
THE K-THEORY TYPE OF QUANTIZED CW-COMPLEXES

As the result of quantization, the topology of classical spaces transforms into the functional analysis
of C*-algebras. The fact that K-theory makes sense in both realms is the main justification of the
paradigm of noncommutative topology [9, 4]. A fundamental question here is how classical topological
structures emerge as the classical limit of C*-algebraic structures. It is a highly nontrivial problem
due to the singular behavior of quantized (co)homological invariants in the classical limit. For the
analysis of such phenomena, we propose a rigorous framework of cw-Waldhausen categories, partially
inspired by [11, 8], in which K-equivalences play the role of weak equivalences. The main idea is that
classical topological constructions, or structures, in K-theory should be understood as classical limits
of systems of separate quantizations of their parts in possibly non-isomorphic C*-algebras related by
K-equivalences.

The most interesting case for such analysis is the CW-complex structure allowing computations
in K-theory based on the Mayer–Vietoris principle. Since the topological gluing of compact spaces
has its C*-algebraic counterpart in the pullbacks of unital C*-algebras [7], the natural class of quan-
tizations is determined by choosing appropriate quantizations of the cells and gluing maps relaxed
by inverting K-equivalences. As a quite nontrivial example, we construct a K-quantization of the
Atiyah–Todd structure of the K-theory of complex projective spaces [3, 1], which is induced by the
filtration by skeleta (coming from the standard system of hyperlane embeddings) and by the module
structure over the representation ring R(U(1)) (coming from vector bundles associated with the Hopf
fibration).

Now, it is important to note that arguments of Atiyah and Todd are based on the ring structure of
K-theory, the multiplicative Chern character, integral cohomology rings, homotopy classes of classify-
ing maps, contracting projective hyperplanes to obtain even-dimensional spheres (CPn/CPn−1 ∼= S2n),
and the Atiyah–Hirzebruch spectral sequence. Regretfully, none of these tools is available in non-
commutative geometry, so we were forced to invent different methods.

For starters, recall that the K-theory of the multipullback quantum complex projective spaces
[5, 6] has been computed by Albert Sheu in terms of Toeplitz projections [10]. The main difficulty
in relating his result with the classical result of Atiyah and Todd is that the Toeplitz projections do
not admit a naive classical limit. We overcome this difficulty by direct K-theoretic calculations based
on presenting the needed C*-algebras as groupoid C*-algebras. Thus, we obtain a noncommutative
counterpart of the Atiyah–Todd result providing the lacking topological and geometric understand-
ing to the operator-algebraic work of Sheu. Furhermore, for the multipullback quantum complex
projective plane, we relate the projections of Sheu (built from Toeplitz operators) with quantized
Milnor-type idempotents (coming from the clutching construction) by deriving an explicit homotopy.

To end with, let us note that our guiding principle here is the Atiyah–Jänich theorem [2] which
states that, for a compact Hausdorff space X, its even topological K-theory can be computed as
the group of homotopy classes of mappings from X to the space F of Fredholm operators on a
separable Hilbert space: K0(X) = [X,F ]. The fact that CPn can be built combinatorially from
contractible pieces means that the right-hand side can be represented combinatorially with the help of
Fredholm operators. Since each quantum disc carries a Toeplitz operator being a Fredholm operator
of index −1, one can expect that this combinatorial Fredholm presentation for the multipullback
quantum complex projective spaces will be built from Toeplitz operators. Better still, our strategy
can be, roughly speaking, subsumed in the following diagram:
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The upper part of the diagram makes sense both in the noncommutative and classical topology,
whereas the lower part of the diagram can be understood as transforming topological information
into purely operator-algebraic data by means of a quantum deformation.
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