Spectrum of Partial Differential Equations:

from Weyl asymptotics to Lieb-Thirring inequalities

Ari Laptev

International seminar on occasion of the 60th Anniversary
of the Institute of Mathematics Polish Academy of Science
April 3, 2009

If $d=1$, then solutions of the equation

$$
-u^{\prime \prime}(x)=\lambda u(x), \quad u(0)=u(\pi)=0
$$

are

$$
u(x)=\sin k x, \quad \lambda_{k}=k^{2}, \quad k=1,2,3, \ldots
$$

$\sin x, \quad \lambda_{1}=1$

$\sin 3 x, \quad \lambda_{3}=9$

$\sin 2 x, \quad \lambda_{2}=4$

$\sin 4 x, \quad \lambda_{4}=16$

Dirichlet boundary value problem.

Consider a bounded domain $\Omega \subset \mathbb{R}^{d}$ with piecewise smooth boundary $\partial \Omega$.

Dirichlet boundary value problem for the Laplace operator in $L^{2}(\Omega)$

$$
\begin{gathered}
-\Delta u(x)=\lambda u(x), \quad x \in \Omega, \\
\left.u\right|_{\partial \Omega}=0 .
\end{gathered}
$$

The Dirichlet Laplacian has a discrete spectrum of infinitely many positive eigenvalues with no finite accumulation point (F. Pockels - 1892)

$$
0<\lambda_{1}<\lambda_{2} \leq \lambda_{3} \leq \ldots,
$$

$\lambda_{k} \rightarrow \infty$ as $k \rightarrow \infty$.

Hermann Weyl 1885-1955
My work always tried to unite the Truth with the Beautiful, but when I had to choose one or the other, I usually choose the Beautiful.

Weyl's asymptotic formula for eigenvalues of a Dirichlet Laplacian.
H.Weyl: "Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen" Math. Ann., 71 (1911) pp. 441-479.

Theorem.

$$
\lambda_{k}=\frac{4 \pi^{2} k^{2 / d}}{C_{d}|\Omega|^{2 / d}}+o\left(k^{2 / d}\right)
$$

where $|\Omega|$ and $C_{d}=\pi^{d / 2} / \Gamma(d / 2+1)$ are respectively the Lebesgue measure of Ω and of the unit ball in \mathbb{R}^{d}.

It is useful to rewrite Weyl's asymptotic formula in term of the counting function of the spectrum as $\lambda \rightarrow \infty$

$$
\begin{aligned}
N(\lambda)=\#\left\{k: \lambda_{k}<\lambda\right\}=(2 \pi)^{-d} \lambda^{d / 2}|\Omega| & \int_{|\xi|<1} d \xi+o\left(\lambda^{d / 2}\right) \\
& =(2 \pi)^{-d} \int_{\Omega} \int_{|\xi|^{2} \leq \lambda} d \xi d x+o\left(\lambda^{d / 2}\right),
\end{aligned}
$$

phase volume asymptotics.

$$
u_{k}(x)=\sin k x, \quad \lambda_{k}=k^{2}, \quad k=1,2,3, \ldots
$$

In the case $d=1, \Omega=(0, \pi),|\Omega|=\pi$, Weyl's asymptotic formula in term of the counting function could be written in a more precise way

$$
\begin{aligned}
N(\lambda)=\#\left\{k: \lambda_{k}=\right. & \left.k^{2}<\lambda\right\}=(2 \pi)^{-d} \lambda^{d / 2}|\Omega| \int_{|\xi|<1} d \xi+o\left(\lambda^{d / 2}\right) \\
& =(2 \pi)^{-1} \sqrt{\lambda} \pi 2+O(1)=\sqrt{\lambda}+O(1), \quad \text { as } \quad \lambda \rightarrow \infty
\end{aligned}
$$

In this case Dirichlet and Neumann boundary value problems

$$
\begin{array}{rr}
-\Delta u(x, y)=\lambda u(x, y), & -\Delta v(x, y)=\mu v(x, y) \\
\left.u\right|_{\partial \Omega}=0 & \left.\frac{\partial v}{\partial n}\right|_{\partial \Omega}=0
\end{array}
$$

have solutions

$$
\begin{array}{cc}
u_{n m}(x, y)=\sin \pi a^{-1} n x \cdot \sin \pi a^{-1} m y, & v_{n m}(x, y)=\cos \pi a^{-1} n x \cdot \cos \pi a^{-1} m y \\
\lambda_{n m}=\pi^{2} a^{-2}\left(n^{2}+m^{2}\right), \quad n, m=1,2, \ldots & \mu_{n m}=\pi^{2} a^{-2}\left(n^{2}+m^{2}\right), \quad n, m=0,1,2, \ldots
\end{array}
$$

$$
\begin{aligned}
& N^{\mathcal{D}}(\lambda)=\#\left\{n, m=1,2, \cdots: \lambda_{n m}=n^{2}+m^{2}<\lambda\right\} \sim(4 \pi)^{-1} a^{2} \lambda \\
& N^{\mathcal{N}}(\mu)=\#\left\{n, m=0,1,2, \cdots: \mu_{n m}=n^{2}+m^{2}<\mu\right\} \sim(4 \pi)^{-1} a^{2} \mu
\end{aligned}
$$

$$
N(\lambda)=\#\left\{k: \lambda_{k}<\lambda\right\} \sim(2 \pi)^{-d} \lambda^{d / 2}|\Omega| \int_{|\xi|<1} d \xi
$$

Proof.

Weyl used a version of the max-min principle.
Dirichlet-Neumann bracketing:

$$
N^{\mathcal{D}}(\lambda) \leq N(\lambda) \leq N^{\mathcal{N}}(\lambda) .
$$

For each square with side a we find that the eigenvalues are equal to $\left\{\lambda_{n m}^{\mathbb{D}}(a)=\pi^{2} a^{-2}\left(n^{2}+m^{2}\right): n, m=1,2,3, \ldots\right\}$ for the Dirichlet problem and

$$
\left\{\mu_{n m}^{\mathbb{N}}(a)=\pi^{2} a^{-2}\left(n^{2}+m^{2}\right): n, m=0,1,2,3, \ldots\right\} \text { for the Neumann problem. }
$$

Counting

$$
\begin{aligned}
& \#\left\{(n, m): \lambda_{n m}^{\mathbb{D}}(a) \leq \lambda\right\} \\
& \text { and } \\
& \#\left\{(n, m): \mu_{n m}^{\mathbb{N}}(a) \leq \lambda\right\}
\end{aligned}
$$

summing them up and letting $a \rightarrow 0$ we proof the result.

Weyl's conjecture.

In 1911 H.Weyl also conjectured that

$$
N(\lambda)=(2 \pi)^{-d} C_{d} \lambda^{d / 2}|\Omega|-c_{d-1} \lambda^{(d-1) / 2}|\partial \Omega|+o\left(\lambda^{(d-1) / 2}\right)
$$

where $c_{d-1}>0$ is a standard term depending only on dimension d.
Under certain conditions on classical billiards in $T^{*} \Omega \mathrm{~V}$. Ivrii proved this result in 1980.

Mark Kac
1914-1984

Isospectral domains.
In 1965 Mark Kac asked: 'Can one hear the shape of a drum?' (question goes back to H.Weyl)
T. Sunada 1985 found two different domains in \mathbb{R}^{16} which have the same "Dirichlet" spectrum.

Gordon, Webb, and Wolpert 1992, found planar isospectral domains.

Peter Buser, John Conway, Peter Doyle, and Klaus-Dieter Semmler, 1994.

Weyl's inequalities. Pólya's conjecture.

In 1961 Pólya proved that if $\Omega \subset \mathbb{R}^{2}$ is a tiling domain then

$$
\lambda_{k} \geq \frac{4 \pi k}{|\Omega|}, \quad k=1,2,3, \ldots
$$

or equivalently

$$
N(\lambda)=\#\left\{k: \lambda_{k} \leq \lambda\right\} \leq(2 \pi)^{-2} \pi \lambda|\Omega|
$$

George Pólya 1887-1985

$$
=(2 \pi)^{-2} \int_{\Omega} \int_{|\xi|^{2} \leq \lambda} d \xi d x
$$

phase volume inequality.

Pólya's Conjecture

Prove that the latter inequality holds for arbitrary domains.
Pólya's conjecture is still open for $\Omega=\left\{x \in \mathbb{R}^{d}:|x|<1\right\}$.

Another easier question:

Is it true that for some $\gamma \geq 0$ the following phase volume estimate holds?

$$
\sum\left(\lambda-\lambda_{k}\right)_{+}^{\gamma} \leq(2 \pi)^{-d} \lambda^{\gamma+d / 2}|\Omega| \int_{\mathbb{R}^{d}}\left(1-|\xi|^{2}\right)_{+}^{\gamma} d \xi
$$

where $(x)_{+}=(|x|+x) / 2$ is the positive part of x.
Theorem. (Berezin, Li-Yau)
If $\gamma \geq 1$ then the above Weyl inequality holds true.

Proof.

Let $\gamma=1$ and let φ_{k} be the orthonormal basis in $L^{2}(\Omega)$ consisting of eigenfunctions of the Dirichlet Laplacian which is denoted by A. Let $\hat{\varphi}$ be the Fourier transform of φ. Then by using Parceval formula we find

$$
\begin{gathered}
\sum_{k}\left(\lambda-\lambda_{k}\right)_{+}=\sum_{k}\left(\lambda-\left(A \varphi_{k}, \varphi_{k}\right)\right)_{+}=\sum_{k}\left((2 \pi)^{-d} \int_{\mathbb{R}^{d}}\left(\lambda-|\xi|^{2}\right)\left|\hat{\varphi}_{k}\right|^{2} d \xi\right)_{+} \\
\leq(2 \pi)^{-d} \sum_{k} \int_{\mathbb{R}^{d}}\left(\lambda-|\xi|^{2}\right)_{+}\left|\hat{\varphi}_{k}\right|^{2} d \xi \\
=(2 \pi)^{-d} \sum_{k} \int_{\mathbb{R}^{d}}\left(\lambda-|\xi|^{2}\right)_{+}\left|\int_{\Omega} e^{i(x, \xi)} \varphi_{k}(x) d x\right|^{2} d \xi \\
=(2 \pi)^{-d} \int_{\mathbb{R}^{d}}\left(\lambda-|\xi|^{2}\right)_{+}\left(\sum_{k}\left|\left(e^{i(\cdot, \xi)}, \varphi_{k}\right)\right|^{2}\right) d \xi=(2 \pi)^{-d} \int_{\mathbb{R}^{d}}\left(\lambda-|\xi|^{2}\right)+d \xi \underbrace{\left\|e^{i(\cdot, \xi)}\right\|^{2}}_{=|\Omega|} .
\end{gathered}
$$

E.H. Lieb

Lieb-Thirring inequalities.
Let $H=-\Delta+V$ be a Schrödinger operator in $L^{2}\left(\mathbb{R}^{d}\right), V \rightarrow 0$, as $x \rightarrow \infty$.
Spectrum:
$\xrightarrow{\times} \times \times \quad \times 0$

$$
\sum_{j}\left|\lambda_{j}\right|^{\gamma}=\sum_{j} \lambda_{j}^{\gamma}(V) \leq \frac{C_{d, \gamma}}{(2 \pi)^{d}} \iint\left(|\xi|^{2}+V(x)\right)_{-}^{\gamma} d x d \xi=L_{\gamma, d} \int V(x)_{-}^{\gamma+d / 2} d x
$$

Compare with Weyl's asymptotic formula:

$$
\sum_{j}\left|\lambda_{j}(\alpha V)\right|^{\gamma} \sim_{\alpha \rightarrow \infty} L_{\gamma, d}^{c l} \int\left(\alpha V_{-}\right)^{\gamma+d / 2} d x=(2 \pi)^{-d} \iint\left(\xi^{2}+\alpha V\right)_{-}^{\gamma} d \xi d x
$$

which implies $L_{\gamma, d}^{c l} \leq L_{\gamma, d}$.

Example.

If in $H=-\Delta+V$,

$$
V(x)=\left\{\begin{array}{ll}
-\lambda, & x \in \Omega, \\
+\infty, & x \notin \Omega,
\end{array} \quad \Omega \in \mathbb{R}^{d}\right.
$$

then the spectrum of H coincides with the spectrum of the Dirichlet Laplacian in Ω.

Therefore Pólya inequalities are special cases of L-Th inequalities.

$$
\begin{gathered}
(-\Delta+V) u=\lambda u \\
\sum_{j}\left|\lambda_{j}\right|^{\gamma} \leq L_{\gamma, d} \int V(x)_{-}^{\gamma+d / 2} d x
\end{gathered}
$$

Theorem.
The constant $L_{\gamma, d}<\infty$ if $d=1, \gamma \geq 1 / 2, d>2, \gamma>0$ and $d \geq 3, \gamma \geq 0$.
E.Lieb, W.Thirring, T.Weidl, M.Cwikel, G.Rozenblum.

Theorem.
It is known that $L_{1 / 2,1}=1 / 2\left(L_{1 / 2,1}^{c l}=1 / 4\right)$ and
$L_{\gamma, d}=L_{\gamma, d}^{c l}$ if $\gamma \geq 3 / 2, d \geq 1$.
In other cases the sharp constants are unknown.
E.Lieb, W.Thirring, M.Aizenmann, D.Hundertmark, L.Thomas, AL \& T.Weidl.

Let ψ solves the equation

$$
-\frac{d^{2}}{d x^{2}} \psi+V \psi=k^{2} \psi, \quad \psi(x, k)= \begin{cases}e^{i k x}, & \text { as } x \rightarrow \infty \\ a(k) e^{i k x}+b(k) e^{-i k x}, & \text { as } x \rightarrow-\infty\end{cases}
$$

Fundamental property:
if $k \in \mathbb{R}$ then $W[\psi, \bar{\psi}]=\psi \bar{\psi}^{\prime}-\psi^{\prime} \bar{\psi}=$ const.
This implies $1=|a|^{2}-|b|^{2} \Leftrightarrow|a| \geq 1$.
Let

$$
\lambda_{j}=\left(i \kappa_{j}\right)^{2}, \quad \kappa_{j}>0 .
$$

Theorem. (BFZ trace formula.)
If $V \leq 0$, then

$$
\frac{3}{2 \pi} \int k^{2} \ln |a|^{2} d k+\sum_{j} \kappa_{j}^{3}=\frac{3}{16} \int V^{2} d x=(2 \pi)^{-1} \iint\left(|\xi|^{2}+V\right)_{-}^{3 / 2} d \xi d x
$$

Corollary. (L-Th inequality.)

$$
\sum_{j}\left|\lambda_{j}\right|^{3 / 2}=\sum_{j} \kappa_{j}^{3} \leq \frac{3}{16} \int V^{2} d x
$$

Soliton's approach (Lieb \& Thirring, Lax, Kruskal).
Let us consider the KdV equation

$$
U_{t}=6 U U_{x}-U_{x x x},\left.\quad U\right|_{t=0}=V .
$$

Then

$$
U_{t}=\left[-\frac{d^{2}}{d x^{2}}+U, M\right], \quad \text { where } \quad M=4 \frac{d^{3}}{d x^{3}}-3\left(U \frac{d}{d x}+\frac{d}{d x} U\right)
$$

- Discrete spectrum is independent of t :

$$
\lambda_{j}\left(-\frac{d^{2}}{d x^{2}}+U\right)=\lambda_{j}\left(-\frac{d^{2}}{d x^{2}}+V\right)
$$

- $a(k, t)=e^{i 8 k^{3} t} a(k, 0)$.
- $\int U^{2}(x, t) d x=\int V^{2}(x) d x$.

Therefore terms in the trace formula

$$
\frac{3}{2 \pi} \int k^{2} \ln |a|^{2} d k+\sum_{j}\left|\lambda_{j}\right|^{3 / 2}=\frac{3}{16} \int U^{2} d x
$$

are independent of time.

$$
U(x, t) \sim_{t \rightarrow \infty} \sum_{j=1}^{N} U_{j}\left(x-4 \lambda_{j} t\right)+U_{\infty}
$$

- $\left\|U_{\infty}\right\|_{\infty} \leq \varepsilon(t) \rightarrow_{t \rightarrow \infty} 0$ and U_{j} are solitons

$$
U_{j}(x)=-2 \lambda_{j} \cosh ^{-2}\left(\sqrt{\lambda_{j}} x\right)
$$

- $\left(-\frac{d^{2}}{d x^{2}}+U_{j}\right) \cosh ^{-1}\left(\sqrt{\lambda_{j}} x\right)=-\lambda_{j} \cosh ^{-1}\left(\sqrt{\lambda_{j}} x\right)$.

Finally, since $4 \int \cosh ^{-4} x d x=16 / 3$, we obtain

$$
\int V^{2} d x \geq \sum_{j=1}^{N} \int U_{j}^{2} d x=\frac{16}{3} \sum_{j=1}^{N} \lambda_{j}^{3 / 2}
$$

Multidimensional Lieb-Thirring inequalities.

The main argument is based on 1D matrix Lieb-Thirring inequality. Theorem. (AL \& T.Weidl)
Let Q be a Hermitian $m \times m$ matrix-function and let $H=-\Delta+Q$.
Then

$$
\sum_{j} \lambda_{j}^{3 / 2}(H) \leq \frac{3}{16} \int \operatorname{Tr} Q^{2}(x) d x
$$

Lifting argument with respect to dimension.

Let for simplicity $d=2, V \in C_{0}^{\infty}\left(\mathbb{R}^{2}\right), V \leq 0, x=\left(x_{1}, x_{2}\right)$. Then

$$
H=-\Delta+V=-\partial_{x_{1} x_{1}}^{2}-\underbrace{\left(\partial_{x_{2} x_{2}}^{2}-V\right)}_{\tilde{H}\left(x_{1}\right)}
$$

Spectrum $\sigma(\tilde{H})$ of $\tilde{H}\left(x_{1}\right)$ has a finite number of positive eigenvalues $\mu_{l}\left(x_{1}\right)$. Thus $\tilde{H}_{+}\left(x_{1}\right)$ has a finite rank. Let, for instance, $\gamma=3 / 2$

$$
\begin{gathered}
\sum_{j} \lambda_{j}^{3 / 2}(H) \leq \sum_{j} \lambda_{j}^{3 / 2}\left(-\partial_{x_{1} x_{1}}^{2}-\tilde{H}_{+}\right) \\
\leq \frac{3}{16} \int \operatorname{Tr} \tilde{H}_{+}^{2}\left(x_{1}\right) d x_{1} \leq \underbrace{\frac{3}{16} L_{2,1}}_{L_{3 / 2,2}^{c}} \iint V^{3 / 2+1}(x) d x .
\end{gathered}
$$

Recent Result (jointly with J.Dolbeault \& M.Loss)

Let H be a Schrödinger operator in $L^{2}\left(\mathbb{R}^{d}\right)$

$$
H=-\Delta-Q
$$

The main new result of this talk is the following Theorem:
Theorem. Let $Q \geq 0$ be a Hermitian $M \times M$ matrix-function defined on \mathbb{R} and let λ_{n} be all negative eigenvalues of the operator H. Then

$$
\sum\left|\lambda_{n}\right| \leq \frac{2}{3 \sqrt{3}} \int_{\mathbb{R}} \operatorname{Tr}\left[Q^{3 / 2}(x)\right] d x
$$

Corollary. For any dimension $d \geq 1$, the negative eigenvalues of the operator H satisfy inequalities

$$
\sum\left|\lambda_{n}\right| \leq L_{d, 1} \int_{\mathbb{R}^{d}} \operatorname{Tr}\left[Q^{d / 2+1}(x)\right] d x
$$

where

$$
L_{d, 1} \leq R \times L_{d, 1}^{c l}=R \times \frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}}(1-|\xi|)_{+} d \xi
$$

and $R=\frac{\pi}{\sqrt{3}}=1.8138 \ldots$

Scalar case

For simplicity we consider a scalar version of this theorem based on a 1D generalised Sobolev inequality due to Eden and Foias.

Let $\left\{\psi_{j}\right\}_{j=1}^{n}$ be in orthonormal system of function in $L^{2}(\mathbb{R})$ and let

$$
\rho(x)=\sum_{j=1}^{n} \psi_{j}^{2}(x)
$$

In this case the previous theorem can be reformulated as

Theorem.

$$
\int_{\mathbb{R}} \rho^{3}(x) d x=\int\left(\sum_{j=1}^{n}\left|\psi_{j}(x)\right|^{2}\right)^{3} d x \leq \sum_{j=1}^{n} \int_{\mathbb{R}}\left|\psi_{j}^{\prime}(x)\right|^{2} d x .
$$

We first derive a simple inequality

$$
\|\psi\|_{L^{\infty}} \leq\|\psi\|_{L^{2}}^{1 / 2}\left\|\psi^{\prime}\right\|_{L^{2}}^{1 / 2}
$$

Indeed

$$
|\psi(x)|^{2}=\left.\frac{1}{2}\left|\int_{-\infty}^{x}\right| \psi^{2}\right|^{\prime} d t-\int_{x}^{\infty}\left|\psi^{2}\right|^{\prime} d t\left|\leq \int\right| \psi\left\|\psi^{\prime} \mid d t \leq\right\| \psi\left\|_{L^{2}}\right\| \psi^{\prime} \|_{L^{2}}
$$

Let now $\xi=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right) \in \mathbb{R}^{n}$. Then

$$
\begin{aligned}
\left|\sum_{j=1}^{n} \xi_{j} \psi_{j}(x)\right| & \leq\left(\sum_{j, k=1}^{n} \xi_{j} \bar{\xi}_{k}\left(\psi_{j}, \psi_{k}\right)\right)^{1 / 4}\left(\sum_{j, k=1}^{n} \xi_{j} \bar{\xi}_{k}\left(\psi_{j}^{\prime}, \psi_{k}^{\prime}\right)\right)^{1 / 4} \\
& \leq\left(\sum_{j=1}^{n} \xi_{j}^{2}\right)^{1 / 4}\left(\sum_{j, k=1}^{n} \xi_{j} \bar{\xi}_{k}\left(\psi_{j}^{\prime}, \psi_{k}^{\prime}\right)\right)^{1 / 4}
\end{aligned}
$$

If we set $\xi_{j}=\psi_{j}(x)$ then the latter inequality becomes

$$
\rho(x)=\sum_{j=1}^{n}\left|\psi_{j}(x)\right|^{2} \leq \rho^{1 / 4}(x)\left(\sum_{j, k=1}^{n} \psi_{j}(x) \overline{\psi_{k}(x)}\left(\psi_{j}^{\prime}, \psi_{k}^{\prime}\right)\right)^{1 / 4}
$$

Thus

$$
\rho^{3}(x) \leq \sum_{j, k=1}^{n} \psi_{j}(x) \overline{\psi_{k}(x)}\left(\psi_{j}^{\prime}, \psi_{k}^{\prime}\right) .
$$

Integrating both sides we arrive at

$$
\int\left(\sum_{j=1}^{n}\left|\psi_{j}(x)\right|^{2}\right)^{3} d x \leq \sum_{j=1}^{n} \int\left|\psi_{j}^{\prime}\right|^{2} d x
$$

Spectrum of Schrödinger operators

Let $\left\{\psi_{j}\right\}_{j=1}^{\infty}$ be the orthonormal system of eigenfunctions corresponding to the negative eigenvalues of the Schrödinger operator

$$
-\frac{d^{2}}{d x^{2}} \psi_{j}-Q \psi_{j}=-\lambda_{j} \psi_{j}
$$

where we assume that $Q \geq 0$. Then by using the latter result and Hölder's inequality we obtain

$$
\begin{gathered}
\left.\int\left(\sum_{j=1}^{n}\left|\psi_{j}(x)\right|^{2}\right)^{3} d x-\left(\int Q^{3 / 2} d x\right)^{2 / 3} \int\left(\sum_{j=1}^{n}\left|\psi_{j}(x)\right|^{2}\right)^{3} d x\right)^{1 / 3} \\
\leq \sum_{j} \int\left(\left|\psi_{j}^{\prime}\right|^{2}-Q\left|\psi_{j}\right|^{2}\right) d x=-\sum_{j} \lambda_{j}
\end{gathered}
$$

Denote

$$
X=\left(\int\left(\sum_{j=1}^{n}\left|\psi_{j}(x)\right|^{2}\right)^{3} d x\right)^{1 / 3}
$$

then the latter inequality can be written as

$$
X^{3}-\left(\int V^{3 / 2} d x\right)^{2 / 3} X \leq-\sum_{j} \lambda_{j} .
$$

Maximizing the left hand side we find $X=\frac{1}{\sqrt{3}}\left(\int Q^{3 / 2} d x\right)^{1 / 3}$. This implies

$$
\frac{1}{3 \sqrt{3}} \int Q^{3 / 2} d x-\frac{1}{\sqrt{3}} \int Q^{3 / 2} d x=-\frac{2}{3 \sqrt{3}} \int Q^{3 / 2} d x \leq-\sum_{j} \lambda_{j}
$$

and we finally obtain $\sum_{j} \lambda_{j} \leq \frac{2}{3 \sqrt{3}} \int Q^{3 / 2} d x$.
This is the best known constant in Lieb-Thirring's inequality.

Thank you for your attention

Professor Ari Laptev, Head of the Department of Mathematics, Imperial College London

Inaugural lecture: "Spectrum of partial dififerential equations: from Weyl asymptotics to Lieh-Thirring inequalities"

In the chair: Martin Liebeck
Department of Mathematics
Vote of thanks: Professor John Elgin
Department of Mathematics

