
FUNDAMENTA
MATHEMATICAE
Online First version

Countable discrete extensions of compact lines

by

Maciej Korpalski and Grzegorz Plebanek (Wrocław)

Abstract. We consider a separable compact line K and its extension L consisting
of K and countably many isolated points. The main object of study is the existence of a
bounded extension operator E : C(K) → C(L). We show that if such an operator exists,
then there is one for which ∥E∥ is an odd natural number. We prove that if the topological
weight of K is greater than or equal to the least cardinality of a set X ⊆ [0, 1] that cannot
be covered by a sequence of closed sets of measure zero, then there is an extension L of
K admitting no bounded extension operator.

1. Introduction. Given a linearly ordered space (X,<), the family of
all half-lines

{x ∈ X : x < a}, {x ∈ X : x > a}, a ∈ X,

is a subbase of a topology which is called the order topology on X. A compact
line is a linearly ordered space whose order topology is compact. The double
arrow space

S = ((0, 1]× {0}) ∪ ([0, 1)× {1}),
ordered lexicographically, is a familiar example of a compact line. The space S
is nonmetrizable, but separable and first countable; see [11, Exercise 3.10.C].
There is a natural generalization of the double arrow space: we can consider
an arbitrary closed subset F of the unit interval, any set X ⊆ F , and define

FX = (F × {0}) ∪ (X × {1}).
As before, the space FX , ordered lexicographically, is a separable compact
line and is nonmetrizable whenever X is uncountable. In fact, for an infinite
set X, the space FX is of topological weight |X|; see [17] for more informa-
tion. It turns out that spaces of the form FX exhaust the class of separable
compact lines:

2020 Mathematics Subject Classification: Primary 54F05; Secondary 46B03, 06E15, 03E05.
Key words and phrases: compact line, extension operator, space of continuous functions.
Received 13 June 2023; revised 16 December 2023.
Published online 20 March 2024.

DOI: 10.4064/fm230613-25-1 [1] © Instytut Matematyczny PAN, 2024



2 M. Korpalski and G. Plebanek

Theorem 1.1 (Ostaszewski, [21]). A space K is a separable compact
linearly ordered space if and only if K is homeomorphic to FX for some
closed set F ⊆ [0, 1] and a subset X ⊆ F .

Given a pair of compact spaces K ⊆ L, by an extension operator E :
C(K) → C(L) we mean a bounded linear operator (between Banach spaces
of continuous functions) such that Ef |K = f for every f ∈ C(K). By the
classical Borsuk–Dugundji extension theorem such an operator of norm 1
exist whenever K is metrizable; see [22] or [16, II.4.14]. Following [9] we
write η(K,L) for the infimum of the norms of all possible extension operators
E : C(K) → C(L) if there are any; thus η(K,L) = ∞ means that there is
no bounded extension operator. There are many examples of nonmetrizable
compacta K ⊆ L with η(K,L) < ∞; calculating η(K,L) may, however, be
quite involved; see e.g. Avilés and Marciszewski [2].

If K is any compact space, we call a superspace L ⊇ K a countable
discrete extension of K and write L ∈ CDE(K) if L is compact and the set
L \ K is a countable infinite discrete set. The main subject of this paper
is investigating two properties of countable discrete extensions of separable
compact lines. In a sense, those properties measure the complexity of the
way in which isolated points are added to the initial space.

Definition 1.2. Given a fixed compact space K and L ∈ CDE(K),

(i) L has property (R) if there is a continuous retraction from L onto K;
(ii) L has property (E) if η(K,L) < ∞.

Properties (R) and (E) were considered in a series of papers [10, 18, 3, 6]
in connection with twisted sums of Banach spaces; see Section 7 below for
more information. We shall try to convince the reader that the subject of our
study is quite subtle and interesting in its own right. Recall also that there
is a vivid trend of investigating properties of Banach spaces of continuous
functions on compact lines; see e.g. [17, 14, 7, 19].

We show here the following results concerning a separable compact line
K of topological weight w(K) (in fact, separability is not needed for the first
two items):

(a) For every L ∈ CDE(K), either L has property (R) (so η(K,L) = 1) or
η(K,L) ≥ 3.

(b) For every L ∈ CDE(K), if η(K,L) < 5, then η(K,L) ≤ 3. We also
sketch the argument for proving that η(K,L) is either infinite or equal
to an odd natural number.

(c) If w(K) ≥ ω1, then there is L ∈ CDE(K) such that η(K,L) = 3.
(d) If w(K) ≥ non(I), then there is L ∈ CDE(K) without property (E).

Here non(I) denotes the least cardinality of a set X ⊆ [0, 1] that cannot
be covered by a countable family of closed null sets. To construct the relevant
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examples we find it convenient to see zero-dimensional compact lines as Stone
spaces of algebras generated by almost chains in some countable set.

Our primary objective was to answer the following question.

Problem 1.3. Does every separable compact line K with w(K) ≥ ω1

admit a countable discrete extension L such that η(K,L) = ∞?

The result (d) mentioned above says that the answer is ‘yes’ whenever
non(I) = ω1 but we have not been able to verify if the negative answer is
also relatively consistent. However, a very recent result due to Antonio Avilés
enabled the first author to prove that the answer to 1.3 is ‘no’ under Martin’s
axiom MA(ω1); see [1] for details. As is explained at the end of Section 2, the
question as in 1.3 can be answered in ZFC for every nonseparable compact
line.

2. Preliminaries. All topological spaces we consider are Hausdorff. In
what follows, K and L always stand for compact spaces. For a space K
we denote by C(K) the Banach space of continuous functions f : K → R
equipped with the supremum norm, denoted by ∥·∥. By the Riesz representa-
tion theorem we can identify the dual space C(K)∗ with the space of signed
regular Borel measures of bounded variation, which is denoted by M(K).
For a measure µ ∈ M(K) we can use the Jordan decomposition theorem to
write µ = µ+ − µ− for some nonnegative orthogonal measures µ+, µ−. The
total variation of µ is then ∥µ∥ = µ+(K) + µ−(K). Given x ∈ K, δx is the
probability Dirac measure concentrated at the point x.

We write ω for the set of natural numbers equipped with the discrete
topology. We often consider countable discrete extensions of a given com-
pact space K of the form K ∪ ω, tacitly assuming that K ∩ ω = ∅. As
declared above, we write L ∈ CDE(K) to denote that L is a countable
discrete extension of K.

Remark 2.1. If r : L 7→ K is a continuous retraction, then C(K) ∋ f →
f ◦r ∈ C(L) defines an extension operator of norm 1. This proves that every
countable discrete extension with property (R) has property (E); moreover,
η(K,L) = 1.

Extensions having property (R) are, in a sense, trivial. Most of easy
constructions of countable discrete extensions have this property. Recall that
there are spaces which do not have extensions without property (R).

Example 2.2. If a space K is metrizable, then every L ∈ CDE(K) has
property (R).

Proof. Since K is compact and metrizable, it is separable [11, Theorem
4.1.18] and has a countable base. It follows that each L also has a countable
base and therefore it is metrizable [11, Theorem 4.2.8]. Let us fix a compatible
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metric d on L. We can define a retraction r by mapping each element in L to
the closest element in K (to any of them if there are many). Such a function
is well-defined as K is compact, so the closest element always exists.

Checking that r is continuous amounts to verifying that whenever a se-
quence (xn)n∈ω in ω converges to x ∈ K, then r(xn) → r(x) = x.

Given ε > 0 we have d(xn, x) < ε for almost all n so

d(r(xn), xn) ≤ d(x, xn) < ε and d(r(xn), x) < 2ε

for large n, by the triangle inequality.

We recall below some useful characterizations of properties (R) and (E).
See [18, Lemma 2.7] for the proof which is fairly standard; cf. [22] and [23].
Note that, for a given pair of compacta K ⊆ L, measures on K can be
treated as measures on L via the natural restriction. In particular, we often
consider a sequence of measures µn on K and discuss its convergence in the
weak∗ topology of M(L).

Lemma 2.3. Let K be any compact space and let L ∈ CDE(K).

(a) L has property (R) if and only if there is a sequence (xn)n∈ω of points
in K such that for every function f ∈ C(L) we have

lim
n→∞

(f(xn)− f(n)) = 0.

(b) L has property (E) if and only if there is a bounded sequence (µn)n∈ω of
signed measures on K such that µn − δn → 0 in the weak∗ topology of
C(L)∗, i.e. for every f ∈ C(L) we have

lim
n→∞

( �

K

f dµn − f(n)
)
= 0.

Remark 2.4. Concerning Lemma 2.3(b), the norm of the extension op-
erator E satisfies ∥E∥ = supn∈ω ∥µn∥.

Recall that there are spaces of arbitrarily large weight that do not admit
countable discrete extensions without property (R). Indeed, take any car-
dinal number κ and consider the Cantor cube 2κ. Then 2κ is an absolute
retract in the class of compact zero-dimensional spaces so, in particular, ev-
ery L ∈ CDE(2κ) has property (R). This can be demonstrated directly as
follows.

The space 2κ has a subbase consisting of the sets

Ci
α = {x ∈ 2κ : x(α) = i}

for α < κ and i = 0, 1. For every α, L can be partitioned into clopen sets
C̃i
α such that C̃i

α∩K = Ci
α. Thus we can define a continuous retraction r by
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r|K = idK and, for n ∈ L \ 2κ, let r(n) be the only point in⋂
α∈κ, i∈{0,1}

{Ci
α : n ∈ C̃i

α}.

On the other hand, it is not very difficult to demonstrate that every non-
separable compact line K with w(K) = ω1 admits a countable discrete ex-
tension L such that η(K,L) = ∞. Namely, one can define L = K ∪ ω, so that
L is the closure of the set ω ⊆ L. Then, if we supposed that η(K,L) < ∞,
it would follow from Lemma 2.3(b) that K must support a strictly positive
nonnegative measure µ. However, a compact line carrying such a measure is
necessarily separable (see [18, Section 8] for the details).

3. Calculating η(K,L). Corson and Lindenstrauss [9] showed that if
K is a one-point compactification of an uncountable discrete space, then
for every compact superspace L ⊇ K, if η(K,L) < ∞, then η(K,L) is an
odd natural number. We show in this section that the same phenomenon is
present in our context.

Throughout this section we assume that K is an arbitrary, not necessarily
separable, compact line and L = K ∪ ω is its countable discrete extension.
We denote simply by < the linear order on K and use the interval notation,
e.g. [s, t] = {x ∈ K : s ≤ x ≤ t} for s, t ∈ K. Denote by α and β the least
and the greatest element in K, respectively.

We first give a very technical but convenient criterion for convergence of
measures on L = K ∪ ω.

Lemma 3.1. Let (νn)n be a bounded sequence in M(K) such that

lim
n→∞

νn(K) = 1.

Suppose that whenever s, t ∈ K, s < t, and closed subsets F,H of L = K ∪ω
satisfy F ∩K ⊆ [α, s] and H ∩K ⊆ [t, β], then

(i) νn[t, β] = 0 for almost all n ∈ F ∩ ω, and
(ii) νn[α, s] = 0 for almost all n ∈ H ∩ ω.

Then νn − δn → 0 in the weak∗ topology of M(L).

Proof. Recall first that if (tn)n∈ω is a sequence in a compact topological
space T and U is any nonprincipal ultrafilter on ω, then there is a unique
element T ∋ t = limn→U tn such that {n ∈ ω : tn ∈ V } ∈ U for every open
set V containing t.

To prove the lemma suppose that the assertion does not hold; then the
sequence of measures νn−δn has a nonzero cluster point µ. Take an ultrafilter
U such that

µ = lim
n→U

(νn − δn) = lim
n→U

νn − lim
n→U

δn ̸= 0.
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Of course, limn→U δn = δs for some s ∈ K, so writing ν = limn→U νn we have
ν ̸= δs. Since ν(K) = 1, we conclude that either |ν|[α, s) > 0 or |ν|(s, β] > 0;
suppose, for instance, that the latter holds (the former case will follow by
a symmetric argument). Then there is K ∋ t1 > s such that |ν|[t1, β] > 0.
Apply the normality of L to the sets [α, s] ⊆ L \ [t1, β] to find an open set
V ⊆ L such that

[α, s] ⊆ V ⊆ V ⊆ L \ [t1, β],
and note that sup(V ∩K) < t1, so we can use V and [t1, β] as sets F,H from
the assumptions. Now, by (i), for every t ∈ [t1, β] we have νn[t, β] → 0 for
n ∈ V (note that the set V ∩ ω is infinite).

Finally, observe that any g ∈ C(K) vanishing on [α, t1] can be uniformly
approximated by step functions built on intervals [t, t′) contained in (t1, β],
so we conclude that

	
K g dνn → 0 for n ∈ V , which yields |ν|[t1, β] = 0,

a contradiction.

Theorem 3.2. If η(K,L) < 3, then L has property (R).

Proof. By Lemma 2.3 and Remark 2.4 there is a sequence of measures µn

on K such that c = supn ∥µn∥ < 3 and µn − δn → 0 in the weak∗ topology
of M(L) (recall that we think here of µn as measures on L). Fix δ > 0 such
that c+ 3δ < 3 and for any x ∈ K set

Ax = {n ∈ ω : µ+
n [α, x] ≥ 1− δ}.

Then for every n ∈ ω we define

xn = inf {x ∈ K : n ∈ Ax}.
Note that µn(K) → 1, so xn is well-defined for almost all n ∈ ω.

Claim. Consider s, t ∈ K with s < t; let F,H be closed subsets of L such
that F ∩K ⊆ [α, s] and H ∩K ⊆ [t, β]. Then the following sets are finite:

I = {n ∈ F : xn ≥ t}, J = {n ∈ H : xn ≤ s}.
To check the Claim consider a continuous function f : L → [0, 1] such

that f(x) = 1 for x ≤ s and f(x) = 0 for x ≥ t, and set g = 1− f .
If we suppose that I is infinite, then for n ∈ I we have µ+

n [α, x] < 1− δ
whenever x < t, so �

K

f dµn ≤
�

K

f dµ+
n < 1− δ;

on the other hand, limn∈I f(n) = 1, a contradiction with µn − δn
weak∗
−−−−→ 0.

Suppose now that J is infinite. Then, as limn∈J
	
K g dµn − g(n) = 0 and

g is equal to 1 on H ∩K, we have�

K

g dµn ≥ 1− δ and
�

K

f dµn < δ
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for almost all n ∈ J . At the same time, µ+
n [α, s] ≥ 1 − δ, so examining the

last integral above, we see that µ−
n [α, s] ≥ 1 − δ must eventually hold for

n ∈ J . It follows that

|µn|(K) ≥ |µn|[α, s] + |µn|[t, β] ≥ 2(1− δ) + 1− δ = 3− 3δ > c,

contrary to our assumption ∥µn∥ ≤ c.

Once we have verified the Claim, we conclude from Lemma 3.1 that
f(xn)− f(n) → 0 for every f ∈ C(L), and we are done.

Theorem 3.3. If η(K,L) < 5, then there is an extension operator E :
C(K) → C(L) with ∥E∥ ≤ 3.

Proof. By Lemma 2.3 and Remark 2.4, there is a sequence of measures
µn on K such that c = supn ∥µn∥ < 5 and µn−δn → 0 in the weak∗ topology
of M(L). Fix δ > 0 such that c+ 3δ < 5.

We shall define a sequence of measures νn of norm at most 3 satisfying
µn − δn

weak∗
−−−−→ 0. For the rest of the proof we assume that ∥µn∥ > 3 − δ/4

for every n; for other measures we can just put νn = µn. For any x ∈ K we
define

A0
x = {n ∈ ω : µ+

n [α, x] ≥ 1− δ/4}, x0n = inf {x ∈ K : n ∈ A0
x};

A1
x = {n ∈ A0

x : µ−
n [α, x] ≥ 1− δ/2}, x1n = inf {x ∈ K : n ∈ A1

x};
A2

x = {n ∈ A1
x : µ+

n [α, x] ≥ 2− δ}, x2n = inf {x ∈ K : n ∈ A2
x}.

Note that, since |µn|(K) > 3− δ/4 for every n and µn(K) → 1, we can (and
hence we do) assume that all three sets on the right hand side above are
nonempty for all n, so xin are well-defined and x0n ≤ x1n ≤ x2n.

We consider the sequence of measures

νn = δx0
n
− δx1

n
+ δx2

n
,

and prove that νn − δn
weak∗
−−−−→ 0 referring to Lemma 3.1. Fix s, t ∈ K with

s < t, and suppose that F and H are closed sets in L such that F ∩K ⊆ [α, s]
and H ∩ K ⊆ [t, β]. Take a continuous function f : L → [0, 1] such that
f |[α, s] = 1 and f |[t, β] = 0; also set g = 1 − f . Now let us check the
assumptions of Lemma 3.1 in a few steps.

Step 1: The set I = {n ∈ F ∩ ω : s < t ≤ x0n ≤ x1n ≤ x2n} is finite. We
know that µn − δn

weak∗
−−−−→ 0 and limn∈F f(n) = 1 (if F ∩ω is infinite), so the

statement follows from the fact that limn∈I
	
K f dµn = 1 for infinite I ⊆ F .

Step 2: The set I = {n ∈ H ∩ ω : x0n ≤ s < t ≤ x1n ≤ x2n} is finite. If I
were infinite, then we would have limn∈I

	
K f dµn = 0, while for n ∈ I,

�

K

f dµn ≥
�

[α,s]

f dµ+
n −

�

[α,t]

f dµ−
n ≥ 1− δ/4 + δ/2− 1 = δ/2.
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Step 3: The set I = {n ∈ F ∩ ω : x0n ≤ x1n ≤ s < t ≤ x2n} is fi-
nite. Indeed, for infinite I we would have limn∈I

	
K f dµn = 1, while for

n ∈ I, �

K

f dµn ≤
�

[α,t]

f dµ+
n −

�

[α,s]

f dµ−
n ≤ 2− δ + δ/2− 1 = 1− δ/2.

Step 4: The set I = {n ∈ H ∩ ω : x0n ≤ x1n ≤ x2n ≤ s < t} is finite. For
infinite I we would again have limn∈I

	
K f dµn = 0. This, together with

x2n ≤ s meaning µ+
n [α, s] ≥ 2 − δ, implies that µ−

n [α, s] ≥ 2 − δ for large
n ∈ I. Consequently, |µn|[α, s] ≥ 4− 2δ must hold eventually for n ∈ I. On
the other hand, limn∈I

	
K g dµn = 1 implies |µn|[s, β] ≥ 1− δ for almost all

n ∈ I and we get a contradiction with ∥µn∥ ≤ c < 5− 3δ.
Step 5: Other cases that would violate the assumption of Lemma 3.1 are

also excluded. If we suppose, for instance, that the set I = {n ∈ F ∩ ω :
x0n ≤ s ≤ x1n ≤ t ≤ x2n} is infinite, then we can split it into two parts and
apply one of the above cases.

Now, by Lemma 3.1, νn − δn
weak∗
−−−−→ 0, as required.

Examining the proofs of Theorems 3.2 and 3.3, one can conclude that the
argument may be further generalized. We only sketch the general idea here.

Theorem 3.4. If η(K,L) < ∞, then η(K,L) is an odd natural number.

Proof. Consider a natural number k such that 2k−1 ≤ η(K,L) < 2k+1
and δ > 0 that is small enough. Proceeding by induction we can assume
that ∥µn∥ ≥ 2k − 1− δ, where the measures µn are related to an extension
operator of norm smaller than 2k+1. Then we can define for x ∈ K the sets
A0

x, . . . , A
2k−2
x by

A0
x = {n ∈ ω : µ+

n [α, x] ≥ 1− δ/2k},
A2j+1

x = {n ∈ A2j
x : µ−

n [α, x] ≥ j + 1− δ/2k−2(j+1)},
A2j

x = {n ∈ A2j−1
x : µ+

n [α, x] ≥ j + 1− δ/2k−2j}.
After setting xin = inf {x ∈ K : n ∈ Ai

x} for i = 0, . . . , 2k − 2, we consider
the measures

νn =

2k−2∑
i=0

(−1)iδxi
n
;

clearly, ∥νn∥ ≤ 2k − 1 so it remains to check that νn − δn
weak∗
−−−−→ 0.

4. Countable discrete extensions and Boolean algebras. In this
section we describe a method of constructing countable discrete extensions
of separable compact lines via Stone spaces of Boolean algebras of subsets
of ω. We use here the classical Stone duality, referring to [15] if necessary.
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Given a Boolean algebra A, let ult(A) denote the Stone space of ultrafilters
on A, which is a compact zero-dimensional space with a base consisting of
all clopens of the form

Â = {U ∈ ult(A) : A ∈ U}

for A ∈ A.
The basic idea is simple: If an algebra A ⊆ P (ω) contains fin, the ideal

of finite subsets of ω, then ult(A) becomes a compactification of ω, by iden-
tifying principal ultrafilters with natural numbers. Hence, once we can rep-
resent our basic compact zero-dimensional space K as K = ult(A/fin) for
some Boolean algebra A of subsets of ω (or any other countable set), then
L = ult(A) is a countable discrete extension of K = ult(A/fin). Our first
objective is to understand properties (R) and (E) in the Boolean language.

Lemma 4.1. Suppose that K = ult(A/fin) for some algebra A of subsets
of ω that contains fin. Then L = ult(A) has property (R) if and only if there
exists a lifting θ : A/fin → A.

Here θ : A/fin → A is said to be a lifting if it is a Boolean algebra
monomorphism such that π ◦ θ = idA/fin. The proof of the above lemma is
standard, see e.g. [10].

To give an analogous lemma on (E) recall that if K = ult(B) for any
Boolean algebra B ⊆ P (ω), then we can think of M(K) as identified with
M(B), the space of signed finitely additive measures on B having bounded
variation. In this setting the norm of a measure µ ∈ M(A) is given by
∥µ∥ = |µ|(ω), where the variation |µ| is defined for A ∈ B as

|µ|(A) = sup
B∈A, B⊆A

(|µ(B)|+ |µ(A \B)|).

Lemma 4.2. In the setting of Lemma 4.1, L ∈ CDE(K) has property (E)
if and only if there is a bounded sequence (µn)n∈ω in M(A) such that

(i) µn(I) = 0 for every I ∈ fin and every n;
(ii) limn→∞(µn(A)− δn(A)) = 0 for every A ∈ A.

Proof. This follows from Lemma 2.3(b) and the following observations.
There is an obvious correspondence between finitely additive measures

on A/fin and finitely additive measures on A vanishing on finite sets. Note
also that for any zero-dimensional compact space L and a sequence νn in
M(L), νn → 0 in the weak∗ topology if and only if νn(C) → 0 for every
clopen C ⊆ L; we can apply this remark to νn = µn − δn ∈ M(A).

Recall that for A,B ⊆ ω, A ⊆∗ B stands for the relation of almost
inclusion and means that the set A \B is finite; likewise A =∗ B means that
the set A△B is finite.
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It is well-known that, in terms of Stone duality, zero-dimensional compact
lines correspond to chain algebras; a chain algebra is one having a linearly
ordered set of generators. The following lemma is essentially known; see [18,
Theorem 8.7].

Lemma 4.3. Let X ⊆ [0, 1] and suppose that A = {Ax : x ∈ X} is an
almost chain of subsets of ω, that is, Ax ⊆∗ Ay whenever x, y ∈ X and x < y.
Denote by A the Boolean algebra generated by A∪ fin. Then K = ult(A/fin)
is a separable compact line with w(K) = |X|, and L = ult(A) is a countable
discrete extension of K.

Proof. We have already explained that L may be seen as a countable
discrete extension of K = ult(A/fin). Then K is a compact line, as A/fin
is generated by a chain; see e.g. [15, Theorem 15.7]. Recall that this follows
from the fact that every ultrafilter U ∈ ult(A/fin) is uniquely determined by
the set X(U) = {x ∈ X : Ax/fin ∈ U} and we can suitably order ult(A/fin)
by declaring U ≤ V when X(V) ⊆ X(U).

Finally, K is separable: take a countable set D ⊆ X such that for every
x ∈ X and δ > 0 there is d ∈ D such that x − δ < d ≤ x. If for any x ∈ X
we denote by Ux the unique ultrafilter in K such that x is the first element
in X(U), then {Ud : d ∈ D} is easily seen to be dense in K.

We can also reverse this characterization in the following manner.

Lemma 4.4. Let K be a zero-dimensional separable compact line and let
L ∈ CDE(K). Then there isX ⊆ [0, 1] and an almost chain A = {Ax : x ∈ X}
of subsets of some countable set N such that

(i) K is homeomorphic to ult(A/fin);
(ii) L is homeomorphic to ult(A),

where A is the algebra generated by A ∪ fin(N).

Proof. By Theorem 1.1 we know that K is homeomorphic to the space
FX for some closed set F ⊆ [0, 1] and a subset X ⊆ F , so for the proof we
consider K = FX . Note that, as K is zero-dimensional, X must be dense
in F (with respect to the natural topology). As L ∈ CDE(FX), we have
L = FX ∪N for some countable infinite set N of isolated points.

For every x ∈ X, the set

Cx = {(y, i) ∈ F × {0, 1} : (y, i) <lex (x, 1)}

is clopen in FX so there is a clopen set C̃x in L such that C̃x ∩ FX = Cx.
Consider Ax = C̃x ∩N .

For x < y in X, the closure of Ax \ Ay is disjoint from FX , so the set
itself must be finite. In other words, A = {Ax : x ∈ X} is an almost chain
of subsets of N . It is not difficult to check that (i) and (ii) hold.
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The characterization of (R) via liftings in Lemma 4.1 translates very well
to almost chains of subsets of ω, which gives the following.

Proposition 4.5. Let K = ult(A/fin), where A is generated by an almost
chain A = {Ax : x ∈ X} of subsets of ω for some X ⊆ (0, 1). The countable
discrete extension L = ult(A) of K has property (R) if and only if there is
a family Ã = {Ãx ⊆ ω : x ∈ X} such that

(i) Ãx =∗ Ax for every x ∈ X;
(ii) Ãx ⊆ Ãy whenever x, y ∈ X and x < y.

Proof. We use Lemma 4.1: To check that the conditions are sufficient
note that we can set θ(Ax/fin) = Ãx and extend θ to a lifting A/fin → A
since every b ∈ A/fin can be expressed as a finite union of elements of the
form Ay/fin − Ax/fin. Necessity follows from the fact that, given a lifting
θ : A/fin → A, the sets Ãx = θ(Ax/fin) are as required.

5. Between (R) and (E). In this section we present a construction
of a countable discrete extension of a compact line of weight ω1 without
property (R), but with an extension operator of norm 3. At the end of the
section we will also apply this result to spaces which are not necessarily
zero-dimensional.

The construction below and Theorem 5.2 are due to Witold Marciszewski.
It will be convenient to consider a subset X of the Cantor set 2ω rather than
of [0, 1] and replace ω by 2<ω. We can do this as the space 2ω can be seen
as a subset of the interval [0, 1].

Construction 5.1 (Marciszewski). Let us consider the full dyadic tree
T = 2<ω. By ≼ we denote the lexicographic order on 2ω ∪ 2<ω: x ≼ y means
that either x is an initial segment of y or x(k) < y(k) for k = min {n ∈ ω :
x(n) ̸= y(n)}.

Take any set X ⊆ 2ω and for each x ∈ X denote

Sx = {x|n⌢0 : n ∈ ω, x(n) = 1}.
Consider the family AX = {Ax : x ∈ X}, where

Ax = {t ∈ T : t ≼ x} \ Sx.

Note that for x, y ∈ X, if x ≺ y, then for k = min {n ∈ ω : x(n) < y(n)} we
have

Ax \Ay ⊆
k+1⋃
i=0

2i, so Ax ⊆∗ Ay.

Hence AX , a family of subsets of a countable set T , is an almost chain. Write
AX for the Boolean algebra of subsets of T generated by AX ∪ fin(T ).
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Theorem 5.2 (Marciszewski). In the setting of Construction 5.1, if X
is uncountable, then the space K = ult(AX/fin(T )) is a separable compact
line and the space ult(AX) is a countable discrete extension of K without
property (R).

Proof. In view of Lemma 4.3 we only have to show the lack of prop-
erty (R).

Suppose otherwise: L = ult(AX) has property (R); then by Lemma 4.5,
for every x ∈ X there is a finite modification Cx of Ax such that the sets
Cx form a chain. Consider a set X0 ⊆ X of those x ∈ X for which the sets
{n : x(n) = 0} and {n : x(n) = 1} are infinite, and a function φ : X0 → ω
defined by

φ(x) = min
{
n ∈ ω : Cx △Ax ⊆

⋃
j<n

2j
}
.

The set X0 is uncountable (since |X \X0| ≤ ω), so there is some k ∈ ω
such that Y = φ−1({k}) is also uncountable. It follows that Y has a left-sided
accumulation point y ∈ Y , that is, there is a sequence xn ≺ y in Y such that
xn → y.

As y(m) = 1 infinitely often, there is some m > k and x ∈ Y satisfying

x|m = y|m, x(m) = 0 and y(m) = 1.

Putting σ = x|(m+1) we have y(m) = 1 and σ(m) = 0; hence σ ∈ Sy, which
implies that σ /∈ Ay. We also havem > k, so σ /∈ Cy (as (Cy△Ay)∩2m+1 = ∅).

On the other hand, the very definition of σ gives σ ≺ x and σ /∈ Sx;
therefore σ ∈ Ax. As m > k, it follows that σ ∈ Cx. Finally, σ ∈ Cx \ Cy,
which means that the sets Cx do not form a chain, a contradiction.

We can, however, construct a sequence of measures as in Lemma 4.2 to
prove the following.

Theorem 5.3. In the setting of Construction 5.1, if the set X is un-
countable, then the space L = ult(AX) is a countable discrete extension of
K = ult(AX/fin(T )) satisfying η(K,L) = 3.

Proof. For any σ ∈ 2<ω we denote by p(σ) ∈ ult(AX) the unique non-
principal ultrafilter satisfying

Ax ∈ p(σ) if and only if σ ≺ x for x ∈ X.

Given n and σ ∈ 2n, if σ(n− 1) = 0, then we denote by σ′ the sequence
σ|(n − 1)⌢1. Additionally, if we can find the greatest number m < n − 1
such that σ(m) = 0, then we put σ′′ = σ|m⌢1. Now we define

µσ =


δp(σ) if σ(n− 1) = 1,

δp(σ) − δp(σ′) + δp(σ′′) if σ(n− 1) = 0 and σ|(n− 1) ̸= 1n−1,

δp(σ) − δp(σ′) if σ(n− 1) = 0 and σ|(n− 1) = 1n−1.
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Claim. The following hold for every σ ∈ T and x ∈ X:

(a) if σ ∈ Ax then µσ(Ax) = 1;
(b) if σ /∈ Ax then µσ(Ax) = 0.

To verify part (a) of the Claim, take σ ∈ Ax ∩ 2n. We have σ ≺ x and
σ /∈ Sx. We know that δp(σ)(Ax) = 1, as Ax ∈ p(σ) from the definition of
p(σ). Now there are two cases:

Case 1: σ(n− 1) = 1. Then µσ = δp(σ) and µσ(Ax) = 1.
Case 2: σ(n− 1) = 0. Then either σ|(n− 1) ̸= x|(n− 1), which implies

σ′, σ′′ ≺ x, or σ|(n−1) = x|(n−1) and σ′, σ′′ ≻ x. In either case, δp(σ′)(Ax) =
δp(σ′′)(Ax) and

µσ(Ax) = (δp(σ) − δp(σ′) + δp(σ′′))(Ax) = δp(σ)(Ax) = 1.

To verify (b) consider σ ∈ 2n such that σ /∈ Ax; then x ≺ σ or σ ∈ Sx.
In the first case, we have δp(σ)(Ax) = 0 and similarly δp(σ′)(Ax) = 0,
δp(σ′′)(Ax) = 0 (as σ ≼ σ′, σ′′ if they are defined). It follows that µσ(Ax) = 0.
Otherwise, if σ ∈ Sx, then we have σ ≺ x and σ′ ≺ x, as σ′ = x|n and
σ ≺ σ′. Moreover, if σ′′ is defined then it is ≼ x, as σ|(n − 1) = x|(n − 1)
and σ|(n− 1) ≺ σ′′. It follows that

µσ(Ax) = (δp(σ) − δp(σ′) + δp(σ′′))(Ax) = 1− 1 + 0 = 0,

so the proof of the Claim is complete.

The sequence (µσ)σ∈T satisfies ∥µσ∥ ≤ 3 and the Claim says that µσ−δσ
is zero on the elements of the generating chain of A. It follows easily that
the set

{σ ∈ T : (µσ − δσ)(A) ̸= 0}

is a finite set for every A ∈ A, so our measures satisfy the conditions of
Lemma 4.2, which means that η(K,L) ≤ 3. On the other hand, η(K,L) ≥ 3
by Theorems 3.2 and 5.2.

To conclude this section, we shall turn Theorem 5.3 into a more general
result. Recall first the following fact concerning compact lines [13, Theo-
rem 2.4].

Theorem 5.4 (Heath and Lutzer). If K ′ ⊆ K are compact lines then
there is a norm-1 extension operator C(K ′) → C(K).

Then recall the following observations—the first one is (a slightly modi-
fied version of) [18, Lemma 8.6].

Lemma 5.5. Let K be a separable compact line of uncountable weight κ.
Then K contains a topological copy of the space 2ωX , where X is a dense
subset of 2ω with |X| = κ.
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Remark 5.6. If K ′ ⊆ K are any compact spaces, then any countable
discrete extension L′ of K ′ defines L ∈ CDE(K) in an obvious way: Say
L′ = K ′∪ω; then the space L = K ∪ω is obtained by considering a topolog-
ical disjoint union of K and K ′ ∪ ω and identifying every point in K ′ with
its copy in K.

Theorem 5.7. If K is a nonmetrizable separable compact line, then there
is L ∈ CDE(K) satisfying η(K,L) = 3.

Proof. As K is nonmetrizable, κ = w(K) ≥ ω1. By Lemma 5.5, we can
find inside K a copy K ′ of a zero-dimensional space 2ωX , where |X| = κ.
Then, combining Theorem 5.3 with Lemma 4.4, we can define L′ ∈ CDE(K ′)
such that η(K ′, L′) = 3. In turn, we get an ‘obvious’ countable discrete
extension L = K ∪ ω mentioned in Remark 5.6.

We know that there is an extension operator E′ : C(K ′) → C(L′) of
norm 3, so we can define an extension operator E : C(K) → C(L) by

Ef(x) =

{
f(x) for x ∈ K,

E′f |K ′(x) for x ∈ L \K = ω.

Observe that Ef is indeed continuous on L; clearly, ∥E∥ = ∥E′∥ = 3. On
the other hand, by Theorem 5.4, η(K,L) < 3 would mean that η(K ′, L′) < 3,
which cannot hold.

6. Outside (E). Consider again an almost chain A = {Ax : x ∈ X} of
subsets of ω indexed by some X ⊆ [0, 1], and compact spaces K and L as in
Section 4. The following technical fact names a combinatorial property of A
that gives η(K,L) = ∞.

Lemma 6.1. Suppose that whenever we are given an almost chain {Cx :
x ∈ X} satisfying Cx =∗ Ax for every x ∈ X, then for every natural number
p there are x0 < x1 < · · · < xp in X and k ∈ ω such that for i ≤ p we have

k ∈ Cxi if and only if i is even.

Then there is no bounded extension operator C(K) → C(L).

Proof. By Lemma 4.2 it is enough to demonstrate that whenever (µn)n∈ω
is a sequence of finitely additive measures on A satisfying

(i) µn(I) = 0 for every I ∈ fin and every n;
(ii) the set {n ∈ ω : |µn(A) − δn(A)| ≥ ε} is finite for every A ∈ A and

ε > 0,

then supn ∥µn∥ = ∞.

We consider such a sequence of µn and for every x ∈ X put

Cx = {n ∈ ω : |µn(Ax)− δn(Ax)| < 1/4},
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so that Cx =∗ Ax. Consider also x0 < x1 < · · · < xp and k granted by the
assumption of the lemma. As the measure µk vanishes on finite sets, we have

µk(Ax1 \Ax0) = µk(Ax1)− µk(Ax0) < 1/4− 3/4 = −1/2.

In the same manner, |µk|(Axi \ Axi−1) ≥ 1/2 for every i ≤ p and thus
∥µk∥ ≥ p/2. The number p can be arbitrarily large so supn ∥µn∥ = ∞, as
required.

The result due to Antonio Avilés mentioned in the introduction implies
that one cannot find in ZFC an almost chain of cardinality ω1 satisfying the
assumption of Lemma 6.1. We show below, however, that such a construction
is possible if we replace ω1 by some cardinal invariant.

Recall that if I is a proper σ-ideal of subsets of, for instance, the Cantor
set 2ω, then

non(I) = min {|X| : X /∈ I}.
As in [3], we consider here the σ-ideal I of subsets of 2ω that can be covered
by a countable number of closed sets of measure zero. Cardinal coefficients
of I are discussed by Bartoszyński and Shelah [4]; that ideal is usually
denoted by E—we have changed the notation for obvious reasons. Clearly,
I ⊆ N ∩ M, where N denotes the family of λ-null subsets of 2ω, with λ
being the standard product measure, and M denotes the σ-ideal of meager
sets in 2ω. Hence

non(I) ≤ min(non(N ), non(M)).

The strong inequality in the above formula is relatively consistent; see [4].
Recall that cardinal coefficients of the classical σ-ideals do not change if we
replace 2ω by any uncountable Polish space (and λ by any nonatomic Borel
measure on it); cf. [4, 12].

The main point of this section is to prove the following theorem.

Theorem 6.2. Let κ ≥ non(I). There is a zero-dimensional separable
compact line K of weight κ which has a countable discrete extension without
property (E).

Let us first present a construction leading to the space mentioned in the
theorem and recall some notions used in the proof.

Construction 6.3. We consider a subtree T of ω<ω defined as

T = {σ : σ(n) ≤ n for every n},
and its body

C = {0} × {0, 1} × {0, 1, 2} × · · · .
Again, as in Construction 5.1, we can consider the lexicographic order ≼ on
the set T ∪ C. As the space ωω can be identified with the set of irrational
numbers, we can see C as a subset of the unit interval [0, 1].
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Take any set X ⊆ C. For x ∈ X we set

Sx = {x|n⌢0 : n ∈ ω, x(n) is odd},
Ax = {σ ∈ T : σ ≼ x} \ Sx,

and consider the family AX = {Ax : x ∈ X}.
It follows as in Construction 5.1 that AX is an almost chain of subsets

of T . Therefore, if we denote by BX the Boolean algebra generated by AX ∪
fin(T ), then K = ult(BX/fin(T )) is a separable compact line with w(K) =
|X|, and L = ult(BX) is its countable discrete extension; see Lemma 4.3.

For the proof below, we equip C with the standard product measure λ;
thus for every σ ∈ T of length n and i ≤ n our measure satisfies

(1) λ([σ⌢i]) = λ([σ])/(n+ 1),

where [σ] denotes all elements of C extending σ. Then we may think that
I is the σ-ideal of subsets of the space C generated by closed subsets of
λ-measure zero.

We shall make use of the fact that the measure λ satisfies the Lebesgue
density theorem; that is, for every closed set F ⊆ C we have

lim
k→∞

λ([x|k] ∩ F )

λ([x|k])
= 1

for λ-almost all x ∈ F . See e.g. [20, Proposition 2.10] for a short proof
that such a property is shared by every probability measure on a Polish
ultrametric space.

Proof of Theorem 6.2. As κ ≥ non(I), let us fix any set X ⊆ C of
cardinality κ such that X /∈ I. This means that whenever X =

⋃
nXn then

λ(Xn) > 0 for some n.
Take the space L = ult(BX) from Construction 6.3. We shall check that

L is a countable discrete extension of K = ult(BX/fin(T )) which does not
have property (E). It is enough to demonstrate that the almost chain AX

satisfies the assumption in Lemma 6.1.
Assume that Bx is a finite modification of Ax for every x ∈ X. Then we

can write X =
⋃

nXn, where Xn is the set of those x ∈ X for which the
statement ‘σ ∈ Bx’ is equivalent to the statement ‘σ ∈ Ax’ for all σ of length
≥ n.

By the preparatory remarks, there is n0 such that writing F = Xn0 we
have λ(F ) > 0; in turn, there is a point y ∈ F at which the set F has
density 1.

Let us fix a natural number p. Take n > n0 such that

(2)
λ([y|n] ∩ F )

λ([y|n])
>

2p

2p+ 1
.
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We can, of course, assume that n + 1 = 2pk for some natural number k.
Consider the set

I = {i ≤ n : y|n⌢i = x|(n+ 1) for some x ∈ F}.
Claim 1. The set I satisfies

|I| ≥ 2p

2p+ 1
(n+ 1).

Indeed, i /∈ I implies [y|n⌢i] ∩ F = ∅, so that the claim follows from (1)
and (2).

Divide {0, . . . , n} into p consecutive intervals J0, . . . , Jp−1, each satisfying
|Ji| = 2k.

Claim 2. |I ∩ Ji| > k for every i < p.

Indeed, by Claim 1 we have
2p

2p+ 1
(n+ 1) ≤ |I| = |I ∩ Ji|+ |I \ Ji| ≤ |I ∩ Ji|+ n+ 1− 2k,

so
|I ∩ Ji| ≥

2p

2p+ 1
(n+ 1)− (n+ 1) + 2k = 2k

p+ 1

2p+ 1
> k.

It follows from Claim 2 that for every i ≤ p, the set I ∩ Ji contains at
least one odd and one even number. Pick an even number m0 ∈ I ∩ J0, an
odd m1 ∈ I ∩ J1, an even m2 ∈ I ∩ J2 and so on.

Put σ = y|n⌢0. From the definition of I and the fact that F = Xn0 we
conclude that there are x0, . . . , xp−1 ∈ Xn0 such that

σ ∈ Ax0 , σ /∈ Ax1 , σ ∈ Ax2 , . . . .

Consequently, since Ax’s agree with Bx’s at that level, this σ is as required.

Corollary 6.4. Every separable compact line K of weight greater than
or equal to non(I) has a countable discrete extension without property (E).

Proof. We can argue as in the proof of Theorem 5.7: Find a zero-di-
mensional subspace K ′ of K, and L′ ∈ CDE(K ′) such that η(K ′, L′) = ∞,
combine L′ with K to obtain L ∈ CDE(K), and note that η(K,L) is also
infinite by Theorem 5.4.

Let us also mention that a modification of the proof of Theorem 6.2, that
is, thinning out the tree used there, should give L ∈ CDE(K) with η(K,L)
finite but arbitrarily large.

7. Final remarks and problems. Let us briefly recall here that if K
is an arbitrary compact space and L is a countable discrete extension of K
without property (E), then one can form a nontrivial short exact sequence

0 → c0 → C(L) → C(K) → 0,
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which means that c0 embeds onto an uncomplemented subspace Z of C(L)
and the quotient C(L)/Z is isomorphic to C(K); see [18, Lemma 2.4]. Here
c0 is the classical Banach space of sequences converging to 0; its special
role in short exact sequences of Banach spaces stems from the fact that, by
Sobczyk’s theorem, c0 is complemented in every separable Banach super-
space. Moreover, it was shown in [3] that for every nontrivial short exact
sequence

0 → c0 → ? → C(K) → 0,

the Banach space in question can be found inside a space of the form C(L),
where L is a countable discrete extension of M1(K), the dual unit ball in
C(K)∗ considered in its weak∗ topology. Twisted sums of Banach spaces are a
subject of a recent publication [6] and an extensive monograph [5] discussing
homological methods in Banach space theory.

In the light of results on twisted sums from [18, 8, 3], the following
generalization of Problem 1.3 seems to be worth considering.

Problem 7.1. Is it relatively consistent that η(K,L) < ∞ for every sep-
arable compact space K of weight ω1 and its countable discrete extension L?
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