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Abstract. The Katz–Sarnak philosophy predicts that the behavior of zeros near the
central point in families of L-functions agrees with that of eigenvalues near 1 of random
matrix ensembles. Under GRH, Iwaniec, Luo and Sarnak showed agreement in the 1-level
densities for cuspidal newforms with the support of the Fourier transform of the test
function in (−2, 2). Under a square-root cancellation conjecture (‘Hypothesis S’), they
extend allowable support to a (symmetric) larger open interval ⊋ (−2, 2) still obeying
random-matrix statistics. We formulate a two-dimensional analog and show it leads to
improvements in the 2-level density. Specifically, we show that a square-root cancellation
of certain classical exponential sums over primes increases the support of the test functions
such that the main terms in the 1- and 2-level densities of cuspidal newforms averaged over
bounded weight k (and fixed level 1) converge to their random matrix theory predictions.
We also conjecture a broad class of such exponential sums where we expect improvement
in the case of arbitrary n-level densities, and note that the arguments in [Inst. Hautes
Études Sci. Publ. Math. 91 (2000), 55–131] yield larger support than claimed.
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1. Introduction

1.1. Background. Since the observations of Montgomery and Dyson
50 years ago, random matrix theory has provided a guide to predicting
the behavior of quantities related to the zeros and values of L-functions;
we focus on the behavior of zeros here. Initially this agreement was lim-
ited to theoretical results on the pair correlation of zeros of the Riemann
zeta function, and then extended to include the n-level correlations of au-
tomorphic forms and numerical results on the spacings between zeros; see
[Gal, Hej, Mon, RS, Od1, Od2]. These statistics concern the behavior high
up on the critical line, and are thus insensitive to finitely many zeros. In
particular, they miss the effects from zeros at the central point, which are of
great importance in a variety of number theory problems, from the Birch and
Swinnerton-Dyer Conjecture and the ranks of the group of rational solutions
of elliptic curves to bounding class numbers; see [BSD1, BSD2, Go].

To remedy this, Katz and Sarnak [KS1, KS2] introduced new statistics,
the n-level densities; there is now an extensive literature on agreement be-
tween number theory and random matrix theory here (see [AA+, AM, CD+,
CI, DH+1, DH+2, DM1, DM2, ERGR, FiM, FI, Gao, GK, GJ+, Gü, HM,
HR1, HR2, ILS, LM, Mil, MilPe, ÖS1, ÖS2, RR, Ro, Rub, ShTe, Ya, Yo1,
Yo2] and the references therein, as well as [BF+, Con, FM] for more on the
history of the connections between the two subjects).

This work is a continuation of the seminal paper of Iwaniec, Luo and
Sarnak [ILS]; in brief, we extend their results for certain one-level densities
to 2-level, and discuss how to generalize to arbitrary n. Specifically, we show
that a natural generalization of their Hypothesis S on cancellation in certain
prime sums, which led to increasing the support for the 1-level density, leads
to increased support where the 2-level density of certain families of cuspidal
newforms and random matrix theory agree. Such results have applications in
bounding the order of vanishing at the central point. We assume the reader
is familiar with the basics of L-functions; see for example [IK] for details.
The following definitions are standard; we paraphrase from [LiM] as we will
use their framework to convert our results on increased support to estimates
on weighted order of vanishing.

A function Φ : Rn → R is Schwartz if it is infinitely differentiable and it
and all of its derivatives decay faster than any polynomial. In our setting,
an even Schwartz function Φ with compactly supported Fourier transform is
called a test function. We frequently assume that the Generalized Riemann
Hypothesis (GRH) holds for each L(s, f), and write the non-trivial zeros of
a cuspidal newform L(s, f) of level N and weight k as

ρ
(j)
f =

1

2
+ iγ

(j)
f
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for γ(j)f ∈ R increasingly ordered and centered about zero (1). The number
of zeros with |γ(j)f | bounded by an absolute large constant is of order log cf
for some constant cf > 1; this is known as the analytic conductor.

Definition 1.1 (n-Level density). The n-level density of an L-function
L(s, f) with respect to a test function Φ : Rn → R with compactly supported
Fourier transform is defined as

(1.1) Dn(f ;Φ) :=
∑

j1,...,jn
ji ̸=±jk

Φ

(
log cf
2π

γ
(j1)
f , . . . ,

log cf
2π

γ
(jn)
f

)
.

Note that the existence of the n-level density does not depend on GRH.

One of the most important applications of the n-level density is to obtain
bounds on the order of vanishing to a given order at the central point. For
such results, we need Φ to be non-negative and positive at the origin.

Unlike the n-level correlations, the sum (1.1) is hard to study for an
individual f because by the choice of Φ it essentially captures only a bounded
number of zeros. Thus we study averages over finite subfamilies F(Q) :=
{f ∈ F : cf ∈ I(Q)} (which are parametrized by some quantity Q such that
as Q tends to infinity, the size of the subfamily tends to infinity as well),
namely

(1.2) E[Dn(f ;Φ), Q] :=
1

#F(Q)

∑
f∈F(Q)

Dn(f ;Φ).

Common choices are I(Q) = {Q}, {1, 2, . . . , Q} and {Q,Q+ 1, . . . , 2Q}.
The Katz–Sarnak density conjecture [KS1, KS2] asserts that the n-level

density of a family of L-functions, in the limit as the conductors tend to
infinity, converges to the n-level density of eigenvalues of a classical compact
group as the matrix sizes tend to infinity. Explicitly, if F is a “good” family
of L-functions and Φ is not zero at the origin, then there exists a distribution
Wn,F such that

(1.3) lim
Q→∞

E[Dn(f ;Φ), Q] =
1

Φ(0, . . . , 0)

�

Rn

Φ(x) ·Wn,F (x) dx1 · · · dxn.

We have the following expansions for the quantities above; though for
computational purposes it is often advantageous to use an alternative ex-
pansion due to Hughes–Miller [HM], which writes the n-level density as a
sum of terms emerging as the support increases.

(1) In many of the calculations of Bessel–Kloosterman terms, we need GRH for Dirich-
let L-functions. We can often avoid GRH for cuspidal newforms at the expense of more
involved calculations, but if GRH fails while we can still formally calculate these statistics,
as the zeros are no longer on the critical line we lose the correspondence with physics.
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Theorem 1.2 (Determinant expansion [KS1]). Let K(x) = sinπx
πx and

Kϵ(x, y) = K(x − y) + ϵK(x + y). Then the n-level densities have the fol-
lowing distinct closed form determinant expansions for each corresponding
symmetry group:

Wn,SO(even)(x) = det (K1(xi, xj))i,j≤n,(1.4)

Wn,SO(odd)(x) = det (K−1(xi, xj))i,j≤n(1.5)

+

n∑
k=1

δ0(xk) det (K−1(xi, xj))i,j ̸=k,

Wn,O(x) =
1
2Wn,SO(even)(x) +

1
2Wn,SO(odd)(x),(1.6)

Wn,U(x) = det (K0(xi, xj))i,j≤n,(1.7)
Wn,Sp(x) = det (K−1(xi, xj))i,j≤n.(1.8)

As remarked, one of the main applications of this statistic is to bound
the order of vanishing of a family of L-functions at the central point by
choosing a test function which is non-negative and positive at the origin; see
[BC+, DuM, Fr, FrMil, LiM]. Many of these papers are concerned with trying
to find the optimal test function for a given support, but already in [ILS]
one sees that there may be only a negligible improvement in bounds from
using the optimal functions derived from Fredholm theory over simple test
functions. Thus, while there have been some recent advances in determining
the optimal function for a given support, it has been more productive to
increase the support and the level n studied; however, as n increases while
the bounds obtained are better for the percentage of forms vanishing to
order at least r when r is large, they are worse for small r. Thus there
is a balancing act, with most of the effort devoted to finding the largest
support possible, and then determining the best bounds by using easy to
compute test functions for each n. We concentrate on increasing the support
for certain families of cusp forms, which can then be fed into the machinery
from Dutta–Miller [DuM] to yield improved estimates.

In [ILS], the authors introduce the following hypothesis, whose implica-
tions are striking, allowing them to break (−2, 2) for the support for certain
families.

Hypothesis 1.3 (Hypothesis S). Let e(z) := e2πiz, c be a positive inte-
ger and a be an arbitrary residue class mod c. Let M1(α,A) denote a two-
parameter family of hypotheses, where α ∈ [1/2, 3/4] and A ∈ [0,∞), each
of which states that for all x ≥ 2 and ε > 0,

(1.9)
∑
p≤x

p≡a (c)

e

(
2
√
p

c

)
≪ε c

Axα+ε

holds uniformly over c > 0 and residue classes a mod c, with α and A fixed.
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1.2. Previous work. The reason why the authors of [ILS] are interested
in this family of hypotheses is that the hypotheses increase the support of
test functions for which the 1-level density agrees with random matrix theory.
We first review their result, and then discuss our generalization.

For convenience, as is often done in the subject, we assume our test
function Φ is the product of one-dimensional test functions ϕi. Below we
confine our study to cusp forms of level 1 and weight k. Following [ILS], one
is able to get better results on the support by averaging over k. This allows
us to exploit some oscillation in the Bessel function factors that emerge
in application of the Petersson formula. Note that rather than sum over all
forms equally, each form f of weight k is weighted by the slowly varying factor
1/L(1, sym2(f)) [HL, I1]. There is a trade-off in studying this modification of
the n-level densities; these harmonic weights arise naturally in the Petersson
formula, and their introduction simplifies calculations below. Unfortunately
their presence means that we cannot obtain results on bounding the order
of vanishing at the central point, but instead obtain results on weighted
vanishing. In many families these weights can be removed through additional
work; see [ILS].

Definition 1.4 (Agrees with Orthogonal RMT). A test function Φ
agrees with Orthogonal Random Matrix Theory if

(1.10) lim
K→∞

1

K

∑
k≤K

4π2

k − 1

∑
f∈Hk

1

L(1, sym2(f))
Dn(f ;Φ)

=
�

Rn

Φ(x) ·Wn,O(x) dx1 · · · dxn,

where Wn,O(x) is given by equation (1.6), and Hk = H⋆
k(1) are Hecke eigen-

cuspforms of weight k and level 1, with normalization so that af (1) = 1.
The L-function L(s, f) has coefficients λf (n) := af (n)n

−(k−1)/2 so that
λf (p) ∈ [−2, 2] and the L-function L(s, f) is symmetric about Re(s) = 1/2.

Remark 1.5. For the family considered above, previous results show that
the underlying symmetry group is orthogonal, hence our comparison with the
orthogonal behavior. For other families we would just use the corresponding
densities from Theorem 1.2.

We are now able to state the following result from [ILS], which extends
the support for the family of level 1 cusp forms to beyond (−2, 2).

Theorem 1.6 (One-level extended support). Assume GRH. Then
M1(α,A) implies that a test function ϕ agrees with random matrix theory
if supp(ϕ̂) ⊂ (−σ, σ) for σ = min {5/2, 2 + (6 − 8α)/(1 + 2A + 4α)}. More
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specifically, for every h ∈ C∞
0 (R+) with ĥ(0) ̸= 0, one has

(1.11) lim
K→∞

1

ĥ(0)K

∑
k even

4π2

k − 1
h

(
k − 1

K

) ∑
f∈Hk

1

L(1, sym2(f))
D1(f ;ϕ)

→
�

R

ϕ(x) ·W1,O(x) dx.

1.3. New results. In their article from 2000, Iwaniec, Luo and Sarnak
[ILS] state and prove Theorem 1.6 for σ = 2 + (12 − 16α)/(5 + 4A + 8α),
which is less than 2 + (6 − 8α)/(1 + 2A + 4α); however, a careful analysis
of their arguments gives more than what they claimed. In Section 2, we give
a proof of Theorem 1.6 based on [ILS, Section 10], and in Appendix A, we
discuss the difference in the claimed support and what the calculation yields.

Our main theorem, Theorem 1.8, is a natural extension of Theorem 1.6,
showing that square-root cancellation hypotheses also extend to the case of
the 2-level density. For ease of exposition and to highlight the issues, we
focus on the n = 2 case, though similar calculations should hold in general.

Hypothesis 1.7. Let e(z) := e2πiz, c be a positive integer, and a1, a2 be
arbitrary residue classes mod c. Let M2(α,A) denote a two-parameter family
of hypotheses, where α ∈ [1/2, 3/4] and A ∈ [0,∞), each of which states that
for all x1, x2 ≥ 2 and ε > 0,

(1.12)
∑

p1≤x1

p1≡a1 (c)

∑
p2≤x2

p2≡a2 (c)

e

(
2
√
p1p2

c

)
≪ε c

A(x1x2)
α+ε

holds uniformly over c > 0 and residue classes a1, a2 mod c, with α and A
fixed.

A natural extension of Theorem 1.6 is our main theorem, proven in Sec-
tion 3.

Theorem 1.8 (Two-level extended support). Assume GRH. Then
M1(α,A) and M2(α,A) imply that a test function Φ(x) = ϕ1(x1)ϕ2(x2)
agrees with random matrix theory if

supp(ϕ̂i) ⊂ (−σi, σi) for σ1 + σ2 = 2 + (6− 8α)/(3 + 2A+ 4α).

More specifically, for every h ∈ C∞
0 (R+) with ĥ(0) ̸= 0, one has

(1.13) lim
K→∞

1

ĥ(0)K

∑
k even

4π2

k − 1
h

(
k − 1

K

) ∑
f∈Hk

1

L(1, sym2(f))
D2(f ;Φ)

→
�

R2

Φ(x) ·W2,O(x) dx1 dx2.
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Using the machinery from [DuM] for an orthogonal ensemble with the
naive test function we immediately obtain the following from Theorem 1.8.

Theorem 1.9. Taking ϕ to be the naive test function

(1.14) ϕNaive(x) =

(
sin(πvx)

πvx

)2

,

the weighted percentage of forms vanishing to order at least r, denoted
Pr(F), is bounded by

(1.15) Pr(F) ≤ min

{
1

r

(
1

2
+

1

v1

)
,

1

3(r − 1/v2 − 1/2)2

}
.

Here v1 and v2 denote the available support for the 1-level and 2-level density
respectively, and the form f is weighted by the factor from (1.13) (normalized
so that the sum of the weights equals 1). Assuming the strongest version of
Hypothesis 1.7, one may take v1 = 2.5 and v2 = 1.2. These values yield

(1.16)
P1(F) ≤ 0.9000, P2(F) ≤ 0.4500, P3(F) ≤ 0.1200,

P4(F) ≤ 0.0469, P5(F) ≤ 0.0248.

Remark 1.10. We quickly comment on the conditional nature of these
results. In [ILS] there are two places where GRH is used. The first is for
convenience to bound certain prime sums of cuspidal newforms, which the
authors remark can be bypassed by additional appeals to the Petersson for-
mula (see the comments after their equation (4.24)) (2). The second is when
analyzing the main term contribution when one splits by sign of the func-
tional equation for square-free level N tending to infinity; however, we only
need GRH for Dirichlet L-functions. When splitting by sign for growing level
N there is also the size of error of the Bessel–Kloosterman term that needs
to be bounded; likewise, only GRH for Dirichlet L-functions is needed. If
we do not split by sign and consider level 1 cuspidal newforms for k up
to K (appropriately weighted), then Hypothesis S, an estimate for “GL1”
exponential sums, suffices.

Remark 1.11. We expect in the limit that 50% of the forms in our
family should be rank 0 and 50% rank 1; thus (paraphrasing comments one
of us heard from Iwaniec in graduate classes) for r ≥ 2 we may interpret
Theorem 1.9 as providing better upper bounds on 0.

We first review the proof for the 1-level density in Section 2 to fix notation
and then extend to the 2-level in the next section. For notational convenience
we prove Theorem 1.8 in the case when ϕ1 = ϕ2; a similar argument holds

(2) While we need GRH to have the zeros lie on the critical line, and thus have a
direct comparison to eigenvalues of Hermitian matrices or energy levels of heavy nuclei,
such an assumption is only needed for this interpretation or correspondence; the n-level
densities exist whether or not GRH holds.
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in general (see for example the arguments in [LiM], which extend the n-level
density results of [HM] from identical test functions to the more general
case). We then discuss further generalizations to larger n.

2. The 1-level case. We follow the arguments of Iwaniec, Luo and
Sarnak [ILS] to prove Theorem 1.6, but with extra care towards the step
that derives their equation (10.17), since the expression in their original
manuscript differs slightly from our estimation. This also sets the notation
we need for our 2-level result, as well as isolating certain 1-level results that
are used again.

We begin by justifying normalizing the 1-level density sum

(2.1) B(K) :=
∑
k even

4π2

k − 1
h

(
k − 1

K

) ∑
f∈Hk

1

L(1, sym2(f))
D1(f ;ϕ)

by a factor of ĥ(0)K. That is, given the total weighting

(2.2) B(K) :=
∑
k even

4π2

k − 1
h

(
k − 1

K

) ∑
f∈Hk

1

L(1, sym2(f))
,

we show that B(K) = ĥ(0)K +O(1), and thus either B(K) or ĥ(0)K gives
the same normalization of B(K) as K → ∞. This follows from a special
case of the Petersson trace formula:

B(K) =
∑
k even

2h

(
k − 1

K

)
∆k(1, 1),(2.3)

∆k(1, 1) =
2π2

k − 1

∑
f∈Hk

1

L(1, sym2(f))
,

where the so-called trace ∆k(m,n) is defined to be

∆k(m,n) :=
∑
f∈Hk

Γ (k − 1)

(4π
√
mn)k−1

af (m)af (n)

⟨f, f⟩
(2.4)

=
2π2

k − 1

∑
f∈Hk

λf (m)λf (n)

L(1, sym2(f))
,

where ⟨·, ·⟩ is the Petersson inner product and af are the Fourier coefficients
of the cusp form f .

Proposition 2.1 (Petersson trace formula). Let δ(·, ·) be Kronecker’s
delta, Jk−1 a Bessel function of the first kind, and let

(2.5) S(m,n; c) :=
∑⋆

d (mod c)

e

(
md+ nd

c

)
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be a Kloosterman sum, where
∑⋆ denotes summing over primitive residue

classes. Then the Petersson formula is

(2.6) ∆k(m,n) = δ(m,n) + 2πik
∞∑
c=1

S(m,n; c)

c
Jk−1

(
4π

√
mn

c

)
.

Careful estimation of the Petersson trace formula for special values as in
[ILS, Corollary 2.3] gives∆k(1, 1) = 1+O(2−k), and so our claim aboutB(K)
follows by interpreting the main term H =

∑
k even 2h

(
k−1
K

)
as a Riemann

sum of the function 2h(x) divided by the mean spacing 2/K, hence H =

ĥ(0)K +O(1) where the implied constant depends on h, e.g., using the fact
that h has bounded variation.

In performing asymptotic analysis, we are interested in the weighted sum
of traces

(2.7) B(m,n) :=
∑
k even

2h

(
k − 1

K

)
∆k(m,n).

Inserting (B.5) into (2.1) while taking R ≍ K2 to be the order of the average
conductor, we have

(2.8) B(K) = ĥ(0)K⟨ϕ,W1,O⟩ − P(ϕ) +O

(
K

log logK

logK

)
,

where the implied constant depends on ϕ, and P(ϕ) is the weighted sum
over local factors,

P(ϕ) :=
∑
k even

4π2

k − 1
h

(
k − 1

K

) ∑
f∈Hk

1

L(1, sym2(f))
P(f ;ϕ)(2.9)

=
∑
p

B(p, 1)ϕ̂

(
log p

2 logK

)
log p

p1/2 logK
.

It is at this stage that the goal of the analysis becomes clear: estimate
P(ϕ) by extracting a main term and bounding the error. In the case of
the 1-level density, the prime sum P(ϕ) does not contribute to the main
term when supp(ϕ̂) ⊂ (−σ, σ) for some σ we would like to determine, giving
us agreement with random matrix theory. For example, without the use of
Hypothesis 1.3, the authors of [ILS] immediately show using the Petersson
trace formula and Weil’s estimate that B(p, 1) = O(p1/2K−4), and so taking
σ = 2 means that p runs up to P ≪ K4−δ assuming supp(ϕ̂) ⊆ [−2+δ, 2−δ]
for some positive δ, which gives P(ϕ) ≪ K−δ.

To increase σ, it is necessary to deal with a worse error term that cannot
be absorbed into O(p1/2K−4) when σ > 2. Namely, by applying the Peters-
son formula to B(m,n) and approximating the Bessel function sums using
standard techniques (see [ILS, Corollary 8.2] and then [I2, top of p. 86]), one
may derive the following.
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Lemma 2.2 ([ILS, Lemma 10.1]). One has

(2.10) B(m,n) = ĥ(0)Kδ(m,n) +O(δ(m,n) +
√
mnK−4)

− π1/2(mn)−1/4K Im

(
ζ8

∞∑
c=1

c−1/2S(m,n; c)e

(
2
√
mn

c

)
ℏ
(

cK2

8π
√
mn

))
,

where the implied constant depends on h, and the function ℏ is defined to be
the transform

(2.11) ℏ(v) :=
∞�

0

h(
√
u)√

2πu
eiuv du.

The above lemma follows by applying the Petersson trace formula to
(2.7), and then estimating the weighted sum of Bessel functions I(x) =∑

k even 2h
(
k−1
K

)
ikJk−1(x) (cf. the twisted character sum in [I2, p. 86]). Cru-

cial in the analysis is executing the sum over the weights k to exploit the
oscillation in the Bessel terms.

Using this expression for B(p, 1) to estimate (2.9), by a simple triangle
inequality we obtain

(2.12) P(ϕ) ≪h PK
−4

+

∣∣∣∣∑
p

K Im

(
ζ8

∞∑
c=1

S(p, 1; c)√
c

e

(
2
√
p

c

)
ℏ
(
cK2

8π
√
p

)
ϕ̂

(
log p

2 logK

)
log p

p3/4 logK

)∣∣∣∣,
where P is the largest prime such that logP

2 logK is greater than the support
of ϕ̂. Notice that we use a crude estimate such as

∑
p≤P 1 ≪ P because loga-

rithmic factors will not increase the support (as our results are for open and
not closed intervals). We moved ϕ̂

( log p
2 logK

)
and log p

p3/4 logK
into the imaginary

component, since they are both real.
Our next step is to interchange summing over p versus c, and we replace

|Im(·)| by the full complex modulus | · | (we do not expect the real part to
be significantly larger than the imaginary part, so this should not lead to a
decrease in support):

(2.13) P(ϕ)− PK−4

≪ K
∞∑
c=1

1√
c

∣∣∣∣∑
p

S(p, 1; c)e

(
2
√
p

c

)
ℏ
(
cK2

8π
√
p

)
ϕ̂

(
log p

2 logK

)
log p

p3/4 logK

∣∣∣∣
≪ K

∞∑
c=1

1√
c

∑⋆

a (mod c)

∣∣∣∣ ∑
p≡a (c)

S(p, 1; c)e

(
2
√
p

c

)
ℏ
(
cK2

8π
√
p

)

× ϕ̂

(
log p

2 logK

)
log p

p3/4 logK

∣∣∣∣
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= K

∞∑
c=1

1√
c

∑⋆

a (mod c)

|S(a, 1; c)|
∣∣∣∣ ∑
p≡a (c)

e

(
2
√
p

c

)
ℏ
(
cK2

8π
√
p

)

× ϕ̂

(
log p

2 logK

)
log p

p3/4 logK

∣∣∣∣.
We only sum over primitive residue classes mod c, each of which contains
infinitely many primes, whereas the non-primitive classes consist of primes
p dividing c. Because ℏ is rapidly decaying, only large primes p ≫ c2K4

contribute, and so the non-primitive residue classes are absorbed into the
Vinogradov notation.

We now perform summation by parts. For each sum over primes in a
residue class, we put ψc(x) = ℏ

(
cK2

8π
√
x

)
ϕ̂
( log x
2 logK

) log x
x3/4 logK

which is smooth
and supported for primes p < P . By Abel summation, we obtain

(2.14)
∑

2≤n≤P

e

(
2
√
n

c

)
1n∈{p≡a (c)}ψc(n) = −

P�

2

E1(x)ψ′
c(x) dx,

where

(2.15) E1(x) :=
∑

p≡a (c)
p≤x

e

(
2
√
p

c

)
.

Thus we see a natural opportunity to use Hypothesis 1.3 in our estimate for
the local factors arising from the explicit formula applied to the weighted
average of the 1-level density D1(f ;ϕ).

From now on let us assume hypothesis M1(α,A) found in (1.9). We esti-
mate ψ′

c(x) as

(2.16) ψ′
c(x) = ℏ′

(
cK2

8π
√
x

)
·O

(
cK2

x9/4

)
+ ℏ

(
cK2

8π
√
x

)
·O

(
1

x7/4

)
,

where the implied constant depends on ϕ. We treat ψ′
c(x) as O(1) for small c

and as rapidly decaying for large c. The exact transition region for c is gov-
erned by the argument of the rapidly decaying function ℏ, i.e., cK2/

√
P

= θ(1). Thus, we truncate our sum over c in (2.13) at the value C =
P 1/2Kε−2. Indeed, applying Weil’s estimate and (2.16) with ℏ′(x), ℏ(x) =
OΩ(x

−Ω) for Ω > 0 large, we bound the tail of (2.13) by

(2.17) K
∑
c≥C

c

P�

2

E1(x)ψ′
c(x) dx

≪h,Ω,ε K
∑
c≥C

cA+1
P�

2

xα+ε

(
cK2

√
x

)−Ω

·
(
cK2

x9/4
+

1

x7/4

)
dx

≪ Pα+ε+Ω/2K1−2ΩCA+3−Ω = KO(1)−εΩ.
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Thus we have a balancing act, where we let ε → 0 while O(1) − εΩ < 0 to
maximize the extension of support obtained by this method. This shows that
we may neglect these terms for further computation, i.e., they are absorbed
into the Vinogradov notation.

Focusing now on the small values of c, we estimate ψ′
c(x) = Oh(K

εx−7/4)
for x ≥ c2K4−2ε, handling the smaller values of x using rapid decay estimates
similar to above. This gives

(2.18) K
∑
c≤C

c

P�

c2K4−2ε

E1(x)ψ′
c(x) dx

≪h,ε K
1+ε

∑
c≤C

cA+1
P�

c2K4−2ε

xα−7/4+ε dx≪ Pα+A/2+1/4K−2A−3+O(ε).

We usually write O(ε) as ε, as this can be done by rescaling ε. Thus, we
have derived
(2.19) P(ϕ) ≪ϕ,h,ε PK

−4 + Pα+A/2+1/4K−2A−3+ε.

In order to understand an account of the various estimates for (2.19), see
Appendix A.

Since P = K2σ′ and σ′ < σ for all K sufficiently large, neither of the
terms in (2.19) contributes as ε → 0 and K → ∞ provided that σ is in the
range specified by Theorem 1.6. This concludes our proof of Theorem 1.6.

The best support we could expect would be using hypothesis M1

(
1
2 , 0

)
,

which gives an increased support of supp(ϕ̂) ⊂ (−5/2, 5/2); see Appendix A
for a history of this derivation. Notice that σ = 5/2 can also be achieved
usingM1 with respect to any (α,A) along the linear interpolation of (0.5, 0.5)
and (0.55, 0).

3. The 2-level case. The starting point is the explicit formula, and
inclusion-exclusion to express the 2-level density in terms of prime sums.
The calculation is standard (see Section B) and yields equation (B.7), which
we restate below (recall P(f ;ϕ) is defined in (2.9)):

D2(f ;ϕ) = ϕ̂(0)2
(

log k

logK

)2

− 3

4
ϕ(0)2 + ϕ̂(0)ϕ(0)

log k

logK
(3.1)

− 2ϕ̂2(0)
log k

logK
+Oϕ

(
log log k

logK

)
+ P(f ;ϕ)2 + 2P(f ;ϕ2)

−
(
2ϕ̂(0)

log k

logK
+ ϕ(0) +Oϕ

(
log log k

logK

))
P(f ;ϕ).

From Section 2, we know that the averages of P(f ;ϕ2) and P(f ;ϕ) are
o(K) when supp(ϕ̂) ⊂ (−σ̃/2, σ̃/2), where σ̃ is σ(α,A) given in Theorem 1.6
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and we assume hypothesisM1(α,A). We now proceed to extract the diagonal
sum from P(f ;ϕ)2 since it contributes. We have

(3.2) P(f ;ϕ)2 =
∑
p,q

λf (p)λf (q)√
pq

ϕ̂

(
log p

logR

)
ϕ̂

(
log q

logR

)
4 log p log q

(logR)2
,

where p, q run over the primes. When we average over f we get

P2(ϕ) :=
∑
k even

4π2

k − 1
h

(
k − 1

K

) ∑
f∈Hk

1

L(1, sym2(f))
P(f ;ϕ)2(3.3)

=
∑
p,q

ϕ̂

(
log p

logR

)
ϕ̂

(
log q

logR

)
4 log p log q
√
pq (logR)2

B(p, q),

where B(p, q) was defined in (2.7). Applying Lemma 2.2, we have

P2(ϕ) = (ĥ(0)K+O(1))
∑
p

1

p
ϕ̂

(
log p

logR

)2(2 log p

logR

)2

+Oϕ,h(P
2K−4)(3.4)

−π1/2K
∑
p,q

1

p3/4q3/4
ϕ̂

(
log p

logR

)
ϕ̂

(
log q

logR

)
4 log p log q

(logR)2

×Im

(
ζ8

∞∑
c=1

c−1/2S(p, q; c)e

(
2
√
pq

c

)
ℏ
(

cK2

8π
√
pq

))
.

The diagonal sum yields

(3.5)
∑
p

1

p
ϕ̂

(
log p

logR

)2(2 log p

logR

)2

=

∞�

2

ϕ̂

(
log x

logR

)2 4 log2 x

x log2R
dπ(x)

=

∞�

2

ϕ̂

(
log x

logR

)2 4 log2 x

x log2R

(
dx

log x
+O

(
log2 x√

x

)
dx

)

=

∞�

0

ϕ̂(u)24u du+O

(
1

logR

)
+O

(
η +

logR

Rη

)
.

Taking η = A log logR/logR with A ≥ 2 a constant yields an error of size
O(log logR/ logR), where we have used the Riemann hypothesis for ζ(s) for
a good error term in the integration.

We now analyze the non-diagonal component of P2(ϕ), denoted P
(nd)
2 (ϕ),

similar to our treatment of P(ϕ) beginning at (2.13). Taking R ≍ K2,
we have
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(3.6) P
(nd)
2 (ϕ)− P 2K−4

≪ K

∞∑
c=1

1√
c

∣∣∣∣∑
p,q

S(p, q; c)e

(
2
√
pq

c

)
ℏ
(

cK2

8π
√
pq

)
× ϕ̂

(
log p

2 logK

)
ϕ̂

(
log q

2 logK

)
log p log q

p3/4q3/4(logK)2

∣∣∣∣
≪ K

∞∑
c=1

1√
c

∑⋆

a,b (mod c)

|S(a, b; c)|

×
∑⋆

a,b (mod c)

|S(a, b; c)|
∣∣∣∣ ∑
p≡a (c)
q≡b (c)

e

(
2
√
pq

c

)
ℏ
(

cK2

8π
√
pq

)

× ϕ̂

(
log p

2 logK

)
ϕ̂

(
log q

2 logK

)
log p log q

p3/4q3/4(logK)2

∣∣∣∣.
We now perform summation by parts on our double sum over primes in
residue classes. We let

(3.7) ψc(x, y) := ℏ
(

cK2

8π
√
xy

)
ϕ̂

(
log x

2 logK

)
ϕ̂

(
log y

2 logK

)
log x log y

x3/4y3/4(logK)2

and sum by parts. We have

(3.8)
∑

p≡a (c)
q≡b (c)

e

(
2
√
pq

c

)
ψc(p, q) =

P�

2

P�

2

E2(x, y)
∂2ψc

∂x∂y
(x, y) dx dy,

where

(3.9) E2(x, y) :=
∑

p≡a (c)
q≡b (c)

e

(
2
√
pq

c

)
.

We now assume hypothesis M2(α,A), found in (1.12).
As was illustrated by estimates in Section 2, it suffices to only integrate

over the region xy ≥ c2K4−2ε; we may also truncate our sum at c ≤ C =
PKε−2. Allowing this reduction along with Weil’s estimate and ∂2xyψc(x, y) =

O(Kε(xy)−7/4), we obtain

P
(nd)
2 (ϕ) ≪ϕ,h,ε P

2K−4+K1+ε
∑
c≤C

c2
� �

xy≥c2K4−2ε

cA(xy)α−7/4+ε dx dy(3.10)

≪ P 2K−4+P 3/2+A+2αK−6−2A+O(ε).

This gives an increased support of supp(ϕ̂) ⊂ (−σ/2, σ/2), where σ = 2 +
6−8α

3+2A+4α .
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This concludes our proof of Theorem 1.8, since equation (B.7) for the
2-level expansion yields the main term ⟨Φ,W2,O⟩ plus an error term that
is controlled by the family averages of P(f ;ϕ2) and P

(nd)
2 (ϕ). Indeed, our

main term is

(3.11) 2

∞�

−∞
|u|ϕ̂(u)2 du+ ϕ̂(0)2 − 3

4
ϕ(0)2 + ϕ̂(0)ϕ(0)− 2ϕ̂2(0),

and it is a standard calculation (see [HM, CD+]) that this is equal to
⟨Φ,W2,O⟩ (it is straightforward combinatorics to pass between n-level densi-
ties and nth centered moments).

By Hypotheses M1(α,A) and M2(α,A) the error does not contribute as
K → ∞ for

(3.12) 2σ ≤ min

{
5

2
, 2+

6−8α

1+2A+4α
, 2+

6−8α

3+2A+4α

}
= 2+

6−8α

3+2A+4α
.

This is because the rest of the calculation for the 2-level support consists
of cross terms that already appear in the 1-level case, and these terms are
negligible assuming M1(α,A) and 2σ in the above range by following the
proof of Theorem 1.6 in Section 2.

4. An n-level conjecture. Based on our calculations in Sections 2
and 3, we notice that the fundamental sums arising from local factors which
may contribute have a predictable analysis. The natural generalization of
cancellation in such sums leads to the following conjecture on extending
support.

Conjecture 4.1 (n-level hypothesis). Assume GRH. Let Φ : Rn → R be
a test function given by Φ(x) =

∏n
i=1 ϕ(xi). For fixed α ∈

[
1
2 ,

3
4

]
, A ∈ [0,∞),

k ∈ N, consider the following hypothesis which holds for all x1, . . . , xk ≥ 2
and ε > 0:

(4.1) Mk(α,A) :
∑

p1≤x1

p1≡a1 (c)

· · ·
∑

pk≤xk
pk≡ak (c)

e

(
2
√
p1· · · pk
c

)
≪ε c

A(x1· · ·xk)α+ε,

where the implied constant is uniform over c ∈ N and the residue classes
a1, . . . , an mod c. Then M1(α,A), . . . ,Mn(α) imply that Φ agrees with ran-
dom matrix theory whenever supp(ϕ̂) ⊂ (−σ, σ), where σ is given by

nσ = min

{
5

2
, 2 +

6− 8α

1 + 2A+ 4α
, . . . , 2 +

6− 8α

2n− 1 + 2A+ 4α

}
(4.2)

= 2 +
6− 8α

2n− 1 + 2A+ 4α
.

Expansions of the nth centered moments or n-level densities have been
calculated for related families where we split by sign and let the level N go
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to ∞ through the primes; see Cohen et al. [CD+] for families of such cuspidal
newforms, with the resulting agreement holding for supp(ϕ̂) ⊂ (−2/n, 2/n).
A good future project (3) would be to apply their combinatorial arguments
in the level 1 setting, in particular seeing whether or not these are the only
terms that restricted the support to 2/n.

Appendix A. Theorem 1.6 in the literature. We provide some brief
remarks on the support improvements from Hypothesis S.

Let us suppose that α = 1/2 and A = 0 for hypothesis M1(α,A), i.e., the
exponential sums satisfy true square-cancellation. Theorem 1.6 says that we
may take σ = 5/2. In their 1999 preprint, Iwaniec, Luo and Sarnak perform
the correct integration by parts technique, but their estimate of a sum of
Bessel functions is non-sharp; they write

(A.1)
∑
k even

2h

(
k − 1

K

)
ikJk−1(x) = Main Term +Oh

(
x

K4
+
x2

K6

)
(cf. Proposition 1 of Section 2 in this preprint). It is this extra error of
Oh(x/K

6) that affects the final result, giving σ = 7/3 instead of σ = 5/2.
In their 2000 publication, the error term in (A.1) is corrected to Oh(x/K

4),
which leads to the correct estimate in [ILS, Corollary 8.2]. However, [ILS]
derives σ = 22/9 instead of σ = 5/2; this is because although their Bessel
sum estimate is correct, they derive

(A.2) P(ϕ) ≪ϕ,h,ε PK
−4 + Pα+A/2+5/8K−2A−9/2+ε.

It is unclear how they did this; following their integration by parts technique
in the 1999 preprint, it seems that with the correction to (A.1) found in their
2000 publication, they would have derived equation (2.19) as we present it
today.

Appendix B. Explicit formulae for the densities. We order the
zeros of L(s, f) by 0 ≤ γ(1) ≤ γ(2) ≤ · · · including multiplicity, and γ(−j) =
−γ(j), giving us a zero γ(j) for each j ∈ Z − {0}. We recall that the 1-level
density of L(s, f) with respect to a test function ϕ is

(B.1) D1(f ;ϕ) :=
∑
j ̸=0

ϕ

(
log cf
2π

γ(j)
)
,

where cf = k2N is the analytic conductor of a form f with weight k and
level N . Throughout this paper, we exclusively deal with level 1 modular
forms, so log cf = 2 log k for f ∈ Hk.

(3) It is likely that this will be investigated in a future SMALL REU.
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Similarly, the 2-level density with respect to a one-dimensional test func-
tion ϕ : R → R (so Φ(x1, x2) = ϕ(x1)ϕ(x2)) is

(B.2) D2(f ;ϕ) :=
∑
j,ℓ̸=0
j ̸=±ℓ

ϕ

(
log cf
2π

γ(j)
)
ϕ

(
log cf
2π

γ(ℓ)
)
.

Straightforward inclusion-exclusion shows that this 2-level density simplifies
as

(B.3) D2(f ;ϕ) = D1(f ;ϕ)
2 − 2D1(f ;ϕ

2),

with similar expansions for the n-level densities as a degree n polynomial
expression in terms of the 1-level densities of powers of ϕ.

In [ILS, Section 4], the following expansion in derived.

Lemma B.1 ([ILS, Lemma 4.1]). Let ϕ be even Schwartz and ϕ̂ compactly
supported. Then for f ∈ H⋆

k(N), we have

D1(f ;ϕ) = ϕ̂(0)
log k2N

logR
+

1

2
ϕ(0)−

∑
p

λf (p)ϕ̂

(
log p

logR

)
2 log p

√
p logR

(B.4)

−
∑
p

λf (p
2)ϕ̂

(
2 log p

logR

)
2 log p

p logR
+O

(
log log 3N

logR

)
,

where R > 1 is an arbitrary parameter and the implied constant depends only
on ϕ.

The authors of [ILS] remark that, by assuming the Riemann hypothesis
for L(s, sym2(f)), the second sum over primes above is a small error of size
O
( log log kN

logR

)
which depends on ϕ, and very crucially does not depend on f

(cf. [ILS, (4.23)]). They also remark that one can achieve a similar error size
on average via unconditional means, which is described in [ILS, Appendix B].
Thus, assuming GRH, we have

D1(f ;ϕ) = ϕ̂(0)
log k2N

logR
+

1

2
ϕ(0)−

∑
p

λf (p)ϕ̂

(
log p

logR

)
2 log p

√
p logR

(B.5)

+Oϕ

(
log log kN

logR

)
.

Let P(f ;ϕ) denote the sum over primes which may contribute to the density:

(B.6) P(f ;ϕ) :=
∑
p

λf (p)√
p
ϕ̂

(
log p

logR

)
2 log p

logR
.

We drop the parameter R from the notation of P(f ;ϕ), since we often take R
as the analytic conductor cf = k2N or the average conductor over the family,
i.e., R ≍ K2N .
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We now consider the 2-level density for ϕ. By applying (B.5) to (B.3)
with f ∈ Hk = H⋆

k(1) and R ≍ K2, we obtain

D2(f ;ϕ) = ϕ̂(0)2
(

log k

logK

)2

− 3

4
ϕ(0)2 + ϕ̂(0)ϕ(0)

log k

logK
(B.7)

− 2ϕ̂2(0)
log k

logK
+Oϕ

(
log log k

logK

)
+ P(f ;ϕ)2 + 2P(f ;ϕ2)

−
(
2ϕ̂(0)

log k

logK
+ ϕ(0) +Oϕ

(
log log k

logK

))
P(f ;ϕ).

As we observe in Section 3, the only prime sum which contributes to random
matrix theory agreement is P(f ;ϕ)2: the terms involving P(f ;ϕ2) and P(f ;ϕ)
become negligible under the support conditions for Φ(x) = ϕ2(x1)ϕ

2(x2)
given by Theorem 1.6 assuming Hypothesis 1.3.
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