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Abstract. We prove an essentially optimal large sieve inequality for self-dual Eisen-
stein series of varying levels. This bound can alternatively be interpreted as a large sieve
inequality for rationals ordered by height. The method of proof is recursive, and has some
elements in common with Heath-Brown’s quadratic large sieve, and the asymptotic large
sieve of Conrey, Iwaniec, and Soundararajan.

1. Introduction

1.1. Setting up the problem. A general large sieve inequality is an
upper bound on the operator norm of an arithmetically defined matrix A =
(Am.n), with Ay, € C. Define the norm of A, denoted || Al|, by

4 = max 3| S andmn
|ee|=1
m n

The duality principle implies that ||A]| = || A, where A* = (A, ).

A particularly interesting choice of A, , is Ag(n), where f ranges over a
family F of automorphic forms or L-functions, n ranges over an interval of
positive integers, say N/2 < n < N, and Af(n) is the nth Dirichlet series
coefficient of the L-function L(f,s). In this case, we write A(F, N) for the
norm of this large sieve matrix, namely

(1.1) A(F,N) = max 3 ‘ S as(n)

fEF N/2<n<N

2
, o a=(ay).
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2 M. P. Young
The dual norm A*(F, N) is given by

(1.2) A(FN) =max Y )Zﬁfxf(n)f.

=1
18] N/2<n<N feF

The classical multiplicative large sieve inequality concerns the case where
Af(n) = x(n), and where the family runs over primitive Dirichlet characters
x modulo ¢, with ¢ < Q. Applications include the Bombieri—Vinogradov
theorem, estimates for moments of L-functions, zero density estimates, and
a variety of sieving problems. See [M] for details.

There are many works on large sieve inequalities for other families. For
instance, Deshouillers and Iwaniec [DI| obtained a sharp bound for cusp
forms on GLs, which in turn has been a powerful tool in studying statistical
properties of the Riemann zeta function on the critical line. Heath-Brown
[H-B] showed an essentially optimal upper bound on the sparse subfamily
of quadratic Dirichlet characters. Many state of the art works on quadratic
twists of modular forms, with elliptic curves being of particular interest, have
relied on Heath-Brown’s bound.

In this paper, we are interested in the following family F. For any Dirich-
let character ¢ modulo r and real number ¢, define

Api(a,b) = 9 (a)y(b)(a/b)™.

Here ) 1, Api(a,b) =: Ay (n) is the nth Hecke eigenvalue of a self-dual
Eisenstein series on Ip(r?), and when ¢ is primitive, the Eisenstein series
is a newform. Let k& be a positive integer, and let # run over all Dirichlet
characters modulo k. Let @ > 1 be a real number, and for each Q/2 < ¢ < @
with (¢,k) = 1, let x run over primitive Dirichlet characters modulo g.
Finally, let T > 1 be a real number, and let |¢| < T'. Then define F to consist
of the characters x6, with corresponding data Ay ¢(a,b), with N/2 < ab < N
and (a,b) = 1. We write

(1.3)  AQ,k,T,N) =

fgﬁx S Z Z Z ‘ Z oza7b)\xg7t(a,b)2dt,

T/2<t<TQ/2<q<Q X (mod q) 6 (mod k) N/2<ab<N
(g:k)= (a,b)=1

which agrees with A(F, N) for this family F. The dual norm A*(Q, k,T, N)
is given by
(1.4) A*Q,k,T,N) =

m | § Y Y Y Awdedend]

N/2<ab<N T/2<t<T Q/2<q<Q x (modq) 6 (mod k)
(a,b)=1 (g.k)=1
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As a “trivial” bound, which we mainly state for reference, one may deduce
from the classical large sieve inequality the bound

(1.5) A(Q,k, T,N) < (Q*kTVN + NlogN).

Deducing the estimate uses the idea of the Dirichlet hyperbola method,
by summing over a < v/ N trivially, and applying the classical large sieve to
the sum over b < N/a.

The condition (a,b) = 1 may be easily overlooked, yet it is vital. The
above sketch shows that the trivial bound holds even without this con-
dition. In fact, if the condition (a,b) = 1 were to be omitted in (L.3), then
the term of size Q*kTVN in would not be removable, because one
could choose g in to be the indicator function of a = b. For this, note
Atla,a) = 1 for a coprime to the modulus of x. Therefore, any substan-
tial improvement over this trivial bound must use the condition (a,b) = 1.
The restriction (a,b) = 1 is similar in spirit to the (necessary) square-free
restriction when studying quadratic characters, as in [H-B]; for more on this
point, see Section [I.4.1] We also observe that choosing a4 = aqp to depend
only on the product ab would give rise to sums of the form >, anAy(n)
appearing in . Then considering n = p? would lead to a large term as
discussed above.

1.2. Main results, and discussion
THEOREM 1.1. We have
(1.6) A(Q.k, T, N) <. (QkTN)*(Q*kT + N).

This estimate is optimal (up to the e-aspect) by general principles (see
[IKl Chapter 7]). We may interpret this as a spectral large sieve inequality
for the family of trivial nebentypus newform Eisenstein series on Iy(q?k?),
with varying level g. Theorem appears to be the first sharp large sieve
inequality for a GLo family with varying levels. The classical large sieve
inequality can be interpreted as a GL; large sieve inequality, while Heath-
Brown’s celebrated quadratic large sieve can be viewed as an estimate for the
subfamily of self-dual GL; forms. The GLy families of varying nebentypus
do not seem to have strong orthogonality properties, as shown by Iwaniec
and Li [IL].

We also have an additive character variant of Theorem [.11

THEOREM 1.2. Define a norm

Apdd.(Q,N) = max Z Z Z ambeq(tag) 2dt.

Q/2<q<Q t (modgq) N/2<ab<N
(¢:k)= (a,b)=1
(ab,q)=1

Then Angq.(Q, N) < (Q? + N)'*e.
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Theorem follows quickly from Theorem by the method in [IK]
Section 7.5]. We have omitted the T- and k-aspects solely to simplify the
expressions; hybrid bounds analogous to hold for the additive characters
as well.

We may interpet Theorem as a large sieve inequality for rationals,
which we now explain. Let v, be the usual p-adic valuation. For ¢ > 1,
let Q) = {z € Q : vp(x) > 0 for all p|q}, which is a ring. Indeed, with
the multiplicative set S defined by S = {n € Z : (n,q) = 1}, we have
Q) = S~17, the localization of Z by S. There exists a natural reduction

X

map redy : Q; — Z/qZ. The reduction map may be restricted to @(q) =

{x € Q : vp(x) = 0 for all p|q}, which is a multiplicative subgroup of Q*.
If x is a Dirichlet character modulo ¢, and n € Q(Xq ) then define x(n) by

x(redy(n)). That is, if n = a/b € Q(Xq), then x(n) = x(ab). For n = a/b € Q*

in lowest terms, define ht(n) = |ab|, which is a cousin of a height function.
Note that [{n € Q* : ht(n) < X}| = X1+e(),

THEOREM 1.3. We have

2
a3 3T Y e <@+ NN el
q<Q x (mod q) neQ(Xq> neQX
ht(n) <N ht(n)<N

This is simply a restatement of Theorem in this notation, with k =1
and the omission of T'. These specializations are not necessary, and are only
in place to de-clutter the statement.

From Theorem one can also easily derive results about rationals or-
dered by the more standard height function. For n = a/b € Q* in lowest
terms, let Ht(n) = max(|al, |b]). Note that ht(n) < Ht(n)?, from which we
immediately deduce:

COROLLARY 1.4. We have

2
ST Y e <@ +NHE Y el
q<Q x (mod q) nGQ(Xq) HatmeQX
Hb(n)<N (n)<N

This is sharp, since [{n € Q* : Ht(n) < X}| = X*°(1)_ Since Theo-
rem easily implies Corollary but not vice-versa, this supports our
usage of ht in place of Ht.

For n € Q*, one may define o, = e(n), or oy, = ep(a), etc. These
examples illustrating Theorem [I.3] are somewhat similar to the quantities
studied in [DFI].

The proof of Theorem [I.1] attacks the problem from both sides, via A
and A*. In this sense, the proof has new features not seen in previous large
sieve inequality bounds. Very briefly, the strategy of proof is as follows. If
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N > Q?kT, then we study the dual norm A* and apply the functional
equation of Dirichlet L-functions. The dual side is effective in this range
of parameters because the functional equation will shorten the lengths of
summation. On the other hand, if N < Q?kT, then we more directly study
the family average. The main tool on this side is the divisor-switching method
used by Conrey—Iwaniec—Soundararajan on the asymptotic large sieve [CIS]
(see also [HL p. 210]). On both sides, we derive a recursive bound which
relates the norm to itself, but with different (smaller) parameters.

When N =~ Q?kT, then both methods are essentially circular. The key to
breaking out of this deadlock is to use monotonicity, lengthening one of the
sums. The use of the functional equation and monotonicity were both crucial
tools in Heath-Brown’s quadratic large sieve. A major difference between
our method and Heath-Brown’s is that in the quadratic case, the norm was
almost self-dual by quadratic reciprocity. This property completely fails in
our situation.

We now discuss the two main workhorse results used to prove Theo-
rem [I.1], both of which require defining some variants on A. Let

N
1. A T,N) = XA = ).
(1.8) (Q,k,T,N) PIr S (R,E,U,C>
XR2WULQ?*kT
xX<c

Note that trivially A(Q, k, T, N) < A(Q,k, T, N), by taking X =1, R = Q,
{ =k, U=T,C = 1. Theorem will show these norms are essentially
of the same order of magnitude. On a first pass, the reader is encouraged
to think of A(Q, k, T, N) as A(Q, k, T, N) itself. Another notational conve-

nience is to write

(1.9) A(Q, k,T,N) = max AR, k, U, M),
Q<R<Q(Q*KTN)*
T<U<LT(Q?kKTN)®
N<M<N(Q?kTN)®

and similarly for other norms, such as A’. In practice, the choices of € will be
either unimportant, or apparent from the context, and no confusion should
arise from suppressing them on the left hand side of ([1.9).

THEOREM 1.5 (Recursive functional equation). If N > Q*kT(QkT)¢,
then

(1.10)  A(Q,k,T,N) < (QKTN)E [N + ~

A’(Q,k,T, W)}

Q2T

We also derive a recursive bound on A by the family average approach.
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THEOREM 1.6 (Recursive family average). If Q?kT > N(QKT)~¢, then

(1.11)  A(Q,k,T,N) < (QKTN)® QQkT+Q2kTA’< N ,k,T,N)].

N EQT

The proofs of Theorems|[I.5|and[I.6] appearing in Sections [ and [f] respec-
tively, are logically independent, and can be read in either order. Although
very different in the fine details, the two proofs have important structural
similarities. Because of the logical independence of these two sections, and
due to the strong analogies, we have deliberately chosen to ‘“refresh” notation
when passing from Section [f] to Section [5} Even more, we have structured
the proofs in a similar way, and chosen notation to help draw the reader’s
attention to analogous quantities in the two proofs.

Our main interest in Theorem is with £ = T = 1. However, the
recursive nature of the proofs and the appearance of the generalized norm
A’ in Theorems and force us to consider more general values of k
and 7.

1.3. Applications. The classical large sieve has a wealth of important
applications, and we consider some variants for the new rational large sieve
(Theorem. The literature in analytic number theory on sieving problems
for the rational numbers is relatively sparse. The authors of [EEHK], Z] give
versions of Gallagher’s larger sieve for rationals, and deduce some impressive
algebraic applications. More applications could be of great interest.

Consider the following sieving problem. Let N' = {n € Qs¢ : ht(n) < N}.
Let P be a finite set of prime numbers. For each p € P, let {2, C Z/pZ. Define
the sifted set

SN, P,2) ={neN :for all pwith v,(n) =0, red,(n) & 2,}.
Note that if v,(n) # 0, then red,(n) may not be defined. Let w(p) = [£2,],

and suppose that w(p) < p for all p € P. Let h(p) = pffup()p) for p € P, and
h(p) = 0 for p € P, and extend h multiplicatively on the square-free integers.

Define H =} - h(q).
PROPOSITION 1.7. With the above notation, we have

2\1+e
s P « BEIE

One can prove this following the method of [IK| Theorem 7.14]. Alterna-
tively, see [K, Proposition 2.3] for a proof in much greater generality. For a
nontrivial result, one needs H > N¢, which is more restrictive than in the
classical arithmetic large sieve.

A standard application of the classical large sieve is to let {2, consist
of p%l residue classes chosen arbitrarily, for all p < @. Then H > @Q, and

taking Q = V/N gives |S(N, P, 2)| < N'/2+=.
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We also present a Barban—-Davenport—Halberstam type theorem. Suppose
that o, is a sequence supported on Q¢, with ht(n) < X. We assume a weak
Siegel-Walfisz (S-W) type condition for the sequence, as follows. Define

S(X, X) = Z anX(n)'
ht(n)<X
For x = x’'xo with X’ of conductor r > 1, and xq trivial modulo s, we assume

12 (g
112) 5G] < ol T L)

for some k-fold divisor function 73, and all r < (log X)?

PROPOSITION 1.8. Suppose that o satisfies the S—W condition (1.12)) for
any B > 0. Then

1 2 X]a\2
YT X e gm Y om| <
¢<Q a(modq) ' ht(n)<X QD(Q) ht(n)<X (log X)
n=a(modg) (n,g)=1

for any A > 0, provided Q < X'7¢.
We prove Proposition in Section [3]

1.4. Proof sketches. Here we present some overly-simplified outlines
of the proofs. In this section we freely drop factors of size (Q?kTN)?, as if
they were 1.

1.4.1. Theorem[1.5 For simplicity, we omit the t-aspect, and we write
A(Q, k, N) for the norm. For a bump function w supported on [1/2, 2], con-
sider

S = Z w(i?)]T(a, b)|?>, where T(a,b) Z By.ox0(ab).
(a,b)=1 q,X,0
The condition (a,b) = 1 is necessary but difficult to use. In comparison to
the quadratic large sieve, this condition is analogous to the restriction to
fundamental discriminants. Inspired by this similarity, and following [H-B],
let 1 <Y < N/10 to be chosen later, and note S < Ssy, where

ab 9
sv= % wy)rank
ab/(a,b)2>Y

We then write Ssy = Seo — S<y, where S<y has ab/(a,b)? <Y, and Se has
a and b unconstrained. These two sums are treated in completely different
ways. For Scy, let ¢ = (a,b) and change variables a — ga and b — gb.
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Ignoring coprimality issues, we get T'(ga, gb) ~ T'(a,b), and so

s 3 S u(L8)ira

ab<yY g
(a,b)=1
o~ N\*® o ds
— e X () mank .
(2) ab<yY

(a,b)=1

Next, shift contours to the line e, passing a pole at s = 1/2. The contribution
to S<y from the new contour is essentially < N*A(Q, k,Y)|S|?. The pole
at s = 1/2 gives

1 N /2 ,
(1.13) 50(1/2) > <ab> |T(a,b)|?.
ab<lY
(a,b)=1
This term is not satisfactorily bounded on its own. Indeed, even if we accept
Theorem then by breaking up into dyadic segments M/2 < ab < M,
with 1 < M <Y, we can at best bound (|1.13)) by

N\ 2 2 2 1/2v,1/21( 3|2
s, (§7) (@4 ADIE < (@RVE + NV,
The former term of size Q%kv/N is the culprit, and matches with .
Luckily, and crucially, the term (|1.13)) will partially cancel with another
term from Seo. This cancellation property also appeared in [H-BJ.

Next, consider So. Opening |T'(a,b)| and applying the Mellin inversion
formula gives

So= Y. BB | @(s)N°L(s,®)L(s, ®) ds

q1,92,X1,x2,61,02 (2)

2mi’

where @ = y1x2010>. Unfortunately, @ may not be primitive, and this compli-
cates the application of the functional equation. For this sketch, we consider
the two extremes, where either @ is primitive of conductor qig2k, or @ is
trivial. The trivial case is easy to control, since this means x; = x2 (whence
¢1 = q2) and 67 = 05. This gives rise to a diagonal term of acceptable size
O(N|B|?). For the primitive characters, we shift contours to the line —1,
change variables s — 1 — s, and apply the functional equation. This gives
(roughly)

2 [ ~ (q1g2k)**~ 1 ~(s) —. ds
> B [ a-s) 1]\275_1 W(l_S)L(s,gb)L(s,qﬁ)%,

q1,92,X1,X2,01,02 (2)

where 7(s) is the product of gamma factors in the completed L-function of
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L(s,®)L(s,®). Next re-open the Dirichlet series and rearrange, which gives
~ s k)21 ds
Z S w(l— S)L Z ,Blﬁz(((hq;jzflel)@elag(ab)

1—s 21
a’b (2) /y( ) q17q27X17X2791762

Letting g = (a,b), replacing a by ga and b by ¢gb, and summing over g, we
obtain

w —37’}/(8) s
M%Q/N (g) A= 8) 256

(a,b)=1 )21

> Z 516 (Q1QQ]€

( )Ns 1
q1,92,X1,X2,01,02

as the sum can be truncated at ab < Q*k?/N (by shifting the contour far
to the right). Next, we shift contours back to the line ¢, crossing a pole at
s = 1/2. This polar term has a nice simplification, and takes the same form as
, but with ab truncated at Q*k%/N instead of Y. Taking Y = Q*k?/N
then causes these two polar terms to cancel! The contribution on the line
¢ essentially becomes bounded by QQkA(Q k,Q*k%/N), which agrees with
Theorem

1.4.2. Theorem [1.6. For simplicity, take k = 1 and omit ¢, and write
A(Q, N) for the norm. For a bump function w, let

S=Yw@/Q) Y TR TO)= Y.  assx(ab).

x (mod q) N/2<ab<N
(a,b)=1

ds
X1X20102(ab) Dy

The condition that y is primitive is necessary but difficult to use. In analogy

with the proof of Theorem let Y < @/10, and define

Soy =Y w(g/Q) Y. 1T

q X (mod q)

cond(x)>Y
Then § < Ssy, by positivity. Again, write S = So — S<y where S<y
has characters modulo g with cond(y) < Y and S has y ranging over all

characters of modulus q.

For S<y, replace ¢ by qqo and x by xxo where (the new) x has conduc-
tor ¢, and xq is trivial. Ignoring coprimality, we have T'(xxo,t) ~ T(x,t).
Applying Mellin inversion, and summing over ¢ to form a zeta function, we

obtain
s~ X Lo 2) ¢ X R

q<Y (2) X (mod q)

We shift contours to the line ¢, passing a pole at s = 1 only. This polar term
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takes the form

(1.14) Qe > ¢t Y Tl

q<Y X (mod q)

On the new line £, we essentially obtain an expression of size A(Y, N)|B|?.
This polar term is the analog of , and as before, it is not satisfactorily
bounded on its own. Indeed, Theorem would imply that at best is
bounded by

Qumax R~ (R? + N)laf” = (QY + QN)lal”.

Here the term QNN is the culprit, and as before, we will cancel this polar
term with one arising within S.

Now consider Ss,. Opening the square and applying orthogonality of
characters gives

Soo = Q Z w1 (Q/Q) Z Qay by Vag by s

q (a1,b1)=(az2,b2)=1

a1ba=azb; (mod q)
where wi (z) = zw(z). The range of possible values of gcd(a1ba, azbi) causes
some arithmetical difficulties. For this sketch, we consider the two extreme
cases, where either they are coprime, or aijby = agb;, which we call the
diagonal case. Since (a1,b1) = (ag,b2) = 1, the diagonal reduces to a; = as

and by = be, giving a term of size O(Q?|a|?), which is acceptable.

We now focus on the case (a1be, azb;) = 1. Write a1be = agb; + ¢r, which
we now interpret as ajbe = agby (mod r), with ¢ = (a1by — agby)/r. Note
that typically »r < N/Q, so this reduces the modulus when Q2 > N. This

leads to
aibas — ash
20 Y w("g e

T (a1,b1)=(az,b2)=1
aiba=aszb1 (modr)

Next, we detect the congruence with characters modulo r, as in [CIS], giving

Som@Y > !

r  x (modr)

arby — asby L o
X Z w1 (Q,r-)aalublaa2,b2x(a1b2a2bl)-
(a1,b1)=(az,b2)=1

Since the characters are not primitive, replace x by xxo and r by rrg where
the new y has conductor 7, and xq is trivial modulo rg. Applying Mellin
inversion, and evaluating the rg-sum in terms of a zeta function, we deduce
that S is roughly
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Qfm(-s) > >

(1) r<N/Q x (modr)
aiby — aghy \° o by anbr) 2
X Z <QT> (s 4 1)aa, b, Tay by X (a1b2azby ) 27
(a1,b1)=1
(a2,b2)=1

Next, we shift contours to the line —1+ ¢, passing a pole at s = 0 only. Note
that wq(0) = w(1). This polar term nicely simplifies, and takes the same
form as , but with r truncated at N/Q instead of Y. Taking Y = N/Q
causes the two polar terms to cancel. Next consider the integral along the line
—1 4+ ¢. The variables a;, b; are not separated, but one might hope that this
is only a technical issue solvable with integral transform techniques (indeed,
see Lemma . We might then expect the contribution from the new line

of integration to be bounded by %A(N/Q, N)|a|?, which is consistent with
Theorem

The wealth of extra parameters in the definition of A" in are there to
account for the overlooked conditions (both arithmetical and archimedean).

1.4.3. Reflections. The similarities between the proofs are remarkable,
even if the fine details are different. We also observe that the divisor-switch-
ing method used in the proof of Theorem [I.6] is analogous to the func-
tional equation of the Dirichlet L-functions used for Theorem [I.5] At the
cost of some exaggeration, one might call the divisor switch itself a func-
tional equation. In support of this, consider the family of functions 75(n) =
> ab—n(a/b)®, which does indeed satisfy the functional equation 7_(n) =
Ts(n), by the divisor switch. Moreover, they appear as Fourier coefficients of
the level 1 Eisenstein series, and the functional equation of the Eisenstein
series is entwined with the functional equation of its Fourier coefficients.

1.4.4. Theorem [I1. Theorem [.1] is deduced from Theorems and
[1.6]in Section [2] The proof uses the fact that the norm A is monotonic, and
applies the two self-referential theorems in a recursive manner. In retrospect,
some of these ideas have similarities to elements used in [BI1l [BI2].

1.5. Notation and conventions. Let Ig(s) = 7—%/2I'(s/2). If x is a
Dirichlet character and a/b € Q in lowest terms, we may interchangeably
write

(1.15) x(a)x(b) = x(ab) = x(a/b).
We use the notation A < B as a synonym for
(1.16) A< C(e)(Q*kTN)°B.

2. Deduction of Theorem In this section, we use Theorems
and [1.6] to prove Theorem
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2.1. Monotonicity. As in the quadratic large sieve [H-B], it is vital
that the norm A(Q,k,T,N) is essentially monotonic in the N- and Q-
components. The proofs differ a bit depending on the case, but the overall
theme is similar, and based on an idea of Forti and Viola [FV].

LEMMA 2.1. Suppose P > log(QN) with a large (but absolute) implied
constant. Then there exists a prime p € [P,2P] such that

AQ,k,T,N) <8A(Q,k,T, Np).

Proof. Since k and T are frozen, we suppress them from the discussion,
writing A(Q, N) in place of A(Q,k,T,N). Let 7,5 be complex numbers
supported on N/2 < ab < N, and (a,b) = 1. Let P > 1 be a parameter to
be chosen, and let P* denote the number of primes p € [P,2P]. The prime
number theorem implies P* ~ %. Now we have

S| S e@xe) =5 S| X enx@xe)

‘ 2

(a,b)=1 ;X P<p<2P (ab)=1
N/2<ab<N N/2<ab<N
1 2
YL X)) T @)
a,x P<p<2P P<p<2P (a,b)=1
plg plg N/2<ab<N

For the terms with p| ¢, we simply use
P 1S
P P*log P
P<p<2P
plg
Taking P > log @) large enough so that P*log P > 2log @), and rearranging,
we obtain

AQ,N Sr%%( ”Y\QZ Z ’ Z Ya,bX(a)X(b)

X P<p<2P  (ab)=1
pla  N/2<ab<N

’2

Next we separate the values of a and b to make two subsums corresponding
to (p,ab) =1 and p|ab. This gives

AQ,N <maxh,22 X (X ( +[>]).

P<p <2P (ab,p)= plab

We bound the terms with p | ab sumlarly to the treatment of p | ¢, which gives

o I’YIQZ 2 ’Z‘ T%sz* D AQRND Jasl

P<p<2P p P<p<2P plab

q
4log N
< —=—A(Q,N).
— P*log P (@.N)
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We choose P > log N large enough so that If,}?gN < 1, whence

A(Q. N) < max MQZ > ‘ Z YapX( ab‘

q;X P<p<2P )
Piq (ab,p)

Now we freely multiply by |x(p)|?, which has absolute value 1 since p { q.

In addition, we change variables A = ap, let 04 = 74/, make note that
Np/2 < Ab < Np, ]5\ = |y|, and (A,b) = 1. Thus

<
AQN) < 5, P<;2PA Q.Np) <8 max AQNp). =

LEMMA 2.2. Suppose P > log(NQ) with a large (but absolute) implied
constant. Then there exists a prime p € [P, 2P] such that

AQ,k,T,N) < 8A(Qp, k, T, N).

Proof. Since k and T are frozen, we suppress them in the notation. Iset
P > 10 to be chosen, and let P** = ZP<F<2P Zw (mod p) 2_ 1, 50 P < P

We have o los
DSOS V) )|
(ab)= (a,b)=1 P<p<2P 3 (modp) 4:X
N/2<ab<N N/2<ab<N
I O MED 9 |) SOOI
(a,b)=1 DY pY X
N/2<ab<N (p,ab)=1  plab

For the terms with p|ab, we simply use

P P**log P
p7
plab

2Plog N 1
P**log P S 2

with p { ab, we freely multiply by |¢(a)i(b)|?, which is 1 for such primes.
This gives

2
AQN) < s Z o SIS Ao @ae)]

P GX

and choose P > log N large enough so that . For the terms

N/2<ab<N

Next we separate the values of g to make two subsums corresponding to
(p,q) =1 and p|q. This gives

A(Q,N) < %12(}){|5|2 (ab):l P** (‘Z‘ ‘qzxz‘?)
N/2<ab<N PV (ap= pla
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We upper bound the terms with p| ¢, which gives

IR DD ML
(ab) b OX
N/2<ab<N plg

p\q
4PlogQ 9
< —A(Q,N .
< pot a@.vs
We choose P > log Q large enough so that ;ilﬁ)gg % < 1 , whence

8 1 _ 2
(Q, )<1%1%<W Z e Z Z 5XX¢(ab)‘ :
(a,b)=1 D, ;X
N/2<ab<N (¢:p)=1

Now x1) is a character of conductor pg, with pQ/2 < pg < pQ, so we obtain
AQ,N

<
< o Z% ApQ,N) <8 max A(pQ.
p

N).

REMARK. The norm A is also monotonic in the k- and T-aspects, but
this property is not needed in this work, so we do not give proofs

2.2. Relations between norms. To simplify the recursive steps in the
proof of Theorem it is Convenient to have the following relations. Proofs

follow from the deﬁmtlons and .
LEMMA 2.3. Suppose that there exists e > 1 such that
A(Q,k,T,N) < Q*kT + N°©
forall Q, k, T, N. Then for all Q, k, T, N we have
A(Q,k,T,N) < Q*kT + N°©.
LEMMA 2.4. Suppose that there exists e > 1 such that

AQ,k,T,N) < (Q*T)*+ N
forall Q, k, T, N. Then for all Q, k, T, N we have

A(Q,k,T,N) < (Q*T)* + N.

2.3. The recursions

PROPOSITION 2.5. Suppose that there exists e > 1 such that
(2.1) A(Q,k,T,N) < Q*T + N°

for all Q,k,T,N. Then, with ¢’ =2 — l, for all Q,k, T, N we have

AQ.k,T,N) < (Q*kT)® + N.

Proof. Let F = Q?kT, which is the size of the family. By monotonicity
(Lemma[2.1)), we have A(Q, k, T, N) < A(Q, k, T, Ny) for Ny > N log(FN)
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Let Ny =< Nlog N + F* for some o > 1, so that F' < Nj. By Theorem [L.5]

M F?
AQ,k, T,N) < AQ,k,T,N1) < Ny + — A’(Q kTS )
1

By Lemma we can use the assumption (2.1)) to obtain

Nl F2 2e—1
kKT, N) SN +—|F N
A(Q, ) S 1+F< +<Nl>><< 1+N61

S N+Fa+F2e—1—o¢(e—l).

We choose « optimally so that & = 2e — 1 — a(e — 1), which simplifies as
a =2 —1/e. Since e > 1 by assumption, this means « > 1. =

We also have a complementary version:
PROPOSITION 2.6. Suppose that there exists e > 1 such that
(2.2) AQ,k,T,N) S (Q*kT)° + N
for all Q,k, T, N. Then, with ¢ =2 —1/e, for all Q,k, T, N we have
A(Q,k, T,N) < Q*kT + N¢.

Proof. Let F = Q*kT. By monotonicity (Lemma , we deduce that
A(Q,k,T,N) < A(Q1,k,T,N) for Q1 > Qlog(FN). We take Fy := Q}kT
= Q%kT log?(FN) + N® for some a > 1, so that N < Q?kT. By Theorem
[1.6] we have

N
AQ,k,T,N) < A(Q1,k, T,N) S F1 + — A’(

kEQT’
By Lemma we can use the assumption (2.2]) to obtain

KT, N).

Fl N2 e 2e—1
(Qk‘TN)<F1+N<<F1> —I-N) < 1+ o1
1

< F+ N@ 4 N2emi-ale]),
Choosing a = 2 — 1/e completes the proof. =
2.4. Proof of Theorem Using the trivial bound , we have
AQ,k, T,N) < Q*TVN + N < (VN + Q*kT)? < N + (Q%kT)?,
which is with exponent e = ¢y = 2. Applying Proposition gives

with e; =2 —1/eg = 3/2. Continuing this process, We obtain a sequence of
exponents e;, with e;11 = 2 — 1/e;, for which either or . ) holds (in
an alternating fashion). It is easy to check that the ez are decreasing, with
limit 1, whence Theorem holds.
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3. Proof of Proposition The following proof is based on [IK|
Section 17.2]. Decomposing with Dirichlet characters and applying orthogo-
nality gives

(3.1)
)OED DD S 2= o = D slsEaoP
q<Qa(modgq) ' ht(n)<X ht(n)<X g<Q x ( modq)

n=a (mod q) ( n,q)=1 XF#X0

Write ¢ = qo¢’ and x = xox’, where x has conductor ¢’. Then (3.1)) is at

mos Z Z

09 '<Q x' (mod ¢')
q>1

We break up this sum according as ¢ < Qo = (log X)? or ¢ > Q. For
q < Qo, we apply the S-W condition (|1.12)), which gives a bound of the

o (@)’ of? jof?
Tk (40 Xla 12 X|ov

Xl « (1og @y Kol
qgQ #(q0) 1<%Q0 (log X)2P (log X)¥

The terms with Qo < ¢ < Q/qo are bounded by

<<Z =en) Yo RTTARX) Dl

9 <Q Qo<R<Q/qo ht(n)<X
dyadic (n,q0)=1

For R < (XQ)Y1°, we use the “e-free” bound A(R, X) < (R* 4+ X log X)
(see (I.5))), while for R > (XQ)'/1°, we use Theorem 1.1} In total, we obtain
the following bound for the terms with ¢’ > Qq:

al? Y

1 14 X e X 9
o PL00) <Q +(10gX)B<1—5>—1> < (Q (log xyBa—=2 ) 1o

Choosing B(1 — &) — 2 > A completes the proof of Proposition

4. Proof of Theorem [1.5]
4.1. Miscellany. We begin with some miscellaneous results that will be
useful later.

DEFINITION 4.1 (A partition of unity). Let T'> 1, ¢ > 0. Choose smooth
and even functions wy and wy (r) = w(r/T") so that for all |r| < T we have

(4.1) wo(r)+ Y, wplr) =1,

T’ dyadic
where wy(r) is supported on r < T¢, w is supported on [1,2]U[-2, —1], and
T’ runs over O(logT') real numbers with 7° < 7" < T.
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It is convenient to re-write the left hand side of (4.1)) as )", wy, where T”
runs over the dyadic numbers from Definition [£.1] along with an additional
value T" = 1 giving rise to wy.

LEMMA 4.2. Let w be an integrable function supported on [U,2U], with
1 < U < 2T. Suppose B € L*(R), supported on [T/2,T]. Then

(4.2) S S 5t1ﬁ7t2w(t1 — tg) dtl dtz

202U

= > |\ Br—vs v Br—U4Ujaoaw (U (1 — )1 —v2) dvy dus.
0<j1,§2<10T/U U U
l71—j2|<1

Proof. We cover the interval [1'/2,T] without overlaps by smaller inter-

vals [T/2,T/2+ U], [T/2+U,T/2+2U], ..., which gives
oo o0 L
(4.3) S S 6,51 ﬂth(tl — tg) dtl dtg

T/24Uj+U  T/24Uja+U

- Z S Btl S @w(tl — t2) dty dts.

0<51,§2<10T/U  T/2+Uj1 T/2+Uj2
Next, change variables t; — T'/2—U+U j;+wv; for i = 1,2, where U <v; <2U.
Note that the integrand vanishes unless |j; — ja2| < 1. The result follows. =

LEMMA 4.3 (Archimedean separation of variables). For s = o + iy with
o >0 fized, |r| < T, and |y| < |r|/2, let
IR(o + iy +ir)IR(o + iy —ir)
(44) (1) =7s(r) IR(1 -0 —iy+ir)[g(l — o — iy — ir)
Let w and wg be as in Definition . Then for T" with 1 + |s|> < T' < T,
there exists a function n = npr satisfying

(e 9]

(4.5)  op(u) < (T (L4 [ T) ™" and | |nro(u)| du < (T')*,
so that
(4.6) y(r)wp (r) = S nr (w)e(ur) du.

If |s| < T¢ and T" =1 (that is, wp = wyp), then (4.6)) holds with

(4.7) m(u) < T° (1 + |;f€|> 7A.
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Proof. A tedious but straightforward calculation with Stirling’s approx-

imation gives
’7’| 2s—1 c1
~y(r) = o Co+ﬁ+"‘ ,

where the ¢; are some polynomials in s, of degree at most 2¢+1. This provides
an asymptotic expansion as 7 — oo provided s < |r|'/2, say. From this, one
may derive

(4.8) A () < 27T for |r| > |s)? + 1.
By Fourier inversion, we have
V) (r/T') = | ne(we(ur)du,  nr(u) = | y(r)w(r/T e(—ur) dr.

Integration by parts, aided with (4.8)), gives (4.5). For 7/ =1 and |s| < T*,
the asymptotic Stirling formula does not hold, yet we can claim a crude
but uniform upper bound of the form vU)(r) < (T¢)7, which suffices to

obtain (4.7). =

COROLLARY 4.4. Let v = 75 be as in (4.4), and suppose by € L*(R
supported on [T/2,T]. Suppose s < T°). Suppose wyr is as in Definition 4.1
for some 1 < T' < T. Then

4.9 | | BuBuv(ti — t)wr(ts — ta) dty dts
= > | nrr(weT’ (i — ja))
0<j1,j2<10T/T" =0
j1—j2|<1
2T’ 2T/
X ( V Brja-rirjy v e(vrw) dv1)< V Brjo1v1jprupe(—viu) dvz) du,
T T

with nr as in Lemma [.3]

Proof. This follows from Lemma followed by (4.6)). =

4.2. Preparation. Here we begin the proof of Theorem [I.5] Choose a
nonnegative smooth weight function w, with w(z) > 1 for 1/2 <z <1, and

w(z) = 0 for z < 1/4 and for z > 2. From (1.4)), we have A*(Q,k,T,N) <
max|g|—1 S, where

(4.10)

s= Y wan)| | Y Y Budwan]

(a,b)=1 T/2<t<T Q/2<q<Q x (mod q) 0 (mod k)
(g,k)=1
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We will assume that (3, g is supported on

cond(x) =¢, Q/2<q¢<Q, (¢.k)=1,

4.11
( ) 0 (mod k), T/2<t<T,

and that an otherwise un-labeled integral /sum over ¢,q,x,0 is implied to run
over this domain. In particular, we will often suppress these conditions and
recall them only when needed. To prove Theorem it suffices to prove the
bound for x and 6 of fixed parities, so for convenience we also assume that
this condition is enforced by the support of 3, ;.

Let 1 <Y < 100 be a parameter to be chosen later. Then S < S.y,
where
(4.12)
2
Soy= D, w(ab/N)‘ | YT Y Buedenlad)
i ‘15)2 SY T/2<t<T Q/2<qg<Q x (mod q) 0 (mod k)
e (g.,k)=1

by positivity, since if (a,b) = 1, then the condition ab > Y is redundant on
the support of w(ab/N). By simple inclusion-exclusion, we have

S>y = S<oo — S<v,

where for x € {Y, 0}, S<, corresponds to the sum over ab/(a,b)? < x. We
will often write S as an alias for S<.

One of the main issues with applying the functional equation is that, after
opening the square, we obtain a character of the form 126162 which may be
imprimitive. In order to facilitate the problem of controlling the conductor,
we will apply some combinatorial type decompositions. These preparatory
results are bookended by Lemmas [4.5] and [£.11]

LEMMA 4.5 (Detecting primitivity). Let ¢ > 1 be an integer. There exist
complex numbers ¢y = c¢(q) supported on a finite set of integers with the
following two properties:

e For each v (mod q), the sum Y _,cep({) is 1 if ¢ is primitive, and is 0 if
P is imprimitive.
o We have ), |co| < 7(q), where T(q) denotes the number of divisors of q.

Proof. Suppose 1 has conductor ¢*. Consider the expression

Sua(y X o(1+ %))

dlq y (mod d)

The inner sum is 1 if ¢* divides ¢/d (equivalently, d divides ¢/q¢*), and 0
otherwise. Hence the above sum evaluates as Jq+ 1 w(d), which by Mébius
inversion is the indicator function of ¢* = ¢, i.e., % is primitive. To finish the
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proof, we can let ¢y, be supported on 1 < /£ < ¢+ 1, and let

(4.13) ce:Z“(dd) o= “Q/e

dlq 1<y<d e|(g,f—1)
l+qy/d=¢

so that Y, |ce| < 7(q). w

Suppose ¢, > 1 are integers with r|g. Let G, (resp. G;) be the group
of Dirichlet characters modulo ¢ (resp. r). By a slight abuse of notation, we
can view G, as a subgroup of G, by multiplying every element of G, by the
trivial character modulo gq.

The following lemma is analogous to Lemma [4.2]

LEMMA 4.6. Let q, v, G4, and G, be as above. Let F(x1, x2) be a function
defined on pairs of Dirichlet characters modulo q. Then

Yoo Flaxa)= Y. Y, F(yn, ).

X1,x2 (mod q) YEG/Gr 1,42 (modr)
x1xz of modulus r
Proof. The condition that x1x2 has modulus r means that y1x2 € G,.
Now say G, = U7 ~vGy, where v runs over G,/G,. By basic group theory,
we can write uniquely x1 = y¢; and x2 = y¢2 with v € G4/G, and with
Y1, € Gy m

COROLLARY 4.7 (Separation of variables). Let notation be as in Lem-
ma 6. Then

Y Flaxa) =Y alr) Y > (W) (OF (v, i)
0

X1,x2 (mod q) YEGq/Gr 1,92 (mod )
x1x2 of conductor r

Proof. We first apply LemmatcL detect that x1%x2 has modulus r, and
then use Lemma to detect that 1114 is primitive. m

DEFINITION 4.8. Let k& > 1 be an integer. Define the set Dy to consist
of tuples k = (ko, k1,k’,0), where ko, k1, k' run over divisors of k satisfy-
ing kok1k' = k, (ko, k') = 1, and k| (K')*°, and where § runs over coset
representatives of G /Gy.

LEMMA 4.9. Let k > 1 be an integer, and let by be any sequence of
complex numbers indexed by Dirichlet characters 0 modulo k. Then we have
a decomposition of the form

(4.14) ’ S bg‘ ZZC@(]C/)‘ S b0 (0)

0 (mod k) keDy ¢ 0’ (mod k')

)



The large sieve for self-dual Fisenstein series 21

which can alternatively be written as

(4.15) ’ Z be‘ = Z Z bsg: Doy, -
6 (mod k) keDy 61,6, (mod k’)
cond (8} 65)=k'
Proof. We begin by opening the square, obtaining a double sum
201,92 (mod k) D91 bg,. Parameterizing the sum according to the conductor

(say k') of 6102, we obtain

IR S S s

0 (mod k) K'|k 61,02 (mod k)
cond(@lg):k

Next we apply Corollary with F'(01,62) = bg, bg,, which gives

)Z be\ =SSy Y. YD (B8 (Obsg, b,

0 (mod k) Kk ¢ 5€G/Gy 07,0, (mod k')

With a further factorization koki = & with (ko, k') = 1 and ko | (k')>°, we
obtain (4.14). The variant (4.15)) is similar. m

We also need more elaborate versions of Definition and Lemma
to handle y of varying modulus.

DEFINITION 4.10. For ¢ = 1,2, suppose ¥; is primitive of conductor ¢;.
Factor

(4.16) g =dgtar and xi = X X,

where x} has conductor ¢/, X;F has conductor qi+ , and so on, and the factor-
ization is defined in terms of local information as follows:

(i) The primes making up ¢} are those that divide ¢; but do not divide ga,
and likewise the primes in ¢} are those that divide g2 but not ¢;.
(ii) The factors ¢; and ¢, are characterized by 1 < v,(gy ) < vp(g;) for all
p|q. Similarly, ¢ and g; are characterized by 1 < v,(q;) < vp(q3)
for all p|qj .
(iii) The remaining factor r corresponds to the primes where vy,(q1) = vp(g2).

Definition is motivated by the fact that

(4.17) =X % 0cha) ) O,
NS N
4 qé qIL ‘IQ

which has conductor ¢} ¢5q; g5 cond(Xg ) xé ).

Let b, be any sequence of complex numbers indexed by primitive Dirichlet
characters y modulo ¢, with ¢ varying over a finite set of positive integers.
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Consider the sum |Zq,x by|%. Opening the square gives a sum of the form
b, . Definition [4.10|shows that the parameters ¢/, ¢;", etc., are
o102 xpa Dt Oxo - Definition [4.10{shows that th ters ¢l, q;°, et

uniquely determined. We can then arrange the sum according to the values
of these parameters, giving

(4.18) ‘ S bx‘z
q,X
- Z ( Z bX1X1 X1 X(l )> ( Z bXQXz X2 X(Q ))

a0y 9309 7 ah o x ah X X3 X 1y
(Def. [4.10) (Def. [4.10) (Def. [4.10)
where “(Def. |4.10)” in the summation conditions indicates the conditions
translated into appropriate summation form.

We further develop the sums over XY) and X2 , using - Specifically,
write

(4.19) r=rorir,

where XY)Xé) has conductor ', (rg,r") = 1, and r1|(r')>°. We then write

(

Xir) = v1b;, where v runs over G, /G, and 1; run over characters modulo r’.

The property that XgT)Xg) has conductor r’ is equivalent to 11y being

primitive (of modulus r'). Applying this to (4.18), we find that > by |?
equals

(4.20) Z ( E b XXt xy W1)

0 a3 0 aXX XL
(ro,r1,7" Y) €D (Def. [£.10)

(Def. |4.10)
X < Z b oG 7¢2> (cond(¢p11hg) = 17).

qéyX’Qij!X; 7/¢)2

(Def.
Now let

q= (Q1+aQIaq;7Q5ar0>r17T/>7)a

where the integers qii satisfy Deﬁniti(ii), r is coprime to the qii, and
(ro,r1,7",7v) € D, (as in Definition 4.8)). The two sums in parentheses in
have only the following conditions between each other: ¢} and ¢} are
coprime, and the conductor of 1119 is 7. We have thus derived the following.

LEMMA 4.11. Let b, be any sequence of complex numbers indexed by
primitive Dirichlet characters x modulo q, with q varying over a finite set of
positive integers. Then



The large sieve for self-dual Fisenstein series 23

(4.21) ‘ Z bx‘ Z Z bxixl X1 Wlbx’zﬁxﬁdﬂz'
q’X

z’Xz’X'L 7X»L 71/]1
(a},45)=1192 prim.

(Def. [4.10]

In reference to , now XY) X2 = 919h2|y|?, which has conductor r’,
S0 x1X2 has conductor (]1(]2(]1 q2 r'.

We are now ready to apply the preceding decompositions to S<. (see
4.12) for the definition). Specifically, we apply Lemmas (in the form
4.15))) and which gives

(Defl.{ (Def.

where

(4.23) SS*(k, q)

. Y (sm Y w(jj)qs(ab)dtldtg

01,05 (mod k') gl X oxg i t1ot2 e
0765 prim.  (q},q5)=1,41%2 prim. (ab,koro)=1
(Def. [LT0)
with
(4.24) pi = Bx;xfxfwm%ti’

and where @ = @, Py with

Di(m) = (Xix; X vib;) (m)ym'™:.
We remind the reader that there are additional conditions encoded in the
support of the coefficients, as recorded in (4.11)), which will be recalled as
needed. Observe that the finite part of @ (i.e., omitting m® ~%2) is primitive

of modulus ¢} ¢5q; q+ 'K'. Tt is convenient to record here for later purposes
that for i =1, 2,

(4.25) Z |Bif? = Z S Z ‘Bx;xfx{wiﬁO;,ti‘Z dt; < (kQ)*|BI*
k’q k’q L q;’X;7Xj’X;7w270,IL
At this point our treatments of S<, for x =Y and * = oo diverge.

4.3. Elementary side. In this section we develop S<y (k, q).

PROPOSITION 4.12. We have S<y (k,q) = S(S())),(k, q) —I—S’Sy(k, q), where

S(Sﬁ)’(k’ q) is given by (4.30) below, and where
2

(4.26) |S<Y (k,a)| < H

1/2
( g g 'K\ T, Y> |Bil.
Py qZ q; r'rom1
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Proof. Let g = (a,b), and change variables a — ga and b — gb, getting

Sovka)= >, ) >

(9:koro)=161,65 (mod k') qf x} X X s
0’ 02 prim. (q/17qé):17w1¢2 prim.

(Def. [£10)
< | s > ghab &(abgg) dt, dt
102 w N aogg) aty ata.
t1,t2 ab<yY
(a,b)=1
(ab,koro)=1

Next we apply the Mellin inversion formula and evaluate the g-sum as a
Dirichlet L-function of principal character to modulus ¢} g5q; g5 k'r’koro. We
further write

(4.27) L(25, Xo 41 gt g r /k/mko) C(28)Pg; Pas Py Pys PrivoPi' ko
where pp = pn(s) = [[,,(1 —p~ 25). This gives

Sgy(k,CI) = Z Z

93,0&1’1’10(& k/) q::X{“Xj—Ji’wz
0105 prim. (q},q3)=1,1%3 prim.

(Def. [£10)
— N\°w(s -
<oy § 85 5 () Gorcsala dn dids

(2) t1,t2 ab<y
(a,b)=1
(ab,koro)=1

with 81 = B1pg p+ and Bh = Bapy, P+

Next we use Lemma to detect the condition that 676} is primitive,
and again to detect that ¢y, is primitive (modulo r'). We additionally use
Mébius inversion to detect (q},q5) = 1, via Zg/l(q’pqé) u(g’). Altogether, this
gives

(4.28) S<Y k, q ZM Z C€1 k )CKQ (T’,)

£1,02
sw(s)
X S N 7I"[, C(28)p7‘ T‘ka/k‘o Z -AI-A2 ( )
(2) (a,b)=
ab<Y
(ab,koro)=1

where T
A=\ Y Bipgp 0 (0 (L) (ab) dt,

b gl XX xg ¥.07
¢1=0 (mod ¢’)

(Def.
and Ay is similarly defined.
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Now we shift the s-contour of integration to Re(s) = ¢, crossing a pole
at s = 1/2 only. Write

Sey(k.q) = SO (k,q) + Sy (k. q),
(0)

where SSY denotes the polar term, and SISY denotes the new line of inte-

gration. Note that A;|s_1/o = A(O), where

(]

rqt _
(4.29) AL = | Z ﬁiso(c',h({ﬁ ) 0;(£1)1i (02)P;(ab) dt;,
ti €5 Xi X Wind ith
a; O(mOdg)
(Def. [£.10)

since py,(1/2) = ¢(n)/n. Therefore, using (k'ky,r'r¢) = 1 for a slight simpli-
fication (recalling (4.11))), we have

(4.30) 59 (k,q)

(k' kor'ro) N\ 0@
Z Z% Jee, (r (1/2)W Z ab AT Ay
g 01,65 (a,b)=1

ab<Y
(ab,koro)=1

Now we estimate S’ (k,q). We arrange the expression to most closely

resemble ({4.10]), specifically
(4.31)  |SLy (k@) < (QEN)TD > eo, (K)ep, ()] max Y~ [ArAy.

g b Re(s)=¢  p=1
ab<Y
Referring back to (|1.4), and noting that our new family has varying modulus
g, of size Q/q; q; r'ror1, and fixed modulus ¢ ¢; 7'k, we see

(4.32) Y Z |A; |?

g9 (a,b)=
ab<Y

Q _
kN)® Al ———— ¢ K, T,Y") |8
<(Q )lgrr}/agy <qi+qi_r,r0ﬁ,ql q; kL TY ) |Bil

Using Cauchy’s inequality and monotonicity (Lemma leads quickly

to (1:20). =

4.4. Functional equation side. In this section we will apply the func-
tional equation of Dirichlet L-functions to S (k,q), picking up from the
expression (4.23). To facilitate this, we first apply M&bius inversion, in the
form
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(4.33) > w<(;\(;>§l5(ab)

(ab,k’oro):l
_ g1929394ab -
=y > mgl>u<gz>u<gs>u<g4>¢<glgsgzg4>Zw(”]3)@(am.
g1lko g3lro ab
g2lko galro

To continue the theme of concise notation, let g = (g1, 92,93, 94), 1(g) =

1(g1)1(g2)1(93)11(94), P(g) = P(9193929a), and |g| = g1929394. The summa-
tion condition on g is that

(4.34) g1lko, g21ko, g3|T0,  galToO,

though we will usually suppress this and only recall it as needed. Then
S (k,q) equals

Soue) Y. >

(3 holds 01.0 (mod k) gl xif ;v
0105 prim.  (g},q5)=1,41%2 prim.
(Def. [£.10)
!gl
X 152 d(gab) dty dts.
t1,t2

We also have need to decompose the ti—lntegrals to help pin down the
archimedean conductor. Applying the partition from Definition we de-
duce that S (k,q) equals

(435) > u(g) > >

g’T/ 9/179é7(m0d kl) qg,X;Xj_,X:ﬂ/)z
6765 prim. (g} ,q5)=1,41%2 prim.
(Def.
X S Blng/ (tl — tg) Z w <ab’g‘> @(gag) dty dts.
N
t1,t2 ab
Define quantities
(4.36)
2k,T/ 4k,2 T/ 2 kT N)E *\2
QN QWTVIBIQKTNY (@

qq g5 r'rgrikoka N(¢gi gy rorlkokl) N

and note that among the variables of summation, @* depends only on the
outer variables q, k, and 7", while N* depends only on q, k, 77, and g.

PROPOSITION 4.13. We have a decomposition
(4.37) Soo(k,q) = S (k, @) + 5o (k. a) + STE(k, ) + Exc,
with the following properties. The term Ség) (k,q) is given by (4.43) below,
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and SL (k,q) satisfies

2
(4.38) |S%( quNZQ gl HA(

g1’

1/2
,qfq{r/k’,T’,N*) |Bil.
ql q'L r rOTI

The diagonal term satisfies the bound

(4.39) > 185 (k, )l S NIBP,
k,q

and the term Eo 1s negligibly small.

Proof. Applying the Mellin inversion formula to w and writing the sum
over a and b as a product of Dirichlet L-functions in (4.35) gives

=> ug) >, >

g1’ 01,05 (mod k") ¢/ X! xF x; Wi
0’ 64 prim. (¢} ,q,)=1,01¢ prim.
(Def. [£10)
— N\®_ ds
x| wr(ty — t2)B(g)B15s | T2l w(s)L(s, P)L(s, @27 dty dts.
t1,t2 (2)

We shift contours to the line —e, crossing a pair of poles at s = 14i(t; —t9),
which exist only when @ is trivial, and let S’_(k,q) be the new integral on
the line —e. Recall that the finite part of @ is primitive of modulus

(4.40) q= q'lqéqfq;r'k’.

In particular, @ being trivial forces ¢} = ¢4 = ¢ =q3 =q =¢5 =7 =
E' =1, and the rapid decay of w(s) practically forces |t; — to| < T°. It is
easy to see that the contribution of this diagonal polar term is consistent
with .

On the line —& we change variables s — 1 — s. Note that L(s,®)L(s, )
satisfies the asymmetric functional equation

(4.41) L(1 - s,®)L(1 —5,®) = q¢** 1y, L(s,§)L(s, D),

where 75 = v5(t1 — t2) (recall for the definition), which is holomorphic
for Re(s) > 0. Recall that the parity of the x; and 6; was assumed to be
fixed, so that x1X26102 is even, and hence the gamma factor is as stated
in . For later use, note that 75\5:1/2 = 1. In addition, recall the bound
(4.8), which in the present context means ~s(r) < (I7)2?~'. We then obtain
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Sk =S 3 S | wnlt - w)e@sB
g1’ 01,05 (mod k') gl X ox; it
0105 prim.  (¢},q5)=1, %142 prim.
(Def. . 10)
_ N 1-s . d
x | @1 —s)( =) a® L(s, B)L(s, B) o dty dts.
(Lre) [ 2mi
3

Next we will re-open the Dirichlet series expansions of the Dirichlet L-
functions. A small modification is that we write

L(saé) = Pd,koro Z a_sé(a% where Pd korg — H (1 - qs(p)p_s)_la

(a;koro)=1 plkoro
and likewise for L(s,®). This gives
Soka)=> pg) Y, > | wr(ts — t2)8(g) 8152
g1’ 01,05 (mod k') gl X x4t
0705 prim.  (g},q4)=1,¢1%2 prim.
(Def.

N Z _ q2|g’ s _ ds
- @ S w(l a S) < Nab fys@(ab)pévk(ﬂ“o%,kom ﬁ dty dts.
(abkoro)=1 (1+¢)

We then factor out the ged of a and b, by writing ¢ = (a,b) and chang-
ing variables a — ¢g’a and b — ¢'b. The sum over ¢’ forms a Dirichlet
L-function of principal character of modulus qkgrg, which is given by .
Then S’ (k, q) equals

doule Y > | wr(tr —t2)0(g) 815

g1 01,05 (mod k') gl X x4t
0705 prim.  (g},q4)=1,¢1%2 prim.
(Def.
. N a*lgl )"
X w(l—s)— ( ¢(2s)
S glq Z_ Nab
(1+e) (a,b)=1
(ab,koro)=1

— ds
X Pg, Pql pqif pq;r pk’r’kgmp@,koropikom’sti(ab) i dty dts.
Shifting the integral far to the right shows that the portion of the sum
2 \2
with ab > %(QkTN)E is very small. Note
_ diai ay 'ror1 ghas g v'rory Kkoky Q%k %

4.42 _ _@
2 G Vr'rore gV rore koky o qrgp r'rgrikoks T

and hence

Plel(T)? _ () lel
N N
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Thus we can truncate the sum at ab < N*. Let S (k,q) denote the con-
tribution to S’ (k,q) from the terms with ab < N*. Let q = q1q2, where
4 = qiq; q; VK.

Next we apply Lemma to detect the condition that #}6) is primitive
of modulus %, and likewise for 111 of modulus r’. We also apply Mdbius
inversion to detect (¢}, q5) = 1, as before . Our final arithmetical sep-
aration of variables step is to write

p@,koro = Z d_sélag(dl),
di|(koro)>®

and likewise for pg . . (indexing the sum with the letter d2). We need an
archimedean separation of variables too, and this is provided by Corollary[£.4]
With this, and rearranging, we then obtain

S5 (k,q)

= > uleg) D e (®ewt) Y] V nr(we(uT' (1 — 42))
g,T’,g’ SN2 dl,d2|(k07‘0)°° —0o0
l71—72|<1

w(l—s) (N\7* — ds
[ S, 2 ") R

(a,b)=1 (1+¢€) ‘g’
ab<N*
(ab,koro)=1

where

Bi = Bis

2U
= S Z B1,j, 01 (51)%(52)@1(gd1d72)qfs_1pq/lpql+@1(aE)e(utl) dt1,

U gl X xq 1,04

¢1=0 (mod g')
(Def.

with By, taking the form B, 7_7v/9477j, 44, (i-.e., with a linear change of
variables as in Corollary , and where Bs is given by a similar definition.

We next shift the contour of integration back to the line Re(s) = ¢,
crossing a pole at s = 1/2 only. Let SS,S) (k,q) denote this polar term, and
let S (k,q) be the new integral. We record the polar term:

(443)  SQ(k,q)

w(1/2) @(k'r'koro)
— ! k' / w(
> w@ud) Y e (Fen(r) D Td koo
gT'.g 01,02 dy,da|(koro)®>®

lj1—721<1
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0o N 1/2 (O)W
X § nr(w)e(uT’ (j1 — j2)) Z < ) BBy du,
1

% o1 \ablgl
(ab,koro)=1
ab<N*
where BZ(O) = Bils—1/2 is given by
(4.44)
Lot -
BO=| S s 2B g1 (00)0 i Taab)e(uty) s

L QQ»X;,XZL’X;K‘/%%
¢}=0 (mod g')
(Det. [LTO)

Now we turn to S7/(k,q). By the triangle inequality, and using (4.5 to
bound the L' norm of 7+, we obtain

N —2s —2s
(445) ‘Sg!)(kv q)| 5 Z (%); Z ’ql 2 +1Bl,s’ |QQ 2 +182,s|.

m

]g\Q* Re(s
‘g,T",g’ ueR (avb)zl
‘]1_]2|§1 f1,f2 ab<N*

Analogously to (4.32), on the line Re(s) = ¢, we obtain the bound

- —= Q - .
(4.46) D oy F Bl < A<+—,aqi+q7; 'K 2T N* ) |8,5,1%.
ab<N*

We note that > i 81,4, 12 = |B1%, since this simply re-assembles the integral
to all of [T'/2,T| (also, for each j;, the number of jo with |j; — jo| < 1 is
at most three). Applying (4.46)) to (4.45)) via Cauchy’s inequality and using
(4.25) (and the sentence preceding it to handle the sum over the j;) completes
the proof of Proposition [4.13] =

4.5. Conclusion. Now we use Propositions and to prove The-
orem We have a decomposition

(4.47) S(k,q) = Sa*®¥(k,q) + S (k, q) — Sty (k,q)
+ (89 (k@) - S (k. q)) + e

The diagonal term is acceptable for Theorem as also is the small error
term Eq.

Next we turn to the terms S, (k,q), where * refers to < Y or co. We
choose

(4.48) Y = (QkTN)ngwa,

with the same value of € as in the definition of N* (see (4.36)). First con-



The large sieve for self-dual Fisenstein series 31

sider Sy, where Cauchy’s inequality implies

zrs<ykq|<n(za(

Recall from (4.25)) that > kq 1B:1? < (kQ)F|B|*. Hence

1/2
Z 1S4y (k,q)] S H(maxA(&,qj‘qfr’k',T,Y)) 18I°.

q; q; r'ror

1/2
g q 'K, T, Y) |Bi2> :

¢ q; r'rory

Recalhng the definition , it is easy to see that

maxA<Q,qjq;r’k’,T, Y) < A(Q,k,T,Y).

k,q q;Lqi_r’rorl

In summary, we have shown

zﬂﬂy&aﬂsA(QhT

k,q

which is consistent with Theorem [L.5

The case of S/ is fairly similar to that of S<Y7 though the details are
more complicated. Following similar steps to the case of S’ <y and using the
AM-GM inequality, we derive

Zwykq|ww2

k.q

41.2m2
QkT)WQ

< Q
kag.l” Q'g] i gy r'ror

,qfqlr’k",T’,N*),

plus a similar term with the ¢ = 2 variables (q; , G , etc.). By symmetry,
this latter term will give the same bound as the displayed one. Substituting

the values of Q* and N* from (4.36)), we obtain

qfqgr’rgr%k:ole

4.49 S’ (k, 2
am 3 <<mNQ%ﬂmk%T o
— 42(T7)? EN)®
¢ gy r'ror N(q1 g, ' ’FOTl kok1)?

A bit of checking, recalling ¢, < qf , shows that this is consistent with
Theorem [LH

Finally, we consider s (k,q) — S(<05), (k,q), that is, the polar terms from
s = 1/2. We need to show there is substantial cancellation between these two
terms. To aid in this, we first simplify Ség)(k, q), which is defined in .
Observe that
|gl(T")?

4.50 N =Y :
( ) (g1 g5 7 r0r1k0k1)2T2
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and since |g| divides k3r3 (recall ([£.34)), we have N* < Y. Then in the
definition of Ség), we extend the sum over ab < N* to ab <Y, and subtract
back the terms between N* and Y. Write Ség)y for the terms with ab <Y,

and let S C()g)y* =S5 <(>2)Y_S © (which represents the terms with N* < ab <Y).

We claim that S(O)Y = S(q)/ To see this, we sum over g and d; and ds in
(4.43) (though modified to read ab < Y in place of ab < N*). The sum
over g is not constrained, and we have

S ()0 %)
|g plkoro VP VP
For dy and ds, we have
SR @(p))(l . @(p))
d1,dz|(koro)>® Vdidy plkoro VP VP
Therefore, these two evaluations perfectly cancel. The sums over j; and jo
can be simplified by using Lemma [4.2] in the reverse order. Moreover, since
vs(t1 —t2) = 1 at s = 1/2, we can write ) v wyr(t; — t2) = 1. Hence, the
partition of unity is fully re-assembled.
Comparing and , it is not hard to see that Bgo) agrees with
A after removal of & (gdids)e(ut;). This shows the claim that S ©)

) o0,Y T

Sg), Hence S(O) S(O) = *Ség?Y*’ which for ease of reference we write
directly as follows:

Sc(>o)Y* (k,q)
- 3 NS / w(1/2) p(k'r'koro)
= cfl 652( ) § , /7d1d2 2k'r' koro

gT'.g 01,62 d1,dz2|(koro)®
l71—g2|<1
R N\ 00
< Jmrear - X () BB d
N*<ab<y
(ab,koro)=1

Now the estimations are similar to those of S’y and S’ , though the details
are a little different. Following the same initial steps as in S, we obtain

(451) >89 (k,q)

<162 m AR A( :

+ — / /
, rk T, M ).
kqu’ Ny (|g|M)V2 "\ g gy 'ror i )
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We claim this is bounded consistently with Theorem [I.5] To see this, first

note ]}\,[i;; < % Then the condition “XR*U < Q?kT” from is
deduced from
QQkT N1/2 < QQI{:/T/ > - QQkT
N (IglM)V2 \qfqrr'rgry) — el
The condition “X < C'” from is easy to check, by setting M = Y/C.
This completes the proof of Theorem [I.5]

< Q%*KT.

5. Proof of Theorem [1.6]

5.1. Miscellany. Here we present a couple tools with self-contained
proofs.

LEMMA 5.1. Let ¢,d be positive integers, and define the Dirichlet series

n 1
(5.1) Zeals) = (y,%:ﬁ@(”) TR Re(s) > 1.
m|c™®
Then
(5.2) Zed(s) = Z1,1(s)ve(s)dq(s),

where Z1,1(s) has meromorphic continuation to Re(s) > 0 with a simple pole
at s = 1 only, and where
p—s—l -1 . ps -1
ut) =TI (1+ =)+ as =T (1+a-» )

plc pld

Proof. A routine calculation gives

e 11 p°
Zeal) =TT =5 9 TL (14 0= 2 ),
ple pled
from which the lemma follows with a bit of calculation. =

LEMMA 5.2 (Separation of variables). Let w = wy be a smooth, even
function supported on [—2V,2V], where V' > 0, satisfying wg)(:ﬂ) < VI for
all j =0,1,.... Let w(z,y,z,w) be smooth of compact support on Rio. Let
g be a Schwartz-class function. Define F : Rio — R by

T1Y2 1 Y1 T2 Y2
F(x1,y1,2,92) —wv($1y2—$2y1)g<T10g m251>w< LA y)v

where T', X, Y are positive parameters. Let R = % and U = max(T, R_l).
Then

F($17917$27y2) - S G(ulau25u3at)

it
<£L’1y2> duldquu;), dt
R4

tul U AU, )
T2Y1 Yy Py

Y1 Ya "To
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where G (depending on T, V, X,Y') satisfies for any A > 0 the bound

A 3
t
(5.3) |G(u1, u2,ug, t)] <4 U (1 + ||> H(l + |Uz’\)_A.
U i=1

REMARK. If s € C and w(x,s) = 2° lwy(x), then one may apply the
lemma to w(x,s), giving rise to a family of functions G = Gs. The proof
shows that G satisfies (5.3]) with an implied constant depending polynomi-
ally on s.

Proof of Lemma[5.4 By Mellin inversion,
(5.4)
~ Ul . —82  —U2 d51 du1 d82 dUQ

F(:Clvylax27y2) - SF(S]_,U]_,SQ,UQ)CCl_Slyl_ IQ ?/2 Wa

where ﬁ(sl, u1, S2,ug) is defined by
T1Y2 T1 Y1 T2 Y2
5.5 — T1 —_, =, =, =
(5.5) R§ wy (T1y2 $2y1)9( Ogazgy1>w<X’Y’X’Y>
8 dx1 dyy dzo dyo
T1Y172Y2 '

In (5.5)), change variables xq — %xl to find that ﬁ(sl, S2, 82, 84) equals

S1,. Ul .82 U2
X Ty Y Ty Yo

zoyy (1 — 1) T1T2Y1 Y1 T2 y2>

21 ) (Tl JL 22 52
R§ ”"(XY R/V )g( ngl)w< Xy V' XY
>0

dzy dy1 dza dyo

s1,,.S1+tu1 .s1+s2, —s1+u2
1 Yo
T1Y1T2Y2

x Tty T,

Now in (5.4]), change variables uj — uy — s1, s9 — so — s1, and ug — ug + s1
to get

(5.6)

—s1

~ T1Y2 ds1 duy dss dusg

F(x1,y1,22,92) = SF(817H1—81, 59—51, U2+51) <x2y1> yu1$52ym(2m)4a
1 42 Y2

where now ﬁ(sl, u1 — 81,82 — 81, u2 + s1) takes the form of f[(sl, U1, S2,U2),
with

Toy1 (z1 — 1 T1T2Y1 Y1 T2 Y2
H($17y17$2792):WV(XY(R/V)>9(T10g531)w< Xs ’Y’X’Y>'

It is easy to check that
H(j11k17j27k2)(m1, Y1, T, y) < Ule—j2y—k1—k2’
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and that z; is concentrated on 1 = 14+ O(min(R, T~1)), whence integration
by parts gives

~ -1 [\ ™ Reur 4uz) ¢ : ~A
H (=it ur g, ug) <a U™ (14 57 | YR xR0 TT( 4 )=,
=1
Taking Re(u;) = 0 and defining G on R* appropriately completes the proof. m

5.2. Preparation. It is convenient to work with a couple modified
norms that are closely related to (1.3]). Define

(5.7)  A(Q,k,T,N)

= ma:xi S Z Z* Z* Z QapAyot(a,b)| dt.

T/2<t<T Q/2<q<Q x (mod gq) 0 (mod k) ' N/2<ab<N
(g,k)=1 (a,b)=1

Clearly, A1(Q,k, T, N) < A(Q, k,T, N), and in the other direction, we have

A(QakaTa N) < ZAI(Qajv T> N)
Jjlk

2

Secondly, define
(58) A2(Q7k7Ta N)

= max S Z Z* ‘ Z Ofa,b)\w,t(% b)

=t oSt Q/2<q<Q ¥ (mod k) | N/2<absN
(a,b)=1
It is easy to see that A1 (Q,k, T, N) < A9(Q,k,T, N), since when (¢, k) =1,
the map (x,0) — x0 is a bijection onto the set of primitive characters mo-
dulo gk. After having done this, we arrive at by dropping the condition
(¢, k) = 1, by positivity. For the proof of Theorem we will bound the
norm A,. Indeed, we can deduce Theorem from the bound

Q*kT ——( N

(5.9) A9(Q,k, T, N) S Q°kT + N Al(k;QT

Let w be a nonnegative smooth weight function with w(xz) > 1 for 1/2 <
x <1, and w(z) = 0 for x < 1/4 and for x > 2. Then Ay(Q,k,T,N) <
max|q|—1 S, where

2
dt.

,k,T,N).

2

5= | w@) ;w@)w(;*k me‘ > awbla)alt)’]
o0 mod gk) (a,b)=1
N/2<ab<N

We will assume that «, is supported on

(5.10) N/2 <ab< N, where (ab,k) =1 and (a,b) = 1.
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A simple argument with a dyadic partition of unity and Cauchy’s inequality

shows that
2
’ § Qg b| = ‘ § § Qg b << logN ’ E aab
a,b N1Na=<N axNq Ni1Nax<N ax
dyadic b=<N»2 dyadic bVNQ

Hence, in the proof of Theorem we may assume that a and b are each
supported in dyadic ranges, say a < Ny and b < Nj.

Let 1 <Y < 1%0 be a parameter to be chosen later. For ¢ (mod ¢k),
write gk = ¢/(dk), where d| k> and (¢, k) = 1, and write ¢ = ¢y1)’, where
¥ has modulus dk and ¢’ has modulus ¢’. Let mg(¢)) = dk denote the
modulus of the k-part of ¢, and condy () denote the conductor of ¢/, i.e.,
the coprime-to-k part of ¢. Then S < S.y, where

o0
t k _ 12
Soy = | w<> Zw<q> > L’Za&bw(ab)(a/b)” dt,
S \TJNe) w(gk)
mod gk) a,b
cond ;s ()mg () >Y'k

by positivity, since if ¢ is primitive modulo ¢k, then condy (¥)my(v) =
cond(v)) = gk. This uses the fact that the condition ¢k > Yk is redundant
on the support of w(q/Q).

By inclusion-exclusion, we have S5y = S<o—S<y, where for x € {Y, oo},
S<, corresponds to the sum over condy (¢¥)my(¢)/k < *. We will write S
as an alias for S<.

We begin with some arithmetic manipulations that are in common be-
tween S and S<y. Opening the square, we have

—c0 q
X Z ﬂ Z Qg b1 %o b ¢(a16251a2) (alb2>n dt
a1,01-+a2,02 .
¥ (mod gk) (P(Qk) ai,br b1a2
cond s (Y)my, () /k<* a2,b2

Define
(6.11) g1 =(a1,a2), g2=(b1,b2), g3=(a1,b2), ga= (b1,a2),

and note that the g; are pairwise coprime since (a1, b1) = (az,b2) = 1 by the
support of « (recall ) Then change variables
ar — g1gshithizar,  where (a1, 9193) =
(a2, 9194) =
b1 — g2gah3ahsaby,  where (b1, g2g4) =
by > gagshaohasba,  where (ba, g2g3) =

as +> hoihogas, where
(5.12) 2 g194n2112402
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and where
(5.13) hij|g;® foralld,j, and (hi,hg;) =1 fori# k.
The conditions translate into

(a1b1, agbs) = 1.

Moreover, the conditions (a1, g1g3) = 1,...,(b2,g293) = 1 in (5.12)) may be
expressed succinctly as (aja2b1be, g1929394) = 1, since prior to (5.12)) we had
(aj, b)) =1 from (5.10)). Let

(5.14) g = (91, 92, 93, 94, ha1, hag, hov, hoa, haz, haa, haz, has),

where the h;; satisfy (5.13). In addition, let

P13 = g1g3h11hi3, 23 = gogshaohys,
P14 = g19aha1hos,  Bos = gogahsahsy,
and

B13Pas3 B1aPaa
and 2 = giho1haohashas = :
9192 9192
Observe that (y1,72) = 1 since the g; are pairwise coprime, and by (5.13)).

With these substitutions, we obtain

(515) S<u=> OSO w(;) > w(%) 2 @?fk)

g — (2:9192)=1 ¥ (mod gk)
cond s (v)my (1) [ k<x

a1b arby \ "
% Z az(zlf,%zo‘((fg’,gbi@b(% 1 2> <71 1 2> dt,

(a1b1,a2b2)=1 yabrag ) \ y2bias

Y1 = gah11hashizhiz =

(a,g)=1
where
(Lg)~(2,8) _ =
(5.16) Q101 %as by = YB13ar,B2abi XB14az,B23b2s

and where the condition (a, g) = 1 is shorthand for (aja2bibe, g1g29394) = 1.
There are additional conditions that are implicitly enforced by ([5.10)), which
we will recall only as needed. For later use, note

N
(5.17) yia1bs < yoasby <X —.
9192
Moreover, we claim that
17
(5.18) S ol R < jaf?,
g,a1,b1

222%2 To see this, note that the variables g1, g2, g3, g4 ap-

pear as divisors of (13 or 24, and similarly for half of the h;; variables
(namely, hi1, hi3, h32, and hay). For the remaining h;; variables, we recall

and similarly for «
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from (5.13) that hia | g2, etc., so these variables range over a set of cardinal-
ity < N¢. Then (5.18) follows easily.

5.3. Direct method. In this section we estimate S<y by reducing to
an instance of the original norm, but with smaller parameters.

PROPOSITION 5.3. We have S<y = S(q)/ + S<Y, where Sg), s given
by (5.22) below, and where a
(5.19) Sy < max A(Y'/ry, ik, 2T, N)|a|?.
~yi<y
|k
Proof. We pick up from (5.15)). Write ¢ = rrq¢’ where ry | k> and (¢, k) = 1,
and write ¢ = x6 where 6 runs modulo rik and x runs modulo ¢’. Then

(5.20)  S<y

T t q'ri qk

S Ju(y) T () T X i
8 rg|koe —00 (¢’ kg1g2)=1 6 (modryk) x (modq’)
cond(x)<Y/rk

b b\
<X alfalne( 1) (1) g,

(a1b1,a2b2)=1 Y2b1az Yobiao
(a,g)=1

We next replace ¢’ by ¢'qog1 where ¢’ is the conductor of x, (qo,¢") =1,
and ¢ | (¢)*°, and correspondingly write x = x'xo where X’ is primitive
modulo ¢/, and yg is trivial modulo go. Applying this substitution in ([5.20)),
we obtain

so-Y X u(p) XYy

8 rglkoe —oo (¢’ k’glgg =16 (mod rrk) x (mod q’)
q'<Y/ry,

it
d0qrr\ 9o (Lg)—(2.8) /s <”y1a1b2> <’y1a1bg)
X o Qa 0 dt.
Z < )90((]0) Z a1,by 027b2X

(q0.q'kg)=1 (a1b1,azba) =1 Yabiaz ) \y2braz
)% (a,q08)=1

al(d

By Mellin inversion, and evaluating the sums over ¢y and ¢; with Lemma
the second line above equals

() (28, /9 via1b2 \ [ yia1ba it
Z Oz(lhblaaQ,b?X

(albl (lgbg): ’YleaQ ’YQb]_aQ
(a,g)=1

x | < Q,>Sw(s)zq,,kga(s) ds dt.
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Since k, g1, 92, g3, g4, 01, G2, b1, by are pairwise coprime, we have

(5'21) ZQ'7kga(5) = ZLl(S)I/q/(S)(Skg(S)éalbl (3)511252 (3)7
which is an important separation of variables.

Using the meromorphic continuation of Z; ;(s) provided by Lemma
we shift the contour of integration to the line Re(s) = ¢, passing a pole at

s=1.Let S (SOE), denote the residue term, which is given by

(5.22)

S&y = ZZ%Sw(}) SOy Y m

AT % 0 (mod rik) (¢' kgrg2)=1 ' (mod )
/<Y/7’k

it
(1g) s —(2g) 1o 11012 710102\’
) Z st a1y Daabs Vo 1, X 0 (72b1a2> (’Vzb1a2 at,

(a1b1,a2b2)=1
(a,g)=1

where 771 denotes Ress—1 Z1,1(s), vy denotes vy (1), and 6, = d,(1).
By the triangle inequality, and some simple bounds, we have

2T
m) Y sy Y Y ¥
|k g —2T 0 (modrik) (¢',kgi1g2)=1 X' (mod ¢’)

q/SY/T’k
| ey TR agby Yebiaz ) \ y2biaz
(a1b1,a2b2)=1
(a,g)=1

Note |x'0(71752)(71/72)%| < 1, which may be used to simplify this bound. To
show the desired bound ([5.19)), we state and prove Lemma below, as it
will be useful later as well. m

LEMMA 5.4. Let 'y(glg and ’yC(LZg be sequences of complex numbers supported

on ab < M, (a,b) = 1. Consider an expression of the form S,(Q,k,T, M)

deﬁned by
it
1) _(2) a1bo a1bo
Z ’Yal,blfyaz,b2xe<b1a2> (bla2>

[y x oy
(a1b1,a2b2)=1

—T6(modk) (g,k)=1 x(modq)
Q/2<9<Q

dt.

Then
S(Q.k,T,M) < A(Q, k, T, M) H_l?f>2<|7(1)|2.

Proof. To separate the inner variables, we use Mobius inversion in the
form
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(5.24)

S((arbagbe) =1)= > > Y N Y(es)ples).

e1|(a1,a2) e2|(a1,b2) e3|(b1,a2) eal(b1,b2)

The e; are pairwise coprime, by the support of . Thus

S$(Q.kT.M)< > g S YT A,

e1,e2,e3,e4 =T 0 (mod k) (gq,k)=1 x(modgq)
Q/2<q<Q

it
—f(a
Al - Z /Y(Ll,blxe(albl)<bi> )

a1=0 (mod eje2)
b1=0 (mod e3ey)

and Ao has a similar definition. Lemm follows by using |A1A4s| <
2.1)

where

|A1]? 4 | A2|? and monotonicity (Lemma [2.1)). u
5.4. Divisor switching method
PROPOSITION 5.5. We have a decomposition

Seo = SO 4§ 4 gdiag 4 g

with the following properties. The term Ség) is given by (5.34) below, and SL,
satisfies the bound

(5.25) S| < QkT (N

2
kQTakaTa N) ’a’ .

The diagonal term satisfies the bound
(5.26) |5die8| « Q%kT|rf?,
and the term Ex is megligibly small.

Proof. We carry on with and apply orthogonality of characters to
the sum over 1. This picks out the congruence yia1be = y2a2b; (mod kq),
but with a side condition (y17y2a1a2b1b2,kq) = 1. This side condition can
be dropped, since the congruence yia1b2 = y2a2b1 (mod kq), combined with
(y1a1b2,v2a2b1) = 1, implies that (y1y2a1b2a2b1, kq) = 1. Additionally eval-
uating the ¢-integral, in all we obtain

(Lg) (,> V1012

o= S w(g) P aifalnae(res o)
g (¢,9192)=1 (a1b1,a2b2)=(a,g)=1
v1a1ba=v2a2b1 (mod kq)

where wy (z) = zw(x) and @(x) = {*_w(t)e™ dt.

o
Let Sgéag be the contribution to So, from the diagonal yi1a1bs = Y2a2b;.
Since (y1a1b2,v2a2b1) = 1, this forces 7; = a; = b; = 1 for i = 1,2. Hence,
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recalling (5.16|), we obtain
(5.27) S8 < QKT ) |ag gol® = Q*KTal.

91,92

Let S, = S — Sﬁé,ag be the nondiagonal portion of S.. Write yia1be =
~Yoagby +qkr, where r # 0. Additionally, we detect the condition (g, g192) = 1
by Mébius inversion in the form 3, oy p(d), and substitute ¢ = de. This
gives

de
=Y Y w0 ()
g d| e Q
g192
(Lg)~(2.8) ~ Y1a1bg
8 Z Z aalablaambzw(Tlog 72a2b1>'
r€Z\{0} (a1b1,a2b2)=(a,g)=1
y1a1b2—y2a2b1 =dekr

Now we perform the divisor switch: re-write y1a1b2 — v9a2b1 = dekr as

o— m1a1bz — y2a2b1
dkr ’

(5.28) Y1a1b2 = Y2a2b1 (mod dk|r|),

It is convenient to record that the side condition

(5.29) (y1y2a10a2b1b2, dkr) =1

follows from the congruence together with the coprimality
(y1a1b2,y2a201) = 1.

We also factor r as

)

r=ror1, 71ol(kg1g2)™, (r1,kg192) = 1.

With these substitutions, we obtain

0o Y1a1b — y2a2b1
L=t Y ud) Y wl( - )

g d|g1g2 r1€Z\{0}
rol(kg192)°° (r1,kg192)=1

(1,g) ~(2,8) ~ y1a1b2
X Z aal,bl aag,bgw (T IOg b) .
_ _ Y2a201
(a1b1,a2b2)=(a,g)=1

~1a1b2=7y2a2b1 (mod dkrg)
y1a1ba=vy2a2b1 (mod |r1])

Next we express the congruences using Dirichlet characters modulo dkrg
and |r1|; this is enabled by the side condition (5.29). This leads to
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LIV T HD VD Y S
g d|g192 v 0 0 (mod dkrg) r€Z\{0} U x (mod |ry|)
ro|(kg192)> (r1,kg192)=1

(L8)£(28), 4 Y1a1bs maiby — y2a2b1 '\ 71 Y1a1b2
X Z Yay by Yag,bp X ("}/QCLle Wi kroriQ v 0g72a2b1 .

(a1b1,a2b2)=1
(a,g)=1

The characters of varying modulus need to be primitive, so we substitute
ri=rireds X R XoXs

where 71 | (¢")*°, (r2,¢') = 1, x is primitive of modulus |¢|, and xq is trivial
modulo 7. With this, we obtain

I/ d
ey Y e

g d|g192
rol(kg192)>

PN VD DI D D )

oo Y2a2b1
0 (mod dkro) q'#0 r1](¢")>° x (mod|q’|) (a1b1,a2b2)=
(¢ kg192)=1 (r2,¢'kg)=1 (alazblbz,grz) 1
Yy1a1ba—"2a2b
wi ( Frorrad O L) A<T10 ’Ylalb2>
p(riralq']) Y2a2b1

Let wi(x) = 2 lwa(x), so wa(x) = z?w(z), and wa(—s) = w(2 — s). In

addition, apply the Mellin inversion formula to wy. Then we deduce that S/
equals

2 p(d)kro ra|d’|
kT R 5
PY 2 Gy, 2 2 X o)
g d|g192 0 (mod dkro) (¢',kg1g2)=1 r1l(q")>
rol(kg1g2)*> (r2,q'kg)=1

a(l,g)a(lg)

x Z* S w(2 — ) Z (’lebg — ’72/0251)8 (sgn) a1,b1 Yaz,bo

krorir a1bs — yoasb
x(mod g/} (2) (a1t aab)=1 o @/ prarbe = mazh|
(a1a2b1ba,gra)=1

b b d
XX&(%M 2>@<Tlog Y141 2) S
Yoa2by Yoasby ) 2mi’

where (sgn) is shorthand for the indicator function of

(5.30) sgn(q’) = sgn(v1a1by — y2a2b1).

Prior to the Mellin inversion formula, (5.30) was enforced by the support
of ws.
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The sums over 1 and 79 evaluate exactly as in (5.21]). Thus

" d)kr
SRUAPYIPI-r 2 D DR O 11

g d|g192 0 (mod dkro) q'#0
rol(kg192)> (¢';kg1g2)=1
* _ y1a1by — Y2a2b1\”
DML CERL RO MEID D E e =)
x (mod |q'[) (2) (a1b1,a2b2)=1

(a,g)=1

Le)—(2,
» (Sgn)6a1b1 (5)5@52 (S)a[(zl,%z a((zg,gb; 9<71a1b2)@<T log ’Yla1b2> ds
|y1a1b2 — Y2a2b1| Yoasoby Y2a2by ) 2mi’

Now we apply a dyadic partition of unity of the form

Y1a1b — y2a2b1
1=
S (e,

V dyadic

where w is smooth, even, and supported on [1,2] U [-2, —1]. By the rapid
decay of w, and recalling ([5.17)), note that

y1a1b2 Iy1a1by — yaasbi |\

Y2a2b1 Y2a2b1
< <1 n T|’Yla152 — 72a2b1’>_A
N/(g192)
Therefore, we may assume that
N
5.31 1<V < Viax = ——(QKTN)®,
(5.31) s = = (QKTN)

absorbing V' > Vj.x into the error term E.
With this partition, we obtain

_ d)kro /|
SY = QT v u
%:1«‘;/ dz p(dkro) 0 Z Z e(ld'])
> Vmax g192 (moddkro) q 7&0
7o|(kg192)> (¢';kg192)=1
3 (Y a2 920 () (9)6ei(s)
271 krolq'|Q L1 4 gk
x(modlg’h) “ (2)

Le)_(2, y1a1b2
X Z (sgn)da, b, (s)5a2b2(s)aél’%zag%gbixﬁ<b)
_ Y2a201
(a1b1,a2b2)=1

(a,g)=1
e <71CL152 — Y2a2b1 > @(T log ’Ylalb2> ds,
4 Y2a2b1
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where ws(x) = 2% 'w(x). By shifting the contour far to the right, ¢’ may be
truncated at

\%4
(5.52) /] <Q" = = (QKTNY.
0®
We next want to apply Lemma [5.2] Note that
_ Bizar Basbr _ Braaz Baaby
Yaiby = , eazby = ;
91 92 g1 92

where the support of o implies f13a1 < B14a2 < N1 and Sozbe < [ogby < No.
We may then freely attach a redundant weight function of the form

w Bizar Posbr Praaz Bazbo
Ny 7 Ny’ Ny ' Ny )

Now this is set up to apply Lemma with z1 = gflﬁlgal, Y1 = gflﬁ24b1,
xy = gy 'Braas, Yo = g5 *Pagbe, X = Ni/g1, Y = Na/go, and with w = w;.
Observe that with this substitution, v;a1bs —vy2a2b1 = x1y2—2x2y1, as desired.
This gives

S=QUTY 3 VT Gl 3 RO
g 1<V <Vinax dlg1g2 ldkro)
rol(kg192)>

<Yy Y Li(eg)

/
smoadirs) 120 PUTD  odlan 2 @)
(¢',kg1g2)=1
X iU(? —-S)ZZLl(S)Db/(S)ékg(S)

(1,8)~(2,8)
X Z Ga1by (5)9azbs (S)Oéal,blaambz
(a1b1,a2b2)=1

(a,g)=1
it
o X9(710152> (7101172) gt duydusdug ds,

(sgn)
V2a2b1 ’YQ(Zzbl y’i’lﬂ y’lug £UZ2U3

plus a small error term. Here G = G depends on s, via ws(z) = 25 1w(x).
We also record

(5.33) R=

V192 and U = N
N 9192

Now we shift the contour to the line Re(s) = e. In doing so we cross
a pole at s = 1, and we denote its residue by Ség). There is a small but
convenient simplification with the sign condition , namely that all the
summands are independent of sgn(y1a1by — y2a2b1) and sgn(q’), except for
the indicator function of the set where these signs agree. We may therefore
take ¢’ > 0. We also make a small modification by factoring ro = r4ry where

o(1)
(QKTN ).
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g | (g192)*° and ry | k*°. With this simplification and others, we obtain

(534) SO =QkT > > > | Gi(ur,us,us,t)

’I’k‘koo g 1<<V§Vmax R4

:u'(d) @(1)Z171yq/5kg
X _ N 4 e
2 p(dkrgry) 2 Z e(q')
d|g1g2 0 (mod dkrgrr)  ¢'<Q
7g1(9192)* (¢'kg1g2)=1

* (1,8) ~(2,8)
X Z Z 5a1b1 6a2b2 Y101 Xaz,bo

x (mod ¢’) (a1b1,a2b2)=1
(a.g)=1

it
X X9<71a1b2) (’71(111)2) dt w

Yeazby ) \ Yyea2b1 yi“l y%“z x§“3

Let S denote the remaining contour integral along Re(s) = €. Here we
obtain

|5go|5Q2kT§|w2—s|Z dooovt Sy at

g 1<KV <Viax d|g1g2
rol(kg1g2)*>°
X S |GS(U1,UQ,U3,t)‘dU1 dUQ dU3 Z Z Z
R4 0 (mod dkrg) ¢'<Q*  x(modgq’)

(¢’ kg1g2)=1

it
aq b
S tun el Ex0@i) () oo ()

(a1b1,a2b2)=1
(a,g)=1

dt |ds.

A small issue here concerns the dependence of G5 on s. By the rapid decay
of |w(2—s)|, we may truncate the s-integral at |s| < 1. The remark following
Lemmal5.2)shows that the family of functions G have a good uniform bound.
We may then truncate the t-integral at U(QETN)°™). Lemma, allows us
to essentially remove the coprimality condition (a1bi,azbs) = 1; we apply
this lemma with M < 7 92 and 72%2) = dap(8), @ ’g) Wlth these steps, we may
then estimate S/ in terms of the original norm , which gives

(5.35)  [SLISQ*TY . > v Z d1

g 1<<V§Vmax d|9192
ro|(kg1g2)>°

x U~ 1A<Q dkro,U>| e 28|

Car,b1 Yaz by |

where U is given by (| and Q* was defined by - Note UV =
N_(QkTN)°M . Tt is convenlent to write V' = Vipax/ P, where 1 < P < Vipax,

9192
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in which case (5.35)) simplifies as

(5.36) |S"| QkTZ > > é

g 1<K P<Vmax d|9192
ro|(kg192)>°

N
, dkrgri, PT, )\ (Le) ,(28) )
9192

Xa1,01 Yaz,bs

X A( N
oA

- QkTg1gargri P’

Recalling the definition ([1.8) completes the proof of Proposition . u

5.5. Conclusion. Now we use Propositions and to prove Theo-
rem Recall that we need to show that Ssy satisfies ([5.9)), that is,

kT —( N

<laP(Qrr+ S x T,N

S>Y ~ |Oé’ (Q kT + N k‘QT’k’ ’ )
where for convenience of the reader we recall the definition ([1.8]):

N
AQ,k,T,N) = XA LU, — ).
(@ k. T, N) X,R,U,Crgﬂ%;,mzw <R’ U C’)

XR2U<Q?kT
xX<C

We have a decomposition
Sey = Seo — S<y = 83 4 57— 5L+ (SO~ 50y + e
The diagonal term S is acceptable for Theorem [1.6 as is Exo.

Now we turn to the terms S.,. Recall the definitions (5.32]) and (5.31]).
We choose N

(5.37) = (QKTN)*

N
QKT

with a value of € such that when V' = Vj.y, then @Q* = 91927’ _ . Using the

assumption Q?kT > N'7¢ it is easy to check that is acceptable for
Theorem and also that Y < /100, so this is a Valid choice of Y. More-

over, - directly shows that S’ is bounded in accord with the theorem.
)

Flnally, consider the polar terms from s = 1, namely Séo) and S(<Y given

by (5.34) and ( - We simplify Sgo), continuing with (| - We reve‘l;se

the order of summation between V and ¢’; the condition ¢ < Q* = Qhryrn

(where C'is shorthand for (QkTN)?) becomes instead V' > C~1¢/Qkryr, (on

the inside) and ¢’ < - T:qugQ (on the outside). We then write S = Ség?l -
5

50,2, Where S( ) has V unconstrained, and S( ) has V < C~ ¢ Qkrry.

A pleasant feature of 5 )1 is that the sum over V re-assembles the partition
of unity, since Gy corresponds to wy(z)|s—1 = w(z). We also re-open the
definition of w. Together, these steps give
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o T ot > _pd)
(5:38) Sy =Qk > > | “’<T> p(dkrgry)
relk® g —oo d|g192
rgl(9192)°

1
Sy 2 o(q')

0 ddk
(mo TgTE) q STkTg9192

(¢',kg192)=1

it
maiba\ (yia1be
X Z 5a1b1 6a2b2 c(z ’%3@((12 bixe( > ( ) dt.
(a1b1,a2b2)=1 ' Y2a2b1 Yoa2by

Z ’Lflj(l)Zl,qu/(skg

X (mod ¢’)

(a,g)=1
Next we further cut this sum into four pieces, via
(5.39)
Z =2 - 2 -2 ¢ 2

< Y 1< X Y l< Y Y <al< Y
a _rkr99192 q _Tk Tk9192 g Tk TETgd9192 <4 — k9192 TETgdg192 =4 —TkTrg99192

Call the corresponding sums S; for ¢ = 1,2, 3, 4. There is a pleasant simplifi-
cation available for S1, S2, and S3. In these three sums, both the summation
conditions in , as well as all the summands in , depend only
on the product dry = D (say), with the exception of the presence of p(d).
Mébius inversion means that the sum over d | D detects D = 1. This imme-
diately implies S3 = 0. Moreover, we see that S; = S (<01)/, which is a crucial
cancellation. The sum S becomes

T t 1
= > 3§ w(g)
reglk>~ 8 —oo r (p(k?“k)
1 o
X Z Z (p( /) Z w(l)Zleq/(skg
0 (mod krk) <q < ’“k x (modq’)
(q kg1gz) 1 y
_ b yia1b2 "
Suy s (18) (2.8) g ( 710102 dt.
X Z b1 OazbFar by Va2 b2 X7\ o 0h1 ) \ Yoashy

(a1b1,a2b2)=1
(a,g)=1

Similarly to the estimation of S, using Lemma [5.4) we obtain

1 N
So| < |lal*Qk max — ,, max kry, T, ——
’ 2| | | Q ek |koo ka_ _Ql< Y Q’ (Q r glg2>

Write Q' = WLP, where 1 < P < g1g9, which gives

Q*kT _ N N
Sy < | = PA| ——— kri, T, — ).
25 o N g%ﬁ("" QkTryP’ T 9192
1<P<g192
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This is consistent with Theorem [I.6] The sum Sy is similar in shape, and we
obtain

2T Pgigo — N N
Sy < \a\QQ max max —A92A dkryrg, T, — |,
N grplk> 1<P<d d QkTryreg192 P 9192
Tq](g192)°

which is acceptable.

Next we turn to estimating S0 )2 Our expression for this is identical
to , except we have an additional weight function of the form

(5.40) 2(x) = Z w<‘i>, with © = ~y1a1b2 — Y2a9b;.
1KV Sq' Qkryrg

The function 2(x) is identically 1 for 1 < |z| < ¢'Qkriry, but it vanishes at
x = 0. Let 2y(x) = 1—§2(x) for 2] < 1, and $2(z) = 0 for |z > 1. Let S, ,
denote the same expression as S (0)2 but with 2 replaced by (21 := 2 + (2,
and let Sdla§ =5 5— 5% © ) . Indeed, S is supported only on yiai1by =

00,2

Yoasb1. By similar reasomng to that in , we obtain
S81 S QkTY|al2 < Nlof?.

Since N < QKT this is no worse than (5.27)).

Finally, consider ST, 5. The function {2 meets the conditions of Lemma
with V taking the value C~1¢/Qkryr,. Hence we obtain an expression of the
form

d
emar Y YN Al

rp|k>° 8 R4 d|gig2

rgl(9192)%°
1 *
x Z Z () Z w(1)Z1,1vq Org Z G(t, u1,uz, ug)
0 (mod dkrgry) ¢ <Tkrgq1g2(p q x (mod ¢’) (a1b1,a2b2)=1
(¢';kg1g2)=1 (a.g)=1
it
(1,8)~(2,8) Y1a1ba yraibs\' duy dus dus
X 5a1b15a2b2aa1,b1aa2,b2xe(72a2b1) <’}/2a2b1> dt yqflyuz U
The bound on G is given by (5.3)), with now
N
= (QKTN)°D,
q'Qkrrgg192 @ )

The estimations are similar to those of S/_, S3, and Sy, and we obtain

1 1 N
|S’ 2| < |a| QKT max ma ; <Q',dk:rk7"g,U,>.
7,,klk,oo dk’/qgrk Q/STkT 193 UQ gng

Tq|(9192)
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This simplifies as

[Sto2| Sl

|2 szT
N
_ N N
X max max 9192 A( ,dkryrg, TP, )
grklk®1ep<s N d QkTrirgg192P 9192

~QkTTETrgg9192

One checks this is consistent with Theorem which completes its proof.
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