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A half-space property for
hypersurfaces in the hyperbolic space

Marco A. L. Velásquez (Campina Grande)

Abstract. Through the study of geometry of the hyperspheres (also known as equi-
distant spheres) of the hyperbolic space Hn+1, we establish a nonexistence result for
complete noncompact hypersurfaces immersed into Hn+1 and a characterization of com-
plete totally geodesic hypersurfaces of Hn+1; namely, we characterize those complete hy-
perspheres of Hn+1 with the following geometric property: any geodesic contained in a
complete hypersurface is also a geodesic of Hn+1. Our approach is based on a suitable
maximum principle at infinity for complete Riemannian manifolds.

1. Introduction. The geometry of hyperspheres of the (n + 1)-dimen-
sional hyperbolic space Hn+1, n ≥ 3, is an important theme of differential
geometry. Recall that the hyperspheres define a complete foliation for Hn+1

and are just the totally umbilical hypersurfaces of Hn+1 isometric to the
hyperbolic space Hn. In this direction, do Carmo and Lawson [CL83] have
used the well known Alexandrov’s reflexion method to show that a complete
hypersurface Σn of Hn+1, properly embedded with constant mean curvature,
with asymptotic boundary being a sphere and such that Σn separates poles,
must be a hypersphere. Furthermore, they reached the same conclusion for
a hypersurface Σn of Hn+1 of constant mean curvature which admits a one-
to-one orthogonal projection onto a geodesic hyperplane (for more details,
see also [N08]).

The approach of [CL83] inspired several other authors to obtain some
rigidity results for hypersurfaces in hyperbolic space. For instance, Nelli and
Zhu [NZ20] studied the uniqueness of hyperspheres of Hn+1 and generalized
the Bernstein Theorem due to Carmo and Lawson [CL83] to embedded hy-
persurfaces with some constant higher order mean curvature. Furthermore,
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R. Souam [S21] proved that hyperspheres of Hn+1 admit no perturbations
with compact support which increase their mean curvature. This is an ex-
tension of the analogous result in Euclidean spaces, due to Gromov [G19],
which states that a hyperplane in Euclidean space Rn+1 admits no mean
convex perturbations with compact supports.

On the other hand, Aquino and de Lima [AL12] used the quadric model
of the hyperbolic space Hn+1 to prove that the hyperspheres are the only
complete immersed hypersurfaces ψ : Σn ↬ Hn+1 with constant mean cur-
vature contained between two hyperspheres determined by a spacelike vector
a ∈ Ln+2 and whose Gauss image lies in a totally umbilical spacelike hyper-
surface of de Sitter space Sn+1

1 determined by a. Barros, Aquino and de Lima
[BAL14a] managed to improve this result, by removing the hypothesis that
the hypersurface is contained between two hyperspheres. Next, Aquino [A14]
studied the rigidity of complete hypersurfaces ψ : Σn ↬ Hn+1 immersed
with constant scalar curvature R = −1 and whose Gauss image lies in a
totally umbilical spacelike hypersurface of de Sitter space Sn+1

1 , obtaining
characterization results for the hyperspheres.

Moreover, Barros, Aquino and de Lima [BAL14b] showed that complete
hypersurfaces ψ : Σn ↬ Hn+1 with bounded nonnegative mean curvature
and constant scalar curvature R = −1 that are contained between two
hyperspheres determined by a spacelike vector a ∈ Ln+2 must be totally
geodesic hyperspheres of Hn+1, provided that the norm of the vector field
a⊤ is Lebesgue integrable on Σn.

Continuing this line of research, our purpose in this article is to study
some geometric aspects of complete noncompact immersed hypersurfaces
ψ : Σn ↬ Hn+1 assuming the same controls of Aquino, Barros and de
Lima [BAL14b], but using as main analytical tool a suitable version of the
maximum principle at infinity for complete Riemannian manifolds estab-
lished by Alias, Caminha and do Nascimento [ACN19].

This paper is organized as follows: in Section 2 we recall some basic facts
concerning hypersurfaces ψ : Σn ↬ Hn+1. In Section 3, we first describe a
classification of totally umbilical hypersurfaces of Hn+1 (see Remark 3.1) in
terms of their mean curvature and the causal character of a nonzero vector
a of Lorentz–Minkowski space Ln+2; next, we use a totally geodesic hy-
persphere of this classification to define the notions of equator Hn, upper
half-ball H+

a and lower half-ball H−
a of Hn+1 determined by a unit space-

like vector a ∈ Ln+2, and lastly we study the height and angle functions
associated to a hypersurface ψ : Σn ↬ Hn+1. In Section 4, according to the
behavior at infinity of the distance from a hypersurface ψ : Σn ↬ Hn+1 to
the equator Hn ↬ Hn+1, we establish a nonexistence result for complete non-
compact hypersurfaces immersed in the upper half-ball H+

a or lower half-ball
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H−
a of Hn+1 determined by the spacelike vector a ∈ Ln+2 (see Theorem 4.1)

and a characterization of complete totally geodesic hypersurfaces of Hn+1

(see Theorem 4.3). In Corollaries 4.5 and 4.6 we state our results in terms
of normalized scalar curvature.

2. Preliminaries. We will consider the (n+ 1)-dimensional hyperbolic
space as a hyperquadric of the (n+2)-dimensional Lorentz–Minkowski space
Ln+2. So, we will write Ln+2 for the Euclidean space Rn+2 endowed with
the Lorentz metric

⟨v, w⟩ =
n+1∑
i=1

viwi − vn+2wn+2.

and the hyperbolic space will be identified with

Hn+1 = {p ∈ Ln+2 : ⟨p, p⟩ = −1, pn+2 ≥ 1}
equipped with the Riemannian metric induced from Ln+2.

In this paper we will deal with a connected two-sided isometrically im-
mersed hypersurface ψ : Σn ↬ Hn+1, which means that there exists a unit
normal vector field N globally defined on Σn. In this setting, we use C∞(Σn)
and X(Σn) to denote the ring of real functions of class C∞ defined on Σn

and the C∞(Σn)-module of vector fields of class C∞ on Σn, respectively.
We also denote by ∇ the Levi-Civita connection of Σn. We recall that the
unit normal vector field N can be regarded as a map N : Σn → Sn+1

1 , where
Sn+1
1 stands for the (n+ 1)-dimensional unitary de Sitter space, that is,

Sn+1
1 = {p ∈ Ln+2 : ⟨p, p⟩ = 1}

For that reason, N is called the Lorentzian Gauss map of ψ : Σn ↬ Hn+1.
Let us denote by A : X(Σn) → X(Σn) the shape operator of ψ : Σn ↬

Hn+1 with respect to N . At each p ∈ Σn, the shape operator A restricts to
a self-adjoint linear map Ap : TpΣ → TpΣ. Thus, for fixed p ∈ Σn, the spec-
tral theorem allows us to choose in TpΣ an orthonormal basis {e1, . . . , en}
of eigenvectors of Ap, with corresponding eigenvalues λ1(p), . . . , λn(p), re-
spectively. The functions λ1, . . . , λn : Σn → R (obtained in this way) are
called the principal curvatures of ψ : Σn ↬ Hn+1. As is well known, we say
that ψ : Σn ↬ Hn+1 is totally geodesic when its shape operator A vanishes
identically and, in turn, ψ : Σn ↬ Hn+1 will be totally umbilical if there is a
function λ : Σn → R such that A = λ Id, where Id denotes the identity map
on X(Σn).

Along this work we will deal with the first two mean curvatures of ψ :
Σn ↬ Hn+1, namely, the mean curvature

H =
1

n

n∑
i=1

λi
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and the intrinsic geometric quantity defined by

H2 =
2

n(n− 1)

∑
i<j

λiλj ,

which is related to the normalized scalar curvature R of ψ : Σn ↬ Hn+1.
More precisely, from the Gauss equation of ψ : Σn ↬ Hn+1 we can get

(2.1) R = H2 − 1.

Let us recall that, following the terminology de Lima and Parente [LP13],
ψ : Σn ↬ Hn+1 is called 1-minimal when H2 ≡ 0 on Σn.

Remark 2.1. The geometric motivation that gives rise to the notion of
1-minimality is described below. Let M n+1

(c) be a Riemannian manifold of
constant sectional curvature c and let ψ : Σn ↬ M

n+1
(c) be an immersion

of an orientable manifold Σn into M n+1
(c). It is well-known that minimal

hypersurfaces of M n+1 arise as critical points of the area functional (under
compactly supported variations)

A(Σn) =
�

Σn

dΣ,

where dΣ is the volume element of ψ : Σn ↬M
n+1

(c). We can consider the
similar variational problem for the 1-area functional A1 given by

A1(Σ
n) = −n

�

Σn

H dΣ,

where H is the mean curvature of ψ : Σn ↬ M
n+1

(c). From variational
formulas (see for instance [ACC93, Lemma 2.3]) one can see that ψ : Σn →
M

n+1
(c) is 1-minimal, namely, a critical point of the 1-area functional A1

if and only if H2 vanishes identically.

One also defines the Newton transformation P1 : X(Σ
n) → X(Σn) by

(2.2) P1 = nH Id −A,

where Id denotes the identity map on X(Σn). According to [CY77], associ-
ated to P1 is the well known Cheng–Yau operator

□ : C∞(Σn) → C∞(Σn), f 7→ □(f) = tr(P1 ◦ ∇ 2f),

where ∇ 2f : X(Σn) → X(Σn) denotes the self-adjoint linear operator met-
rically equivalent to the Hessian of f , which is given by ⟨∇ 2f(X), Y ⟩ =
⟨∇X∇f, Y ⟩ for all X,Y ∈ X(Σn).

As established in [R93], since Hn+1 has constant sectional curvature,
□ admits the divergence form

(2.3) □(f) = div(P1(∇f)),
for all f ∈ C∞(Σn), where div stands for divergence on Σn.
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For a smooth function φ : R → R and f ∈ C∞(Σn), it follows from the
properties of the Hessian of functions that

(2.4) □(φ ◦ f) = φ′(f)□(f) + φ′′(f)⟨P1(∇f),∇f⟩.

Hounie and Leite [HL95] studied the properties of real homogeneous hy-
perbolic polynomials, and in particular obtained sufficient geometric con-
ditions to make P1 a semi-definite positive operator. More precisely, from
Lemma 1.1 and equation (1.3) of [HL95] we have the following

Lemma 2.2. Let ψ : Σn ↬ Hn+1 be a hypersurface with Lorentzian Gauss
map N . If the mean curvature H of ψ : Σn ↬ Hn+1 with respect to N is
nonnegative then the Newton transformation P1 is positive semi-definite.

We close this section by describing the main analytical tool which is used
along the proofs of our main results in the next sections. Our approach is
based a suitable maximum principle at infinity for complete noncompact
Riemannian manifolds due to Alías, Caminha and do Nascimento. To quote
it, we need to recall the following concept established at the beginning of
Section 2 of their paper: Let Σn be a complete noncompact Riemannian
manifold and let

d( · , o) : Σn → [0,+∞)

denote the Riemannian distance of Σn, measured from a fixed point o ∈ Σn.
We say that a smooth function f ∈ C∞(Σn) converges to ϱ0 ∈ R at infinity
when

lim
d(x,o)→+∞

f(x) = ϱ0.

Keeping in mind this concept, the following maximum principle at infinity
corresponds to [ACN19, Theorem 2.2].

Lemma 2.3. Let Σn be a complete noncompact Riemannian manifold
and let X ∈ X(Σn). Assume that there exists a nonnegative, non-identically-
vanishing function f ∈ C∞(Σn) which converges to zero at infinity and
⟨∇f,X⟩ ≥ 0. If divX ≥ 0 on Σn, then ⟨∇f,X⟩ ≡ 0 on Σn and divX ≡ 0
on Σn \ f−1(0).

3. The height and angle functions. We start this section by recalling
the description of totally umbilical hypersurfaces of Hn+1 (see, for instance,
[M99, Section 4, Example 3]). For this, we fix a nonzero vector a ∈ Ln+2 with
⟨a, a⟩ ∈ {−1, 0, 1} and consider the smooth function ha : Hn+1 → R defined
by ha(p) = ⟨p, a⟩. A straightforward computation shows that for every ϱ ∈ R
with ϱ2 + ⟨a, a⟩ > 0, the level set

Ln
ϱ = h−1

a (ϱ) = {p ∈ Hn+1 : ⟨p, a⟩ = ϱ}
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is a totally umbilical two-sided hypersurface in Hn+1, with Lorentzian Gauss
map Nϱ : Ln

ϱ → Sn+1
1 defined by

Nϱ(p) =
1√

ϱ2 + ⟨a, a⟩
(a+ ϱp)

for any p ∈ Ln
ϱ . Hence, the shape operator Aϱ : X(Ln

ϱ ) → X(Ln
ϱ ) of Ln

ϱ ↬
Hn+1 is given by

Aϱ(X) = − ϱ√
ϱ2 + ⟨a, a⟩

X

for all X ∈ X(Ln
ϱ ), and consequently Ln

ϱ ↬ Hn+1 has constant mean curva-
ture

Hϱ =
1

n
tr(Aϱ) = − ϱ√

ϱ2 + ⟨a, a⟩
.

Remark 3.1. From the discussion above, we have the following descrip-
tion of totally umbilical hypersurfaces Ln

ϱ ↬ Hn+1 in terms of their mean
curvature and the causal character of a ∈ Ln+2:

(i) if a ∈ Ln+2 is a unit spacelike vector, then Ln
ϱ ↬ Hn+1 is a hypersphere

(also known as equidistant sphere) of Hn+1, that is, Ln
ϱ is isometric

to hyperbolic space Hn(
√
ϱ2 + 1), with constant mean curvature Hϱ

satisfying

H2
ϱ =

ϱ2

ϱ2 + 1
∈ [0, 1);

(ii) if a ∈ Ln+2 is a nonzero null vector, then ϱ ̸= 0 and Ln
ϱ ↬ Hn+1 is a

horosphere of Hn+1, that is, Ln
ϱ is isometric to Euclidean space Rn, with

constant mean curvature Hϱ satisfying H2
ϱ = 1;

(iii) if a ∈ Ln+2 is a unit timelike vector, then ϱ2 > 1 and Ln
ϱ ↬ Hn+1 is

a geodesic sphere of Hn+1, that is, Ln
ϱ is isometric to Euclidean sphere

Sn(
√
ϱ2 − 1), with constant mean curvature Hϱ satisfying

H2
ϱ =

ϱ2

ϱ2 − 1
∈ (1,+∞).

Now, we will describe some particular regions in the hyperbolic space
Hn+1. From Remark 3.1(i), when a ∈ Ln+2 is a unit spacelike vector, the
level set Ln

0 = Hn ↬ Hn+1 defines a complete totally geodesic hypersurface
in Hn+1. In analogy with a similar situation in the (n+ 1)-dimensional unit
Euclidean sphere Sn+1, we will refer to Ln

0 as the equator of Hn+1 determined
by a ∈ Ln+2. This equator divides Hn+1 into two connected components, the
upper half-ball, which is given by

H+
a = {p ∈ Hn+1 : ⟨p, a⟩ > 0},
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and the lower half-ball, given by

H−
a = {p ∈ Hn+1 : ⟨p, a⟩ < 0}.

Let ψ : Σn ↬ Hn+1 be a hypersurface with Lorentzian Gauss map N
as described in Section 2. Given a nonzero vector a ∈ Ln+2, inspired by the
behavior of the hypersurfaces Ln

ϱ ↬ Hn+1 studied above, we will consider
two particular functions naturally attached to ψ : Σn ↬ Hn+1, namely, the
height and angle functions with respect to a, which are defined by

ℓa : Σn → R, p 7→ ℓa(p) = ⟨ψ(p), a⟩,

and
fa : Σn → R, p 7→ fa(p) = ⟨N(p), a⟩,

respectively. In the case of hyperspheres Ln
ϱ ↬ Hn+1 described in Re-

mark 3.1(i), the height function ℓa is exactly the constant ϱ ∈ R.

Remark 3.2. Let ψ : Σn ↬ Hn+1 be as described above. When a ∈ Ln+2

is a unit spacelike vector, for each p ∈ Σn, |ℓa(p)| is exactly the distance d(p)
from ψ(p) to the equator Hn of Hn+1 determined by a ∈ Ln+2. Thus, in this
case, we can geometrically interpret the absolute value of ℓa as being the
distance d : Σn → [0,+∞) from Σn to the equator Hn. Thus, d = 0 if and
only if ψ : Σn ↬ Hn+1 is the equator Hn ↬ Hn+1.

A direct computation shows that

(3.1) ∇ℓa = a⊤ and ∇fa = −A(a⊤),

where A is the shape operator of ψ : Σn ↬ Hn+1 and a⊤ is the orthogonal
projection of a onto X(Σn), that is,

a⊤ = a− faN + ℓaψ.

Furthermore, the formulas for the Laplacian operator ∆ and the Cheng–Yau
operator □ acting on the height function of ψ : Σn ↬ Hn+1 are (cf. [R93])

∆(ℓa) = nHfa + nℓa,(3.2)
□(ℓa) = n(n− 1)H2fa + n(n− 1)Hℓa,(3.3)

where H and H2 are the two mean curvatures of ψ : Σn ↬ Hn+1.

4. Main results. In our first result we provide sufficient conditions to
guarantee the nonexistence of 1-minimal hypersurfaces contained either in
the upper half-ball H+

a or in the lower half-ball H−
a of hyperbolic space Hn+1

determined by a unit spacelike vector a ∈ Ln+1.

Theorem 4.1. Let Hn be the equator of hyperbolic space Hn+1 deter-
mined by a unit spacelike vector a ∈ Ln+2. There does not exist a complete
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noncompact 1-minimal hypersurface ψ : Σn ↬ Hn+1 \ Hn having nonnega-
tive mean curvature H and such that the distance d from Σn to the equator
Hn ↬ Hn+1 converges to ϱ0 ∈ (0,+∞) at infinity, with d ≥ ϱ0 on Σn.

Proof. Assume that such a hypersurface ψ : Σn ↬ Hn+1 \ Hn exists.
Whether the hypersurface is immersed in H−

a or in H+
a , we can always

choose the Lorentzian Gauss map in such a way that the mean curvature of
the hypersurface is nonnegative. Without loss of generality, we can assume
ψ : Σn ↬ H+

a . Moreover, if ℓa = ⟨ψ, a⟩ is the height function ofψ : Σn ↬ H+
a ,

from Remark 3.2 and the hypothesis about the distance d we see that ℓa
converges to ϱ0 ∈ (0,+∞) at infinity, with ℓa ≥ ϱ0 on Σn.

Let us consider the nonnegative function f = (ℓa − ϱ0)
2 ∈ C∞(Σn) and

the vector field X = P1(∇f) ∈ X(Σn). From (3.1),

(4.1) ⟨∇f,X⟩ = 2(ℓa − ϱ0)⟨∇ℓa, P1(∇f)⟩ = 2(ℓa − ϱ0)
2⟨a⊤, P1(a

⊤)⟩
on Σn. Since H ≥ 0 on Σn, from Lemma 2.2 we know that the Newton
transformation P1 given in (2.2) is positive semi-definite, and consequently
from (4.1) we obtain ⟨∇f,X⟩ ≥ 0 on Mn. Furthermore, since □ admits the
divergence form (2.3) and H2 = 0 on Σn, from (2.4) and (3.3) we have

divX = □((ℓa − ϱ0)
2) = 2(ℓa − ϱ0)□(ℓa) + 2⟨P1(∇ℓa),∇ℓa⟩(4.2)

≥ 2n(n− 1)(ℓa − ϱ0)Hℓa

on Σn. By observing that ψ(Σn) ⊂ H+
a , we see that ℓa is positive on Σn,

and since ℓa ≥ ϱ0 and H ≥ 0 on Σn, we conclude from (4.2) that

(4.3) divX ≥ 2n(n− 1)(ℓa − ϱ0)Hℓa ≥ 0

on Σn. Thus, since f converges to zero at infinity, we can apply Lemma 2.3 to
see that divX ≡ 0 on Σn \ f−1(0), and consequently, from (4.3), (ℓa− ϱ0)H
≡ 0 on Σn \ f−1(0). So, either ℓa ≡ ϱ0 or H ≡ 0 on Σn \ f−1(0).

In the first case, since we already have ℓa ≡ ϱ0 on the level set

f−1(0) = {p ∈ Σn : (ℓa − ϱ0)
2 = 0},

we have ℓa ≡ ϱ0 everywhere of Σn, and therefore, taking into account the
causal character of a ∈ Ln+2, from Remark 3.1 we conclude that ψ(Σn) is the
hypersphere Hn(

√
ϱ20 + 1) of Hn+1. Since H2 ≡ 0 on Σn, ψ(Σn) isometric

to the totally umbilical spacelike hypersurface Hn(
√
ϱ20 + 1) of Hn+1 implies

that ψ(Σn) is totally geodesic. Hence, ψ(Σn) is the equator Hn of hyperbolic
space Hn+1, which is absurd.

On the other hand, if H ≡ 0 on Σn \ f−1(0), then since ℓa ≥ ϱ0 > 0
anywhere on Σn, from (3.2) we get

(4.4) ∆f = ∆(ℓa − ϱ0)
2 = 2(ℓa − ϱ0)∆(ℓa) + 2|∇ℓa|2 ≥ 2n(ℓa − ϱ0)ℓa ≥ 0

on Σn \ f−1(0). Applying Lemma 2.3 to f = (ℓa − ϱ0)
2 ∈ C∞(Σn) and

∇f ∈ X(Σn) we get ∆f ≡ 0 on Σn \ f−1(0). Back to (4.4), we see that
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ℓa − ϱ0 vanishes identically on Σn \ f−1(0) and, according to the arguments
of the first case, ψ(Σn) would have to be isometric to the equator Hn of Hn+1,
which contradicts ψ(Σn) ⊂ H+

a .

Remark 4.2. From (4.1) and (4.2), we point out that in Theorem 4.1 we
can replace nonnegativity of the mean curvature H of ψ : Σn ↬ Hn+1 \Hn

by the weaker hypothesis: the Newton transformation P1 given in (2.2) is
positive semi-definite in the direction a⊤. We only adopted the hypothesis
on H because it is more geometric. The same holds in our next results.

In order to characterize the equator Hn of hyperbolic space Hn+1 deter-
mined by a spacelike vector a ∈ Ln+2, we will slightly modify the arguments
in the proof of Theorem 4.1 to provide the following uniqueness result.

Theorem 4.3. Let a ∈ Ln+2 be a unit spacelike vector. The only com-
plete noncompact 1-minimal hypersurface ψ : Σn ↬ Hn+1 immersed into
hyperbolic space Hn+1, with nonnegative mean curvature H and such that its
distance d from Σn to the equator Hn converges to zero at infinity, is the
equator Hn ↬ Hn+1 determined by a.

Proof. First, we observe that the equator Hn ↬ Hn+1 of hyperbolic space
Hn+1 satisfies all the given restrictions.

Now, let ψ : Σn ↬ Hn+1 be a complete noncompact 1-minimal hyper-
surface having nonnegative mean curvature H and such that its distance d
from Σn to the equator Hn converges to zero at infinity. So, if ℓa = ⟨ψ, a⟩ is
the height function of ψ : Σn ↬ Hn+1, from Remark 3.2 we know that ℓ 2a
converges to zero at infinity.

Since H ≥ 0 on Σn, from Lemma 2.2, the Newton transformation P1

defined in (2.2) is positive semi-definite. Furthermore, since H2 ≡ 0 on Σn,
from (2.4) and (3.3),

(4.5) □(ℓ 2a ) = 2ℓa□(ℓa) + 2⟨P1(∇ℓa),∇ℓa⟩ ≥ 2n(n− 1)Hℓ 2a ≥ 0

on Σn. Let us consider Y = P1(∇ℓ 2a ) ∈ X(Σn). Since □ admits the diver-
gence form (2.3), from (4.5) we find that div(Y ) ≥ 0 on Σn. In addition, we
also have ⟨∇ℓ 2a , Y ⟩ ≥ 0 on Σn. Thus, since ℓ 2a converges to zero at infinity,
we can apply Lemma 2.3 to guarantee that div(Y ) ≡ 0 on Σn \ f−1(0).
Consequently, from (4.5), Hℓ 2a ≡ 0 on Σn \ (ℓ 2a )−1(0). So, either ℓa ≡ 0 or
Hℓa ≡ 0 on Σn \ (ℓ 2a )−1(0).

In the first case, since we already have ℓa ≡ 0 on the level set

(ℓ 2a )
−1(0) = {p ∈ Σn : ℓ 2a = 0},

ℓa vanishes identically on Σn, and therefore from Remark 3.2 we conclude
that ψ(Σn) is the equator Hn of Hn+1 determined by a ∈ Ln+2.
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On the other hand, if Hℓa ≡ 0 on Σn \ (ℓ 2a )−1(0), from (3.2) we have
∆(ℓ 2a ) = 2ℓa∆(ℓa) + 2⟨∇ℓa,∇ℓa⟩(4.6)

= 2nHfaℓa + 2nℓ 2a + 2|∇ℓa|2 ≥ 2nℓ 2a ≥ 0

on Σn \ (ℓ 2a )
−1(0). We can again apply Lemma 2.3 to obtain ∆(ℓ 2a ) ≡ 0

on Σn \ ℓ−1
a (0). Back to (4.6), we see that ℓa vanishes identically on Σn \

(ℓ 2a )
−1(0), and therefore the result is obtained by arguing as in the first case

described above.
Remark 4.4. Barros, Aquino and de Lima [BAL14a, Theorem 2] showed

that the only complete noncompact 1-minimal hypersurface ψ : Σn ↬ Hn+1

with bounded nonnegative mean curvature H, which is between two hyper-
spheres determined by a spacelike vector a ∈ Ln+2 and such that the norm
of the projection a⊤ of a onto Σn is Lebesgue integrable, is the equator
Hn ↬ Hn+1 determined by a. Consequently, Theorem 4.3 can be under-
stood as a kind of extension of this result.

Taking into account (2.1), we can write Theorems 4.1 and 4.3 in terms
of normalized scalar curvature R of a hypersurface ψ : Σn ↬ Hn+1.

Corollary 4.5. Let Hn be the equator of hyperbolic space Hn+1 deter-
mined by a unit spacelike vector a ∈ Ln+2. There does not exist a complete
noncompact hypersurface ψ : Σn ↬ Hn+1\Hn having nonnegative mean cur-
vature H, with constant normalized scalar curvature R = −1 and such that
the distance d from Σn to the equator Hn of Hn+1 converges to ϱ0 ∈ (0,+∞)
at infinity, with d ≥ ϱ0 on Σn.

Corollary 4.6. Let a ∈ Ln+2 be a unit spacelike vector. The only com-
plete noncompact hypersurface ψ : Σn ↬ Hn+1 immersed into hyperbolic
space Hn+1, with nonnegative mean curvature H, having constant normalized
scalar curvature R = −1 and such that its distance from Σn to the equator
Hn converges to zero at infinity, is the equator Hn ↬ Hn+1 determined by a.
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