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HITTING TIMES OF HYPERBOLIC BESSEL PROCESSES

BY

YUJI HAMANA (Tsukuba) and LUJIA ZHANG (Chengdu)

Abstract. We investigate the first hitting time to a point of a hyperbolic Bessel pro-
cess which is the generalization of the radial part of Brownian motion on a hyperbolic
space. We give the Laplace transform of the hitting time and the probability that the
hyperbolic Bessel process reaches a given point in some time. Moreover, the limiting be-
havior of the expectation of the hitting time is computed. These results are improvements
of some preceding results.

1. Introduction. The probability distributions of the first time that a
d-dimensional Brownian motion or an Ornstein–Uhlenbeck process arrives
at some given point of the sphere have been determined explicitly (see [6,
7, 8]). Since the radial parts of these processes are represented by Brownian
motion moving on [0,∞) with an appropriate drift, the general theory of
one-dimensional diffusion processes can give the Laplace transforms of their
hitting times in terms of suitable special functions. By calculating the inverse
Laplace transforms we obtain the relevant distributions.

This article deals with hyperbolic Bessel processes. These are diffusion
processes represented by one-dimensional Brownian motion with a suitable
drift and their transition densities can be determined. More information is
found in [1, 10, 16] and references therein. Just as a Bessel process is an exten-
sion of the radial part of Brownian motion on Rd, a hyperbolic Bessel process
is an extension of the radial part of Brownian motion on the Poincaré half-
space Hd(R), which is called d-dimensional hyperbolic Brownian motion.

The probability that d-dimensional hyperbolic Brownian motion reaches
the boundary of a ball in some time is given in [3] when the starting point
is outside the ball. Moreover, for 2 ≤ d ≤ 7, the asymptotic behavior of
the probability is discussed in [2] as the starting point tends to infinity. The
limiting value of the logarithm of the hitting probability is linear in the
radius of the ball and the same is expected in other cases.
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The purpose of this paper is to improve these results. Namely, we give
a formula for the hitting probability of a hyperbolic Bessel process for any
starting point. Since the method in [3] is valid only when the starting point
is close to the origin, we need to use a different method in other cases and the
Laplace transform is useful for calculations. By using the derived representa-
tion we establish the exponential decay of the hitting probability, confirming
the conjecture in [2].

In addition, we investigate the conditional expectation of the hitting
time under the condition that the hitting time is finite. For the radial part
of d-dimensional hyperbolic Brownian motion, the expectation of the exit
time from a ball has been computed for 2 ≤ d ≤ 5 (see [17]). Another
purpose of this article is to find the limiting behavior of the conditional
expectation as the arrival point or the starting point tends to infinity in the
case of a hyperbolic Bessel process. We mention that the explicit form of the
expectation can be deduced for d = 6.

We remark that hyperbolic Brownian motion is significant for mathemat-
ical finance, since it has a close connection with some exotic derivatives. In
the framework of the Black–Scholes model several identities for the prices of
some call options have been obtained (see [14]).

This paper is organized as follows. Section 2 provides the Laplace trans-
form of the first hitting time of a hyperbolic Bessel process. Section 3 is de-
voted to giving a formula for the hitting probability and its limiting behavior.
Sections 4 and 5 deal with the expectation or the conditional expectation of
the first hitting time. We use the notation of special functions from [12].

2. Laplace transforms of hitting times. For α ∈ R and θ > 0
a hyperbolic Bessel process with index α and parameter θ, denoted by
{X(α,θ)

t }t≥0, is a one-dimensional diffusion process on [0,∞) with the gener-
ator

Lα,θ =
1

2

d2

dx2
+

(
α+

1

2

)
θ coth(θx)

d

dx
, x > 0.

If 2α + 2 is a positive integer, the diffusion process {X(α,1)
t }t≥0 can be re-

garded as the radial part of a Brownian motion on (2α + 2)-dimensional
real hyperbolic space. Throughout this paper we consider the case where
X

(α,θ)
0 = a for a given a > 0.

Let m and s be the speed measure and the scale function, respectively.
Since

(2.1) Lα,θ =
1

2 sinh2α+1(θx)

d

dx

(
sinh2α+1(θx)

d

dx

)
,
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we can take

(2.2) m(dx) = 2 sinh2α+1(θx)dx, s′(x) = sinh−2α−1(θx).

Hence the classification of boundary points, which are 0 and ∞, is the fol-
lowing. The endpoint ∞ is natural for all α ∈ R. The origin 0 is an entrance
point if α ≥ 0 and an exit point if α ≤ −1. If −1 < α < 0, then 0 is regular
and in this paper we assume that 0 is instantaneously reflecting. We remark
that the boundary points are classified independently of θ. The details are
found in [9, 13] for example.

For b > 0 we define

τ
(α,θ)
a,b = inf {t > 0; X

(α,θ)
t = b}.

The Laplace transform of τ (α,θ)a,b can be obtained with the help of the general
theory of one-dimensional diffusion processes. In order to give the Laplace
transform of τ (α,θ)a,b , we use the associated Legendre functions of the first and
the second kinds, which are denoted by Bµ

ν and Dµ
ν for µ, ν ∈ R, respectively.

It is known that Bµ
ν and e−iπµDµ

ν are the independent fundamental solutions
of the ordinary differential equation

(1− x2)u′′(x)− 2xu′(x) +

[
ν(ν + 1)− µ2

1− x2

]
u(x) = 0, x > 1.

For details, see [1, 12] for example. Moreover, for λ ≥ 0 let

(2.3) α(λ) =

√
2λ

θ
+

(
α+

1

2

)2

− 1

2
.

Now we are ready to provide the Laplace transform of τ (α,θ)a,b .

Theorem 2.1.

(1) If 0 < a < b and α > −1, then

(2.4) E[e−λτ
(α,θ)
a,b ] =

sinh−α(θa)B−α
α(λ)(cosh(θa))

sinh−α(θb)B−α
α(λ)(cosh(θb))

for λ > 0.

(2) If 0 < a < b and α ≤ −1, then

(2.5) E[e−λτ
(α,θ)
a,b ] =

sinh−α(θa)Bα
α(λ)(cosh(θa))

sinh−α(θb)Bα
α(λ)(cosh(θb))

for λ > 0.

(3) If 0 < b < a and α ∈ R, then

(2.6) E[e−λτ
(α,θ)
a,b ] =

sinh−α(θa)D−α
α(λ)(cosh(θa))

sinh−α(θb)D−α
α(λ)(cosh(θb))

for λ > 0.
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Before proving Theorem 2.1, we mention that Bµ
ν (x) and e−iπµDµ

ν (x) are
real for x > 1 and suitable µ, ν ∈ R. Indeed, it is known that

(2.7) Bµ
ν (x) =

2µ(x2 − 1)−µ/2

√
πΓ (1/2− µ)

π�

0

[x+ (x2 − 1)1/2 cos y]ν+µ sin−2µ y dy

if µ < 1/2 (see [12, p. 184]), and

(2.8) e−iπµDµ
ν (x) =

(x2 − 1)−µ/2Γ (ν + µ+ 1)

2ν+1Γ (ν + 1)

×
π�

0

(x+ cos y)−ν+µ−1 sin2ν+1 y dy

if ν > −1 and ν + µ+ 1 > 0 (see [12, p.186]).
For a proof of Theorem 2.1 we apply the general formula for the Laplace

transform of the first hitting time of a diffusion process with generator Lα,θ.
According to the general theory of one-dimensional diffusions (see [9, p. 129]),
if u is the solution of the differential equation

(2.9) Lα,θu(x) = λu(x), x > 0,

for λ > 0 with appropriate conditions, then the Laplace transform of τ (α,θ)a,b is
represented by u(a)/u(b). In addition, for 0 < a < b, boundary conditions at
0 are required. If 0 is an entrance point or instantaneously reflecting regular,
we need to solve (2.9) under the following conditions:

(2.10) lim
x↓0

u(x) = 1, lim
x↓0

u′(x)

s′(x)
= 0.

If 0 is an exit point, the solution of (2.9) satisfying

(2.11) lim
x↓0

u(x) = 0, lim
x↓0

u′(x)

s′(x)
= 1

should be derived.
Standard calculations show that the functions sinh−α(θx)B±α

ν (cosh(θx))
and sinh−α(θx)D±α

ν (cosh(θx)) are solutions of (2.9).
We start with the case 0 < a < b and α > −1. Let u1 be the function

defined on (0,∞) by

u1(x) = 2αΓ (α+ 1) sinh−α(θx)B−α
α(λ)(cosh(θx)).

We can conclude that E[exp(−λτ (α,θ)a,b )] = u1(a)/u1(b), which is equivalent
to (2.4), if we succeed in proving that u1 is the strictly increasing solution
of (2.9) satisfying (2.10). It is sufficient to establish the following lemma.

Lemma 2.2. For µ, ν ∈ R define a function fν,µ on (1,∞) by

(2.12) fν,µ(x) = (x2 − 1)µ/2Bµ
ν (x).
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If µ < 1, then

lim
x↓1

fν,µ(x) =
2µ

Γ (1− µ)
,(2.13)

lim
x↓1

f ′ν,µ(x) =
(ν + µ)(ν − µ+ 1)2µ−1

Γ (2− µ)
.(2.14)

Moreover, if µ < 3/2, ν + µ > 0 and ν − µ+ 1 > 0, then

(2.15) f ′ν,µ(x) > 0 for any x > 1.

Proof. When µ < 1 we have

fν,µ(x) =
(x+ 1)µ

Γ (1− µ)
2F1

(
−ν, ν + 1; 1− µ;

1− x

2

)
for x > 1, where 2F1 is the hypergeometric function (see [12, p. 153]). This
immediately gives (2.13).

It is known that

(2.16)
dBµ

ν

dx
(x) =

νx

x2 − 1
Bµ

ν (x)−
ν + µ

x2 − 1
Bµ

ν−1(x)

(see [12, p.165]), which yields

f ′ν,µ(x) = (x2 − 1)µ/2−1(ν + µ){xBµ
ν (x)−Bµ

ν−1(x)}.
Since

xBµ
ν (x)−Bµ

ν−1(x) = (ν − µ+ 1)(x2 − 1)1/2Bµ−1
µ (x)

(see [12, p.165]), we have
(2.17) f ′ν,µ(x) = (ν + µ)(ν − µ+ 1)fν,µ−1(x).

Hence (2.14) follows from (2.13). Moreover, by (2.7), fν,µ−1(x) > 0 for any
x > 1 and hence (2.17) yields (2.15).

We next consider the case of 0 < a < b and α ≤ −1 and define a function
u2 on (0,∞) by

u2(x) =
Γ (1− α)

−2α+1αθ
sinh−α(θx)Bα

α(λ)(cosh(θx)).

It is obvious that u2 is a solution of (2.9). For µ, ν ∈ R let gν,µ be a function
on (0,∞) defined by

gν,µ(x) = (sinh−µ x)Bµ
ν (coshx).

Then
u2(x) =

Γ (1− α)

−2α+1αθ
gα(λ),α(θx).

Since

gν,µ(x) =

√
2

π

1

Γ (1/2− µ)

x�

0

(coshx− cosh y)−µ−1/2 cosh

[(
ν +

1

2

)
y

]
dy

for µ < 1/2 (see [12, p. 184]), gα(λ),α and u2 are strictly increasing on (0,∞).
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We aim to show that u2 satisfies (2.11). Recall that fν,µ is defined by
(2.12) and so

(2.18) gν,µ(x) = (sinh−2µ x)fν,µ(coshx).

Applying (2.13) to (2.18), we easily obtain

lim
x↓0

gα(λ),α(x) = 0,

which implies the first claim of (2.11) for u2. Moreover, (2.18) gives

(sinh2µ+1 x)g′ν,µ(x) = −2µ(coshx)fν,µ(coshx) + (sinh2 x)f ′ν,µ(coshx).

In virtue of (2.14) we deduce that

lim
x↓0

(sinh2α+1 x)g′α(λ),α(x) = − 2α+1α

Γ (1− α)
.

This shows that u2 satisfies the second claim of (2.11) and hence (2.5) holds.
For the proof of (2.6) we need to find a decreasing solution of (2.9) that

vanishes as x→ ∞. It is sufficient to establish the following lemma.

Lemma 2.3. Define a function hν,µ on (1,∞) by

hν,µ(x) = (x2 − 1)−µ/2eiπµD−µ
ν (x).

For ν > −1 and ν ± µ+ 1 > 0 we have the following properties of hν,µ:

hν,µ(x) is positive for any x > 1,(2.19)
hν,µ is decreasing on (1,∞),(2.20)
hν,µ(x) converges to 0 as x→ ∞.(2.21)

Proof. Formula (2.8) shows that hν,µ takes values in (0,∞). In addition,
(2.8) yields (2.20) since x 7→ (x + cos y)−ν−µ−1 is decreasing for a fixed
y ∈ (0, π).

We have x+ cos y > 1 for x > 2 and 0 < y < π and thus

|(x+ cos y)−ν−µ−1 sin2ν+1 y| ≤ sin2ν+1 y.

Since 2ν + 1 > −1, the right hand side is integrable on (0, π). Hence the
dominated convergence theorem yields

lim
x→∞

π�

0

(x+ cos y)−ν−µ−1 sin2ν+1 y dy = 0

and we can obtain (2.21) from (2.8).

3. Hitting probabilities and their exponential decay. This section
deals with the probability that τ (α,θ)a,b <∞. When d = 2α+ 2 for an integer

d ≥ 2, the explicit form of P (τ (α,1)a,b < ∞) is provided in [3] for 0 < b < a.
However, the formula has a complicated form except for d = 2, 3. In virtue
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of the indefinite integral of sinh−n x for an integer n ≥ 1 (see [5, p. 113]), we
can see that the formula in [3] is the same as

P (τ
(α,1)
a,b <∞) =

	∞
a sinh−d+1 x dx	∞
b sinh−d+1 x dx

.

Our result in this section improves the result in [3].

Theorem 3.1.

(1) If 0 < a < b and α > −1, then

(3.1) P (τ
(α,θ)
a,b <∞) = 1.

(2) If 0 < a < b and α ≤ −1, then

(3.2) P (τ
(α,θ)
a,b <∞) =

	θa
0 sinh−2α−1 x dx
	θb
0 sinh−2α−1 x dx

.

(3) If 0 < b < a and α > −1/2, then

(3.3) P (τ
(α,θ)
a,b <∞) =

	∞
θa sinh

−2α−1 x dx	∞
θb sinh

−2α−1 x dx
.

(4) If 0 < b < a and α ≤ −1/2, then

(3.4) P (τ
(α,θ)
a,b <∞) = 1.

We note that (3.2) and (3.3) are less than 1. Before giving a proof of
Theorem 3.1, we shall give the asymptotic behavior of the probability that
τ
(α,θ)
a,b <∞ for large a or b.

Corollary 3.2.

(1) If 0 < a < b and α ≤ −1, then

(3.5) lim
b→∞

1

b
logP (τ

(α,θ)
a,b <∞) = (2α+ 1)θ.

(2) If 0 < b < a and α > −1/2, then

(3.6) lim
a→∞

1

a
logP (τ

(α,θ)
a,b <∞) = −(2α+ 1)θ.

Proof. Note that

(3.7) 1
2e

y(1− e−2y) = sinh y ≤ 1
2e

y

for y > 0. The standard calculation shows that (3.2) and (3.3) immediately
imply (3.5) and (3.6), respectively.

If θ = 1 and 2α+2 is an integer, then (3.6) is proved for 2 ≤ 2α+2 ≤ 7
in [2]. It is expected in the same paper that (3.6) holds in the other cases.
Corollary 3.2 confirms this.
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The proof of Theorem 3.1 for 0 < b < a is easy and similar to the proof
in [2]. The general theory yields

(3.8) P (τ
(α,θ)
a,b < τ (α,θ)a,r ) =

s(r)− s(a)

s(r)− s(b)

for r > a (see [9, p. 112]). By (2.2) we can take

s(x) =

x�

b

sinh−2α−1(θy) dy.

Note that sinhx is asymptotically equal to ex/2 as x → ∞, which implies
that s(r) converges if α > −1/2 and diverges if α ≤ −1/2 as r → ∞. Hence
(3.3) and (3.4) can be easily derived by letting r → ∞ in (3.8).

We turn to the case 0 < a < b. Recall that

(3.9) P (τ
(α,θ)
a,b <∞) = lim

λ↓0
E[e−λτ

(α,θ)
a,b ].

Hence, in order to obtain (3.1) and (3.2), we should calculate the limiting
values of the right hand sides of (2.4) and (2.5) as λ ↓ 0.

First, we show the continuity of Bµ
ν (coshx) with respect to ν. For µ ∈ R

and x > 0 define a function ϕµ,x on R by

ϕµ,x(ν) =

π�

0

(coshx+ sinhx cos y)ν+µ sin−2µ y dy.

Formula (2.7) yields

(3.10) Bµ
ν (coshx) =

2µ sin−µ x√
πΓ (1/2− µ)

ϕµ,x(ν)

for µ < 1/2.

Lemma 3.3. Let µ < 1/2 and x > 0. Then ϕµ,x is a continuously differ-
entiable function on R and

(3.11)
ϕ′µ,x(ν) =

π�

0

(coshx+ sinhx cos y)ν+µ sin−2µ y log(coshx+ sinhx cos y) dy

for ν ∈ R. In particular, the function ν 7→ Bν
µ(coshx) is continuous on R.

Proof. Let x > 0 and 0 < y < π. For simplicity we define

ξ(x, y) = coshx+ sinhx cos y

and so

ϕµ,x(ν) =

π�

0

ξ(x, y)ν+µ sin−2µ y dy.
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Note that

(3.12) e−x ≤ ξ(x, y) ≤ ex.

Let ν0 ∈ R be arbitrary. We shall prove that ϕµ,x is differentiable at ν = ν0
and ϕ′µ,x is continuous at ν = ν0. Since sin−2µ y is integrable with respect to
y, it is sufficient to show that |ξ(x, y)ν+µ log ξ(x, y)| can be dominated by a
constant which depends only on x, ν0 and µ.

Note that |log ξ(x, y)| ≤ x by (3.12). We now estimate ξ(x, y)ν+µ. If
ν0 + µ > 0, it follows from (3.12) that

ξ(x, y)ν+µ ≤ e(ν0+µ+1)x

for −µ < ν < ν0 + 1. If ν0 + µ = 0, we have

ξ(x, y)ν+µ ≤ max {e(ν+µ)x, e−(ν+µ)x} ≤ e|µ|x/2

for ν0 − |µ|/2 < ν < ν0 + |µ|/2. Finally, if ν0 + µ < 0, then

ξ(x, y)ν+µ ≤ e−(ν0+µ−1)x

for ν0 − 1 < ν < −µ. This finishes the proof of the lemma.

When µ < 3/2, the well-known formula

Bµ
ν (x) = −2(µ− 1)x(x2 − 1)µ/2Bµ−1

ν (x) + (ν − µ+ 2)(ν + µ− 1)Bµ−2
ν (x)

for x > 1 permits application of Lemma 3.3. Hence we deduce that

(3.13) lim
δ→0

Bµ
ν+δ(coshx) = Bµ

ν (coshx)

for µ < 3/2 and x > 0. Recall that α(λ) ≥ α(0) and

lim
λ↓0

α(λ) = α(0).

For x > 0 let
ρ±α (x) = sinh−α(θx)B±α

α(0)(cosh(θx)).

We deduce from (3.9) and (3.13) that

P (τ
(α,θ)
a,b <∞) =

ρ−α (a)

ρ−α (b)
for 0 < a < b and α > −1

and

(3.14) P (τ
(α,θ)
a,b <∞) =

ρ+α (a)

ρ+α (b)
for 0 < a < b and α ≤ −1.

Hence it is sufficient to evaluate ρ±α (x).
It is obvious that

(3.15) α(0) =

{
α if α > −1/2,
−α− 1 if α ≤ −1/2.
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If α > −1/2, we have

(3.16) ρ−α (x) = sinh−α(θx)B−α
α (cosh(θx)).

The formula

(3.17) B−µ
µ (x) =

(x2 − 1)µ/2

2µΓ (µ+ 1)
for µ > −1 and x > 1

(see [12, p.172]) yields

ρ−α (x) =
1

2αΓ (α+ 1)
.

This gives ρ−α (a)/ρ−α (b) = 1.
If −1 < α ≤ −1/2, it follows from (3.15) that

ρ−α (x) = sinh−α(θx)B−α
−α−1(cosh(θx)),

which is the same as the right hand side of (3.16) since Bµ
ν (x) = Bµ

−ν−1(x)
for x > 1 (see [12, p. 164]). Hence ρ−α (a)/ρ−α (b) = 1 for −1 < α ≤ −1/2.

If α ≤ −1, we need to consider

(3.18) ρ+α (x) = sinh−α(θx)Bα
α(cosh(θx)).

When ν + µ < 0 and x > 1, the Whipple formula states that

Γ (−ν − µ)Bµ
ν (x) =

√
2/π eiπ(ν+1/2)(x2 − 1)−1/4D

−ν−1/2
−µ−1/2[x(x

2 − 1)−1/2]

(see [12, p. 164]). This shows that (3.18) is equal to

(3.19)
√

2

π

1

Γ (−2α)
sinh−α−1/2(θx)eiπ(α+1/2)D

−α−1/2
−α−1/2(coth(θx))

and thus we have to evaluate e−iπµDµ
µ(x) for x > 1.

Lemma 3.4. If µ > −1/2, then

(3.20) e−iπµDµ
µ(x) = 2µΓ (µ+ 1)(x2 − 1)µ/2

∞�

x

dy

(y2 − 1)µ+1
for x > 1.

Proof. For x > 1 let σµ(x) = e−iπµDµ
µ(x). Since

B−µ
µ (x)σ′µ(x)− σµ(x)

dB−µ
µ

dx
(x) =

1

1− x2
,

(see [12, p. 165]), by (3.17) we have

σ′µ(x)−
µx

x2 − 1
σµ(x) = − 2µΓ (µ+ 1)

(x2 − 1)µ/2+1

for any x > 1. Hence

(3.21) (r2−1)−µ/2σµ(r)−(x2−1)−µ/2σµ(x)=−2µΓ (µ+1)

r�

x

dy

(y2−1)µ+1
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for 1 < x < r. Formula (2.8) gives

(r2 − 1)−µ/2σµ(r) =
Γ (2µ+ 1)

2µ+1Γ (µ+ 1)

1

(r2 − 1)µ

π�

0

sin2µ+1 y

r + cos y
dy,

which is bounded by
Γ (2µ+ 1)

2µ+1Γ (µ+ 1)

π

(r2 − 1)µ(r − 1)
,

since µ > −1/2. We let r → ∞ in (3.21) and deduce (3.20).

It follows from α ≤ −1 that −α− 1/2 ≥ 1/2. This shows that (3.20) can
be applied and so

eiπ(α+1/2)D
−α−1/2
−α−1/2(coth(θx)) =

Γ (1/2− α)

2α+1/2
(coth2(θx)− 1)−(α+1/2)/2κα(x),

where

κα(x) =

∞�

coth(θx)

dξ

(ξ2 − 1)−α+1/2
.

Hence we obtain (3.19) and also

ρ+α (x) =
Γ (1/2− α)√
π2αΓ (−2α)

κα(x),

which implies that the right hand side of (3.14) coincides with κα(a)/κα(b).
In order to complete the proof of (3.2) we shall calculate κα(x) for x > 0.
Changing the variable via ξ = coth y, we deduce from a simple calculation
that

κα(x) =

θx�

0

sinh−2α−1 y dy.

Hence we deduce (3.2) and the proof of Theorem 3.1 is complete.

4. Expectations of the hitting times for a < b. When 0 < a < b,
the explicit form of the expectation of τ (α,θ)a,b is provided in [17] for α =

0, 1/2, 1, 3/2. Our purpose in this section is to improve those results. Through-
out we consider only the case 0 < a < b.

For α > −1 the main tool in calculating E[τ
(α,θ)
a,b ] is the Dynkin formula

(see [9, p. 99]). For x > 0 let

f(x) = 2

x�

0

sinh−2α−1(θξ)

ξ�

0

sinh2α+1(θη) dη dξ + 1.

A simple calculation shows that Lα,θf(x) = 1 and that f(x) and f ′(x)/s′(x)
converge to 1 and 0 as x ↓ 0, respectively. The argument in [9, p. 99] implies
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that the Dynkin formula ensures the existence of the expectation of τ (α,θ)a,b .
Applying the Dynkin formula again, we get

(4.1) E[τ
(α,θ)
a,b ] =

2

θ2

θb�

θa

sinh−2α−1 ξ

ξ�

0

sinh2α+1 η dη dξ

for 0 < a < b and α > −1. The limiting behavior of E[τ
(α,θ)
a,b ] for large b

can be trivially derived from (3.7) and (4.1); the detailed calculations are
omitted.

Proposition 4.1. We have, as b→ ∞,

E[τ
(α,θ)
a,b ] =


2b

(2α+1)θ (1 + o[1]) if α > −1/2,
b2(1 + o[1]) if α = −1/2,
2e|2α+1|θb

(2α+1)2θ2
(1 + o[1]) if −1 < α < −1/2.

Moreover, the explicit form of E[τ
(α,θ)
a,b ] for small α can be deduced from

indefinite integrals of rational functions of coshx and sinhx which are de-
scribed in [5]. The following results are straightforward consequences of (4.1).

Proposition 4.2. We have

E[τ
(0,θ)
a,b ] =

2

θ2
log

cosh(θb) + 1

cosh(θa) + 1
,

E[τ
(1/2,θ)
a,b ] =

b coth(θb)− a coth(θa)

θ
,

E[τ
(1,θ)
a,b ] =

2

3θ2

[
log

cosh(θb) + 1

cosh(θa) + 1
− 1

cosh(θb) + 1
+

1

cosh(θa) + 1

]
,

E[τ
(3/2,θ)
a,b ] =

1

4θ2

[
1 + θb{sinh(2θb)− coth(θb)}

sinh2(θb)

− 1 + θa{sinh(2θa)− coth(θa)}
sinh2(θa)

]
,

E[τ
(2,θ)
a,b ] =

2

15θ2

[
3 log

cosh(θb)+ 1

cosh(θa)+ 1
− 4+3 cosh(θb)

(cosh(θb)+ 1)2
+

4+3 cosh(θa)

(cosh(θa)+ 1)2

]
.

The first four formulas have been obtained in [17] for θ = 1 by solving
the boundary value problem

Lα,1u(x) = −1, u(b) = 0, u(0) is finite

(see [4]). Our method is different.
The remainder of this section is devoted to the case α ≤ −1. Since (3.2)

gives P (τ (α,θ)a,b <∞) < 1, we should consider the expectation of τ (α,θ)a,b under
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the condition τ (α,θ)a,b <∞. Formula (3.10) gives

(4.2) Bα
α(λ)(cosh(θx)) =

2α sinh−α(θx)√
πΓ (1/2− α)

ϕα,θx(α(λ))

for λ ≥ 0. This shows that (2.5) and (3.14) are equivalent to

E[e−λτ
(α,θ)
a,b ] =

sinh−2α(θa)ϕα,θa(α(λ))

sinh−2α(θb)ϕα,θb(α(λ))
(4.3)

and

P (τ
(α,θ)
a,b <∞) =

sinh−2α(θa)ϕα,θa(α(0))

sinh−2α(θb)ϕα,θb(α(0))
,(4.4)

respectively. Hence

E[e−λτ
(α,θ)
a,b | τ (α,θ)a,b <∞] =

ϕα,θa(α(λ))

ϕα,θa(α(0))

ϕα,θb(α(0))

ϕα,θb(α(λ))

for any λ > 0. Since

(4.5) E[τ
(α,θ)
a,b | τ (α,θ)a,b <∞] = − lim

λ↓0

d

dλ
E[e−λτ

(α,θ)
a,b | τ (α,θ)a,b <∞],

we deduce from Lemma 3.3 that

(4.6) E[τ
(α,θ)
a,b | τ (α,θ)a,b <∞] = α′(0)

[
ϕ′α,θb(α(0))

ϕα,θb(α(0))
−
ϕ′α,θa(α(0))

ϕα,θa(α(0))

]
.

We can compute the right hand side of (4.6) with the help of Lemma 3.3,
and the following theorem is the result for α ≤ −1.

Theorem 4.3. For 0 < a < b and α ≤ −1 we have

(4.7) E[τ
(α,θ)
a,b | τ (α,θ)a,b <∞]

=
2

|2α+ 1|

[
b+

1

θ

(
pα
qα

− log 2−
ϕ′α,θa(α(0))

ϕα,θa(α(0))

)
+ o[1]

]
as b→ ∞, where

pα =

π�

0

(1− cos y) sin−2α−2 y log(1 + cos y) dy,

qα =

π�

0

(1− cos y) sin−2α−2 y dy.

Proof. Recall that α(0) = −α−1 ≥ 0. We can apply (3.11) to ϕ′α,θb(α(0))
to get

(4.8) ϕ′α,θb(α(0)) = log(cosh(θb))ϕα,θb(α(0))

+
1

cosh(θb)

π�

0

log(1 + tanh(θb) cos y)

1 + tanh(θb) cos y
sin−2α y dy.
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We consider the asymptotic behavior for large b of the last integral, which
is equal to

(4.9)
π�

0

1− tanh(θb) cos y

1− tanh2(θb) cos2 y
sin−2α y log(1 + tanh(θb) cos y) dy.

Since 0 < tanhx < 1 for x > 0, it follows that

(4.10) |1− tanh(θb) cos y| ≤ 2,

∣∣∣∣ sin2 y

1− tanh2(θb) cos2 y

∣∣∣∣ ≤ 1.

Moreover, |sin−2α−2 y| ≤ 1 because 2α+ 2 ≤ 0. Hence the absolute value of
the integrand of (4.9) is bounded by

(4.11) 2|log(1 + tanh(θb) cos y)| ≤

{
2 log 2 if 0 < y ≤ π/2,
4|log(1− y/π)| if π/2 < y < π,

which can be easily obtained from

0 ≤ log(1 + tanh(θb) cos y) ≤ log 2

for 0 < y ≤ π/2, and

(π − y)2

π2
≤ 1 + cos y ≤ 1 + tanh(θb) cos y ≤ 1

for π/2 < y < π. Since the right hand side of (4.11) is integrable on (0, π),
the dominated convergence theorem shows that we can interchange the limit
in b and the integral in y in (4.9). Thus (4.9) converges to pα as b → ∞.
Moreover, similarly to (4.9), by (4.10) we obtain

ϕα,θb(α(0)) =
1

cosh(θb)

π�

0

1− tanh(θb) cos y

1− tanh2(θb) cos2 y
sin−2α y dy =

qα + o[1]

cosh(θb)

as b→ ∞. Hence (4.8) gives

ϕ′α,θb(α(0))

ϕα,θb(α(0))
= θb+

pα
qα

− log 2 + o[1].

Since α′(0) = 2/|2α+ 1|θ, we deduce (4.4) from (4.6).

5. Expectations of the hitting times for b < a. For 0 < b < a we
shall use (2.6) to compute the expectation of τ (α,θ)a,b . If α = −1/2, by (2.6)
we have

E[e−λτ
(−1/2,θ)
a,b ] = e−(a−b)

√
2λθ,

since

e−iπ/2D1/2
ν (x) =

√
π

2
(x2 − 1)−1/4[x+ (x2 − 1)1/2]−ν−1/2
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(see [12, p. 72]). Hence the density of τ (−1/2,θ)
a,b is represented by

(a− b)
√
θ√

2πt3
e−(a−b)2θ/2t

for t > 0 (see [15, p. 258]). In virtue of (3.4) we have

E[τ
(−1/2,θ)
a,b ] = E[τ

(−1/2,θ)
a,b | τ (−1/2,θ)

a,b <∞] = ∞.

We concentrate on the case α ̸= −1/2. We define a function ψµ,x on R
by

(5.1) ψµ,x(ν) =

π�

0

(coshx+ cos y)−ν−µ−1 sin2ν+1 y dy

for µ ∈ R and x > 0. The purpose of this section is to show the following
theorem.

Theorem 5.1. For 0 < b < a and α ̸= −1/2 we have

(5.2) E[τ
(α,θ)
a,b | τ (α,θ)a,b <∞]

=
2

|2α+ 1|

[
a− 1

θ

(
p̄α
q̄α

+ log 2−
ψ′
α,θb(α(0))

ψα,θb(α(0))

)
+ o[1]

]
as a→ ∞, where

p̄α = 2

π�

0

sin−2α−1 y log(sin y) dy, q̄α =

π�

0

sin−2α−1 y dy.

To prove this theorem we need to establish the differentiability of ψµ,x

on a suitable interval.

Lemma 5.2. Let µ ∈ R and x > 0. Put µ0 = max {µ−1,−1}. Then ψµ,x

is continuously differentiable on (µ0,∞) and

(5.3) ψ′
µ,x(ν) = −

π�

0

(coshx+cos y)−ν−µ−1 sin2ν+1 y log(coshx+cos y) dy

+ 2

π�

0

(coshx+ cos y)−ν−µ−1 sin2ν+1 y log(sin y) dy.

The proof is postponed to the end of this section; we first prove Theorem
5.1. Note that (2.3) gives

(5.4) α(λ) ≥ −1/2, α(λ) ≥ α for λ ≥ 0.

In particular, α(λ) > max {α− 1,−1}. Formula (2.8) yields

(5.5) eiπα sinh−α xD−α
α(λ)(coshx) =

Γ (α(λ)− α+ 1)

2α(λ)+1Γ (α(λ) + 1)
ψα,x(α(λ))
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for any x > 0 and λ > 0. Hence the combination of (2.6) and (5.5) yields

(5.6) E[e−λτ
(α,θ)
a,b ] =

ψα,θa(α(λ))

ψα,θb(α(λ))
.

Since Lemma 5.2 implies that ψα,x is continuous, by (3.9) we have

(5.7) P (τ
(α,θ)
a,b <∞) =

ψα,θa(α(0))

ψα,θb(α(0))
.

Similarly to (4.6) we can apply (5.3) to deduce by (4.5) and (5.7) that

(5.8) E[τ
(α,θ)
a,b | τ (α,θ)a,b <∞] =

2

|2α+ 1|θ

[
ψ′
α,θb(α(0))

ψα,θb(α(0))
−
ψ′
α,θa(α(0))

ψα,θa(α(0))

]
if α ̸= −1/2. When α < −1/2, the left hand side of (5.8) coincides with
E[τ

(α,θ)
a,b ] since (3.4) holds.
We first show (5.2) for α > −1/2, so α(0) = α in this case. It follows

that

(5.9) ψα,θa(α(0)) =

π�

0

(cosh(θa) + cos y)−2α−1 sin2α+1 y dy.

Moreover, since α(0) > max {α− 1,−1}, we infer by (5.3) that
(5.10)
ψ′
α,θa(α(0)) = − log(cosh(θa))ψα,θa(α(0))

−
π�

0

(cosh(θa) + cos y)−2α−1 sin2α+1 y log

(
1 +

cos y

cosh(θa)

)
dy

+ 2

π�

0

(cosh(θa) + cos y)−2α−1 sin2α+1 y log(sin y) dy.

Since |log(1 + ξ)| ≤ 2|ξ| for |ξ| < 1/2, the second term of (5.10) is ψα,θa(α(0))
×O[1/cosh(θa)]. Note that

1

2
< 1 +

cos y

cosh(θa)
<

3

2

for a > 0 with cosh(θa) > 2. The dominated convergence theorem shows
that (5.9) and the third term of (5.10) are

cosh−2α−1(θa)(q̄α + o[1]) and cosh−2α−1(θa)(p̄α + o[1])

as a→ ∞, respectively. Therefore

ψ′
α,θa(α(0))

ψα,θa(α(0))
= −θa+ p̄α

q̄α
+ log 2 + o[1]

as a→ ∞. Combining this with (5.8), we deduce (5.2) for α > −1/2.
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We next consider the case α < −1/2 and so α(0) = −α − 1. Hence it
follows from (5.1) and (5.3) that

ψα,θa(α(0)) =

π�

0

sin−2α−1 y dy = q̄α

and that
ψ′
α,θa(α(0)) = − log(cosh(θa))ψα,θa(α(0))

−
π�

0

sin−2α−1 y log

(
1 +

cos y

cosh(θa)

)
dy

+ 2

π�

0

sin−2α−1 y log(sin y) dy.

Note that the third term of the right hand side is equal to p̄α. Similarly to
the case α > −1/2 we conclude that

ψ′
α,θa(α(0))

ψα,θa(α(0))
= − log(cosh(θa)) +

p̄α
q̄α

+O

[
1

cosh(θa)

]
,

which yields (5.2) for α < −1/2.
In order to complete the proof of Theorem 5.1 we need to establish

Lemma 5.2. Let x > 0 and µ ∈ R. For ν, y ∈ R we put

ζµ,x(y, ν) = (coshx+ cos y)−ν−µ−1.

The following uniform estimate of ζµ,x(y, ν) for y and ν is useful.

Lemma 5.3. Let x > 0 and ν0 ∈ (µ0,∞). There exist positive constants
L(µ, x, ν0) and δ(µ, ν0) such that

(5.11) ζµ,x(y, ν) ≤ L(µ, x, ν0)

for any y ∈ R and ν > µ0 satisfying |ν − ν0| < δ(µ, ν0).

Proof. A simple calculation shows that

(5.12) (coshx+ cos y)−γ ≤ L0(x, γ)

for any y ∈ R, where

L0(x, γ) =


(
1− 1

coshx

)−γ

if γ ≥ 0,

(coshx+ 1)−γ if γ < 0.

It is obvious that the function γ 7→ L0(x, γ) is increasing on [0,∞) and is
decreasing on (−∞, 0]. Moreover, the definition of µ0 implies that ν0 > µ−1
if µ ≥ 0 and ν0 > −1 if µ < 0.
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We first consider the case µ ≥ 0. When µ−1 < ν < 2ν0−µ+1, it follows
that 0 ≤ 2µ < ν + µ+ 1 < 2ν0 + 2. Hence (5.12) gives

ζµ,x(y, ν) ≤ L0(x, 2ν0 + 2)

for any y ∈ R. This implies that we can choose

L(µ, x, ν0) = L0(x, 2ν0 + 2), δ(µ, ν0) = ν0 − µ+ 1.

We next show (5.11) for µ < 0 by considering the following three cases:

(i) ν0 + µ+ 1 > 0, (ii) ν0 + µ+ 1 = 0, (iii) ν0 + µ+ 1 < 0.

Case (i). If −µ−1 < ν < 2ν0+µ+1, then 0 < ν+µ+1 < 2(ν0+µ+1),
which implies that

ζµ,x(y, ν) ≤ L0(x, 2(ν0 + µ+ 1))

for any y ∈ R. Hence (5.11) holds with

L(µ, x, ν0) = L0(x, 2(ν0 + µ+ 1)), δ(µ, ν0) = ν0 + µ+ 1.

Case (ii). If −1 < ν < ν0, then µ < ν + µ + 1 < ν0 + µ + 1 = 0. This
yields

ζµ,x(y, ν) ≤ L0(x, µ).

In addition, if ν0 ≤ ν < ν0 + 1, then 0 ≤ ν + µ+ 1 < ν0 + µ+ 2 = 1, which
gives

ζµ,x(y, ν) ≤ L0(x, 1).

We put

L(µ, x, ν0) = max {L0(x, µ), L0(x, 1)}, δ(µ, ν0) = min {ν0 + 1, 1}
and obtain (5.11).

Case (iii). When −1 < ν < ν0, as µ < ν + µ + 1 < ν0 + µ + 1 < 0 we
have

ζµ,x(y, ν) ≤ L0(x, µ).

Moreover, if ν0 ≤ ν < −µ− 1, it follows that ν0 +µ+1 ≤ ν +µ+1 < 0 and
thus

ζµ,x(y, ν) ≤ L0(x, ν0 + µ+ 1).

Hence taking{
L(µ, x, ν0) = max {L0(x, µ), L0(x, ν0 + µ+ 1)},
δ(µ, ν0) = min {ν0 + 1,−(ν0 + µ+ 1)},

we get (5.11).
This finishes the proof of the lemma.

We are now ready to prove Lemma 5.2. Let ν0 ∈ (µ0,∞). It is sufficient
to see that ψµ,x is differentiable at ν = ν0 and that its first derivative is
continuous at ν = ν0.
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For x > 0 let

l(x) = max

{
log(coshx+ 1), log

1

coshx− 1

}
.

Note that
|log(coshx+ cos y)| ≤ l(x),

because 0 < coshx− 1 ≤ coshx+ cos y ≤ coshx+ 1.
For y ∈ (0, π) and ν ∈ R satisfying |ν − ν0| < δ(µ, ν0), we can deduce

from Lemma 5.3 that∣∣ζµ,x(y, ν) sin2ν+1 y log(coshx+ cos y)
∣∣ ≤ L(µ, x, ν0)l(x) sin

2ν+1 y.

If |ν − ν0| < (ν0 − µ0)/2, we have 2ν + 1 > ν0 + µ0 + 1 > 2µ0 + 1 ≥ −1.
Hence
(5.13)

∣∣ζµ,x(y, ν) sin2ν+1 y log(coshx+ cos y)
∣∣ ≤ L(µ, x, ν0)l(x) sin

ν0+µ+1 y

for y ∈ (0, π). The right hand side is an integrable function of y on (0, π).
Moreover, if ν ∈ R satisfies |ν − ν0| < min {δ(µ, ν0), (ν0 − µ0)/2}, then
(5.14)

∣∣ζµ,x(y, ν) sin2ν+1 y log(sin y)
∣∣ ≤ L(µ, x, ν0) sin

ν0+µ+1 y| log(sin y)|,
which is integrable on (0, π).

Therefore ψµ,x is differentiable at ν = ν0 and (5.3) holds for ν = ν0. In
addition, (5.13) and (5.14) also yield the continuity of ψ′

µ,x at ν = ν0. The
proof of Lemma 5.2 is complete.
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