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1I1.3. Construction d’une commande avec retard pour le retour @ origine
THEOREME. On suppose que le systéme
(€3] Y(+1) ='4Y()D+'BY(j—K)
est dégénéré en 2k par rapport au vecteur X(0) de R", alors si I'on pose dans (7)
U({) = < k-
U(j) = BX(j-k) k<j<2k,
alors la solution de (7) vérifie X(j) = 0, j = 2k.
Démonstration. La matrice résolvante associée au systéme (11) est la transposée
de la matrice résolvante X de (8); (11) est dégénéré donc
COXOFKG) =0, > 2k,
c.-a.-d.
K({HXO0) =0, j=2k.
Or la solution de (7) (12) est donnée par
X(j+1) = K(j+1)X(0),
donc
X() =0, jz2%.m

On est donc ramené & la construction d’une matrice B telle que (11) soit dégénéré
par rapport 4 X,. La construction proposée par Popov se transpose: sans difficulté
au cas discret. On obtient alors une commande de la forme:

Uy =0, 0<j<k~1,

U@y = (r, AX(j——k))RnA"Xo- (r, X(j—k))mA"“‘Xo
ou r est un vecteur de R” vérifiant:
Kor =1,
Xofdbr =0,
Ko A+ = 0.
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1. Introductioﬁ

In many situations, systems are governed by ordinary (or partial) differential equa-
tions, which are nonlinear when some coefficients are modelled as functions of
a dependent variable (as pressure, or temperature). In some cases, it is difficult to
determine directly those dependences experimentally. But it is often possible to let
the system evolve, and to record dynamic measurements from the system.

The aim of this paper is to show how to use those measurements in order to
determine the unknown function of a dependent variable.

We do not suppose a priori any closed form of the formula for the unknown
function, but only suppose it belongs to a given function space. In the numerical
applications, the unknown functions are discretized and we determine them for
a finite number of values of the dependent variablel, which enables us to take into
account many physical constraints on the unknown function (as upper and lower
bounds, concavity or convexity etc.).

2. Theory

Let £ < R" be a domain of boundary 92 and let (0, T) < R be the time interval
on which the system of interest evolves, and @ = 2 x (0, T).

Let y: Q = R be the state of the distributed system which is governed by an
equation of the form
ey v(@ak), y) =1,
where a: R — R is the unknown nonlinearity (so a(y} is a function of Q into R),
fis the known second member and v is a known mapping which relates the state
y to the second member f and the unknown function & (y can be a heat equation
with an initial and boundary condition for instance, as shown in Section 3.)

With a given function a we can associate a number J (@) (for instance by solving
equation (1) formally and defining 7 (¢) as the squared norm of the difference .
between the computed and the measured output).
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Suppose now that:

(2) We are looking for a function ¢ which is bounded with a bounded derivative
on R, ie., ae C'(R).

(3) We are given a set o/ < C'(R) such that the criterion 4 can be calculated
for every @ € o/ (that is, equation (1) has a unique solution in y for any
" aesl), and such that

T e~ R is Fréchet derivable on 7.

The specification of the set &/ ¢ and the proof of the derivability of the functional
T are to be made directly for each application.

Suppose finally that all the a priori information on the unknown function a
results in the set &,  of admissible functions (which is generally a closed subset
of o, c).

We can then formulate as usual the estimation problem of the function « as
a minimization problem:

4) Find & € o, such that
T (a) < J(a)

Under the preceding assumptions there is no result of existence and/or uniqueness
of such a minimum; the answer to those questions, when possible, is to be found by
the direct study of each application.

In this section we are only concerned with the effective minimization of the cri-
terion. The classical available numerical methods require the computation of the
gradient of 7°: we will show here how this gradient can easily be determined,

Jorall aegst,,.

THEOREM 1. Under hypotheses (2) and (3), suppose that the derivative I "(a) of

T is of the form

O T'(a) ba = g da(y(x, 1)) p(x, t) dxdt
with ¢

(6) : » ¢ € Li(Q).

Define, for every { e R,

QC = {(‘x’ t) te y(x: t) > t}:
“ Se = {(x 1) Q| y(x, 1) = {}
(defined up to a set of zero measure)

® : o v®) = { e tydxat.

2

Then the function y is bounded on R, and continuous except for the values of ¢ for
which S; has non-zero measure; at such a point, y has a discontinuity of the first kind.

0]
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y defines a distribution on R and we have for every da e Cy(R)
dy
©) 7@ sa = (L, 8a).

Proof. For every { € R we have |y({)| < |l¢llrugy and we have proved that ¢
is bounded on R. Denoting by Y the Heaviside function, and by y a representant

of the class of functions y, we can rewrite formula (8) as:

-
y(¢) = SY(y(x, 0 —)plx, Hdxde
e
and the result on the continuity and discontinuity of y follows from the Lebesgue
convergence theorem and from the fact that the function Y is continuous, except

at zero.
In order to prove (9) divide R into intervals of length / and set

y=1ih, IieZ.

Then formuia (5) becomes
400
T'(a) ba = Z {

t=-o Q-"(\QYM

Sa(y)p(x, t)dxdt

or
400
T'@-da= )" () (YON—yOus )+,
i==w
where ’
4o

1

2 S (8a) (1 +0(y—y)) O —y)pdxdt.

© Qy z\Q-V 1

But we have for # the estimation

i
i

400
@< > helidall §  lgldxdr = hlldal - ll9llzior,
2\, :

which proves that £ — 0 with & — 0 and thus

i=—o0
w

!

7@ = lim > 0a0) (O0=Y0rs)-

= — 00

(10
This can be rewritten as
) P+
T@ta=tim > 200 55 = 00y )y
B0 = %
which is (9).

The distribution dy/dl is the “gradient” of J with respect to the function a;
it includes, in general, Dirac functions at the values { for which §; has non-zero
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measure. Thus we will be able, in the numerical application, to minimize 7~ by a gra-

dient method operating on the function « itself (and not on parameters appearing
in some a priori-chosen closed form formula for a).

3, Application to the nonlinear heat equation

icm

Let us now specify equation (1) more precisely. We consider a system governed by .

a nonlinear heat equation:

i ( (y) ) = f(x,1) in Q,

gﬁ =0 on 9Qx(0, T),
y(x,0) = yo(x) in Q,
where f, yo are known functions, and the function y — a(y) s to be adjusted.

For this purpose, let us measure (for instance, at each time ¢) the mean value
of the solutionr y(x, #) in sub-regions 2,, 2,, ..., 2k of £, which results in X func-
tion zy(t), ..., zx(t), ¢ € (0, T), all known. ’
Our identification problem (4) is now to find a function & such that

O<a<al®)< for ¢eR (& M, given)

(11

which minimizes
KT

7@ = }_j T [S G -z O)dx] a1

We now have to put this problem into a rigorous functional frame in order
to prove that the assumptions of Theorem 1 are satisfied.
Let ¥ and H be two Hilbert spaces such that

(13) HYQ) <V« H'Q), H=L*Q)

and denc?te respectively by [, ((,)), |1 () Il s €(,))y the norm and scalar
Product inV, H, V'. Remember that ((4, v)), = ((D~'u,D~'0))foru, v & V", where D
is the canonical isomorphism from ¥ onto V" defined by: Yo € ¥V, Dv & V" is defined

by (Do, uly,,p = ((v, %)) VueV. We will identify ¥ with a part of H, and H with
its dual H':

(12

VieHecV

a4

2

and we consider the following non-linear equation:

s (% (t),v>+a(y(t), v) = (f(),v), VYoveV, ae on (0,T),

(0) = y,,
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where
(16) fel*(0, T; H) = L*(Q), yo,eL*(®) =
and
- u oo
an a(u, v) = Z Sa( ) % o dx, Nu,veV.

i=m1 0

It is easy to see that, when ¥ = H*(2), a solution of (15) is a weak solution
of (11). We now give the results concerning the existence and uniqueness of the
solution of (15), its dependence on the function a, and the existence of an optimal
estimate 4. The proofs are rather technical and will not be reproduced here. They
can be found in [3].

(i) Existerice, uniqueness of the solution of (14):

THEOREM 2. Under assumptions (13)-(17), equation (15) has a unique solution
such that

dy

(18) yeL*®©, T; V) n L*(0, T; H), = € L2, T V).
Let us suppose additionally that

19 feL7Q), yoeL(@.

Then y satisfies (18) and

{20) yeL*(Q).

(ii) Dependence of y with respect to a:
THEOREM 3. Let
oA = C'(R) asin(2),

2.1) .
e = {aeot| Ja > 0 such that a(l) >

o > 0 ae. on R},

and suppose G e o ¢ given and such that the. corresponding solution y of (15) satisfies

W e -
(22) ”&TEL (Q), 1 1,2,.,.,7].
Then, under hypotheses (13)-(17) and (19) the mapping a — y from ¢ into LMQ)
defined by (15) is strongly continuous at @ for p > 2
Moreover, if n < 3, one has:

C115ll for 2<p<,
||AJ’”LI’(Q) < 10

@)
C-lIs o for  H<p< o,

(C = constant).
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In order to get differentiability results for the mapping a ~ y, we differentiate
formally system (11). This leads us to the study of the following linear system:

<O Pu
Ry (Clx, Hu) =h in Q,
{m1

(24)
W (Clx, t)u) =0 on 392x (0, T),
u(x, 0) == u, on £,
. We ?hall §how the existence and unicity of a weak solution of this system by
takmgi V' as Pivot-space(*), but without identifying ¥’ with V; consider the linear
equation

-g;- ((u;, (U))* + C<t: u, (/)) = (L(t), (x)),

(25) u(0) = 1y, Yo e H ae on (0,7),
where
(26) Lel0,T; H), uyeV’,
and
7 Ct; u,0) = | Cx, tyu(x) (v@)~D-tv())dx, Vu,veH,
]

where C(x, 1) is a function satisfying
(28) Ju, MeR suchthat 0 < o < Clx,t) < M ae. on Q,

It is easy to show that for ¥ = H*(Q) and (L i

‘ = 1), w) = ((hQ), :

of (25) is a weak solution of (24). o )= (0 w))* # colion

THEOREM 4. Und. [ — i oluti
usatim)mg er assumptions (26)-(28), equation (25) ﬁas a unique solution
dp-1

€ LX)

and dep‘ending continuously on the right-hand side.

It is now possible to give the differentiability theorem for the mapping a = y:
. T;EOREM 5. U.nder the assumptions of Theorem 3, Jor n < 3 the mapping a - y
ieﬁ:erby (15) is dtﬁ”ererltiable as a transformation from o ¢ into L*(Q). Its derivative
s the linear mapping which maps da & of onto 9y e L? (Q) solution of (se¢ Theorem 4):

29) ue L¥(Q),

d
7 (& @)+ (o (%, 1)) by(w— D-1e) e

2
3
(30) = - Séﬁ();)(wmb““w)dx, Yo e o,
8(0) =0, ’

(') Then, for ae. £ € (0, T, #(r) will belong to V",

icm®
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where
4

8B = { da(§)dt.

0

When V = H*(8), 0y is a weak solution of

20y X 0 -
@3 —b—tJ——Z—E— (a(y(x, 1) 6y) = 2%(60(3’@’[»%) a.e. on Q,

im1 i=1
2 (a(y 1) dy) = 0 on 02x (0, T),

dy(x,0) = 0.

(iii) The inverse prbblem:
We now want to identify the function ¢ — a(f) from measurements over the
solution y, as defined above: )

(32) nel?@© 1), i=12..,K.

From (32) and Theorem 2 it follows that the cost function 7~ is well defined by (12).
It is possible to give here an existence theorem for a minimum of the function 7

THEOREM 6. Let us set “locally”

(33) ael®(R), ou = {aecl®R)| 0 <a<all)< M ae on R}
(%, M given).

Then under assumptions (13)-(17), (19), (32), (33), there exists at least one func-
tion a € o 4 which minimizes T over sf,,.

Remark. Tn many specific applications, the above set &,, of admissible non-~
linearity does not satisfy the assumptions required in Theorem 6, because it contains
very irregular functions. For instance, in the numerical applications we have also
used the following sets o and &,4:

o = {aeL®(R)| a’ € L°(R)},

(34) -
Ao = {acst) 0< &< aly) € M, yu(y) € a'(¥) € yu(y) ae. on R}

when @, M & R and the functions y,,, yu are given. It is easy to show the existence

of a minimum on this new admissible set.
Tt is now possible to prove, as a corollary to Theorem 5, that the functional I~

defined in (12) satisfies the assumptions (3) of the theory, i.e., that it is differentiable.

THROREM 7. Under assumptions (13)-(17), (19), (21), (22), the functional I~
defined by (12) is differentiable as a mapping from ¢ into R for n < 3, and its de-
rivative 7' (a) is given by
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N oy o
' - 9@ 1
(35) T(@)ba = QSda(y(x, ) 21 So- - dudt, VaeCi(R),

where y is the unique solution of (15) and p is the adjoint state given by
D c120) ad ) = D),
o € L2(Q) is the unique solution of

- };lr_ ((@(t), m))* +!§ a(y(x, 1)) (@—D~*g)wdx

peL*0, T3 V), ae. on (0,7,

(36)

K
11
- _ZZ S m(mrglydxmz,(i))wdx Vo € H, ae. on (0, T).

2
If V = H'(Q), p is the strong solution in L*(0, T; H*(Q)) of:

n X
dp N p X 1 )
"”5{”“(?(9‘,1))2“5}? = ""22"‘3‘%”— (m SJ’(?C, t)dx-—z,(t)) in @,
(37) [EY) [E=X) en
~g§- = on Q2x(0, T,

px, T) =0 on 2,
So all the conditions of Theorem 1 are satisfied, which enables us to calculate the
“gradient” dy/dl of I with respect to a. We can remark that in the case of the heat
equation the function y is always continuous:
For a value of £ such that S; has a non-zero measure, it happens that

_ " 6y ap
P(x, 1) = izl—a‘;c‘;(xa f)'c:,;l* (1)

is equal to zero on S, so that y is also continuous for those values: the distribution
dy|d¢ does not include Dirac functions,

4. Numerical results
From a numerical point of view, it is relatively easy to compute the distribution
dy/dL; the main operation consists in an integration on the time-space domain con-
tained between two level surfaces of the solution y(x, ¢).
The direct and adjoint equations (11) and (37) are solved by classical finite
differences,

We have considered a one-dimensional heat equation (1 = 1):
Q = (0,1) discretized into twenty intervals,
(0, Ty = (0,1) discretized into forty intervals.
There were five measurements points
g, .3, .57, .9,

icm
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Fig. 1, Estimation of a(y) as a “free” function
(no regularity constraints)
-~ ~ initial value; A exact function; o iden-
tified function

Fig. 2. Estimation of a(y) with constraints

on the second derivative |a” ()l < 5

-~ ~ initial value; A exact fonction;

o identified function

0,0
0

Fig. 3. The data of the noisy case; recorded and
computed pressure at the unique observation
point (the pressure that should have been observed
in absence of noise is practically confounded with
the computed pressure)
A observed pressure; o computed pressure
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Fig. 4. Estimation of a(y) in the presence of
noise, with constraints on the second deriva-

tive: 0<a”()) €5

— ~— initigl value; A exact function; e iden~

tified function
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We simulated the measurements z;(t) by use of the “true” function
ag(y) = .21~ .28y +.7y2.

The lower and upper bounds of the solution y were chosen as y,, = .3, y3 = 2,
the interval (v, ¥a) was divided into 20 intervals of length 4, and the function a(y)
was represented on this interval by a continuous piecewise linear function.

To recover the function a(y), we used the standard gradient method (steepest
descent with projection for the case of &, as in (33), Franck and Wolf algorithm
for the case of &, as in (34)).

Our numerical results are shown in figures 1 through 4.

Detailed numerical comparisons are to be found in [3].

5. Conclusion

We have given a method of computing the gradient of a functional depending on
a function of the state variable and applied it to the nonlinear heat-equation.
Numerical results have been given, which show the feasibility of the method.
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A NOTE ON THE POISSON DISORDER PROBLEM

M. H. A. DAVIS
Department of Computing and Control, Imperial College, London SW7 2BZ, Great Britain

1. Introduction

The problem can be stated roughly as follows. We observe a Poisson process N,
whose rate changes from A, to 4, (positive constants) at a certain time T T'is a ran-
dom variable which is zero with probability =, or, given that T # 0, exponentially
distributed with parameter A. We want to tell when T" occurred, from the observations
of {N;}. Thus the problem is to choose a stopping time 7 of &, = {N,, s < ¢} s0
as to minimize the expected value of some cost function depending on the difference
between = and 7. Two forms of cost function are considered here; they are

(1.1) si(w) = d(T""")I(«T)”*‘C(T“‘T)I(r;T),
(1.2) 52() = Jecr-ntc(t—T) e 5y,
where e, ¢, d are positive constants. It will turn out that these are special cases of
a “standard problem” (see §4). A third natural form of cost function, the “hit or
miss” cost

S?(w) = 1_I(T—,<1(T+u)
is not standard and presents a more difficult problem.

The Wiener process version of this problem (where the observation is N;
= At~ Iysmy+ Wi, {W,:} a Wiener process) was studied by Shiryayev [5]. Shir-
yayev’s methods were applied to the Poisson case the cost function s* with & =0
by Galchuk and Rozovsky [2] who with a rather complicated proof solved the pro-
blem in case A+c > A, > Ag. Here we show that this result (Theorem 2 below) is
a very simple consequence of the martingale or innovations approach to point
process filtering developed in [4]. Furthermore, the solution is in fact valid for
Ade = A, —A = 0 and we can also obtain solutions for other cost functions such
as (1.1) and (1.2) which can be rewritten in standard form.

In §2 we state the recursive filtering result of [4], which is applied in § 3 to
derive a stochastic differential equation satisfied by the process @, = P[t > T .
In § 4 the standard problem is formulated and solved under certain conditions on
the coefficients. When these conditions are not met things are more complicated
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