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PACKING OF NON-BLOCKING SQUARES INTO THE UNIT SQUARE

BY

JANUSZ JANUSZEWSKI and ŁUKASZ ZIELONKA (Bydgoszcz)

Abstract. Any collection of non-blocking squares with total area not greater than
5/9 can be packed into the unit square.

1. Introduction. Let Sn be a square, for n = 1, 2, . . ., and let I be
a square of sidelength 1. We say that the squares S1, S2, . . . can be packed
into I if it is possible to apply translations and rotations to the sets Sn

so that the resulting translated and rotated squares are contained in I and
have mutually disjoint interiors. The packing is parallel if every side of each
packed square is parallel to a side of I.

Moon and Moser [MM67] showed that the squares S1, S2, . . . can be
packed parallel into I provided that the total area of the squares is not greater
than 1/2. This upper bound is tight: it is impossible to pack two squares of
sidelengths greater than 1/2 (and consequently of total area greater than
1/2) into I; they block each other. Two questions arise: (1) how big a square
can still be packed there; (2) what happens if the squares could not block
each other. The answer to the first problem can be found in [JZ23b].

Denote by an the sidelength of Sn for n = 1, 2, . . . . We say that the
squares S1, S2, . . . are non-blocking if ai + aj ≤ 1 for any i ̸= j. The aim of
this note is to show that any collection of non-blocking squares can be packed
parallel into I provided that the sum of their areas is not greater than 5/9.
This upper bound is tight for parallel packing: five squares of sidelengths
greater than 1/3 cannot be packed parallel into I (see Fig. 1, left). However,
some non-parallel packing is possible (see Fig. 1, right, or see [G79]). Five
squares of sidelengths (4 −

√
2)/7 ≈ 0.369 can be packed into I, but a side

of one packed square is parallel to a diagonal of I. The three-dimensional
version of this problem is discussed in [JZ23c].

The packing method presented in Section 2 is based on the well-known
method of Moon and Moser [MM67]. First, the squares (from the finite
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Fig. 1. Five squares of sidelengths (4−
√
2)/7

or infinite collection) are arranged by size, starting with the largest one.
Then the squares are packed in successive layers. In our main method, unlike
the method presented in [MM67], the first three squares are packed in the
upper right corner of I. Moreover, different layers can have bases of different
lengths.

2. Packing method. We denote by [b1, b2] × [c1, c2], where b1 < b2
and c1 < c2, the rectangle {(x, y) : b1 ≤ x ≤ b2, c1 ≤ y ≤ c2}. The packing
method is a small modification of the algorithm of Moon and Moser [MM67].
There are two differences: the squares S1, S2 and S3 are packed in the upper
right corner of I. In addition, not all layers need to have bases of equal
length.

Let I = [0, 1]× [0, 1]. Moreover, let Sn be a square of sidelength an, where
an ≥ an+1 for n = 1, 2, . . . and let a1 + a2 ≤ 1.

Description of the method MM+.

[1] The square S1 is packed into the upper right corner of I.
[2] The square S2 is packed along the right side of I as near to the top as

possible.
[3] S3 is packed along the top of I as far to the right as possible.

The next squares will be packed in two different ways depending on the
sidelength of S4.

[4a] If a4 ≤ 1/3, then S4, S5, . . . are packed into I in layers (as the darker
squares in Fig. 2) similarly to the method of Moon and Moser [MM67].
The first layer has height a4 and base equal to the base of I. The squares
S4, S5, . . . are packed into I along the base of the first layer from left to
right. Let Sn1 be the first square that cannot be packed in that way. The
new layer, of height an1 , is created directly above the first layer. The
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Fig. 2. Packing method for a4 ≤ 1/3

squares Sn1 , Sn1+1, . . . are packed into I along the base of the second
layer from left to right. If Sn2 is the first square that cannot be packed
in that way in the second layer, then the new layer, of height an2 , is
created directly above the second layer, and so on.
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Fig. 3. Packing method for a4 > 1/3

[4b] If a4 > 1/3, then (see Fig. 3)

• S4 is packed along the left side of I as near to the top as possible;
• the remaining squares are packed in corresponding layers into the

rectangle [0, 1]× [0, 1−a1−a2] according to the method of Moon and
Moser [MM67].

Example 1. In Fig. 2, the squares S4 and S5 (a4 < 1/3) are packed in
the first layer. Since S6 cannot be packed next to S5 (the square S2 blocks
such packing), a new layer of height a6 is created directly above the first
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layer to pack S6, S7 and S8. Since S9 cannot be packed next to S8 (the
square S2 is blocking), a new layer of height a9 is created directly above the
second layer to pack S9. It is impossible to pack S10 in this layer next to
S9 (now S3 is blocking), so a new layer is created to pack S10 and S11. In
the fifth layer we pack S12, S13, S14 and S15. The squares S16, . . . , S26 are
packed in the sixth layer. The next square S27 cannot be packed into that
layer. Moreover, there is no empty space in I to create a new layer of height
a27. Therefore S27 cannot be packed by the method MM+. Clearly, n1 = 6,
n2 = 9, n3 = 10, n4 = 12, n5 = 16 and n6 = 27.

Example 2. In Fig. 3 (a4 > 1/3), the squares S5, S6, . . . , S11 are packed
in the first layer of [0, 1]× [0, 1−a1−a2]. Since S12 cannot be packed in this
layer, we try to create a new layer of height a12 directly above the first one.
It is impossible, so S12 stops the packing process.

3. Main result

Theorem 3.1. Any finite or infinite collection of non-blocking squares
with total area no greater than 5/9 can be packed into the unit square.

Proof. Denote by S1, S2, . . . the squares in the collection. Without loss
of generality we can assume that a1 ≥ a2 ≥ · · · , where an is the sidelength
of Sn for n = 1, 2, . . . .

We will show that if the squares cannot be packed into I by the method
MM+, then a21 + a22 + · · · > 5/9, which is a contradiction. Let Snt be the
first square from the collection that cannot be packed into I by the method
MM+. Consider two cases depending on the size of S4.

Case 1: a4 ≤ 1/3. In this case we pack S4, S5, . . . into the layers as
shown in Fig. 2, where nt = 27. Put

a = a4,

n0 = 4,

bk =

k∑
i=0

ani for k = 0, 1, . . . , t,

Rk = [0, 1]× [bk−1, bk] for k = 1, . . . , t− 1,

Rt = [0, 1]× [bt−1, 1].

In other words, Rk for k = 1, . . . , t− 1 is the rectangle of sidelengths 1 and
ank

contained in I and, at the same time, containing Snk
(see Fig. 4, right).

Since Sn1 cannot be packed in the first layer, it follows that the distance
λ1 (see Fig. 5, left) between the right side of Sn1−1 and either the left side
of S2 (provided that an1 > 1 − a1 − a2, as on Fig. 5) or the right side of I
(provided that an1 ≤ 1−a1−a2) is smaller than an1 . Consequently, the sum
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Fig. 5. Case 1, a4 ≤ 1/3

of the sidelengths of S5, . . . , Sn1 is greater than 1−a−a2 if an1 > 1−a1−a2, or
is greater than 1−a if an1 ≤ 1−a1−a2. This implies that if an1 > 1−a1−a2,
then the sum of the sidelengths of S5, . . . , Sn1 plus a2 is greater than 1− a
(λ2 = a4 − a6 + λ1 < a4 = a in Fig. 5).

Thus the sum of the areas of Snk−1+1, . . . , Snk
plus the area of the part

of S1∪S2∪S3 lying in Rk is greater than (1−a)ank
for k = 1, . . . , t−1. The

sum of the areas of Snt−1+1, . . . , Snt plus the area of the part of S1 ∪S2 ∪S3

lying in Rt is greater than (1− a)(1− bt−1) (see Fig. 4, right).
First assume that

an1 + · · ·+ ant > 1− a

(as in Fig. 4). Clearly, an1 + · · · + ant−1 + 1 − bt−1 = 1 − a. If the squares
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cannot be packed, then the sum of their areas is greater than

a2 + (1− a)an1 + (1− a)an2 + · · ·+ (1− a)ant−1 + (1− a)(1− bt−1)

= a2 + (1− a)(an1 + · · ·+ ant−1 + 1− bt−1)

= a2 + (1− a)2 ≥ 5/9

for a ≤ 1/3, which is a contradiction.
Now assume that

an1 + · · ·+ ant ≤ 1− a

(as in Fig. 5). Then
∑t

k=1 ank
= bt − a. Since a1 + a3 > 1 − a, the shaded

part of the rectangle [0, 1] × [bt, 1] has area greater than (1 − a)(1 − bt). If
the squares cannot be packed, then the sum of their areas is greater than

a2 + (1− a)(bt − a) + (1− a)(1− bt) = a2 + (1− a)2 ≥ 5/9,

which is a contradiction.

Case 2: a4 > 1/3. In [MM67] it is proved that any collection of squares
of sidelengths at most d with total area no greater than d2 + (b− d)(c− d)
can be packed into a rectangle of sidelength b and c provided d ≤ min(b, c).
Since S5, S6, . . . are packed into [0, 1]× [0, 1−a1−a2] by the method of Moon
and Moser, if the squares cannot be packed then the sum of their areas is
greater than

(a21 + a22 + a23 + a24) + (a25 + (1− a5)(1− a1 − a2 − a5))

= a21 − (1− a5)a1 + a22 − (1− a5)a2 + a23 + a24 + a25 + (1− a5)(1− a5)

=

(
a1 −

1− a5
2

)2

−
(
1− a5

2

)2

+

(
a2 −

1− a5
2

)2

−
(
1− a5

2

)2

+ a23 + a24 + a25 + (1− a5)(1− a5)

> −
(
1− a5

2

)2

−
(
1− a5

2

)2

+

(
1

3

)2

+

(
1

3

)2

+ a25 + (1− a5)(1− a5)

=
3

2
a25 − a5 +

13

18

≥ 3

2
· 1
9
− 1

3
+

13

18
=

5

9
,

which is a contradiction.

4. Questions. Five congruent squares of sidelengths (4−
√
2)/7 ≈ 0.369

(of total area (90− 40
√
2)/49 ≈ 0.68) can be packed into I (see [G79] or see

Fig. 1, right). Stromquist claims to have proved that six squares of sidelength
1/3 (of total area 2/3) can be packed into I while six squares with larger
sidelength cannot (see [F98, Introduction]).
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Question 4.1. Can any collection of non-blocking squares of total area
not greater than 2/3 be packed into I (rotations are allowed)?

Moon and Moser [MM67] proved that any family of squares with total
area not greater than 1/2 can be packed into a unit square, which is tight.
Moser (see [M66, Problem LM3] or [CFG91, Section D5]) conjectured that
a similar result may be obtained for packing rectangles of sidelengths at
most 1. This has been confirmed in [J00] (see also [J02]). Much earlier,
Groemer [G82] showed that any collection of rectangles of sidelengths not
greater than 1 whose total area is smaller than or equal to s2 − 2s + 1
can be packed into the square of sidelength s ≥ 3. Assuming s = 3 and
using a homothety with ratio 1/3 we find that any collection of rectangles
of sidelengths not greater than 1/3 whose total area is not greater than 4/9
can be packed into I.

Denote the sidelengths of a rectangle Rn by an and bn, where an ≤ bn.
We say that the rectangles R1, R2, . . . are non-blocking if ai+ aj ≤ 1 for any
i ̸= j, and bi ≤ 1 for any i.

Question 4.2. Can any collection of non-blocking rectangles of total area
not greater than 5/9 be packed parallel into I?

In the online packing problem each square Si is given without any in-
formation on the next squares. Moreover, each successive square Si, where
i > 1, is given only after Si−1 has been packed. The placement of any packed
square cannot be changed afterwards. By λ-packing (see [JZ22] or [JZ23a])
we mean a packing in which squares from the finite sequence S1, . . . , Sz are
grouped in batches in the following way. Squares arrive one by one (on-
line) and they are stored in a buffer until either the total area of the stored
squares is greater than or equal to λ or all squares from the sequence have al-
ready arrived. More precisely, if squares S1, . . . , Sn−1 are stored in the buffer
and if either Sn is a square such that the sum of the areas of S1, . . . , Sn is
greater than or equal to λ or Sn is the last item in the sequence (n = z),
then S1, . . . , Sn are packed offline into I and the buffer is emptied. The next
squares Sn+1, . . . (if any) are packed into I in the same way.

Question 4.3. What is the smallest λ such that any finite collection
of non-blocking squares of total area not greater than 5/9 can be λ-packed
parallel into I?
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