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Abstract. A sequence T of positive integers is called d-complete modulo 1 if for every
integer 0 < u < [ — 1, there exists an integer v with vl + u > 0 such that vl + u can be
represented as the sum of distinct terms from 7", where no one divides any other. Recently,
Chen and Yu (2023) proved that {m®n® : a,b=0,1,2,...} is d-complete modulo [ if I, m,n
are pairwise coprime with [,m,n > 2, and posed the following problem: characterize all
positive integers [, m,n such that {m“nb :a,b=0,1,2,...} is d-complete modulo I. We
give an answer to this problem.

1. Introduction. Let Ny be the set of all non-negative integers. A se-
quence T of positive integers is called complete if every sufficiently large
integer can be represented as the sum of distinct terms from 7. It is easy to
see that the sequence {2% : a € Ny} is complete and for any integer m > 2,
the sequence {m® : a € Ny} is not complete. In 1959, Birch [1]| proved that
for two coprime integers m > n > 1, the sequence {m“nb ca,b € Notis
complete, which confirmed a conjecture of Erdés. It is interesting to study
whether {m?n® : a,b € Ny} is still complete or not with the additional
restriction that no summand divides any other. Erdds asked the following
question: “Is it true that every integer > 1 is the sum of distinct integers
of the form 2%3° (for a and b non-negative integers), where no summand
divides any other?” He overestimated the difficulty of the problem and com-
municated it to Jansen, who almost immediately gave a simple proof by
induction. This motivated the research on d-complete sequences, introduced
by Erdés and Lewin [6].

A positive integer n is called d-representable for T if it can be represented
as the sum of distinct terms from 7 such that no one divides any other.
A sequence T of positive integers is called d-complete if every sufficiently
large integer is d-representable for 7. For convenience, we use the following
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notation introduced by Chen and Yu [5]|. For positive integers nq, ..., ng, let
A(ny,...,ng) ={nT"---n :c1,...,c € No}.

In 1996, Erdés and Lewin [6] reproduced the proof of the d-completeness
of A(2,3) and proved that the sequence A(m,n) is not d-complete if m >
n > 1 and {m,n} # {2,3}. It is natural to consider the d-completeness
of the sequence A(l,m,n). Erdés and Lewin [6] showed that A(2,5,n) is
d-complete for n € {7,11,13,17,19} and A(3,5,7) is d-complete. In 2016,
Ma and Chen [11] established a criterion for the d-completeness of A(2,5,n)
and proved that it is d-complete for n € {9,21,23,27,29,31}.

Erdss and Lewin [6] conjectured that A(l,m,n) is d-complete if [, m,n
are pairwise coprime integers not less than 2. Recently, Chen and Yu [5|
considered this conjecture. Let 7, be the least positive integer that is d-
representable for A(m,n) and congruent to h modulo I, and let sp be the
least positive integer that can be a term in a d-representation for A(m,n)
of r,. Chen and Yu [5] gave the following criterion for the d-completeness of
A(l,m,n).

THEOREM A (|5, Theorem 1.1]). Let l,m,n be pairwise coprime integers
not less than 2, let t be a positive integer, and let
{a1 < ag < ---} = {m®n®:b,c e Ny, m’n° =1 (mod 1)}.
(i) There exists an explicit integer ig = i(l,m,n,t) such that
rhait1 + It < (rp + Isp)a;
foralli>1iy and all1 < h <[-—1.
(ii) If every integer k with
t <k < Raj, + It

is d-representable for A(l,m,n), where R = max{rp, : 1 < h <1—1},

then A(l,m,n) is d-complete.

As applications of Theorem A, Chen and Yu [5] showed that A(2,5,n)
is d-complete for 1 < n < 87 with ged(n,10) = 1, A(2,7,n) is d-complete
for 1 < n < 33 with ged(n,14) = 1, and A(3,5,n) is d-complete for 1 <
n < 14 with ged(n,15) = 1. For more related results, one may refer to
(14,6} T0,[121[13).

Chen and Yu [5] also considered d-complete sequences modulo 1.

DEFINITION 1.1. A sequence T of positive integers is called d-complete

modulo [ if for every integer 0 < u < [ — 1, there exists an integer v with
vl 4+ u > 0 such that vl + u is d-representable for T .

It is easy to see that a sequence T of positive integers is d-complete
modulo [ if and only if for every integer 0 < v < [ — 1, w is congruent
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modulo ! to a sum of distinct terms from 7 such that no one divides any
other. Chen and Yu [5]| proved the following results.

THEOREM B (|5, Theorem 5.2]). Suppose that {2,3} Z {l,m,n}. If
A(ly;m,n) is d-complete, then A(m,n) is d-complete modulo [.

THEOREM C (|5, Theorem 5.3|). If I,m,n are pairwise coprime with
l,m,n > 2, then A(m,n) is d-complete modulo .

Chen and Yu [5] posed the following problem:

PROBLEM (|5, Problem 5.4|). Characterize all positive integers l,m,n
such that A(m,n) is d-complete modulo [.

In this paper, we solve this problem and prove the following result.

THEOREM 1.2. Let [, m,n be three integers with l,m,n > 2. Then A(m,n)
is d-complete modulo | if and only if at least one of the following conditions

holds:

(1) ged(l,mn) =1, m # n® for any rational number «;

(2) ged(l,m) =1, ged(l,n) is a prime and m is a primitive root of ged(l,n);
(3) ged(l,n) =1, ged(l,m) is a prime and n is a primitive root of ged(l,m);
(4) ged(l,m) and ged(l,n) are distinct primes, and m,n are primitive roots

of ged(l,n) and ged(l,m), respectively.
REMARK 1.3. It is easy to see that

(1) for any positive integers m,n, A(m,n) is d-complete modulo 1;
(2) for I > 2, neither A(m, 1) nor A(1,n) is d-complete modulo .

The proof of Theorem proceeds by applying the three lemmas proved
in Section 2. Condition (1) of Theorem follows from Lemma If
ged(l,m) = 1 and ged(l,n) > 1, we point out that ged(l,n) = p is prime
when A(m,n) is d-complete modulo I. Let | = l1p" with ged(l1,p) = 1. Then
ged(l, mn) = 1. The arguments for the d-completeness modulo /; and mod-
ulo p" of A(m,n) are given in Lemmas and respectively. Combining
this with Lemma we obtain condition (2). Conditions (3) and (4) can
be obtained by a similar discussion.

2. Proof of Theorem First, we prove some lemmas which will be
used to prove Theorem

LEMMA 2.1. Let l,m,n > 2 be integers with ged(mn,l) = 1. Then
A(m,n) is d-complete modulo  if and only if m # n® for any rational num-
ber a.
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Proof. Firstly, we prove the necessity. Since A(m,n) is d-complete mod-
ulo I, there exist non-negative integers a; and b; such that

Z m%nb =0 (mod 1)
i=1

with
(2.1) mn® t mn . i #£ .
By ged(mn, 1) = 1, we have r > 2. Let

m=pit-ps, m=ptpll,

where a;, 8; >0 (1 <i<s). If m= nb/@ for some positive integers a, b with
ged(a,b) = 1, then o; = ;- g which implies that a | S;. Since a;a1 + Biby =
%(bal + aby) and ajaz + Biby = %(bag + abs), we have

ia1+pBib ia2+Bib ; iaz+B:b ia1+fib )
p?a1ﬁ1|p?a252(1§2§8) or p?a252|p;1a151 (ISZSS).
It follows that
ma nb1 ‘maz nbz or ma2nbz ‘mal nbl7

a contradiction with (2.1). Therefore, m # n® for any rational number a.
Now, we prove the sufficiency. By Theorem C, it suffices to deal with the
case gcd(m,n) > 1. Let

m=pit-pls, n=ppl

where «a;,5; > 0 (1 < i < s). Since m # n® for any rational number «, it
follows from ged(m,n) > 1 that either m or n has at least two prime divisors
and there are two integers 1 < i1,i2 < s with «;, /i, # ®i,/Bi,. Without
loss of generality, we may assume that a;/81 > ag/B2, where B, 52 > 1.
Then there exists an irreducible fraction d/c such that

o d_ay

pi ¢ P

By Euler’s theorem, for any integer 1 < u </,

(2.2)

S =0 ide® = 4 (mod 1)
=1

Now, we shall show that
(2.3) mu—tep(l) ide(l) J(m(u*j)cw(l)njdso(l), i .

Express m, n as m = p{"' p§?*my, n = p’flp'anl. Then

mu—dep(l) pide(l) _ pf(l)(al(u—i)c+61id)p§(l)(az(u—i)c+62id)mgu—i)cso(l)nzidso(l)

)

mu—dep() pide(l) — pslo(l)(al(u—j)c+61jd)p§(l)(az(u—j)c+62jd)mgu—j)ap(l)n{d@(l)'
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By (22), when i < j,

ar(u—i)e+prid > ag(u—j)e+Prjd,  as(u—i)e+P2id < ag(u—j)c+ Bajd,
from which one can immediately get (2.3). Therefore, A(m,n) is d-complete
modulo /. =

LEMMA 2.2. Let m,n be integers with m,n > 2 and p be a prime with
p|n. Then

(i) A(m,n) is d-complete modulo p if and only if m is a primitive root of p;
(ii) whenr > 2, A(m,n) is d-complete modulo p" if and only if m is a prim-
itive root of p and p*{ n.

Proof. First, we prove the necessity of (i) and (ii). Obviously, if A(m,n)
is d-complete modulo p”, then it is also d-complete modulo p’ (1 < i < 7).
It follows from p|n that for any integer 1 < u < p — 1, there exists a
non-negative integer a, with

m® = u (mod p),

which shows that m is a primitive root of p.

Suppose that p? |n when r > 2. Then since A(m,n) is d-complete mod-
ulo p?,

m® = p (mod p?)

for some positive integer a,, and so p|m, which is impossible since m is a
primitive root of p. Thus, p? { n when r > 2.

Now, we prove the sufficiency of (i) and (ii). Since m is a primitive root
of p, for every integer 1 < u < p — 1 there is a non-negative integer a, with

m* = u (mod p).

It follows from n = 0 (mod p) that A(m,n) is d-complete modulo p. Hence,
Lemma [2.2](i) holds.

Next, we assume that 7 > 2, and so p?{n. Let n = pn; with ged(p,n1) =1.
We shall use induction to prove that A(m,n) is d-complete modulo p".

By the above argument, A(m,n) is d-complete modulo p. Suppose that
A(m,n) is d-complete modulo p®; we will prove that it is d-complete mod-
ulo pst1.

For an integer 0 < u < p**t! — 1, 4 can be written as

u=vp® +w

with 0 <v <p—1and 0 <w < p*— 1. Clearly, n**! = 0 (mod p*!). Now,
we deal with the case v > 1, that is, either v > 0 or w > 0. Since A(m,n) is
d-complete modulo p®, there exist non-negative integers a; and b; such that

lw
Z m%n® = w (mod p*)
i=1
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with

(2.4) mUnb tmBnb 1 <i#j<t,.

Here, we define tg = 0 and 2?21 m%nb =0, and for w > 0, we may require
that

(2.5) a; >p+n® and 0<bh <s-—1

since p|n and m»++*(®") = ma (mod p*). Let
tw
Z m¥nb = v'p* + w.
=1

If v/ = v (mod p), then
tw
Z m®n® = vp* + w (mod p*)
i=1
with m®nb t m®nb (i # j). If v’ # v (mod p), then by the d-completeness
modulo p of A(m,n), there exists an integer 0 < ay, 11 < p such that
m%etl = (v — v )n; (mod p),
where n1n; = 1 (mod p**!) (such an n; exists since ged(n, p) = 1). Thus
tw
Zm‘”nbi + m®etin® ='p® +w + (v —v")p*nin; = vp® +w (mod pS‘H).
i=1
By (2.5) and at,+1 <p,
mutin® fmainbi  minbi fmAetins 1 <G <ty
It follows from ([2.4)) that
ma"nbifm“fnbf, 1<i#j<ty+1,

where by, 11 = s. Hence A(m,n) is d-complete modulo p*T!. Therefore,
Lemma [2.2(ii) holds. =

LEMMA 2.3. Let r,l,m,n be integers with r > 1, l,m,n>2, ged(l,n) =1
and p be a prime with p|n. If A(m,n) is d-complete both modulo | and
modulo p", then A(m,n) is d-complete modulo Ip".

Proof. The proof is by induction on r. First, we prove that Lemma [2.3
is true for r = 1.
For an integer 0 < u <lIp — 1, u can be written as

U =vp+w

with 0 <v <l—1and 0 <w < p—1. Since A(m,n) is d-complete modulo p,
we have p{m and for 1 < w < p — 1, there exists a sufficiently large integer
a1 = aj(w) such that

al

m® = w (mod p).
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Define I, =m® if l <w<p-—1land I, =0if w=0. Let I, =vp+w
and n = n1p. Noting that A(m,n) is d-complete modulo [ and ged(l,n) =1,
there exist non-negative integers a;, b; (i > 2) such that

t
Zm“inbi = (v — ')Ay (mod 1),
=2

where n1n1 = 1 (mod 1) (such an 7y exists since ged(ng, ) = 1) and
(2.6 mfnb fmt, 2 <A<t

Hence
t
z:ma"nl”Jrl = (v—v)Anp = (v —2")p (mod 1),
=2
and so

¢
I, + z:mL”nbiJrl =(w—v)p+vp+w=vp+w (mod ).
=2

In view of p|n and I, = w (mod p),

t
I, + Zm‘“nbi*l =w = vp +w (mod p).
i=2
Since ged(l,p) = 1, it follows that

t
I, + Z m%nbt = vp 4w (mod Ip).
i=2
By 29),
mnbitlymaipbitt 9 <4<t
In addition, for 1 < w < p — 1, we have both m®nb*! { ma and m®
m®nbitl (2 < i < t) since p|n, pfm and a; is sufficiently large. Hence,
A(m,n) is d-complete modulo Ip. Thus, the conclusion of Lemma [2.3|is true
for r = 1.
Now, we assume that » > 2 and Lemma [2.3] holds for » — 1. We shall
prove that Lemma [2.3] holds for r. The proof is similar to that for r» = 1.
For an integer 0 < u < Ip” — 1, u can be written as

U =vp + w,
with 0 < v <Ip"~! —1and 0 < w < p— 1. Note that A(m,n) is d-complete
modulo p", so it is d-complete modulo p® (1 < s < ). Thus, for 1 < w < p—1,
there exists a sufficiently large integer a; such that

al

m* = w (mod p).
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Define I, =m*™ if 1 <w <p-—1and I, =0 if w = 0. Let I, = v'p + w.
By Lemma p? £ n. We can express n as n = nyp with ged(p,n1) = 1.
By inductive hypothesis, A(m,n) is d-complete modulo Ip"~!. Hence, there
exist non-negative integers a;, b; (i > 2) such that

t
Zmainbi = (v —')n1 (mod lpT_l),
1=2

where n1n; = 1 (mod Ip") (such an 7 exists since ged(nq,lp”) = 1) and
m¥nb fm@nb,  2<i#4j<t
It follows that

t
Zm‘”nb”rl = (v—v)Anp = (v —2")p (mod Ip")
=2

and

¢

I, + Z m%nbitl = (v — 0" )p +v'p + w = vp + w (mod Ip").

=2
Similar to the argument for r = 1, we have
mainbtl pmainbitl 9 <4 i<t
and for 1 <w <p-—1,
mpbi Tl pm® @ pminhitl 9 <<t

Therefore, A(m,n) is d-complete modulo Ip". =

Proof of Theorem . Firstly, we prove the necessity. If ged(l, mn) =1,
then (1) is true by Lemma If ged(l,mn) > 1, without loss of generality
we may assume ged(l,n) =y > 1. Since A(m, n) is d-complete modulo [, it is
d-complete modulo . It follows from + | n that for every integer 1 < u < y—1,
there is an integer a,, such that

m® = u (mod 7).

Since m® = 1 (mod 7), we see that ged(m,vy) = 1. If v is composite,
then there exists a prime p with p|v and p < ~. However, in view of
m® = p (mod «), we have p|m, a contradiction to ged(m,~y) = 1. Hence, if
ged(l,n) > 1, then ged(l,n) is prime and m is a primitive root of ged(l,n),
from which one immediately deduces (2)—(4).

Now, we prove the sufficiency. If condition (1) is true, then we infer that
A(m,n) is d-complete modulo [ by Lemma

Suppose that condition (2) holds. Then ged(l,n) = p with p prime and
m is a primitive root of p. Clearly, m # n® for any rational number «. Let
I = l1p" and n = nqp®, where ged(l1,n1) = 1 and ged(lyn1,p) = 1. Since
ged(l,n) = p, we have r =1 or s = 1. By Lemma A(m,n) is d-complete
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modulo p”. Since ged(l, m) = 1, it follows from ged(l1,n1) = ged(ly,p) =1
that ged(ly, mn) = 1. By Lemmal[2.1, A(m,n) is d-complete modulo I1. From
Lemmal[2.3] we see that A(m,n) is d-complete modulo I. When condition (3)
holds, one can prove similarly that A(m,n) is d-complete modulo .

Suppose that condition (4) holds. Let ged(l,n) = p and ged(l, m) = ¢ be
two distinct primes. Then [, m,n can be expressed as | = [1p"q"2, n = nyp°
and m =m1q", where ged(p,l1n1) =1, ged(q,lymy) =1 and ged(ly, mn) = 1.
We have 11 =1 or s=1 by ged(l,n) =p, and ro =1 or t =1 by ged(l, m) =gq.
By an argument similar to that when (2) holds, we deduce that A(m,n) is d-
complete modulo all of p™, ¢" and [;. By Lemma A(m,n) is d-complete
modulo . =
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