTRUCTION OF THE r-MATRIX FOR THE CALOGERO-MOSER SYSTEM 251

This matrix is defined up to the action of the elliptic affine Weyl group. Indeed, the
gauge transformation with f(z) = 2RI , where w = diag(s1,...,8n), $i = m; +Tny,
m;,n; € Z, trw = 0 leads to the substltution D(A) — D(A) + ?%’wa We fix D(A)
by choosing the fundamental Weyl chamber. The factor g(A) is not uniquely defined.
An element g(A) = g(A)t, where a diagonal matrix ¢ = ¢(z) is an entire function, also
satisfies (8). Requiring §(A) to be doubly periodic, we get that ¢(z) is a constant matrix,
i.e. an element of a maximal torus T of SL(n). We also normalize g as g(D) = 1.

Let us assign to any X € F a function Fx on P:
Fx(p) =< ¢,9(A)Xg(A)~" >, (9)

where g(A) is some solution of (8). According to the choice (7), Gz acting on the surface
p~1(J) coincides with a group of smooth mappings {g: £, — SL(n), g(0) € H}, where
H is the isotropy group of J. Now assume J to be such that HNT = 0. In this case there
is no ambiguity in the choice of g(A) for A restricted to u~1(7), i.e. on this surface Fx
is well defined.

Functions Fx, X € F are of interest due to their specific properties. The first one is
that F'y is invariant with respect to (5),(6) with g € G 7, i.e. it can be viewed as a genuine
function on the reduced phase space P,.q. The second property is that if we parametrize
Pred by a pair (L, D), then owing to the normalization condition g(D) =1 Fx restricted
to Preq coincides with a matrix element < L, X > of the L-operator. Thus, we can use
(2) for Fx and Fy to compute the Poisson bracket between the matrix elements of the
L-operator. The calculations are straightforward. Let f o A be a shorthand for the gauge
transformation (6). Introducing a derivative Vxg(A) = Zg(e!X o 4),_, of g(A) at the
point A along an orbit of gauge transformations, we find how the hamiltonian vector field
&x generated by X acts on Fz:

d
ExFy =g <ege™ g(e 0 A)Zg(e! T 0 )71 >,

=< ¢,9(A) [9(A) "' Vxg(A) — g(A) "' Xg(A), Z] g(A)~" >,

On P,cq this formula takes the form {xFz =< L,[Vxg(D) — X, Z] > and it provides
the second term in (2):

< J, [VFX, VFY] >=<L, [VVFX g(D) - VFX» Y} > (10)

To obtain the bracket {Fx, Fy },.q we first calculate the quantities 3 A(?F()fz o) and 5 f%}f o)
and after substituting them into (3), we combine {Fx, Fy} with (10) according to (2).

In this way we prove that there exists a linear operator r: F — F defined by

og(A) 1
9= L nn X3 2 9 = (T g(D) = Vi) (1)

and such that the Poisson bracket on P,.qs acquires the form
{Fx, FY}red =< L, [T‘(X),Y] + [X,’I“(Y)] > . (12)

Note that formula (11) reminds the one derived in [7] for the r-matrix of the trigono-
metric CM system without a spectral parameter.
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In contrast to the Poisson bracket on P4, r-matrix (11) depends on the extension of
Fy in the vicinity of p=1(J). We extend Fx in a way as to get the simplest form of r.
To this end we assume that vector J is such that sl(n) decomposes into the direct sum
H DT ®C, where H and T are the Lie algebras of H and T respectively and C is an
orthogonal to H & T with respect to the Killing metric. We also assume that 7 and C are
two Lagrangian subspaces of the nondegenerate two-form w(X,Y) = J([X,Y]) defined
on 7 @ C. These restrictions on J are similar to that in the finite-dimensional case [6, 7]
and will be justified in the next section.

Recall that g(A)(z, ) = eX(*%) is defined up to the right multiplication by an element
of T. We remove this ambiguity by choosing X (z, Z) to obey a boundary condition X (0) €
H & C. In addition, if A € p=1(J), then X(0) € H.

Having fixed g(A), we find that Vxg(D)(z,2) = (PX)(z,Z2), where P: F — F is
a unit operator at all points of ¥, except zero and it projects X (0) on H @ C parallel
to 7. For X such that X(0) € H @® C due to the singularity of J eq.(10) reduces to
0=<L,[Vxg(D)— X,Y] >= J([X(0), Vg, (0)]). With our choice of J we conclude that
Ve, (0) € H @ C for any Y. Hence, defining g(A) as described above, we get from (11)
the following r-matrix

_ _ . 0g(A) _
r(X)(z,2) = / dndn Xij(n,n) w7 —=(2,2) 13)
@) %: s, ! 5Aij(7],77)( (
This formula has a transparent geometric meaning. Defining a time evolution of the field
A(t) as: A(0) = D and %‘mo = X, one has r(X) = 4g(A(t))),_,. Since eq.(8) is valid

for any t, i.e.

A(t) = g(A) () D(A)(£)g(A)(£) ™" — kdg(A)(£)g(A)(£) ",

we differentiate it with respect to t and put ¢ = 0. The result is equation (1), where
Q = 4 D,,_,. For any smooth function X (z, 2) € F it has a unique solution r(X) obeying
the boundary condition 7(X)(0) € H & C. From (1) we also read off that the r-matrix
is dynamical [10, 11] since it depends on D accumulating the coordinates on P..q. We
refer to (1) as to the factorization problem for sl connection. Hence, by construction the
r-matrix of the elliptic CM model is defined as a unique solution of the factorization
problem for sl connection obeying some specific boundary condition.

3. Elliptic r-matrix. In this section we show how to solve (1). To this end we first
analyze an equation on X:
0E(2,2) = 6(2,2) (14)
In the vicinity of the origin eq.(14) defines a meromorphic function with a first order pole
with the residue 1/27i. We define a solution of (14) as a meromorphic function having
simple poles at the points of the period lattice Zm + Z7s (11 = 1,72 = 7) with residues
1/2mi and satisfying the quasiperiodicity condition:

E(z+m) =E(2)+Crp, (15)

where C, are complex numbers. Note that £(z) can not be doubly periodic since there
is no elliptic functions with first order poles. The difference of two solutions £ and £ of
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(14) is a holomorphic but non-periodic function v (poles and residues of £’s coincide)
with

V(z 4 1) = P(2) + 0k, O =Chp —Chr,. (16)
Recall that the numbers C) are not arbitrary. They obey Legendre’s identity Cimo —
Cym = 1, which originates from integrating £(z) around the pole at the origin [13].
Therefore, we get §172 — o1 = 0. The only holomorphic function obeying (16) with
) constrained as above is ¥(z) = az + 8, a = 01, B € C. Hence, any two solutions
of (14) are related as £(z) = £(z) + az + B. The Weierstrass zeta-function ((z) =

% + > mez ﬁ + % + =5—), Wnm = N7 + M7y, satisfies the properties listed

above and therefore represents a peculiar solution of (14). Thus, we conclude that any
meromorphic function £(z) with only simple poles at the points of the period lattice

Z7 + Z7, with the residues 1/27i and obeying (15) is of the form
1
E(z) = 3 (2) + az + 8. (17)

When 8 = 0 these functions are odd £(—z) = —&(z).
Introduce the notation:

X = inj(z,é)eij, Y = ’I“(X) = Zyij(z,é)eij, D= Zdieii, Q = Zqieii, (18)
iJ 17 7 %

where e;; are the matrix unities, then eq.(1) is equivalent to the system

= 1

ayii = Eti (19)
A dij 1 L
dyij + ?inj = i 1F (20)

where tl(Z,Z) =q; — ‘I“‘(Z, 2) and dij = dl — dj.

By forming the convolution of the fundamental solution £(z) with the r.h.s. of (19)
we restore the diagonal part Yyi.y of Y up to a constant matrix h € T Ydiag(z,i) =
> fET % E(z — n)t;(n,7) + h. Requiring Y to be doubly periodic, we determine the
unknown matrix Q:

Q=

dndn i (n,7)eqs- 21
2Z.ET/ETnnm(nn)€ (21)

To solve eq.(20) by a similar device we need a doubly periodic solutions &;; of the equation

0&ii(z,2) + %&j (2,2) =d(z,2), i#]. (22)

Eq.(22) coincides in essence with the one defining the L-operator of the elliptic CM model
and it has a unique doubly periodic solution given by [9]

d. .
1 i, . ol |
Eiy(en7) = e CET RN s, (23)
2mi o(z)o(F£Imr)

where o(z) is the Weierstrass sigma-function.
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Combining all the pieces together we can write a general solution Y (z) of eq.(1):

dndn _ _
Y = h+/2 T Zt 77 77 €is — szj Z)xij(n7n)eij . (24)

i#j

At this point we specify J. In the elliptic case [9] one should choose the following
representative J on the coadjoint sl(n) orbit

J=1-u®s, (25)

where u is a vector in C™ and §; = 1/u;. Then eq.(7) defines the following L-operator:

L= sze” - 1/2 5 (2, 2)ije€i;- (26)

i#£]
The momentum part in L follows from the diagonal part of (7) with J; = 0. Later on we

point out the connection of (26) with Krichever’s L-operator [12].
The Lie algebra H of the isotropy group H of J is determined by (X € H):

ui(sTX)j - (Xu)ls’] =0. (27)

Choosing in (27) i = j, one gets (sTX); = Z;L(Xu)z and thereby (27) reduces to % =
M = )\, where A € C. One also has (s X); = Z;)\uz = \s;. Thus, we find

H={Xesl(n,C): Xu=u, s'X=2Xs, \eC}. (28)

From (28) we can read off that HN7T = 0. Since the real dimension of sl(n, C) is 2(n?—1)
and H is defined by 4n — 4 equations, we get dimH = 2(n? — 1) — (4n —4) = 2(n — 1)~

Decompose sl(n) into the direct sum H & T @& C, as above. To describe C explicitly
we introduce a matrix C'

C=z0s —uy

depending on two vectors z,57 € C". Let X € H and Xu = sTX = 0, then Tr(XC) =0
by the cyclic property of the trace. On the other hand, if X € sl(n) we have Tr(XC) =
> ik (ZiSk — uiyk)xr; and consequently for C' to be orthogonal to any X = (x;d;;) € T,
we get 2;8; — u;y; = [ for any i, where [ is arbitrary. Orthogonality of H and C also
implies: 0 = Tr(JC) Bn(1— < st u>) = Bn(1 —n) that gives B = 0. Thus, C € C if
g =St Lz = 2 z;. We put ), 2t = 0 to have the correct dimension of C: dimC = 2(n—1).
Note also that 7 and C form a palr of complementary Lagrangian subspaces with respect
to w(X,Y) =< J,[X,Y] > defined on T @C.

Now we find that (Cu); = nz; and (s'C); = —Z% 2. This allows us to describe the
action of a generic element X € H & C on u and s: '

(Xu) = )\uz + nz;,

Summing up the second lines in (29) and taking into account ) 2t = 0, we find A:

A=1 Z Xwi Solving (29) for z;, we arrive at
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PRrROPOSITION 1. Let X be an arbitrary element of H ®C. Then the following relation
1 2 (Xu);

(TX) + (Xu), — = = E R 30

u;(s'X)i + ( u)lui n e (30)

is valid for any i.

We use Proposition 1 to fix an element h. To this end we require Y (0) to be an element
of H @ C. Then by substituting Y'(0) in (30) we completely determine h:

dndn dndn 1
h:_/z: —&(— Ztezz+2/ " Wij zj+ wjlsz eii—ﬁl .

i#]

Thus, we arrive at

PROPOSITION 2. There is a unique solution Y (z,Z) of eq.(1) obeying the boundary
condition Y (0) e H B C:

V=3 [ dﬁ—,f%(z — )~ E(n)ai — wisl, M)es (31)
-3 [ st = 2= 2o

i#j
dndn i ) ) )
+Z/ ( ’wzg(n 77)331](77 77) + w_ji("%'r])l'ji(?’]”r])) (eii _ I) ’
U, " _
i#]
where q; and w;; are given by (21) and (23) respectively.

Using the explicit form (17) of £(z) and taking into account (21) it is easy to reduce the
first line in (31) to

didy (®(2) _ (C(z =) + <) i
/ET 2ik < R . )an(mn)eu,

where we have introduced a function ®(z, z) fz dgjﬁ —n)+{(n)). Hence, despite

az+ 3 enters (17) the solution of (1) does not depend on it. We get from (31) the following

THEOREM 1. The r-matriz corresponding to L-operator (26) is the following sl(n) ®
sl(n)-valued function on 3, x X,

_(2(z,2)  ((z—mn)+CM) o1 R
T(Z’n)_<2ik27 Smik ie”®e“ k;w”(n z,7— Z)ei; @ eji (32)

U4 _ (% _
2k Z (eu - = ) (uzwij(nan) €ji + u*jwji(ﬁﬂl) %‘) .

L-operator as well as r-matrix (32) depend on a vector u € C™. However, by conjugating
L with the matrix eY, Uij = u;0;; this dependence may be removed. The corresponding
r-matrix is given by (32) with all u; = 1.

Now it is the time to state a connection of (32) with the r-matrix of the elliptic CM
model found in [1, 2]. Without loss of generality we can assume that the integration
domain ¥, has the vertices at the points :i:% + 5. Then by the oddness of (-function one
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has [i, dndi ¢(n) = 0 and therefore ®(z, z) reduces to

B(2,2) = / G . (33)

B 27

Eq.(33) means that ®(z,2) is a solution of the equation 0®(z,2) = 1, i.e. ®(z,2) =
Z+ f(z), where f(2) is an entire function. The monodromy properties of ¢ define the ones
for ®(2,2): ®(z + 7%,, 2 + 7)) = (2, 2) + Z=C,,. For f(2) this gives
Y- _

f(Z‘FTk)—f(Z):?Cm—Tk- (34)
Following the same lines as above we conclude that the only entire function obeying (34)
. o . _ C./n—T7
is f(z) = az + B with a = =7——
®(z). Thus, we get for ®(z, z) the following explicit expression

. The constant 3 is equal to zero by the oddness of

C
D(z2,2) =2 — 24 —Imr 2. (35)
™
In [1] Krichever’s L-operator [12]: L*" = 3. p;e;; — 5% > izj Gij(2)eij, where Gjj(z) =

27ried%q>(z’2)&-j(z, Z), was used to find the corresponding r-matrix. We see that LX" is
related to (26) by the similarity transformation LE"(2) = W(z, 2)L(z, 2)W (z,2) !, with
W(z,z) = e*® Te(=2), Calculatlng {Wa, Ll} with the help of the canonically conjugated
variables {P,D} = 2@‘ET Yo €ii @ e, P =% .pie;; on Preq, we can show [4] that the
r-matrix for LX" is just the one found in [1, 2].

4. Trigonometric r-matrix. Consider the cotangent bundle to the centrally exten-
ded current algebra S — su(n). It is known [14] that reducing it by the action of the cur-
rent group S* — SU(n) and imposing the moment J = J&(p) with J = iv > izjleiitesi)
one left with the phase space (L, D) of the trigonometric CM model, where L is the cor-
responding L-operator:

_Zzp’e” ka sin T dz_] elj, (36)

Retracing the same steps as in the elliptic case one gets the following equation on the
r-matrix (see [4] for details)

X=[V,D]-kY'+Q, X,Y €S'xsu(n), D,QeT, (37)

where this time 7 is a maximal torus of su(n). Clearly, eq.(37) may be viewed as a
degeneration of (1) that corresponds to a degeneration of ¥ into a circle. In this section
we solve (37) explicitly and thereby recover the r-matrix of the trigonometric CM model
[11].

The root decomposition of su(n) elements X,Y, D and @ is given by (18) with coeffi-

cients obeying the unitary condition x;; = etc. From (37) one finds two equations

1_7 ’
on diagonal and nondiagonal parts of Y’ respectlvely. Imposing the periodicity condition:

Y (0) =Y (27), we reconstruct Y up to an element h € T

=h+z k Z/ dg'wij (0, ¢")ij ()ei, (38)
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where

| imdy g
, ek , ~ i (o) ’ ¥ /
AN &) = 7_9 ) k WW’ A ) =-——0 ) 39
wij (e, ¢') (2%% (ww))e wii(p, @) = o —0(p.¢)  (39)
and 0(ip, ') is the Heviside function.

Since su(n) = H® T @ C, where H is a maximal proper Lie subgroup of su(n) and C
is an orthogonal to H @ T, just as in the elliptic case we can fix h by requiring Y'(0) to be
an element of H @ C. From the results of [7] it follows that this requirement is equivalent

to the set of relations (1 <i < n):

1
Zlmyij(o) = > ImY;;(0). (40)
J i#]
Substituting Y (0) in (40) one finds h that makes (40) true:
1 1
= [T a0, (G e+ (G-e). @
i#£j
Combining (38) and (41), we finally get
PROPOSITION 3. Eq.(37) has a unique solution Y (¢) obeying the constraint Y (0) €
H®C and it is given by (38) and (41).

As a direct consequence of this lemma we get that r-matrix of the trigonometric CM
system is the following function on S* x S*

’L]

COS
k —
r(p, ¢ i ® €ii + % ; sin Trdu € i (o) €ij @ e (42)
177
671‘ d;] ei dij 1
— 5L Z €ii — — Tmidy; CiJ T T 2mid;; Gt + ﬁs(w (p)
1—e 7% e %
#J

In (42) we have introduced a matrix s:

Ze

i#]
where €(¢ — ¢') = [1 — 20(p — ¢')] is the sign function.
By direct calculations [4] one can prove the following

ez] ® eji + Z eii @ ey | €(p — (pl)a (43)

PROPOSITION 4. Matrixz s leads to the trivial Poisson bracket on the reduced phase
space, i.e. the following relation is satisfied

[s12(0, "), L) @ I] = [s21 (¢, ), T @ L(¢")] = 0. (44)

COROLLARY. r-matriz of the trigonometric CM model is given by (42) with s(p, ')
=0.

On Pyeq the variables (P, X) are canonically conjugated: {P, Xo} = *i > €ii @ e

L-operator (36) as well as r-matrix (42) depend on the parameter . However, this

parameter may be removed by the similarity transformation L — L= Q(o)L(9)Q(¢)7 1,
where Q(p) = e~ #X(m=¥) One can easily show that the r-matrix corresponding to the
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L coincides with the one first found in [11] and then derived in [7] by the Hamiltonian
reduction applied to the cotangent bundle T*SL(n).

5. Concluding remarks. A few remarks are in order. Assuming in (24) h = 0 and

choosing £(z) = 5=-((z), we find a matrix

) = (21'/@27 orik Ze Doy ;w”(” @i = 2)eij © &5

that turns out to be an r-matrix for the L-operator
L=> (pi— fuC(2))eis —v Y _ Eij(2) fijeis
i i#j
of the elliptic ECM model containing the additional dynamical variables f;; [3]. Thus,
eq.(1) also covers the ECM system being a spin extension of the CM model and gives a
suggestion that the ECM r-matrix can be obtained by the Hamiltonian reduction.

If 3, degenerates into a point, eq.(1) takes the form X = [r(X), D] + Q. One can
easily show that it defines the r-matrices of the rational CM and ECM systems without
spectral parameter.

Since eq.(1) is Lie-algebraic it hopefully may be used to find spectral-dependent -
matrices for CM models related to the other root systems. We also suppose that the
study of possible deformations of eq.(1) is a good starting point to develop the r-matrix
approach [15] to the Ruijsenaars systems [16] being relativistic extensions of the CM
models.
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