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Ergodicity in some families of Nevanlinna functions

by

Tao Chen, Yunping Jiang and Linda Keen (New York)

Abstract. We study Nevanlinna functions f , that is, transcendental meromorphic
functions having N asymptotic values and no critical values. Keen and Kotus (1999) proved
that if the orbits of all the asymptotic values have accumulation sets that are compact
and on which f is a repeller, then f acts ergodically on its Julia set. In the present paper
we prove that if some but not all of the asymptotic values have this property, while the
others are prepoles, the same holds true. This is the first paper to consider this mixed
case.

1. Introduction. An early result of McMullen [M] says that if f is a
rational map of degree greater than 1, and if P (f) is its post-singular set,
one of two things holds: either f ’s Julia set is the whole Riemann sphere and
the action of f is ergodic, or it is not the whole sphere and the spherical
distance d(fn(z), P (f)) tends to 0 for almost every z in J(f) as n → ∞,
that is, the ω-limit set ω(z) is a subset of P (f) that varies with z. Bock [B2]
proved a similar result for meromorphic functions. This begs the question:
under what conditions on a meromorphic function whose Julia set is the
whole sphere is the action of the function on the sphere ergodic (or not)?
In the realm of entire functions, Lyubich [Lyu] proved that the exponential
function ez, whose Julia set is the sphere, is not ergodic, and Bock [B1]
proved that if the set of singular values of an entire function is finite, and
all of these are preperiodic but not periodic, then the map is ergodic. In the
realm of meromorphic functions, Bock [B2] showed (see also [RVS, Theorem
3.3] for another proof) that if the “radial Julia set”, a subset of the Julia
set, has positive measure, the action is ergodic. Other earlier results dealt
with the particularly simple example of meromorphic functions with two
asymptotic values and no critical values. There are partial results on the
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ergodicity question for this family: Let λ, µ ∈ C, and

f =
λez − µe−µ

ez − e−z
,

where λ, µ are the two asymptotic values of f . Keen and Kotus [KK] have
shown that if the accumulation sets of both λ and µ are compact, and f is
a repeller on these sets, then the Julia set is Ĉ and f is ergodic. By way of
contrast, Skorulski [S1, S2] has shown that if there exist natural numbers
p and q such that fp(λ) = f q(µ) = ∞, then the Julia set is Ĉ and f is
non-ergodic.

Weiyuan Qiu asked one of the authors what happens in the remaining
case where one asymptotic value lands on a repelling cycle, and the other is
a prepole. In answering his question, we were able to prove a more general
result for the full family of functions with finitely many asymptotic values
and no critical values, so-called “Nevanlinna functions”:

Main Theorem. If f is a Nevanlinna function with N asymptotic values
of which 0 < K < N are prepoles, and if the ω-limit sets of the remaining
N −K are compact repellers, then the Julia set is Ĉ and f is ergodic.

Remark. Our proof of this theorem implies that for these Nevanlinna
functions, the measure of the radial Julia set is positive.

The case K = 0 was analyzed in [KK]. For the case K = N , we have
the following conjecture which we are still working on and will report on in
a future paper.

Conjecture 1. When K = N , the action of f on its Julia set Ĉ is not
ergodic.

The proof of our theorem depends on generalizations of some lemmas in
[KK]. After an introductory section in which we give the basic definitions
and properties of Nevanlinna functions, we state and prove these lemmas
and apply them to the proof of the theorem.

2. Preliminaries. In this section, we recall some of the basic theory of
transcendental meromorphic functions. Such a function, f : C → Ĉ, is holo-
morphic except at the set of poles, {f−1(∞)}, and is a local homeomorphism
everywhere except at the set Sf of singular points. In this paper, we will be
interested in those functions for which #Sf is finite and will assume this
throughout. For such functions, the singular values are of two types. Let v
be a singular value and let V be a neighborhood of v. Then:

• If, for some component U of f−1(V ), there is a u ∈ U such that f ′(u) = 0,
then u is a critical point and v = f(u) ∈ V is the corresponding critical
value.
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• If, for some component U of f−1(V ), f : U → V \{v} is a universal covering
map, then v is a logarithmic asymptotic value. The component U is called
an asymptotic tract for v. Any path γ(t) ∈ U such that limt→1 γ(t) = ∞,
limt→1 f(γ(t)) = v is called an asymptotic path for v.
At regular or non-singular points, meromorphic functions are local hom-

eomorphisms. The dynamics of meromorphic functions with finitely many
singular values have been the focus of many dynamical studies. In partic-
ular, all their asymptotic values are isolated and hence logarithmic. We,
therefore, drop the descriptor “logarithmic” below and call them asymptotic
values.

An important tool in studying meromorphic functions with finitely many
critical points and finitely many asymptotic values is that they can be char-
acterized by their Schwarzian derivatives.

Definition 1. If f(z) is a meromorphic function, its Schwarzian deriva-
tive is

S(f) =

(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

.

The Schwarzian differential operator satisfies the chain rule condition
S(f ◦ g) = S(f)g′2 + S(g),

from which it is easy to deduce that if f is a Möbius transformation, then
S(f) = 0, so that f ◦ g and g have the same Schwarzian derivative.

In [N, Chap. XI, §3], Nevanlinna, using a technique he calls rational
approximation, shows how to, given a finite set of points in the plane and
finite or infinite branching data for these points, construct a meromorphic
function whose topological covering properties are determined by this data.
The function is defined up to Möbius transformations. He proves

Theorem 1. The Schwarzian derivative of a meromorphic function with
finitely many critical points and finitely many asymptotic values is a ratio-
nal function. If there are no critical points, it is a polynomial. Conversely,
if a meromorphic function has a rational Schwarzian derivative, then it
has finitely many critical points and finitely many asymptotic values. If the
Schwarzian derivative is a polynomial of degree m, then the meromorphic
function has m+ 2 asymptotic values and no critical points.

In the literature, meromorphic functions with polynomial Schwarzian
derivative are often called Nevanlinna functions (see e.g. [C, EM]). These
are the focus of this paper.

To prove our results, we will need estimates on the asymptotic behavior of
the poles and residues of Nevanlinna functions, summarized in Proposition 5
at the end of this section. These are well-known, and there is extensive
literature; see, e.g., [H, Chap. 5], [L, Chap. 4], or [C] for details.
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We begin by recalling the connection between Nevanlinna functions and
the second-order differential equation
(1) w′′ + P (z)w = 0,

where P (z) is a polynomial of degree m. The solutions of (1) are holomorphic
and form a two-dimensional linear space. A straightforward calculation shows
that if w1, w2 are linearly independent solutions of (1), then f = w1/w2 is
meromorphic and S(f) = 2P (z).

To develop some intuition for discussing Nevanlinna functions, let us
begin with a “toy” example. Let P (z) = 1 so that (1) becomes
(2) w′′ + w = 0.

It is easy to check that its solutions lie in the two-dimensional space generated
by the “principal” solutions w1 = eiz and w2 = e−iz and that the quotient f
of these two, or of any pair of linearly independent solutions of (2), satisfies
S(f) = 2.

Define the ray ρ0(t) = {z = t > 0}, and for any R > 0 and ϵ ∈ (0, π)
define the sector

S(R, ϵ) = S = {z : |z| > R, |arg z − π| > ϵ}.
Obviously, S \ ρ0(t) consists of two components, U+ containing an infinite
segment of the positive imaginary axis and U− containing an infinite seg-
ment of the negative imaginary axis. Note that w1 maps U+ to a punctured
neighborhood of zero and maps U− to a punctured neighborhood of ∞ while
w2 interchanges the images. Thus, 0 and ∞ are asymptotic values of wi, and
these two components are their respective asymptotic tracts. Note that along
the ray ρ0(t) separating these two asymptotic tracts, the function w1/w2 as-
sumes every value in the unit circle infinitely often.

Similarly, for any δ > 0 there is a large T such that in the neighborhood
{z : |z| > T, |arg z| < δ}, f = w1/w2 takes every value in C∗ infinitely often.
The ray ρ0(t) is called the critical ray and the argument θ0 = 0 of ρ0(t) is
called the critical direction.

For a general Nevanlinna function, we define its critical rays and critical
directions as follows:

Definition 2. Let f be a Nevanlinna function with Schwarzian deriva-
tive 2P (z) of degree m ≥ 0 and suppose the leading coefficient of P (z) is a.
Set N = m+ 2. Then each of the solutions θk, k ∈ {0, 1, . . . , N − 1}, of the
congruence

arg a+Nθ ≡ 0 mod 2π

determines a direction and a ray ρk(t) = {teθki : t > T} at infinity. Thus,
each solution determines a critical direction and a critical ray of f (1).

(1) See e.g. [C, p. 11772]. These are often also called Julia directions and Julia rays
of f .
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We will show that, as in the toy example, there is a sector containing
the critical ray ρk(t) = {teθki : t > 0}, for each 0 ≤ k < N , on which
every solution f of the Schwarzian equation takes on infinitely many values
infinitely often.

To do this, for each k, defined modN , we make a change of variable that
essentially turns the sector

Sk = {θk−1 < arg z < θk+1}
of the z-plane into a sector of a Z(z)-plane on which the transported function
acts like the toy example. More precisely, in the rest of this section, assume
that both R0 > 0 and the solution θk are fixed and define

Z(z) =

z�

R0e
iθk

P (s)1/2 ds, z ∈ Sk,

where the branch of the square root is chosen so that after integration
(azN )1/2 is real and positive on ρk(t).

Lemma 2. For some small ϵ0 > 0, the function Z = Z(z) satisfies

Z(z) =
2a1/2

N
zN/2(1 + o(1)) as z → ∞, |arg z − θk| ≤

2π

N
− ϵ0.

Moreover, for any R > R0 and ϵ > ϵ0, Z(z) is univalent on the sector

S = {z : |z| > R, |arg z − θk| < 2π/N − ϵ}
and Z maps S onto a region in the Z-plane containing the sector

T = {Z : |Z| > R′, |argZ − π| > ϵ′},
where R′ is large and ϵ′ > Nϵ/2.

Proof (see [L, Lemma 4.3.6]). Since P (s)1/2 = a1/2sm/2(1 + o(1)) for
large |s|, it follows that

(3) Z(z) =

z�

R0e
iθk

P (s)1/2 ds =
2a1/2

N
zN/2(1 + o(z)) for large |z|.

Thus, the auxiliary map

ξ =
2a1/2

N
zN/2

maps the sector

S1 =

{
z : |z| > R0, |arg z − θk| <

2π

N
− ϵ

2

}
univalently onto the sector

Σ′ =

{
ξ : |ξ| > R′

0, |arg ξ| < π − Nϵ

4

}
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in the ξ-plane for some large R′
0 > 0. From (3), it follows that |Z(z)−ξ(z)| =

o(|z|N/2) on S and therefore Z(z) is univalent on S, so that its image in the
Z-plane contains a sector of the form T as well.

Next, the Liouville transformation

W (Z) = P (z)1/4w(z)

transforms equation (1) into a new one for W (Z) as follows:

(4) W ′′(Z)+(1−F (Z))W (Z)=0, where F (Z)=
1

4

P ′′(z)

P (z)2
− 5

16

P ′(z)2

P (z)3
.

For R′ ≫ 0 and δ ∈ (0, π), let T = {Z : |Z| > R′, |argZ − π| > δ} be a
sector in the Z-plane. On T , F (Z) = O(1/Z2) so that the solutions to (4)
are asymptotic to the solutions of (2). The solution space is generated by

(5) W1(Z) = eiZ(1 + O(1/|Z|)) and W2(Z) = e−iZ(1 + O(1/|Z|)).
Each Wi(z) has two asymptotic values, and the sector T contains their
asymptotic tracts separated by the critical ray: the positive real line. Pulling
back to the z−plane by the map Z(z), we obtain two linearly independent
“principal solutions”

wi(z) = P (z)−1/4Wi(Z), i = 1, 2,

of the original second order equation (1), defined in the sector

Sk = {z : |z| > R, |arg z − θk| < 2π/N − δ′},
where R is a large constant and δ′ is a small constant depending on δ.

Using the asymptotic expressions in (5), we see that

(6) F (Z) =
AW1(Z) +BW2(Z)

CW1(Z) +DW2(Z)
∼ AeiZ +Be−iZ

CeiZ +De−iZ

has two asymptotic values with asymptotic tracts separated by the positive
real line. Since, by Lemma 2, Z(z) is univalent, we see that

f(z) = F (Z(z)) =
Aw1(z) +Bw2(z)

Cw1(z) +Dw2(z)
=

AW1(Z) +BW2(Z)

CW1(Z) +DW2(Z)

has two asymptotic values with asymptotic tracts separated by the critical
ray ρk(t) in the sector Sk.

Remark 2.1. Since there are N solutions to the congruence, there are
N possible choices for θk. Applying the above transformation theory to each
solution defines a sector in the z-plane containing a central critical ray and
bounded by its adjacent rays. The pullback solutions for each solution have
two asymptotic values with asymptotic tracts in the complement of the crit-
ical ray. Pairs of adjacent sectors overlap on one asymptotic tract. Thus, f
has N asymptotic values.
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Equation (5) also shows that the wi have no zeros in the sectors where
they are defined but, for any A,B ∈ C∗, the equation Aw1 + Bw2 = 0 has
infinitely many zeros. We next show that these zeros accumulate along the
critical rays.

Proposition 3. Let w1, w2 be the principal solutions defined in the sector
S containing the critical ray ρk(t). If A,B are non-zero constants and w =
Aw1 +Bw2 then w = 0 has infinitely many solutions sj in S. Label them so
that · · · ≤ |sj | ≤ |sj+1| ≤ · · · . Then |sj | ∼ O(|j|2/N ) and limj→∞ |arg sj−θk|
= 0.

Proof (see also [L, p. 64]). Set G(z) = 1
2i log

W1
W2

. By Lemma 2, if z ∈ S
is sufficiently large,

G(z) = Z(z) + o(1) =
2a1/2

N
zN/2(1 + o(1)).

Furthermore, the zeros sj of w satisfy

2iG(sj) = log

(
−B

A

)
+ 2jπi or G(sj) =

1

2i
log

(
−B

A

)
+ jπ;

that is, G(sj) lies near the positive line.
Combining these, we have

2a1/2

N
s
N/2
j (1 + o(1)) =

1

2i
log

(
−B

A

)
+ jπ.

Hence as j → ∞, arg sj ∼ θk; and there is a constant c1 such that sj ∼
c1|j|2/N .

For any function

(7) f(z) =
aw1 + bw2

cw1 + dw2

its poles are zeros of cw1+ dw2, and the estimate of the residue at each pole
can be computed using the definition: Res(f, sj) = limz→sj (z − sj)f(z).

Proposition 4 ([C, p. 6]). Let f be as in (7). Denote the poles of f in
S and their respective residues by sj and rj, and assume the poles are labeled
so that · · · ≤ |sj | ≤ |sj+1| ≤ · · · . Then

rj =
1

2i

(
a

c
− b

d

)
P (sj)

−1/2 ∼ c2 · s−(N−2)/2
j

for some constant c2.

From the two propositions above, it follows that the relation between the
residues and the poles is

(8) |rj | ∼ c2|sj |−(N−2)/2 ∼ c3|j|−(N−2)/N .
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Proposition 5. As above, let f be a solution of S(f) = 2P where P is a
polynomial of degree m. Set N = m+2. For any z0 ∈ C, denote its preimages
in a given sector S by pj and label them so that · · · ≤ |pj | ≤ |pj+1| ≤ · · · .
Then there exists a constant c4 > 0 such that |f ′(pj)| ∼ c4lj|(N−2)/N .

Proof. Let

g(z) =
1

f(z)− z0
;

then S(g) = S(f) = 2P . If pj are solutions of f(z) = z0, they are poles of
g(z) so that Proposition 4 implies |Res(g, pj)| ∼ c3|j|−(N−2)/N . Furthermore,
since g(z) = 1/(f(z)− z0), a simple computation shows that

|f ′(pj)| =
1

|Res(g, pj)|
∼ c4|j|

N−2
N .

In the proofs of our results we will repeatedly use the Koebe distortion
theorems to obtain estimates on the behavior of the Nevanlinna functions
at regular points. Many proofs exist in the standard literature on conformal
mappings (see e.g. [A, Theorem 5.3]). For the reader’s convenience, we state
the theorems here without proof.

Theorem 6 (Koebe distortion theorem). Let f : D(z0, r) → C be a
univalent function. Then for any η < 1,

(i) |f ′(z0)|
ηr

(1 + η)2
≤ |f(z)− f(z0)| ≤ |f ′(z0)|

ηr

(1− η)2
, z ∈ D(z0, ηr),

(ii) if T (η) = (1 + η)4/(1− η)4, then

|f ′(z)|
|f ′(w)|

≤ T (η) for any z, w ∈ D(z0, ηr).

Theorem 7 (Koebe 1/4 theorem). Let f : D(z0, r) → C be a univalent
function. Then

D(f(z0), r|f ′(0)|/4) ⊂ f(D(z0, r)).

3. The main theorem. Let FN be the set of Nevanlinna functions with
N asymptotic values. For f ∈ FN and i = 1, . . . , N denote the asymptotic
values by λi and the corresponding asymptotic tracts by Ti. Assume there
is an integer K, 1 ≤ K < N , and integers pi ≥ 0, i = 1, . . . ,K, such that

fpi(λi) = ∞, i = 1, . . . ,K.

If λi = ∞, then pi = 0. This can happen for at most N/2 asymptotic
values and the asymptotic tracts of these infinite asymptotic values must be
separated by the asymptotic tract of a finite asymptotic value. Also assume
that for each i = K + 1, . . . , N , the accumulation set ω(λi) of the orbit of
λi is a compact repeller; that is, there exists a κ > 1 such that, for each
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z ∈ ω(λi), there exists an n = n(z) such that |(fn)′(z)| > κ. Note that this
implies that these asymptotic values are finite.

Define

I = I(f) = {z ∈ C : fn(z) → ∞},

L = L(f) =
{
z ∈ C : ω(z) =

N⋃
i=K+1

ω(λi)
}
.

The proof of the Main Theorem depends on the following theorems:

Theorem 8. The set I is of measure zero.

Theorem 9. The set L is of measure zero.

Versions of these theorems are proved in [KK] under the assumption that
all of the asymptotic values accumulate on a compact repeller.

3.1. The measure of the set I. For each 1 ≤ i ≤ K, define the orbit
of the prepole asymptotic value λi by

Orb(λi) = {λi, f(λi), . . . , f
pi−1(λi),∞}.

If λi = ∞ for some i, then Orb(λi) = {∞}.
Let S = {1, . . . ,K}. Since there are 2K − 1 distinct non-empty subsets

of S, label them Sl, l = 1, . . . , 2K − 1, and denote the collection by Σ. For
any Sl, define

Orbl =
⋃
i∈Sl

Orb(λi).

For Sl ∈ Σ, where l = 1, . . . , 2K − 1, define

Il = Il(f) = {z ∈ C : ω(z) = Orbl}.

Theorem 10. Each of the sets Il is of measure zero.

The proof of this theorem depends on the next two lemmas.
Fix R ≫ 0, and let AR = {z ∈ C : |z| > R}. For each 1 ≤ i ≤ K and

j ∈ Z, let bij = f−1(λi).
Because λi is a prepole of order pi, one component of f−pi(AR) is the

topological disk Di punctured at λi. Therefore the set of components of
f−1(Di) consists of the asymptotic tract Ti of λi and the topological disks
Vij punctured at bij . For each Sl ∈ Σ and z ∈

⋃
i∈Sl

(
⋃

j Vij ∪ Ti), define the
map σl(z) = fpi+1(z).

Lemma 11. If z ∈
⋃K

i=1 Ti, then

|σ′
l(z)| >

∣∣log |σl(z)| − logR
∣∣

4π
· |σl(z)|

|z|
.
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Proof. Since fpi : Di → AR is conformal and f : Ti → Di is a universal
covering, it follows that σl : Ti → AR is also a universal covering. The rest
of the proof given below follows along the lines of the corresponding proof
in [Lyu].

Consider HR = logAR, the right half-plane with real part greater than R,
and let Ul = log(

⋃
i∈Sl

Ti). Then Ul ⊂ HR and Ul consists of infinitely many
disjoint simply connected components Uim, i ∈ Sl, m ∈ Z; moreover, there
is an ϵim > 0, depending on R, such that each Uim is fully contained inside
a strip of height 2π − ϵim. Because there are at most K sets Uim, the sum
of their heights is less than 2πK/N − ϵR where ϵR =

∑
ϵim depends on R

and Sl.
For each Uim there is a conformal map Fim to HR such that the following

diagram commutes:

Uim

exp

��

Fim // HR

exp

��
Ti

σl // AR

For each point z0 ∈
⋃
Ti, denote the lifts of z0 and σl(z0) by w0 ∈ Uim

and w1 ∈ HR respectively. Note that ℜw1 = log |σl(z)|. Consider D =
D(w1,ℜw1− logR) and its preimage under Fim. By the Koebe 1/4 theorem,
the preimage contains a disk of radius

ℜw1 − logR

4|F ′
im(w)|

.

As the width of each strip is less than 2π, we have

|F ′
im(w)| ≥ ℜw1 − logR

4π
.

The lemma now follows from the chain rule.

Theorem 8 is a direct consequence since I ⊂
⋃

Sl∈Σ Il.
The next lemma is the analog of Lemma 11 in the case that Sl ∈ Σ and

z ∈
⋃

i∈Sl
(
⋃

j Vij). Fix i ∈ Sl and, suppressing the index i for readability,
denote the zeros of f(z)−λi = 0 by bj . Note that by Proposition 5, |f ′(bj)| ∼
c|j|(N−2)/N .

Lemma 12. There exists a neighborhood V ′
j of bj and a constant b > 0

such that V ′
j ⊂ V ′

j ⊂ Vj,

V ′
j ⊂ D

(
bj ,

b

|j|(N−2)/NR

)
,

and for z ∈ Uj and some constant B > 0,

|σ′
l(z)| > BR|j|(N−2)/N .
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Proof. For each λi ∈ Sl, denote the pole fpi−1(λi) by si. Then expanding
f at si, we get

f(z) =
ri

z − si
(1 + ϕi(z)),

where ri is the residue of f at si, and ϕi is analytic at si. Consider the annular
region A2R ⊂ AR, and denote by g the branch of f−1 such that g(AR) is a
punctured neighborhood of si. Set h = g(1/z) : D(0, 1/R) → C, so that 0
is a removable singularity, and let U = h(D(0, 1/(2R))) = g(A2R) ∪ {∞}.
Then h is conformal and h′(0) = ri. The Koebe distortion theorem applied
to h proves that for any z ∈ D(0, 1/(2R)),

|h(z)− h(0)| ≤ |h′(0)|
1
2 · 1

R(
1− 1

2

)2 =
2ri
R

.

The Koebe 1/4 theorem applied to h on D(0, 1/(2R)) proves D(si, ri/8R)
⊂ U . Combining these gives

D

(
si,

|ri|
8R

)
⊂ U ⊂ D

(
si,

2|ri|
R

)
.

Therefore, for any z ∈ U ,

(9) |f ′(z)| =
∣∣∣∣−ri(1 + ϕi(z))

(z − si)2
+

riϕ
′
i(z)

z − si

∣∣∣∣ ≥ ∣∣∣∣ ri
z − si

∣∣∣∣ ≥ R

2
.

Since f has no critical points, the disk D(si, 4|ri|/R) at the pole si
is mapped univalently by the respective branches of f−pi onto neighbor-
hoods of the points bj = f−pi(si). Let V ′

j be the component of f−pj (U) =

f−(pi+1)(A2R) at sj . It is obvious that V ′
j is contained in Vj , a component

of f−(pi+1)(AR). Since

Ui ⊂ D

(
si,

2|ri|
R

)
⊂ D

(
si,

4|ri|
R

)
,

the Koebe distortion theorem implies that for any z, w ∈ Ṽij ,

(10)
(fpi)′(z)

(fpi)′(w)
≤ T (1/2).

By Proposition 5, for some c1 > 0, we have |f ′(bj)| ∼ c1|j|(N−2)/N . Since
f is univalent on the orbit of λi, there exists c2 > 0 such that |(fpi)′(bj)| ∼
c2|j|(N−2)/N and thus

|(fpi)′(z)| > c2T
−1(1/2)|j|(N−2)/N for any z ∈ V ′

j .

Since U ⊂ D(si, 2|ri|/R), this implies

V ′
j ⊂ D

(
bj ,

2T (1/2)|ri|
c2|j|(N−2)/NR

)
,
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which, combined with (9), also implies that for all z ∈ V ′
j ,

σ′
l(z) ≥

c2R|j|(N−2)/N

2T (1/2)

and thus completes the proof.

3.2. Proof of Theorem 10. Let E = {z : σn
l (z) → ∞ as n → ∞}; then

Il(f) =

∞⋃
n=0

f−n(E).

To prove Theorem 10, it suffices to show that the measure of the set E is
zero. We assume otherwise and obtain a contradiction. Let z0 be a Lebesgue
density point of E, and let zn = σn

l (z0). As zn → ∞, without loss of gener-
ality, we may assume that for each n, |zn+1| ≥ |zn| ≥ R. Set Ar,s = {z : r <
|z| < s}.

Since by hypothesis K<N , it follows that
⋃N

i=K+1 Ti ̸=∅ but (
⋃N

i=K+1 Ti)

∩ σ−1
l (AR)=∅. Therefore, for any s > r > R, there is a τ > 0 such that

m(Ar,s ∩ σ−1
l (Ar,s))

m(Ar,s)
< 1− τ.

Note that if K = N , the asymptotic tracts fill up σ−1
l (AR). The proof

of non-ergodicity for K = N = 2 in [S2] uses this fact and lends support to
Conjecture 1.

The proof of Theorem 10 splits into two parts depending on the orbit
of z0.

Part 1. Assume that for all n, zn ∈
⋃K

i=1 Ti. This part of the proof
depends on Lemma 11 and uses the notation in that lemma.

As in the lemma, for zn ∈ Ti, set wn = log zn ∈ Uim and rn = ℜwn.
Then F−1

im : HR → Uim is the inverse branch such that F−1
im (wn) = wn−1.

The function F−1
im is univalent in the disk D(wn, rn − logR). By Lemma 11,

it follows that
|(F−1

im )′(wn)| ≤
4π

rn − logR
.

Note that it may be that zn−1 ∈ Tj , i ̸= j ∈ Sl, and similarly, wn−1 may
be in a different Ujm. For the sake of readability, we will ignore these indices
and write U for whichever Uim is meant and write F−1 for whichever inverse
branch is meant.

Next, consider the disk D(wn, rn/4). First note that since U does not
intersect any of the preimages, f−1(Ti), i = K + 1, . . . , N , there exists a
τ ′ > 0 such that

m(D(wn, rn/4) ∩ U)

m(D(wn, rn/4))
< 1− τ ′.
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Moreover, for w ∈ D(wn, rn/4), the Koebe distortion theorem implies that

|F−1(w)− F−1(wn)| ≤
4π

rn − logR
· η(rn − logR)

(1− η)2
,

where
η =

rn
4(rn − logR))

<
1

2
.

Therefore,

F−1(D(wn, rn/4)) ⊂ D(wn−1, d) where d = 8π.

For each k with 1 ≤ k ≤ n − 1, F−1 is univalent in the disk D(wk, 2d)
and (F−1)′(wk) ≤ 1/8. The Koebe 1/4 theorem applies so that

F−1(D(wk, d)) ⊂ D(wk−1, d/2).

Next, iterate F−1 and set Bn = F−n(D(wn, rn/4)) ⊂ D(w0, 2
−m+1d). Now

since the iterated function F−n is univalent on D(wn,ℜwn − logR), apply
Koebe distortion again to get

D(w0, tρn) ⊂ Bn ⊂ D(w0, ρn),

where t is independent of n, and ρn is the radius of the smallest disk centered
at w0 containing Bn. It follows that ρn ≤ 2−n+1d, which in turn implies that
ρn → 0 as n → ∞.

Part (ii) of the Koebe distortion theorem applied to F−n implies there
exists a τ ′′ such that

m(Bn ∩ E)

m(E)
≤ 1− T−2(1/2)τ ′′

for all n. In other words, the Lebesgue density of the point w0 is less than 1,
which contradicts the assumption that w0 is a density point.

Part 2. Now consider a subsequence znk
∈
⋃

i∈Sl
(
⋃

j Vj). Suppose that

m(A2R ∩W )

m(A2R)
< 1− τ ′′′.

By Lemma 12,

V ′
j ⊂ D

(
bj ,

b

R|j|(N−2)/N

)
,

and for any z ∈ V ′
j ,

σ′
l(z) ≥ BR|j|(N−2)/N and

(fpi)′(z)

(fpi)′(w)
≤ T (1/2).

Therefore,
m(V ′

j ∩ σ−1
l (W ))

m(V ′
j )

< 1− T (1/2)−2τ ′′′.
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Without loss of generality assume that |zn+1| ≥ |zn| ≫ R for all n. Then
the above inequality, together with Lemmas 11 and 12, show that |σ′

l(zn)| >
M > 1 for all n.

Let Bnk
= σ−nk

l (V ′
j ). Then

Bnk
⊂ D

(
z0,M

−nk
b

R|j|(N−2)/N

)
.

Since σ−nk
l is univalent on Vj ⊃ V ′

j , this implies

D(z0, tρnk
) ⊂ Bnj−1 ⊂ D(z0, ρk),

where t is independent of nj , and ρnk
is the radius of the smallest disk

centered at z0 containing Bnj−1. It follows that ρnk
→ 0 as nk → ∞.

Applying part (ii) of the Koebe distortion theorem, we get

m(Bnk
∩ E)

m(E)
≤ 1− T−4(1/2)τ ′′′

for all nk, which implies that the Lebesgue density of the point z0 is less
than 1. This contradicts the assumption that z0 is a density point and com-
pletes the proof of Theorem 10.

3.3. Proof of Theorem 9. To prove m(L) = 0, note first that by
assumption Ω =

⋃N
i=K+1 ω(λi) is a finite union of compact repellers, so it

is again a compact repeller. This implies that the orbits of the non-prepolar
asymptotic values do not accumulate on Ω, but actually land on it. The
proof in [KK] assumes K = 0. Although the present proof is similar, here we
modify it to take account of the prepole asymptotic values.

Let Kϵ = {z : dist(z,Ω) < ϵ}. We claim there is an ϵ > 0 and an integer
M > 0 such that if y = λi, i = K+1, . . . , N , n > M and fn(y) ∈ Kϵ/2, then
fn(y) ∈ Ω.

If Ω is finite, the claim is obviously true, so assume it is infinite. By
compactness, there are no prepoles in Ω and there are constants κ > 1 and
ϵ > 0 such that |(fn)′(w)| ≥ κ for some m and all w ∈ Kϵ, and thus for
all w ∈ Kϵ/2. By the forward invariance of Ω and this expansion property,
Kϵ/2 ⊂ fn(Kϵ/2). Let g be the inverse branch of fn reversing this inclusion.
Then set

A0 = Kϵ/2 − g(Kϵ/2) and An+1 = gn(A0), n → ∞.

These disjoint annuli are nested, and since the inverse branches are univalent,
the annuli have the same moduli. Therefore, if for some n, fn(y) ∈ Kϵ \ Ω,
then by compactness there are subsequences of its iterates that converge
both to points in A0 and to points in Ω. This is a contradiction because
these sets are disjoint, and the claim is proved.
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Choose ϵ as above and set

L =
⋂
n≥0

f−n(Kϵ/2).

A point z is in L \ Ω if its full forward orbit is in Kϵ/2. We will show
m(L \ Ω) = 0. Since L ⊂

⋃∞
n=0 f

−n(L) and Ω is countable, this will imply
that m(L) = 0.

Suppose m(L \Ω) > 0 and let z0 be a density point of L \Ω. Since Ω is
compact, a subsequence zk = fnk(z0) converges to a point y0 ∈ Kϵ/2 ⊂ Kϵ.
Denote the respective inverse branches by gk. Set Dk = D(zk, ϵ/4); then
Dk ⊂ Kϵ and gk is univalent on Dk. Applying Koebe distortion we obtain

m(gk(Dk) ∩ L)
m(gk(Dk))

→ 1 and
m(Dk ∩ fnk(L))

m(gk(Dk))
→ 1.

Finally, let U be an open set with compact closure contained in C \K. Since
the Julia set is the whole sphere, there is an integer M such that fM (Dk) ⊃ U
so that m(fM+nk(L∩U)) > 0. For all k ∈ N, however, fk(L) ⊂ Kϵ/2 so that
fM+nk(L ∩ U) = ∅. This contradiction shows m(L) = 0 and completes the
proof of Theorem 9.

3.4. Proof of the Main Theorem. We reword the theorem:

Theorem 13. If f is a Nevanlinna function with 1 ≤ K < N prepole (2)
asymptotic values and N−K asymptotic values that accumulate on a compact
repeller, then f acts ergodically on its Julia set.

Proof. Let A be an f -invariant subset of the Julia set with positive mea-
sure. We will show that A = Ĉ up to a set of measure zero. Let z0 be a
Lebesgue density point of A and denote its orbit by zn = fn(z), n = 0, 1, . . . .
We proved above that the measure of each of the sets I, Il and L is zero.
Since these three sets together contain all points whose orbits accumulate
on

⋃N
i=1 ω(λi), we assume that z0 is not among them.

By the above, the density point z0 of A has an accumulation point y ∈
C \

⋃N
i=1 ω(λi). Recall that Ω = ∪N

i=K+1ω(λi). Hence there is an ϵ > 0 such
that 2ϵ = dist(y,Ω) > 0. Thus, there is a subsequence {nj} in N such that
znj → y as j → ∞ and dist(zni , Ω) ≥ ϵ.

Let Bj = B(znj , ϵ) and Vj = B(znj , ϵ/2). Let gj be the inverse branch of
f−nj that sends znj to z; it is a univalent function on Bj . Let Uj = gj(Vj).
All of the inverse branches of f are contracting with respect to the hyperbolic
metric on C \ Ω; this implies that g′j → 0 on Vj as j goes to ∞, which in
turn implies that the diameter of Uj tends to 0. Since gj is univalent on Bj ,
the Koebe distortion theorem shows that Uj is almost a disk. Since z is a

(2) If ∞ is an asymptotic value, we consider it a “prepole of order 0”.
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density point of A,

lim
j→∞

m(A ∩ Uj)

m(Uj)
= 1.

Applying Koebe distortion again, since A is an invariant subset, we get

lim
j→∞

m(A ∩ Vj)

m(Vj)
= 1.

This and the fact that Vj approaches By = B(y, ϵ/2) as j goes to ∞
together imply that By ⊂ A up to a set of measure zero. Since A is an
invariant subset of the Julia set J , fn(By) ⊂ A ⊂ J . Since A is in the Julia
set, By is also in the Julia set and fn(B0) approaches C as n goes to ∞.
Therefore, A = Ĉ up to a zero-measure set and the proof of Theorem 13 is
complete.

Remark 3.1. The assumption that the ω-limit sets of the non-prepolar
asymptotic values are compact repellers says the Julia set is the whole sphere
and gives us the expansion we need to prove our theorem. We could replace
this by assuming that the Julia set is the sphere and that the orbits of the
non-prepolar orbits are bounded. Then the main theorem of [GKS] implies
that the expansion we need exists.

Remark 3.2. Another application of the results in [GKS] and [RVS,
Theorem 1.1] to the Nevanlinna functions f of our Main Theorem is that
such an f supports no invariant line field.

Remark 3.3. Finally, the results in [KU] applied to the Nevanlinna func-
tions f of our Main Theorem prove that f has a σ-finite ergodic conserva-
tive f -invariant measure absolutely continuous with respect to the Lebesgue
measure.
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