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Abstract. By applying the Hamiltonian reduction technique we derive a matrix first order
differential equation that yields the classical r-matrices of the elliptic (Euler–) Calogero–Moser
systems as well as their degenerations.

1. Introduction. The r-matrix of the elliptic Calogero–Moser (CM) model was first

found in [1, 2] by direct computations. In [3] the same r-matrix was obtained from the

r-matrix of the Euler–Calogero–Moser (ECM) model by the Hamiltonian reduction. In

this lecture we derive, following [4], a new matrix first order differential equation on an

unknown linear operator r acting on the space F of sl(n,C)-valued functions on a torus

Στ with a modular parameter τ :

X = [r(X), D]− k∂̄r(X) +Q(X), (1)

where D and Q are constant diagonal matrices, X = X(z, z̄) ∈ F , and k is a number. We

show that its solution r obeying a specific boundary condition is precisely the r-matrix

of the elliptic CM model with a spectral parameter. The trigonometric and rational r-

matrices correspond to degenerations of this equation when Στ degenerates into a circle

and into a point respectively. We observe that choosing another boundary condition one

also gets the r-matrix of the elliptic ECM model [3] and its degenerations. In this sense

eq.(1) can be treated as the generating equation for the family of dynamical r-matrices

related to the CM systems.

The main tool we use to deduce (1) is the Hamiltonian reduction technique1. A

hamiltonian action of a group G with a Lie algebra G on a symplectic manifold P gives

rise to a moment map µ: P → G∗, G∗ is the dual to G with respect to a pairing <,>. Let
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J ∈ G∗ and GJ ⊂ G be the isotropy subgroup of J under the coadjoint action. Then

a quotient Pred = µ−1(J )/GJ admits under some natural assumptions a symplectic

structure [5]. The rational and trigonometric CM models are obtained according to this

scheme by reducing the geodesic motions on the cotangent bundles of semi-simple Lie

groups [6]. Their L-operators arise as the matrix functions of coordinates on the reduced

phase space Pred, while the Lax representation - as the equation of motion on Pred. As

usual r-matrices are defined by computing the Poisson bracket of two L-operators and

arranging it in the form {L1, L2} = [r12, L1] − [r21, L2], where L1 = L ⊗ 1, L2 = 1 ⊗ L.

The computation of the Poisson bracket can be considerably simplified by using the Dirac

bracket construction. According to [7], the Poisson bracket on the reduced phase space

can be presented in the following convenient form

{f, h}red = {f, h}− < J , [Vf , Vh] >, (2)

where f, h are functions on P whose restrictions on µ−1(J ) are GJ -invariant and Vf
denotes the solution of < J , [X,Vf ] >= ξXf , where ξX is the hamiltonian vector field

generated by X ∈ G.

The elliptic CM model with the spectral parameter can be obtained starting from

an infinite-dimensional phase space. Namely, the Hamiltonian reduction procedure runs

as follows [8, 9]. The infinite-dimensional phase space P is parametrized by the set

p = (φ, c;A, k), where φ,A ∈ F , c, k ∈ C and is equipped with the standard Poisson

(symplectic) structure:

{f, h} =

∫
Στ

dz̄dztr

(
δf

δφ

δh

δA
− δf

δA

δh

δφ

)
+
δf

δc

δh

δk
− δf

δk

δh

δc
. (3)

With a pairing

< (A, k), (φ, c) >=

∫
Στ

dz̄dztr(Aφ) + kc, (4)

P can be identified with the cotangent bundle over the centrally extended sl current

algebra (φ, c) on Στ . The current group Στ × SL(n) acts on P as

(φ(z, z̄), c)→ (f(z, z̄)φ(z, z̄)f−1(z, z̄), c+

∫
Στ

dη̄dη trφA ), (5)

(A(z, z̄), k)→ (f(z, z̄)A(z, z̄)f−1(z, z̄)− k∂̄f(z, z̄)f−1(z, z̄), k). (6)

This action preserves the Poisson structure (3). The moment map is fixed to be

µ(p) = k∂̄φ+ [A, φ] = J , J = νJδ(z, z̄), (7)

where J denotes some element of the coadjoint sl orbit to be specified later (Sec.3) and

ν is a coupling constant. Explicitly, Pred is described by a pair (L,D), where D is a

constant diagonal matrix and L is a solution of (7) with A = D. L appears to be the

L-operator of the elliptic CM system.

2. Generating equation. To start with we note that generically an element A ∈ F
is gauge equivalent to a complex constant diagonal matrix D(A) [9], i.e.

A = g(A)D(A)g(A)−1 − k∂̄g(A)g(A)−1. (8)
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This matrix is defined up to the action of the elliptic affine Weyl group. Indeed, the

gauge transformation with f(z) = e2πi w̄z−wz̄τ−τ̄ , where w = diag(s1, . . . , sn), si = mi + τni,

mi, ni ∈ Z, trw = 0 leads to the substitution D(A) → D(A) + 2πik
τ−τ̄ w. We fix D(A)

by choosing the fundamental Weyl chamber. The factor g(A) is not uniquely defined.

An element g̃(A) = g(A)t, where a diagonal matrix t = t(z) is an entire function, also

satisfies (8). Requiring g̃(A) to be doubly periodic, we get that t(z) is a constant matrix,

i.e. an element of a maximal torus T of SL(n). We also normalize g as g(D) = 1.

Let us assign to any X ∈ F a function FX on P:

FX(p) =< φ, g(A)Xg(A)−1 >, (9)

where g(A) is some solution of (8). According to the choice (7), GJ acting on the surface

µ−1(J ) coincides with a group of smooth mappings {g : Στ → SL(n), g(0) ∈ H}, where

H is the isotropy group of J . Now assume J to be such that H ∩T = 0. In this case there

is no ambiguity in the choice of g(A) for A restricted to µ−1(J ), i.e. on this surface FX
is well defined.

Functions FX , X ∈ F are of interest due to their specific properties. The first one is

that FX is invariant with respect to (5),(6) with g ∈ GJ , i.e. it can be viewed as a genuine

function on the reduced phase space Pred. The second property is that if we parametrize

Pred by a pair (L,D), then owing to the normalization condition g(D) = 1 FX restricted

to Pred coincides with a matrix element < L,X > of the L-operator. Thus, we can use

(2) for FX and FY to compute the Poisson bracket between the matrix elements of the

L-operator. The calculations are straightforward. Let f ◦A be a shorthand for the gauge

transformation (6). Introducing a derivative ∇Xg(A) = d
dtg(etX ◦ A)|t=0

of g(A) at the

point A along an orbit of gauge transformations, we find how the hamiltonian vector field

ξX generated by X acts on FZ :

ξXFZ =
d

dt
< etXφe−tX , g(etX ◦A)Zg(etX ◦A)−1 >|t=0

=< φ, g(A)
[
g(A)−1∇Xg(A)− g(A)−1Xg(A), Z

]
g(A)−1 >,

On Pred this formula takes the form ξXFZ =< L, [∇Xg(D)−X, Z] > and it provides

the second term in (2):

< J , [VFX , VFY ] >=< L, [∇VFX g(D)− VFX , Y ] > . (10)

To obtain the bracket {FX , FY }red we first calculate the quantities δFX
δAij(η,η̄) and δFX

δφij(η,η̄)

and after substituting them into (3), we combine {FX , FY } with (10) according to (2).

In this way we prove that there exists a linear operator r: F → F defined by

r(X)(z, z̄) =
∑
ij

∫
Στ

dη̄dη Xij(η, η̄)
δg(A)

δAij(η, η̄)
(z, z̄)− 1

2
(∇VFX g(D)− VFX ) (11)

and such that the Poisson bracket on Pred acquires the form

{FX , FY }red =< L, [r(X), Y ] + [X, r(Y )] > . (12)

Note that formula (11) reminds the one derived in [7] for the r-matrix of the trigono-

metric CM system without a spectral parameter.



252 G. E. ARUTYUNOV

In contrast to the Poisson bracket on Pred, r-matrix (11) depends on the extension of

FX in the vicinity of µ−1(J ). We extend FX in a way as to get the simplest form of r.

To this end we assume that vector J is such that sl(n) decomposes into the direct sum

H ⊕ T ⊕ C, where H and T are the Lie algebras of H and T respectively and C is an

orthogonal to H⊕T with respect to the Killing metric. We also assume that T and C are

two Lagrangian subspaces of the nondegenerate two-form ω(X,Y ) = J([X,Y ]) defined

on T ⊕ C. These restrictions on J are similar to that in the finite-dimensional case [6, 7]

and will be justified in the next section.

Recall that g(A)(z, z̄) = eX(z,z̄) is defined up to the right multiplication by an element

of T . We remove this ambiguity by choosing X(z, z̄) to obey a boundary condition X(0) ∈
H ⊕ C. In addition, if A ∈ µ−1(J ), then X(0) ∈ H.

Having fixed g(A), we find that ∇Xg(D)(z, z̄) = (PX)(z, z̄), where P : F → F is

a unit operator at all points of Στ except zero and it projects X(0) on H ⊕ C parallel

to T . For X such that X(0) ∈ H ⊕ C due to the singularity of J eq.(10) reduces to

0 =< L, [∇Xg(D)−X,Y ] >= J([X(0), VFY (0)]). With our choice of J we conclude that

VFY (0) ∈ H ⊕ C for any Y . Hence, defining g(A) as described above, we get from (11)

the following r-matrix

r(X)(z, z̄) =
∑
ij

∫
Στ

dη̄dη Xij(η, η̄)
δg(A)

δAij(η, η̄)
(z, z̄) (13)

This formula has a transparent geometric meaning. Defining a time evolution of the field

A(t) as: A(0) = D and dA
dt |t=0

= X, one has r(X) = d
dtg(A(t))|t=0

. Since eq.(8) is valid

for any t, i.e.

A(t) = g(A)(t)D(A)(t)g(A)(t)−1 − k∂̄g(A)(t)g(A)(t)−1,

we differentiate it with respect to t and put t = 0. The result is equation (1), where

Q = d
dtD|t=0

. For any smooth function X(z, z̄) ∈ F it has a unique solution r(X) obeying

the boundary condition r(X)(0) ∈ H ⊕ C. From (1) we also read off that the r-matrix

is dynamical [10, 11] since it depends on D accumulating the coordinates on Pred. We

refer to (1) as to the factorization problem for sl connection. Hence, by construction the

r-matrix of the elliptic CM model is defined as a unique solution of the factorization

problem for sl connection obeying some specific boundary condition.

3. Elliptic r-matrix. In this section we show how to solve (1). To this end we first

analyze an equation on Στ :

∂̄E(z, z̄) = δ(z, z̄) (14)

In the vicinity of the origin eq.(14) defines a meromorphic function with a first order pole

with the residue 1/2πi. We define a solution of (14) as a meromorphic function having

simple poles at the points of the period lattice Zτ1 + Zτ2 (τ1 = 1, τ2 = τ) with residues

1/2πi and satisfying the quasiperiodicity condition:

E(z + τk) = E(z) + Cτk , (15)

where Cτk are complex numbers. Note that E(z) can not be doubly periodic since there

is no elliptic functions with first order poles. The difference of two solutions E and Ẽ of
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(14) is a holomorphic but non-periodic function ψ (poles and residues of E ’s coincide)

with

ψ(z + τk) = ψ(z) + δk, δk = Cτk − C̃τk . (16)

Recall that the numbers Ck are not arbitrary. They obey Legendre’s identity C1τ2 −
C2τ1 = 1, which originates from integrating E(z) around the pole at the origin [13].

Therefore, we get δ1τ2 − δ2τ1 = 0. The only holomorphic function obeying (16) with

δk constrained as above is ψ(z) = αz + β, α = δ1, β ∈ C. Hence, any two solutions

of (14) are related as Ẽ(z) = E(z) + αz + β. The Weierstrass zeta-function ζ(z) =
1
z +

∑
n,m∈Z

(
1

z−ωnm + 1
ωnm

+ z
ω2
nm

)
, ωnm = nτ1 + mτ2, satisfies the properties listed

above and therefore represents a peculiar solution of (14). Thus, we conclude that any

meromorphic function E(z) with only simple poles at the points of the period lattice

Zτ1 + Zτ2 with the residues 1/2πi and obeying (15) is of the form

E(z) =
1

2πi
ζ(z) + αz + β. (17)

When β = 0 these functions are odd E(−z) = −E(z).

Introduce the notation:

X =
∑
ij

xij(z, z̄)eij , Y = r(X) =
∑
ij

yij(z, z̄)eij , D =
∑
i

dieii, Q =
∑
i

qieii, (18)

where eij are the matrix unities, then eq.(1) is equivalent to the system

∂̄yii =
1

k
ti (19)

∂̄yij +
dij
k
yij = −1

k
xij , i 6= j, (20)

where ti(z, z̄) = qi − xii(z, z̄) and dij = di − dj .
By forming the convolution of the fundamental solution E(z) with the r.h.s. of (19)

we restore the diagonal part Ydiag of Y up to a constant matrix h ∈ T : Ydiag(z, z̄) =∑
i

∫
Στ

dη̄dη
k E(z − η)ti(η, η̄) + h. Requiring Y to be doubly periodic, we determine the

unknown matrix Q:

Q =
1

2iΣτ

∫
Στ

dη̄dη xii(η, η̄)eii. (21)

To solve eq.(20) by a similar device we need a doubly periodic solutions Eij of the equation

∂̄Eij(z, z̄) +
dij
k
Eij(z, z̄) = δ(z, z̄), i 6= j. (22)

Eq.(22) coincides in essence with the one defining the L-operator of the elliptic CM model

and it has a unique doubly periodic solution given by [9]

Eij(z, z̄) =
1

2πi
e
dij
k (z−z̄) σ(z +

dij
πk Imτ)

σ(z)σ(
dij
πk Imτ)

≡ wij(−z,−z̄), (23)

where σ(z) is the Weierstrass sigma-function.
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Combining all the pieces together we can write a general solution Y (z) of eq.(1):

Y = h+

∫
Στ

dη̄dη

k

E(z − η)
∑
i

ti(η, η̄)eii −
∑
i 6=j

wij(η − z, η̄ − z̄)xij(η, η̄)eij

 . (24)

At this point we specify J . In the elliptic case [9] one should choose the following

representative J on the coadjoint sl(n) orbit

J = 1− u⊗ s†, (25)

where u is a vector in Cn and s̄i = 1/ui. Then eq.(7) defines the following L-operator:

L =
∑
i

pieii − ν
∑
i 6=j

ui
uj
E(z, z̄)ijeij . (26)

The momentum part in L follows from the diagonal part of (7) with Jii = 0. Later on we

point out the connection of (26) with Krichever’s L-operator [12].

The Lie algebra H of the isotropy group H of J is determined by (X ∈ H):

ui(s
†X)j − (Xu)is̄j = 0. (27)

Choosing in (27) i = j, one gets (s†X)i = s̄i
ui

(Xu)i and thereby (27) reduces to (Xu)i
ui

=
(Xu)j
uj

= λ, where λ ∈ C. One also has (s†X)i = s̄i
ui
λui = λs̄i. Thus, we find

H = {X ∈ sl(n,C) : Xu = λu, s†X = λs†, λ ∈ C}. (28)

From (28) we can read off that H∩T = 0. Since the real dimension of sl(n,C) is 2(n2−1)

and H is defined by 4n− 4 equations, we get dimH = 2(n2 − 1)− (4n− 4) = 2(n− 1)2.

Decompose sl(n) into the direct sum H ⊕ T ⊕ C, as above. To describe C explicitly

we introduce a matrix C

C = z ⊗ s† − u⊗ y†

depending on two vectors z, y ∈ Cn. Let X ∈ H and Xu = s†X = 0, then Tr(XC) = 0

by the cyclic property of the trace. On the other hand, if X ∈ sl(n) we have Tr(XC) =∑
ik(zis̄k − uiȳk)xki and consequently for C to be orthogonal to any X = (xiδij) ∈ T ,

we get zis̄i − uiȳi = β for any i, where β is arbitrary. Orthogonality of H and C also

implies: 0 = Tr(JC) = βn(1− < s†, u >) = βn(1− n) that gives β = 0. Thus, C ∈ C if

ȳi = s̄i
ui
zi = 1

u2
i

zi. We put
∑
i
zi
ui

= 0 to have the correct dimension of C: dim C = 2(n−1).

Note also that T and C form a pair of complementary Lagrangian subspaces with respect

to ω(X,Y ) =< J, [X,Y ] > defined on T ⊕ C.
Now we find that (Cu)i = nzi and (s†C)i = − n

u2
i

zi. This allows us to describe the

action of a generic element X ∈ H ⊕ C on u and s:

(Xu)i = λui + nzi,

(s†X)i = λ
ui
− nzi

u2
i

.
(29)

Summing up the second lines in (29) and taking into account
∑ zi

ui
= 0, we find λ:

λ = 1
n

∑
i

(Xu)i
ui

. Solving (29) for zi, we arrive at
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Proposition 1. Let X be an arbitrary element of H⊕C. Then the following relation

ui(s
†X)i + (Xu)i

1

ui
=

2

n

∑
j

(Xu)j
uj

(30)

is valid for any i.

We use Proposition 1 to fix an element h. To this end we require Y (0) to be an element

of H⊕ C. Then by substituting Y (0) in (30) we completely determine h:

h = −
∫

Στ

dη̄dη

k
E(−η)

∑
i

tieii +
∑
i 6=j

∫
Στ

dη̄dη

2k

(
uj
ui
wijxij +

ui
uj
wjixji

)(
eii −

1

n
I

)
.

Thus, we arrive at

Proposition 2. There is a unique solution Y (z, z̄) of eq.(1) obeying the boundary

condition Y (0) ∈ H ⊕ C:

Y (z, z̄) =
∑
i

∫
Στ

dη̄dη

k
(E(z − η)− E(−η))(qi − xii(η, η̄))eii (31)

−
∑
i 6=j

∫
Στ

dη̄dη

k
wij(η − z, η̄ − z̄)xij(η, η̄)eij

+
∑
i6=j

∫
Στ

dη̄dη

2k

(
uj
ui
wij(η, η̄)xij(η, η̄) +

ui
uj
wji(η, η̄)xji(η, η̄)

)(
eii −

1

n
I

)
,

where qi and wij are given by (21) and (23) respectively.

Using the explicit form (17) of E(z) and taking into account (21) it is easy to reduce the

first line in (31) to∫
Στ

dη̄dη

2ik

(
Φ(z, z̄)

Στ
− (ζ(z − η) + ζ(η))

π

)∑
i

xii(η, η̄)eii,

where we have introduced a function Φ(z, z̄) =
∫

Στ

dη̄dη
2πi (ζ(z− η) + ζ(η)). Hence, despite

αz+β enters (17) the solution of (1) does not depend on it. We get from (31) the following

Theorem 1. The r-matrix corresponding to L-operator (26) is the following sl(n)⊗
sl(n)-valued function on Στ × Στ

r(z, η) =

(
Φ(z, z̄)

2ikΣτ
− ζ(z − η) + ζ(η)

2πik

)∑
i

eii ⊗ eii −
1

k

∑
i 6=j

wij(η − z, η̄ − z̄)eij ⊗ eji (32)

+
1

2k

∑
i6=j

(
eii −

1

n
I

)
⊗
(
uj
ui
wij(η, η̄) eji +

ui
uj
wji(η, η̄) eij

)
.

L-operator as well as r-matrix (32) depend on a vector u ∈ Cn. However, by conjugating

L with the matrix eU , Uij = uiδij this dependence may be removed. The corresponding

r-matrix is given by (32) with all ui = 1.

Now it is the time to state a connection of (32) with the r-matrix of the elliptic CM

model found in [1, 2]. Without loss of generality we can assume that the integration

domain Στ has the vertices at the points ± 1
2 ±

τ
2 . Then by the oddness of ζ-function one
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has
∫

Στ
dηdη̄ ζ(η) = 0 and therefore Φ(z, z̄) reduces to

Φ(z, z̄) =

∫
Στ

dη̄dη

2πi
ζ(z − η). (33)

Eq.(33) means that Φ(z, z̄) is a solution of the equation ∂̄Φ(z, z̄) = 1, i.e. Φ(z, z̄) =

z̄+f(z), where f(z) is an entire function. The monodromy properties of ζ define the ones

for Φ(z, z̄): Φ(z + τk, , z̄ + τ̄k) = Φ(z, z̄) + Στ
π Cτk . For f(z) this gives

f(z + τk)− f(z) =
Στ
π
Cτk − τ̄k. (34)

Following the same lines as above we conclude that the only entire function obeying (34)

is f(z) = αz + β with α = Cτ/π−τ̄
τ . The constant β is equal to zero by the oddness of

Φ(z). Thus, we get for Φ(z, z̄) the following explicit expression

Φ(z, z̄) = z̄ − z +
C1

π
Imτ z. (35)

In [1] Krichever’s L-operator [12]: LKr =
∑
i pieii −

ν
2πi

∑
i 6=j Gij(z)eij , where Gij(z) =

2πie
dij
k Φ(z,z̄)Eij(z, z̄), was used to find the corresponding r-matrix. We see that LKr is

related to (26) by the similarity transformation LKr(z) = W (z, z̄)L(z, z̄)W (z, z̄)−1, with

W (z, z̄) = e
D
k Φ(z,z̄). Calculating {W2, L1} with the help of the canonically conjugated

variables {P,D} = 1
2iΣτ

∑
i eii ⊗ eii, P =

∑
i pieii on Pred, we can show [4] that the

r-matrix for LKr is just the one found in [1, 2].

4. Trigonometric r-matrix. Consider the cotangent bundle to the centrally exten-

ded current algebra S1 → su(n). It is known [14] that reducing it by the action of the cur-

rent group S1 → SU(n) and imposing the moment J = Jδ(ϕ) with J = iν
∑
i6=j(eij+eji)

one left with the phase space (L,D) of the trigonometric CM model, where L is the cor-

responding L-operator:

L(ϕ) = i
∑
i

pieii +
ν

2k

∑
i 6=j

e
i
k dij(π−ϕ)

sin π
k dij

eij , (36)

Retracing the same steps as in the elliptic case one gets the following equation on the

r-matrix (see [4] for details)

X = [Y,D]− kY ′ +Q, X, Y ∈ S1 × su(n), D,Q ∈ T , (37)

where this time T is a maximal torus of su(n). Clearly, eq.(37) may be viewed as a

degeneration of (1) that corresponds to a degeneration of Στ into a circle. In this section

we solve (37) explicitly and thereby recover the r-matrix of the trigonometric CM model

[11].

The root decomposition of su(n) elements X,Y,D and Q is given by (18) with coeffi-

cients obeying the unitary condition xji = −x∗ij , etc. From (37) one finds two equations

on diagonal and nondiagonal parts of Y respectively. Imposing the periodicity condition:

Y (0) = Y (2π), we reconstruct Y up to an element h ∈ T :

Y (ϕ) = h+
1

k

∑
ij

∫ 2π

0

dϕ′wij(ϕ,ϕ
′)xij(ϕ

′)eij , (38)
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where

wij(ϕ,ϕ
′) =

(
ie−

iπdij
k

2 sin π
k dij

− θ(ϕ,ϕ′)

)
e−

idij
k (ϕ−ϕ′), wii(ϕ,ϕ

′) =
ϕ

2π
− θ(ϕ,ϕ′) (39)

and θ(ϕ,ϕ′) is the Heviside function.

Since su(n) = H⊕T ⊕ C, where H is a maximal proper Lie subgroup of su(n) and C
is an orthogonal to H⊕T , just as in the elliptic case we can fix h by requiring Y (0) to be

an element of H⊕C. From the results of [7] it follows that this requirement is equivalent

to the set of relations (1 ≤ i ≤ n):∑
j

ImYij(0) =
1

n

∑
i6=j

ImYij(0). (40)

Substituting Y (0) in (40), one finds h that makes (40) true:

h =
1

2k

∑
i 6=j

∫ 2π

0

dϕ′wij(0, ϕ
′)xij(ϕ

′)

(
(

1

n
− eii) + (

1

n
− ejj)

)
. (41)

Combining (38) and (41), we finally get

Proposition 3. Eq.(37) has a unique solution Y (ϕ) obeying the constraint Y (0) ∈
H ⊕ C and it is given by (38) and (41).

As a direct consequence of this lemma we get that r-matrix of the trigonometric CM

system is the following function on S1 × S1

r(ϕ,ϕ′) =
ϕ− π
2πk

∑
i

eii ⊗ eii +
i

2k

∑
i 6=j

cos
πdij
k

sin
πdij
k

e−i
dij
k (ϕ−ϕ′) eij ⊗ eij (42)

− 1

2k

∑
i 6=j

(
eii −

1

n

)
⊗

(
e−i

dij
k

1− e−
2πidij
k

eij −
ei
dij
k

e
2πidij
k

eji

)
+

1

2k
s(ϕ,ϕ′).

In (42) we have introduced a matrix s:

s(ϕ,ϕ′) =

∑
i 6=j

e−
idij
k (ϕ−ϕ′)eij ⊗ eji +

∑
i

eii ⊗ eii

 ε(ϕ− ϕ′), (43)

where ε(ϕ− ϕ′) = [1− 2θ(ϕ− ϕ′)] is the sign function.

By direct calculations [4] one can prove the following

Proposition 4. Matrix s leads to the trivial Poisson bracket on the reduced phase

space, i.e. the following relation is satisfied

[s12(ϕ,ϕ′), L(ϕ)⊗ I]− [s21(ϕ′, ϕ), I ⊗ L(ϕ′)] = 0. (44)

Corollary. r-matrix of the trigonometric CM model is given by (42) with s(ϕ,ϕ′)

= 0.

On Pred the variables (P,X) are canonically conjugated: {P1, X2} = − 1
2π

∑
i eii⊗eii.

L-operator (36) as well as r-matrix (42) depend on the parameter ϕ. However, this

parameter may be removed by the similarity transformation L→ L̃ = Q(ϕ)L(ϕ)Q(ϕ)−1,

where Q(ϕ) = e−
i
kX(π−ϕ). One can easily show that the r-matrix corresponding to the
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L̃ coincides with the one first found in [11] and then derived in [7] by the Hamiltonian

reduction applied to the cotangent bundle T ∗SL(n).

5. Concluding remarks. A few remarks are in order. Assuming in (24) h = 0 and

choosing E(z) = 1
2πiζ(z), we find a matrix

r(z, η) =

(
Φ(z, z̄)

2ikΣτ
− ζ(z − η)

2πik

)∑
i

eii ⊗ eii −
1

k

∑
i 6=j

wij(η − z, η̄ − z̄)eij ⊗ eji

that turns out to be an r-matrix for the L-operator

L =
∑
i

(pi − fiiζ(z))eii − ν
∑
i6=j

Eij(z)fijeij

of the elliptic ECM model containing the additional dynamical variables fij [3]. Thus,

eq.(1) also covers the ECM system being a spin extension of the CM model and gives a

suggestion that the ECM r-matrix can be obtained by the Hamiltonian reduction.

If Στ degenerates into a point, eq.(1) takes the form X = [r(X), D] + Q. One can

easily show that it defines the r-matrices of the rational CM and ECM systems without

spectral parameter.

Since eq.(1) is Lie-algebraic it hopefully may be used to find spectral-dependent r-

matrices for CM models related to the other root systems. We also suppose that the

study of possible deformations of eq.(1) is a good starting point to develop the r-matrix

approach [15] to the Ruijsenaars systems [16] being relativistic extensions of the CM

models.
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