COLLOQUIUM MATHEMATICUM

Online First version

PACKING OF NON-BLOCKING SQUARES INTO THE UNIT SQUARE

BY

JANUSZ JANUSZEWSKI and ŁUKASZ ZIELONKA (Bydgoszcz)

Abstract. Any collection of non-blocking squares with total area not greater than 5/9 can be packed into the unit square.

1. Introduction. Let S_n be a square, for n = 1, 2, ..., and let I be a square of sidelength 1. We say that the squares $S_1, S_2, ...$ can be packed into I if it is possible to apply translations and rotations to the sets S_n so that the resulting translated and rotated squares are contained in I and have mutually disjoint interiors. The packing is parallel if every side of each packed square is parallel to a side of I.

Moon and Moser [MM67] showed that the squares S_1, S_2, \ldots can be packed parallel into I provided that the total area of the squares is not greater than 1/2. This upper bound is tight: it is impossible to pack two squares of sidelengths greater than 1/2 (and consequently of total area greater than 1/2) into I; they block each other. Two questions arise: (1) how big a square can still be packed there; (2) what happens if the squares could not block each other. The answer to the first problem can be found in [JZ23b].

Denote by a_n the sidelength of S_n for $n=1,2,\ldots$ We say that the squares S_1, S_2, \ldots are non-blocking if $a_i + a_j \leq 1$ for any $i \neq j$. The aim of this note is to show that any collection of non-blocking squares can be packed parallel into I provided that the sum of their areas is not greater than 5/9. This upper bound is tight for parallel packing: five squares of sidelengths greater than 1/3 cannot be packed parallel into I (see Fig. 1, left). However, some non-parallel packing is possible (see Fig. 1, right, or see [G79]). Five squares of sidelengths $(4 - \sqrt{2})/7 \approx 0.369$ can be packed into I, but a side of one packed square is parallel to a diagonal of I. The three-dimensional version of this problem is discussed in [JZ23c].

The packing method presented in Section 2 is based on the well-known method of Moon and Moser [MM67]. First, the squares (from the finite

2020 Mathematics Subject Classification: Primary 52C15.

Key words and phrases: packing, square.

Received 13 October 2022; revised 6 December 2023.

Published online 4 March 2024.

Fig. 1. Five squares of sidelengths $(4 - \sqrt{2})/7$

or infinite collection) are arranged by size, starting with the largest one. Then the squares are packed in successive layers. In our main method, unlike the method presented in [MM67], the first three squares are packed in the upper right corner of I. Moreover, different layers can have bases of different lengths.

2. Packing method. We denote by $[b_1, b_2] \times [c_1, c_2]$, where $b_1 < b_2$ and $c_1 < c_2$, the rectangle $\{(x, y) : b_1 \le x \le b_2, c_1 \le y \le c_2\}$. The packing method is a small modification of the algorithm of Moon and Moser [MM67]. There are two differences: the squares S_1 , S_2 and S_3 are packed in the upper right corner of I. In addition, not all layers need to have bases of equal length.

Let $I = [0, 1] \times [0, 1]$. Moreover, let S_n be a square of sidelength a_n , where $a_n \ge a_{n+1}$ for n = 1, 2, ... and let $a_1 + a_2 \le 1$.

Description of the method MM^+ .

- [1] The square S_1 is packed into the upper right corner of I.
- [2] The square S_2 is packed along the right side of I as near to the top as possible.
- [3] S_3 is packed along the top of I as far to the right as possible.

The next squares will be packed in two different ways depending on the sidelength of S_4 .

[4a] If $a_4 \leq 1/3$, then S_4, S_5, \ldots are packed into I in layers (as the darker squares in Fig. 2) similarly to the method of Moon and Moser [MM67]. The first layer has height a_4 and base equal to the base of I. The squares S_4, S_5, \ldots are packed into I along the base of the first layer from left to right. Let S_{n_1} be the first square that cannot be packed in that way. The new layer, of height a_{n_1} , is created directly above the first layer. The

Fig. 2. Packing method for $a_4 \leq 1/3$

squares $S_{n_1}, S_{n_1+1}, \ldots$ are packed into I along the base of the second layer from left to right. If S_{n_2} is the first square that cannot be packed in that way in the second layer, then the new layer, of height a_{n_2} , is created directly above the second layer, and so on.

Fig. 3. Packing method for $a_4 > 1/3$

[4b] If $a_4 > 1/3$, then (see Fig. 3)

- S_4 is packed along the left side of I as near to the top as possible;
- the remaining squares are packed in corresponding layers into the rectangle $[0,1] \times [0,1-a_1-a_2]$ according to the method of Moon and Moser [MM67].

EXAMPLE 1. In Fig. 2, the squares S_4 and S_5 ($a_4 < 1/3$) are packed in the first layer. Since S_6 cannot be packed next to S_5 (the square S_2 blocks such packing), a new layer of height a_6 is created directly above the first

layer to pack S_6 , S_7 and S_8 . Since S_9 cannot be packed next to S_8 (the square S_2 is blocking), a new layer of height a_9 is created directly above the second layer to pack S_9 . It is impossible to pack S_{10} in this layer next to S_9 (now S_3 is blocking), so a new layer is created to pack S_{10} and S_{11} . In the fifth layer we pack S_{12}, S_{13}, S_{14} and S_{15} . The squares S_{16}, \ldots, S_{26} are packed in the sixth layer. The next square S_{27} cannot be packed into that layer. Moreover, there is no empty space in I to create a new layer of height a_{27} . Therefore S_{27} cannot be packed by the method MM^+ . Clearly, $n_1 = 6$, $n_2 = 9$, $n_3 = 10$, $n_4 = 12$, $n_5 = 16$ and $n_6 = 27$.

EXAMPLE 2. In Fig. 3 $(a_4 > 1/3)$, the squares S_5, S_6, \ldots, S_{11} are packed in the first layer of $[0, 1] \times [0, 1 - a_1 - a_2]$. Since S_{12} cannot be packed in this layer, we try to create a new layer of height a_{12} directly above the first one. It is impossible, so S_{12} stops the packing process.

3. Main result

THEOREM 3.1. Any finite or infinite collection of non-blocking squares with total area no greater than 5/9 can be packed into the unit square.

Proof. Denote by S_1, S_2, \ldots the squares in the collection. Without loss of generality we can assume that $a_1 \geq a_2 \geq \cdots$, where a_n is the sidelength of S_n for $n = 1, 2, \ldots$

We will show that if the squares cannot be packed into I by the method MM^+ , then $a_1^2 + a_2^2 + \cdots > 5/9$, which is a contradiction. Let S_{n_t} be the first square from the collection that cannot be packed into I by the method MM^+ . Consider two cases depending on the size of S_4 .

Case 1: $a_4 \leq 1/3$. In this case we pack S_4, S_5, \ldots into the layers as shown in Fig. 2, where $n_t = 27$. Put

$$a = a_4,$$
 $n_0 = 4,$

$$b_k = \sum_{i=0}^k a_{n_i} \qquad \text{for } k = 0, 1, \dots, t,$$

$$R_k = [0, 1] \times [b_{k-1}, b_k] \qquad \text{for } k = 1, \dots, t-1,$$

$$R_t = [0, 1] \times [b_{t-1}, 1].$$

In other words, R_k for k = 1, ..., t - 1 is the rectangle of sidelengths 1 and a_{n_k} contained in I and, at the same time, containing S_{n_k} (see Fig. 4, right).

Since S_{n_1} cannot be packed in the first layer, it follows that the distance λ_1 (see Fig. 5, left) between the right side of S_{n_1-1} and either the left side of S_2 (provided that $a_{n_1} > 1 - a_1 - a_2$, as on Fig. 5) or the right side of I (provided that $a_{n_1} \leq 1 - a_1 - a_2$) is smaller than a_{n_1} . Consequently, the sum

Fig. 4. Layers

Fig. 5. Case 1, $a_4 \le 1/3$

of the sidelengths of S_5, \ldots, S_{n_1} is greater than $1-a-a_2$ if $a_{n_1} > 1-a_1-a_2$, or is greater than 1-a if $a_{n_1} \le 1-a_1-a_2$. This implies that if $a_{n_1} > 1-a_1-a_2$, then the sum of the sidelengths of S_5, \ldots, S_{n_1} plus a_2 is greater than 1-a ($\lambda_2 = a_4 - a_6 + \lambda_1 < a_4 = a$ in Fig. 5).

Thus the sum of the areas of $S_{n_{k-1}+1}, \ldots, S_{n_k}$ plus the area of the part of $S_1 \cup S_2 \cup S_3$ lying in R_k is greater than $(1-a)a_{n_k}$ for $k=1,\ldots,t-1$. The sum of the areas of $S_{n_{t-1}+1},\ldots,S_{n_t}$ plus the area of the part of $S_1 \cup S_2 \cup S_3$ lying in R_t is greater than $(1-a)(1-b_{t-1})$ (see Fig. 4, right).

First assume that

$$a_{n_1} + \dots + a_{n_t} > 1 - a$$

(as in Fig. 4). Clearly, $a_{n_1} + \cdots + a_{n_t-1} + 1 - b_{t-1} = 1 - a$. If the squares

cannot be packed, then the sum of their areas is greater than

$$a^{2} + (1 - a)a_{n_{1}} + (1 - a)a_{n_{2}} + \dots + (1 - a)a_{n_{t}-1} + (1 - a)(1 - b_{t-1})$$

$$= a^{2} + (1 - a)(a_{n_{1}} + \dots + a_{n_{t}-1} + 1 - b_{t-1})$$

$$= a^{2} + (1 - a)^{2} \ge 5/9$$

for $a \leq 1/3$, which is a contradiction.

Now assume that

$$a_{n_1} + \dots + a_{n_t} \le 1 - a$$

(as in Fig. 5). Then $\sum_{k=1}^{t} a_{n_k} = b_t - a$. Since $a_1 + a_3 > 1 - a$, the shaded part of the rectangle $[0,1] \times [b_t,1]$ has area greater than $(1-a)(1-b_t)$. If the squares cannot be packed, then the sum of their areas is greater than

$$a^{2} + (1-a)(b_{t}-a) + (1-a)(1-b_{t}) = a^{2} + (1-a)^{2} \ge 5/9,$$

which is a contradiction.

CASE 2: $a_4 > 1/3$. In [MM67] it is proved that any collection of squares of sidelengths at most d with total area no greater than $d^2 + (b-d)(c-d)$ can be packed into a rectangle of sidelength b and c provided $d \le \min(b, c)$. Since S_5, S_6, \ldots are packed into $[0,1] \times [0,1-a_1-a_2]$ by the method of Moon and Moser, if the squares cannot be packed then the sum of their areas is greater than

$$(a_1^2 + a_2^2 + a_3^2 + a_4^2) + (a_5^2 + (1 - a_5)(1 - a_1 - a_2 - a_5))$$

$$= a_1^2 - (1 - a_5)a_1 + a_2^2 - (1 - a_5)a_2 + a_3^2 + a_4^2 + a_5^2 + (1 - a_5)(1 - a_5)$$

$$= \left(a_1 - \frac{1 - a_5}{2}\right)^2 - \left(\frac{1 - a_5}{2}\right)^2 + \left(a_2 - \frac{1 - a_5}{2}\right)^2 - \left(\frac{1 - a_5}{2}\right)^2$$

$$+ a_3^2 + a_4^2 + a_5^2 + (1 - a_5)(1 - a_5)$$

$$> -\left(\frac{1 - a_5}{2}\right)^2 - \left(\frac{1 - a_5}{2}\right)^2 + \left(\frac{1}{3}\right)^2 + a_5^2 + (1 - a_5)(1 - a_5)$$

$$= \frac{3}{2}a_5^2 - a_5 + \frac{13}{18}$$

$$\geq \frac{3}{2} \cdot \frac{1}{9} - \frac{1}{3} + \frac{13}{18} = \frac{5}{9},$$

which is a contradiction.

4. Questions. Five congruent squares of sidelengths $(4-\sqrt{2})/7 \approx 0.369$ (of total area $(90-40\sqrt{2})/49 \approx 0.68$) can be packed into I (see [G79] or see Fig. 1, right). Stromquist claims to have proved that six squares of sidelength 1/3 (of total area 2/3) can be packed into I while six squares with larger sidelength cannot (see [F98, Introduction]).

QUESTION 4.1. Can any collection of non-blocking squares of total area not greater than 2/3 be packed into I (rotations are allowed)?

Moon and Moser [MM67] proved that any family of squares with total area not greater than 1/2 can be packed into a unit square, which is tight. Moser (see [M66, Problem LM3] or [CFG91, Section D5]) conjectured that a similar result may be obtained for packing rectangles of sidelengths at most 1. This has been confirmed in [J00] (see also [J02]). Much earlier, Groemer [G82] showed that any collection of rectangles of sidelengths not greater than 1 whose total area is smaller than or equal to $s^2 - 2s + 1$ can be packed into the square of sidelength $s \geq 3$. Assuming s = 3 and using a homothety with ratio 1/3 we find that any collection of rectangles of sidelengths not greater than 1/3 whose total area is not greater than 4/9 can be packed into I.

Denote the sidelengths of a rectangle R_n by a_n and b_n , where $a_n \leq b_n$. We say that the rectangles R_1, R_2, \ldots are non-blocking if $a_i + a_j \leq 1$ for any $i \neq j$, and $b_i \leq 1$ for any i.

QUESTION 4.2. Can any collection of non-blocking rectangles of total area not greater than 5/9 be packed parallel into I?

In the *online* packing problem each square S_i is given without any information on the next squares. Moreover, each successive square S_i , where i > 1, is given only after S_{i-1} has been packed. The placement of any packed square cannot be changed afterwards. By λ -packing (see [JZ22] or [JZ23a]) we mean a packing in which squares from the finite sequence S_1, \ldots, S_z are grouped in batches in the following way. Squares arrive one by one (online) and they are stored in a buffer until either the total area of the stored squares is greater than or equal to λ or all squares from the sequence have already arrived. More precisely, if squares S_1, \ldots, S_{n-1} are stored in the buffer and if either S_n is a square such that the sum of the areas of S_1, \ldots, S_n is greater than or equal to λ or S_n is the last item in the sequence (n = z), then S_1, \ldots, S_n are packed offline into I and the buffer is emptied. The next squares S_{n+1}, \ldots (if any) are packed into I in the same way.

QUESTION 4.3. What is the smallest λ such that any finite collection of non-blocking squares of total area not greater than 5/9 can be λ -packed parallel into I?

REFERENCES

[CFG91] H. T. Croft, K. J. Falconer and R. K. Guy, Unsolved Problems in Geometry, Springer, New York, 1991.

[F98] E. Friedman, Packing unit squares in squares: a survey and new results, Electron. J. Combin. Dynamic Survey 7 (2009).

- [G79] F. Göbel, Geometrical packing and covering problems, in: Packing and Covering in Combinatorics, A. Schrijver (ed.), Math. Cent. Tracts 106, Math. Centrum, Amsterdam, 1979, 179–199.
- [G82] H. Groemer, Covering and packing properties of bounded sequences of convex sets, Mathematika 29 (1982), 18–31.
- [J00] J. Januszewski, $Packing\ rectangles\ into\ the\ unit\ square,$ Geom. Dedicata 8 (2000), 13–18.
- [J02] J. Januszewski, Universal container for packing rectangles, Colloq. Math. 92 (2002), 155–160.
- [JZ22] J. Januszewski and Ł. Zielonka, Packing batches of items into a single bin, Inform. Process. Lett. 174 (2022), art. 106196, 5 pp.
- [JZ23b] J. Januszewski and L. Zielonka, Reserve in packing cubes into the unit cube, Bull. Polish Acad. Sci. Math. 71 (2023), 85–95.
- [JZ23c] J. Januszewski and Ł. Zielonka, Packing of non-blocking cubes into the unit cube, Beitr. Algebra Geom. (online, 2023).
- [JZ23a] J. Januszewski and L. Zielonka, Packing batches of cubes into a single bin, Inform. Process. Lett. 180 (2023), art. 106337, 6 pp.
- [MM67] J. W. Moon and L. Moser, Some packing and covering theorems, Colloq. Math. 17 (1967), 103–110.
- [M66] L. Moser, Poorly formulated unsolved problems of combinatorial geometry, mimeographed, 1966; see also: W. O. J. Moser, Problems, problems, problems, Discrete Appl. Math. 31 (1991), 201–225.

Janusz Januszewski, Łukasz Zielonka Institute of Mathematics and Physics Bydgoszcz University of Science and Technology 85-789 Bydgoszcz, Poland E-mail: januszew@pbs.edu.pl lukasz.zielonka@pbs.edu.pl