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Congruences for modular forms and
applications to crank functions

by

Hao Zhang and Helen W. J. Zhang (Changsha)

Abstract. Motivated by the work of Mahlburg, which refined the work of Ono, we
find congruences for a large class of modular forms. Moreover, we generalize the generating
function of the Andrews–Garvan–Dyson crank of partitions and establish several new
infinite families of congruences. In this framework, we show that both the birank of an
ordered pair of partitions introduced by Hammond and Lewis, and k-crank of k-colored
partitions introduced by Fu and Tang, have the same properties as the partition function
and crank.

1. Introduction. The objective of this paper is to generalize the work
on partition congruences related to ranks and cranks. The previous litera-
ture focused on the partition functions; see for example [12, 14]. Here we go
further by generalizing it to crank-type generating functions. This work was
inspired by the key construction of Mahlburg [12] showing that the gener-
ating function of crank is deeply related to Klein forms and weakly holo-
morphic modular forms of half-integral weight on the congruence subgroup
Γ1(l

j). The idea of Mahlburg’s work follows originally from Ono [14]. This
leads to arithmetic properties of the crank of partitions, which confirmed a
conjecture of Ono [13].

Recall that a partition of a nonnegative integer n is any nonincreasing
sequence of positive integers whose sum is n. Let p(n) denote the number
of partitions of n. A breakthrough of applying modular forms to partition
functions is due to Ono [14]. He showed that for prime ℓ ≥ 5, there are
infinitely many non-nested arithmetic progressions An + B such that for
every integer n we have

p(An+B) ≡ 0 (mod ℓ).

2020 Mathematics Subject Classification: Primary 05A17; Secondary 11P83.
Key words and phrases: modular form, congruence, partition function, crank.
Received 26 October 2023; revised 7 January 2024.
Published online 29 April 2024.

DOI: 10.4064/aa231026-24-1 [1] © Instytut Matematyczny PAN, 2024



2 H. Zhang and H. W. J. Zhang

Along this direction, the congruence properties for partition functions have
been deeply investigated [1, 6, 8, 16, 18].

To give combinatorial interpretations of Ramanujan’s well-known con-
gruences, Dyson [5] conjectured the existence of a statistic named crank,
and its definition was discovered by Andrews and Garvan [2]. The crank of
a partition was defined as the largest part if the partition contains no ones,
and otherwise as the number of parts larger than the number of ones minus
the number of ones. For more details, we refer to [3, 2, 9].

Ono further conjectured that the crank functions enjoy all of the partition
congruences. The work of Mahlburg [12, 13] provided an elegant answer to
these questions. Let M(m,n) denote the number of partitions of n with
crank m. Then the generating function of M(m,n) can be written as

(1.1)
∞∑

m=−∞

∞∑
n=0

M(m,n)zmqn =
(q; q)∞

(zq, z−1q; q)∞
,

where (a; q)∞ = (1 − a)(1 − aq)(1 − aq2) · · · . Mahlburg [12, 13] developed
the theory of congruences for crank generating functions, which are shown
to possess the same sort of arithmetic properties as partition functions. For
instance, [12, 13] stated that if τ is a positive integer, then there are infinitely
many non-nested arithmetic progressions An+B such that

M(m, ℓj , An+B) ≡ 0 (mod ℓτ ),

simultaneously for every 0 ≤ m ≤ ℓj − 1.
Motivated by the work of Mahlburg, we define crank-type generating func-

tion as follows:

Fr,d,t(z, q) =

∞∑
m=−∞

∞∑
n=0

Mr,d,t(m,n)z
mqn(1.2)

:=
(qr; qr)d∞

(q; q)t∞(zq, q/z; q)∞
.

Note that taking r = t = 1 and d = 2, (1.2) reduces to the ordinary crank
generating function (1.1). When r = d = t = 1, (1.2) becomes the generating
function of the birank of an ordered pair of partitions given by Hammond
and Lewis [10]. Taking r = t = 1 and d = k − 1 in (1.2), we obtain the
generating function introduced by Bringmann and Dousse [4], whose com-
binatorial interpretation was given by Fu and Tang [7] as the k-crank of a
k-colored partition.

Let N be a positive integer and set ζ = e2πi/N in (1.2). For any residue
class m (mod N), elementary calculations give the generating function for
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the crank

(1.3)
∞∑
n=0

Mr,d,t(m,N, n)q
n :=

1

N

N−1∑
s=0

Fr,d,t(ζ
s, q)ζ−ms

=
1

N

N−1∑
s=0

ζ−ms
( ∞∏
n=1

(1− qrn)d

(1− qn)t(1− ζsqn)(1− ζ−sqn)

)
.

Our main result shows that the coefficientsMr,d,t(m,N, n) enjoy the same
arithmetic property as partition functions as well as crank.

Theorem 1.1. Let j, v be positive integers. Fix a prime number ℓ >

max {5, dr2} such that
(g2d−tr

ℓ

)
are the same for all g | r. Then there are

infinitely many non-nested arithmetic progressions An+B such that

Mr,d,t(m, ℓ
j , An+B) ≡ 0 (mod ℓv),

simultaneously for every 0 ≤ m ≤ ℓj − 1.

Theorem 1.1 provides the congruence of birank and k-crank. Recall that
the birank b(π) of an ordered pair of partitions π = (λ(1), λ(2)) (see [10]) is
the number of parts in the first partition minus the number of parts in the
second partition, that is, b(π) = #(λ(1))−#(λ(2)). The number of ordered
pairs of partitions of weight n having birank m will be written as R(m,n),
hence the generating function for R(m,n) is

∞∑
n=0

∞∑
m=−∞

R(m,n)zmqn =
1

(zq, q/z; q)∞
.

Corollary 1.2. Let R(m,N, n) denote the number of ordered pairs of
partitions of weight n with birank congruent to m modulo N . Suppose that
ℓ ≥ 5 is prime and that τ and j are positive integers. Then there are infinitely
many non-nested arithmetic progressions An+ b such that

R(m, ℓj , An+B) ≡ 0 (mod ℓτ ),

simultaneously for every 0 ≤ m ≤ ℓj − 1.

The k-colored partition is a k-tuple of partitions λ = (λ(1), . . . , λ(k)). For
k ≥ 2, Fu and Tang [7] defined the k-crank of a k-colored partition as follows:

(1.4) k-crank(λ) = ℓ(λ(1))− ℓ(λ(2)),

where ℓ(λ(i)) denotes the number of parts in λ(i). Let Mk(m,n) denote the
number of k-colored partitions of n with k-crank m. The generating function
of Mk(m,n) was derived by Bringmann and Dousse [4]:

∞∑
n=0

∞∑
m=−∞

Mk(m,n)z
mqn =

(q; q)2−k∞
(zq; q)∞(z−1q; q)∞

.
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Corollary 1.3. Let Mk(m,N, n) denote the number of k-colored par-
titions of n with k-crank congruent to m modulo N . Suppose that ℓ ≥ 5 is
prime and that τ and j are positive integers. Then there are infinitely many
non-nested arithmetic progressions An+ b such that

Mk(m, ℓ
j , An+B) ≡ 0 (mod ℓτ ),

simultaneously for every 0 ≤ m ≤ ℓj − 1.

To prove these results, we make use of the theory of modular forms, as
developed by Serre. Ono was the first to show how the work of Serre and
Shimura had deep implications for p(n). Subsequent work on cranks and
ranks reveals that these ideas apply as well to further partition generating
functions. We further extend this method to the setting of the new refined
cranks and ranks studies here. The notations and basic properties of modular
forms and eta quotient will be introduced in Section 2, and we will prove the
main result in Section 3.

2. Preliminaries. In this section, we present some basic properties of
modular forms of half-integer weight which will be used in the following
sections; see [15] for details.

Let q = e2πiτ and

f(τ) =

∞∑
n=0

a(n)qn ∈Mk(Γ0(N), χ)

with Nebentype character χ. Let ψ be a Dirichlet character modulo M . We
define the twist of f by ψ to be

f(τ)⊗ ψ =

∞∑
n=0

ψ(n)a(n)qn.

It is well-known that f(τ) ⊗ ψ ∈ Mk(NM
2, χψ2). Fix a constant ϵ, and

define

(2.1) f̃ϵ,ψ(τ) = f(τ)− ϵf(τ)⊗ ψ.

In the following, when ϵ and the character ψ are specified, we write it as f̃ .
With the notation above, let p ∤ N be a prime number. Then the action

of the half-integral Hecke operator Tp2 is defined by

f |Tp2 =
∑
n≥0

(
a(p2n) + χ(p)

(
(−1)k−1/2n

p

)
pk−3/2a(n)

+ χ(p2)

(
(−1)k−1/2

p2

)
p2k−2a

(
n

p2

))
qn.
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We need the following result which originally comes from Serre [17]. One can
find the details of the proof in [14, pp. 300–301].

Theorem 2.1. Let fi(τ) ∈ Ski(Γ1(Ni)) be half-integer weight cusp forms
with algebraic integer coefficients where ki ∈ 1

2Z \ Z for i = 1, . . . ,m.
Then for any M ≥ 1, there exists a positive proportion of primes p ≡ −1
(mod N1 · · ·NmM) such that

fi|Tp2 ≡ 0 (mod M) for every i = 1, . . . ,m.

Let a⃗ = (a1, a2) ∈ Q2. We set τ ′ = a1τ + a2 and qτ ′ = e(τ ′). The Klein
form is given by

(2.2) ka⃗(τ) = q
(a1−1)/2
τ ′

(qτ ′ ; q)∞(q/qτ ′ ; q)∞
(q; q)2∞

.

We recall some basic properties of Klein forms; one can find more details
in [11].

Proposition 2.2. The Klein form ka⃗(τ) satisfies the transformation for-
mula, i.e. for any γ ∈ SL2(Z), we have

ka⃗|γ(τ) = ka⃗·γ(τ).

If (n1, n2) ∈ Z2, then

ka⃗+(n1,n2)(τ) = (−1)n1+n2+n1n2e

(
a1n2 − a2n1

2

)
ka⃗(τ).

Proof. See [11, p. 260].

Finally, we introduce some basic properties of Dedekind’s eta-function

η(τ) = q1/24
∏
n≥1

(1− qn).

The form
∏

1≤i≤s η
ri(miτ) is called an eta quotient where ri ∈ Z and

mi ∈ Z≥1. The following classical result gives a sufficient condition for
an eta quotient to be a modular function on a certain congruence subgroup.

Theorem 2.3. Let f(τ) =
∏
m|N η

rm(mz) be an eta quotient with k :=
1
2

∑
m|N rm ∈ Z. If∑

m|N

mrm ≡ 0 (mod 24) and
∑
m|N

N

m
rm ≡ 0 (mod 24),

then f is a modular function of weight k on the congruence subgroup Γ0(N)

with character χ where χ(d) :=
( (−1)k

∏
m|N mrm

d

)
. Moreover, let a, c be two

positive integers with c |N and gcd(a, c) = 1. Then the order of vanishing of
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f(τ) at the cusp a/c is

N

24

∑
m|N

gcd(c,m)2rm
gcd(c,N/c)cm

.

Proof. See [15, Theorems 1.64, 1.65].

As a corollary, we get the following result.

Lemma 2.4. Let ℓ ≥ 5 be a prime number. Then

(2.3)
ηℓ(ℓτ)

η(τ)
∈M(ℓ−1)/2

(
Γ0(ℓ),

(
∗
ℓ

))
.

For integer j ≥ 2, we have

Ej(τ) :=
ηℓ

j
(τ)

η(ℓjτ)
∈M(ℓj−1)/2(Γ0(ℓ

j), χj),

where χj(d) =
( (−1)(ℓ

j−1)/2ℓj

d

)
, which is the same as in Theorem 2.3 with

r1 = ℓj and rℓj = −1. Moreover, Ej(τ) vanishes at every cusp a/c with ℓj

not dividing c.

Proof. For the first part, we just need to note that when d is an odd
prime, the law of quadratic reciprocity gives(

(−1)(ℓ−1)/2ℓℓ

d

)
=

(
(−1)(ℓ−1)/2

d

)(
ℓ

d

)
=

(
d

ℓ

)
.

When d = 2, the above equality also holds since both sides are equal to
(−1)(ℓ

2−1)/8. Then ηℓ(ℓτ)
η(τ) ∈ M(ℓ−1)/2

(
Γ0(ℓ),

(∗
ℓ

))
directly by Theorem 2.3.

As for the vanishing property of Ej(τ), we note that for any c = ℓbc′ with
gcd(ℓ, c′) = 1, the cusp a/c is Γ0(ℓj)-equivalent to a0/ℓ

b for some a0. So
when 0 ≤ b < j, by Theorem 2.3, the order of vanishing of Ej(τ) at a0/ℓb is
greater than 0.

3. Proof of Theorem 1.1. The following lemmas play central roles in
the proof of Theorem 1.1.

Lemma 3.1. Let eℓ =
∑ℓ−1

n=1

(
n
ℓ

)
e2πin/ℓ be the Gauss sum. Then the

twisted modular form has the following expression:

(3.1) f(z)⊗
(
∗
ℓ

)
=
eℓ
ℓ

ℓ−1∑
n=1

(
n

ℓ

)
f(τ)

∣∣∣∣(1 −n/ℓ
0 1

)
.
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Proof. The right hand side of (3.1) can be written as

eℓ
ℓ

ℓ−1∑
n=1

∑
m≥1

a(m)

(
n

ℓ

)
e

(
2πim

(
τ − n

ℓ

))
=
eℓ
ℓ

∑
m≥1

eℓa(m)

(
−m
ℓ

)
qm =

∑
m≥1

a(m)

(
m

ℓ

)
qm,

which completes the proof.

We recall that the generating series of Mr,d,t(m,N, n) is given by

(3.2)
∞∑
n=0

Mr,d,t(m,N, n)q
n =

1

N

N−1∑
s=0

Fr,d,t(ζ
s, q)ζ−ms

=
1

N

N−1∑
s=0

ζ−ms
( ∞∏
n=1

(1− qrn)d

(1− qn)t(1− ζsqn)(1− ζ−sqn)

)
.

Substituting the definition of the Klein form (2.2) into (3.2), we consider the
series

gm(τ) :=
1

2πi

N−1∑
s=1

ωsζ
−ms

k(0,s/N)(τ)

ηtℓ(ℓτ)ηdℓ
v
(rτ)

ηt(τ)
+
ηtℓ(ℓτ)ηdℓ

v
(rτ)

ηt(τ)

=: Gm(τ) + P (τ)

where ωs = ζs/2(1− ζ−s).

Lemma 3.2. Let r, d, t, ℓ, v be defined as before. Then

(3.3)
G̃m(24τ)

ηtℓ(24ℓτ)ηdℓv(24rτ)
Ej+1(24τ)

ℓv ∈ Sλ+1/2(Γ0(576rℓ
j+1), χ)

for some integer λ, where G̃m is defined as in (2.1).

Proof. By [15, Lemma 2.4 and Theorem 1.65], we can show that the order
of Ej+1(τ) at the cusp a/c with ℓj+1 not dividing c is at least ℓ2−1

24 . On the
other hand, we have

orda/c η
tℓ(ℓτ)ηdℓ

v
(rτ) =

tℓ3 + dr2ℓv

24
<
ℓ2 − 1

24
ℓv.

Hence it is enough to show that G̃m(τ)
ηkℓ(ℓτ)ηdℓv (rτ)

vanishes at each cusp a/c
with ℓj+1 | c. Choose integers b, d such that A =

(
a b
c d

)
∈ Γ0(ℓ

j+1).
Now we compute the order of Gm at the cusp a/c. To do that, let g =

gcd(c, r), a1 = ra/g, c1 = c/g. It is easy to see gcd(a1, c1) = 1, so we can
choose integers b1, d1 such that B =

(
a1 b1
c1 d1

)
∈ SL2(Z). Then



8 H. Zhang and H. W. J. Zhang

∆(rτ)|12A = (cτ + d)12∆

(
arτ + br

cτ + d

)
= (cτ + d)12∆

(
B

(
gτ + h

r/g

))
= ∆

(
gτ + h

r/g

)
,

where h = rbd1 − b1d. On the other hand, by Lemma 2.4, we see that ηℓ(ℓτ)
η(τ)

belongs to M(ℓ−1)/2

(
Γ0(ℓ),

(∗
ℓ

))
. By Proposition 2.2, we have

k(0,s/N)|A(τ) = e

(
N(cs+ ds− ds) + cds2

2N2

)
k(0,ds/N)(τ),

where ds is the unique integer between 0 and N − 1 such that N | ds − ds.
Hence combining the above, we get

Gm(τ)|A =
1

2πi

N−1∑
s=1

wsζ
−ms

eN (c, d, s)k(0,ds/N)(τ)

(
d

ℓ

)t ηtℓ(ℓτ)
ηt(τ)

∆(dℓv+d)/24

(
gτ+h

r/g

)
,

where eN (c, d, s) = e
(N(cs+ds−ds)+cds2

2N2

)
. Next we consider Gm⊗

(∗
ℓ

)
. For an

integer 0≤ u≤ ℓ−1, we choose u′ such that u′ ≡ d2u (mod ℓ). Then we have(
1 −u/ℓ
0 1

)(
a b

c d

)
=

(
a− cu/ℓ b− cuu′/ℓ2 + (au′ − du)/ℓ

c d+ cu′/ℓ

)(
1 −u′/ℓ
0 1

)
.

With the help of Lemma 3.1 we can show that

Gm ⊗
(
∗
ℓ

)
|A

=
eℓ

2πiℓ

N−1∑
s=1

ℓ∑
u=1

wsζ
−ms

eN (c, d′, s)′k(0,d′s/N)(τ)

(
d′tu

ℓ

)
ηtℓ(ℓτ)

ηt(τ)
∆(dℓv+d)/24

(
gτ +hs
r/g

)
,

where d′ = d + cu′/ℓ and hs are integers. We compare the first nonzero
coefficient of Gm(τ)|A and Gm ⊗

(∗
ℓ

)
|A. In fact, if we assume that

Gm(τ)|A = anq
n + an+1q

n+1 + · · · ,

where n = tδℓ +
g2(dℓv+d)

24r , then since r divides dℓv + d, the expansion of
Gm ⊗

(∗
ℓ

)
|A is

an

(
n

ℓ

)
qn + a′n+1q

n+1 + · · · .

By the assumption on ℓ, this implies that

orda/c G̃m(τ) ≥ tδℓ +
g2(dℓv + d)

24r
+ 1.

By comparing the order, we see that G̃m(τ)
ηkℓ(ℓτ)ηdℓv (rτ)

also vanishes at the cusp
a/c when ℓj+1 | c.
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The proof of the following lemma is similar to that of Lemma 3.2, so we
omit it.

Lemma 3.3. Let v be an integer large enough. Then

(3.4)
P̃ (24τ)

ηtℓ(24ℓτ)ηdℓv(24rτ)
Ej+1(24τ)

ℓv ∈ Sλ′+1/2(Γ0(576ℓ
max {3,j+1}), χ)

for some integer λ′.

Lemma 3.4. Let f(q) be a formal power series such that f(q) ≡∑
n≥0 anq

nℓ (mod ℓv). If the series
∑
bnq

n and
∑
b′nq

n coincide on the sub-
sequence {ℓm+d | m ∈ Z}, then the series

∑
bnq

nf(q) and
∑
b′nq

nf(q) also
coincide on the subsequence {ℓm+ d | m ∈ Z} modulo ℓv.

Proof. By the assumption, ℓv divides the coefficient of qn of f(q) when
ℓ ∤ n. So in the expression of

∑
bnq

nf(q), the coefficient of qℓm+d is congruent
to

∑
bℓn+dam−n (mod ℓv). This implies that

∑
bnq

nf(q) and
∑
b′nq

nf(q)
coincide on the subsequence {ℓm+ d | m ∈ Z} modulo ℓv.

The following theorem gives the precise congruence relations for Mr,d,t,
which implies Theorem 1.1.

Theorem 3.5. Let r, d, t, j, v be positive integers and ℓ > dr2 be a prime
number such that

(g2d−tr
ℓ

)
are the same for all g | r. Then there exists a

positive proportion of primes p ≡ −1 (mod 24ℓ) such that

(3.5) Mr,d,t

(
m, ℓj ,

np3 + t− dr

24

)
≡ 0 (mod ℓv)

for all 0 ≤ m < ℓj and n ≡ t− dr − 24β (mod 24ℓ) with p ∤ n where β is a
certain integer between 0 and ℓ.

Proof. We first assume that v ≥ max {5, t} satisfies ℓv ≡ −1 (mod 24r).
We set

ϵ =

(
24(dr − t)

ℓ

)
, α =

t(ℓ2 − 1) + dr(ℓv + 1)

24

and 0 ≤ β < ℓ such that
(α+β

ℓ

)
= 0 or −ϵ. Recall the definition of g̃m(τ)

in (2.1), it is easy to see that gm(τ) coincides with g̃m(τ) on the subsequent
{ℓn′ + α+ β}. Moreover, we have

ηdℓ
v
(24rτ) = qdrℓ

v
∏
n≥1

(1− q24rn)dℓ
v ≡ qdrℓ

v
∏
n≥1

(1− q24rdℓ
vn) (mod ℓv).

Hence by Lemma 3.4, we see that the subsequence of g̃m(24τ)
ηtℓ(24ℓτ)ηdℓv (24rτ)

with

the indices {ℓn′ + α + β} coincides with gm(24τ)
ηtℓ(24ℓτ)ηdℓv (24rτ)

on these indices,
which is exactly
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n′≡α+β (mod ℓ)

ℓjMr,d,t(m, ℓ
j , n′ − α)q24n

′−tℓ2−drℓv (mod ℓv).

By changing the variable, we get∑
n≡24β+dr−t (mod 24ℓ)

ℓjMr,d,t

(
m, ℓj ,

n+ t− dr

24

)
qn.

Combining Lemmas 3.2 and 3.3, we see that there exist modular forms fm
and f such that∑
n≡24β+dr−t (mod 24ℓ)

ℓjMr,d,t

(
m, ℓj ,

n+ t− dr

24

)
qn ≡ fm(τ) + f(τ) (mod ℓv).

Moreover, by applying Theorem 2.1, we can find a positive proportion of
primes p ≡ −1 (mod 24ℓ) such that

fm|Tp2 ≡ f |Tp2 ≡ 0 (mod ℓv).

This implies that

ℓjMr,d,t

(
m, ℓj ,

p2n+ t− dr

24

)
+ ℓjχ(p)

(
(−1)λn

p

)
pλ−1Mr,d,t

(
m, ℓj ,

n+ t− dr

24

)
+ ℓjχ(p2)

(
(−1)λ

p2

)
p2λ−1Mr,d,t

(
m, ℓj ,

n/p2 + t− dr

24

)
≡ 0 (mod ℓv).

Finally, replacing n by pn′ with p ∤ n′, we get

ℓjMr,d,t

(
m, ℓj ,

p3n′ + t− dr

24

)
≡ 0 (mod ℓv),

where n′ ≡ t− dr − 24β (mod 24ℓ). This gives

Mr,d,t

(
m, ℓj ,

p3n′ + t− dr

24

)
≡ 0 (mod ℓv−j).

But we note that there are infinitely many v that satisfy ℓv ≡ −1 (mod 24r),
so the congruence relation (3.5) holds for all v ∈ N.

We end this article with two questions arising from this project. A natu-
ral question is: can one give a combinatorial interpretation of Mr,d,t(m,n)?
Moreover, can one find any other kind of congruences for Mr,d,t(m,n)?
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