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I, Piotr ŚNIADY, declare that this thesis is ready for evaluation by reviewers.

Signed:

Date:





v

INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES

Abstract
Doctor of Philosophy

Asymptotic properties of Robinson–Schensted–Knuth algorithm and jeu de taquin

by Łukasz MAŚLANKA

The Thesis is divided into three main parts, each concerning a different limit problem for
random Young tableaux.

In the first part we show that in the Plancherel growth process of a random Young
diagram the growths which occur in the first k bottom rows of the diagram are asymptotically
independent and that asymptotically, when n Ñ8, for each of the first k rows the dynamics
of its growth in time n can be modelled by a Poisson process with intensity n�1{2.

In the second part, we study the bumping routes in the surrounding of the first column
in a big random Plancherel distributed tableau. We show that in the projective coordinates
the rows in which the bumping route ‘jumps between’ the columns can be asymptotically
modelled by a Poisson process.

In the last part we investigate whether there exist some typical shapes of the sliding path
and the evacuation path in a random rectangular tableau. We show that each of these random
paths concentrates near a random curve from some particular family. We then transfer these
results to the setup of Totally Asymmetric Simple Exclusion Process to obtain the description
of the limit trajectory of the second class particle in TASEP.
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Streszczenie
Rozprawa doktorska

Asymptotic properties of Robinson–Schensted–Knuth algorithm and jeu de taquin

Autor: Łukasz MAŚLANKA

Rozprawa zawiera trzy główne rozdziały. Każdy z nich opisuje inny problem graniczny
dla losowych tableaux Younga.

W pierwszym rozdziale badamy dynamikę przyrostów pierwszych k wierszy losowego
diagramu Younga w procesie wzrostu Plancherela. Pokazujemy, że przyrosty te są asymptoty-
cznie niezależne oraz, że w granicy, gdy n Ñ8, dynamika przyrostu każdego z pierwszych k
wierszy w czasie n może być opisana za pomocą procesu Poissona o intensywności n�1{2.

Drugi rozdział poświęcony jest badaniu tzw. bumping route w otoczeniu pierwszej kolumny
dla dużego losowego tableau o rozkładzie Plancherela. Pokazujemy, że stosując współrzędne
projektywne, wiersze, w których bumping route „przeskakuje” między kolumnami możemy
asymptotycznie opisać za pomocą procesu Poissona.

W ostatnim rozdziale pokazujemy, że istnieją typowe kształty ścieżek jeu de taquin oraz
ewakuacji w losowym prostokątnym tableau. Dowodzimy, że te ścieżki koncentrują się
blisko losowej krzywej należącej do pewnej rodziny. Powyższe rezultaty wykorzystujemy
w kontekście Totally Asymmetric Simple Exclusion Process, otrzymując opis granicznej
trajektorii cząstki drugiego rodzaju w procesie TASEP.
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Chapter 1

Introduction

In this PhD thesis we investigate the asymptotics of two popular algorithms used in the study
of Young diagrams and tableaux – the Robinson–Schensted–Knuth algorithm and the jeu de
taquin algorithm. The results in this document (see Section 1.6 for their brief description)
come from three collaborative papers [MMŚ21b; MMŚ21a; MŚ22] (all with my supervisor,
Piotr Śniady, and the first two with his another PhD student, Mikołaj Marciniak). Each of the
next three chapters corresponds to one of these papers.

In this chapter we will first introduce basic notations, then give some motivations for our
investigations and finish with a short description of the obtained results.

We denote by N the set of positive integer numbers and we set N0 :� NY t0u.

1.1 Young diagrams and Young tableaux

A partition of a natural number n is a sequence λ � pλ0, . . . , λkq (for some k P N0) of
natural numbers such that λ0 ¥ λ1 ¥ � � � ¥ λk ¡ 0 and n � °k

n�0 λn. Sometimes it may
be more convenient to think of a partition λ as an infinite sequence λ � pλpqpPN0 in which
λp � 0 for p ¡ k.

With a partition λ of a natural number n we associate its graphical representation called
Young diagram and denoted also by λ. The Young diagram λ � pλ0, . . . , λkq is a figure on
the plane which consists of n � λ0 � � � � � λk squares of side 1 placed one next to the other
in k� 1 rows in such a way that in the i-th row there are exactly λi squares. We use the, so
called, French convention to draw Young diagrams, see Figure 1.1a. We enumerate the rows
and columns of a Young diagram with numbers from the set N0 starting with 0. Each of the
squares in a Young diagram will be called a box. The number of boxes in the Young diagram
λ is called the size of λ and denoted by |λ|. We also define the empty diagram, which we
denote by H, as the diagram which has no boxes. The set of all Young diagrams with n boxes
will be denoted by Yn and the set of all Young diagrams by Y, i.e.,

Y �
8¤

n�0

Yn.

The set Y has a structure of an oriented graph, called Young graph, in which an oriented edge
from diagram µ to diagram λ is present if λ can be created from µ by addition of a single box
(in such case we write µ Õ λ).

For a Young diagram λ we consider its fillings with |λ| real numbers with the following
properties:

• in each row the numbers are increasing from left to right,

• in each column the numbers are increasing from bottom to top.
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Figure 1.1: (a) The Young diagram λ � p5, 4, 3, 1q drawn in the French
convention; (b) A tableau of shape λ; (c) A standard tableau of shape λ.
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Figure 1.2: (a) The original tableau T. (b) We consider the Schensted row
insertion of the number 18 to the tableau T. The highlighted boxes form the
corresponding bumping route. The small numbers on the left (next to the
arrows) indicate the inserted/bumped numbers. (c) The output T Ð 18 of the

Schensted insertion.

Any such filling of λ we call a Young tableau of shape λ (or shortly tableau), see Figure 1.1b.
We refer to the numbers in boxes as entries of a tableau.

A standard Young tableau of shape λ (or shortly standard tableau) is a tableau with entries
1, . . . , |λ|, see Figure 1.1c. The set of standard tableaux of shape λ will be denoted by Tλ.

Let T be a tableau. The shape of T we denote by shpTq. The number of boxes in T
is called the size of tableau and denoted by |T| or | shpTq|. We denote by Tx,y the entry of
tableau T which lies in the intersection of the row y P N0 and the column x P N0, for
example, in Figure 1.2a we have T0,0 � 16, T0,1 � 23, T1,0 � 37 and so on.

We investigate asymptotics of two operations related to tableaux – the Robinson–Schensted–
Knuth algorithm and jeu de taquin.

1.2 Robinson–Schensted–Knuth algorithm

The first operation on tableaux of our interest is the Robinson–Schensted–Knuth algorithm
(shortly RSK). In fact, we will consider a simplified version of the Robinson–Schensted–
Knuth algorithm; for this reason we should rather call it the Robinson–Schensted algorithm.
Nevertheless, we use the first name because of its well-known acronym RSK.

RSK is an iterative algorithm during which we apply in each step the Schensted row
insertion.
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53 99

74

1 3 6 10

2 5 9

4 8

7

Figure 1.3: The insertion tableau Ppwq (on the left) and the recording tableau
Qpwq (on the right) obtained with the RSK algorithm applied to the sequence

w � p74, 53, 99, 23, 37, 70, 16, 18, 41, 82q.

1.2.1 Schensted row insertion

The Schensted row insertion is an algorithm which takes as an input a tableau T and some
number a. The number a is inserted into the first row (that is, the bottom row, the row with the
index 0) of T to the leftmost box which contains an entry which is strictly bigger than a.

In the case when the row contains no entries which are bigger than a, we create in the first
row new empty box directly to the right of shpTq and we fill it with the number a, and the
algorithm terminates.

If, however, the number a is inserted into a box which was not empty, the previous content
a1 of the box is bumped into the next row. This means that the algorithm is iterated but this
time the number a1 is inserted into the next row to the leftmost box which contains a number
bigger than a1 (if such box exists). We repeat these steps of row insertion and bumping until
some number needs to be inserted into a new empty box.

This process is illustrated on Figures 1.2b and 1.2c. The bumping route consists of
the boxes the entries of which were changed by the action of Schensted insertion, including
the last, newly created box, see Figure 1.2c. The outcome of the Schensted insertion is defined
as the result of the aforementioned procedure; it will be denoted by T Ð a.

1.2.2 Robinson–Schensted–Knuth algorithm

The Robinson–Schensted–Knuth algorithm (shortly RSK) associates to a finite sequence
w � pw1, . . . , wℓq of real numbers a pair of tableaux: the insertion tableau Ppwq and the
recording tableau Qpwq of the same shape, see Figure 1.3.

The insertion tableau

Ppwq �
��pH Ð w1q Ð w2

�Ð � � �
	
Ð wℓ (1.2.1)

is defined as the result of the iterative Schensted row insertion applied to the entries of the
sequence w, starting from the empty tableau H.

The recording tableau Qpwq is defined as the standard Young tableau of the same shape
as Ppwq in which each entry is equal to the number of the iteration of (1.2.1) in which the
given box of Ppwq stopped being empty; in other words the entries of Qpwq give the order in
which the entries of the insertion tableau were filled.

The common shape of the insertion tableau Ppwq and the recording tableau Qpwq will be
denoted by RSKpwq.
Theorem 1.2.1 ([Ful97, Part 1, Chapter 4]). For any n P N the Robinson–Schensted algorithm
gives a bijection between the symmetric group Sn and the set of pairs pP, Qq of standard
tableaux with n boxes and the same shape.
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Figure 1.4: Elementary step of the jeu de taquin transformation: (a) the
initial configuration of boxes, (b) the outcome of the slide in the case when
r   s, (c) the outcome of the slide in the case when s   r. Copyright ©2014
Society for Industrial and Applied Mathematics. Reprinted from [Śni14] with

permission. All rights reserved.
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Figure 1.5: (a) A standard Young tableau T of shape λ � p5, 4, 2, 1q. The
highlighted boxes form the sliding path. (b) The outcome jpTq of the jeu de
taquin transformation. The light blue empty square indicates the box which

got removed during jeu de taquin.

The RSK algorithm is of great importance in algebraic combinatorics, especially in the
context of the representation theory [Ful97]. Also a fruitful area of study concerns the RSK
algorithm applied to a uniformly random permutation from Sn, especially asymptotically in
the limit n Ñ8, see [Rom15] and the references therein.

1.3 Jeu de taquin algorithm

The second operation on tableaux whose asymptotics we will investigate is jeu de taquin,
[Ful97, Section 1.2]. This operation is also heavily used in the study of Young tableaux.

1.3.1 Jeu de taquin and sliding path

Jeu de taquin acts on Young tableaux in the following way (see Figures 1.5a and 1.5b): we
remove the bottom-left box of the given tableau T and obtain a hole in its place. Then we
look at the two boxes: the one to the right and the one above the hole, and choose the one
which contains the smaller number. We slide this smaller box into the location of the hole, see
Figure 1.4. As a result, the hole moves in the opposite direction. We continue this operation
as long as there is some box to the right or above the hole. The path which was traversed by
the ‘traveling hole’ will be called the sliding path, see Figure 1.5a. The result of jeu de taquin
applied to a tableau T will be denoted by jpTq, see Figure 1.5b. Note that the tableau jpTq has
one box less than T.
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1.3.2 Evacuation path

For a given standard tableau T P Tλ with n � |λ| boxes the jeu de taquin transformation j
can be iterated n times until we end with the empty tableau. During each iteration the box
with the biggest number n either moves one node left or down, or stays put. Its trajectory will
be called the evacuation path.

1.4 Basics of representation theory

Young diagrams and tableaux are connected with the irreducible representations of the sym-
metric groups. We will now give a very short introduction to the representation theory.

Let V be a vector space over the field K � R or K � C and denote by GLpVq the set of
isomorphisms of V. Let G be a finite group and let ρ : G Ñ GLpVq be a homomorphism, i.e.,
ρpghq � ρpgq � ρphq for all g, h P G. Depending on the context, we call a representation of
G the homomorphism ρ or the linear space V. We also call a homomorphism ρ a linear group
action of G on V. We will explain this ambiguity below.

Let V and W be two vector spaces and let ρ : G Ñ GLpVq and π : G Ñ GLpWq be their
representations. We say that the mapping ϕ : V Ñ W is a homomorphism of representations
if

@gPG ϕ
�
ρpgqpvq� � πpgq�ϕpvq� ,

i.e., ϕ intertwines the representations ρ and π. Additionally, if ϕ is a bijection then we
call it isomorphism of representations. If such isomorphism exists then we say that the
representations V and W are equivalent (or isomorphic).

A subspace W of the vector space V which is invariant under the (linear) group action
of G is called a subrepresentation. We say that a representation V is irreducible if it does not
have nontrivial subrepresentations, i.e., other than t0u and V.

Example 1.4.1 (Irreducible representations of the symmetric group). Each irreducible rep-
resentation of the symmetric group Sn corresponds to some Young diagram with n boxes,
[Sag01, Theorem 2.4.4]. In particular, the trivial representation corresponds to the Young
diagram pnq with 1 row and the alternating representation corresponds to the Young diagram
p1nq with n columns.

The basis of the irreducible representation of Sn corresponding to the Young diagram
λ P Yn can be encoded with the set of standard tableaux of shape λ, [Sag01, Theorem 2.6.4].
The dimension of such irreducible representation is equal to the number dλ of standard
tableaux of the shape λ.

The following two theorems lie in the foundations of the representation theory.

Lemma 1.4.2 (Schur’s lemma). Let V and W be irreducible representations of the finite
group G. Assume that T : V Ñ W is a homomorphism of representations. Then T � 0 or T
is an isomorphism. In particular, the only homomorphisms of irreducible representations of V
are the multiples of identity.

Theorem 1.4.3 (Maschke’s theorem). Let G be a finite group. Any finitely dimensional
representation V (over the field K � R or K � C) of G is a direct sum of irreducible
representations of G, i.e.,

V �
kà

i�1
Wi

where each Wi is an irreducible representation of G. The decomposition of V into irreducible
components is unique up to an isomorphism of representations.
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Taking into account Schur’s lemma and Maschke’s theorem it becomes clear that the two
notions of a representation: first as the group homomorphism and second as the vector space
can be used interchangeably.

Example 1.4.4 (The left regular representation). The following example is of special interest
since

• each irreducible representation of G is isomorphic to some irreducible subrepresentation
of the left regular representation;

• the celebrated and intensively investigated Plancherel measure is a very natural proba-
bility measure on the set of irreducible components of the left regular representation.

Let G be a group and let KG be the group algebra of G, i.e., KG is the set of all formal
linear combinations of the elements of G, i.e.,

KG �
$&%¸

gPG

agg : ag P K

,.- .

We consider the left action of G on the group algebra KG, i.e., the representation ρ : G Ñ
GLpKGq given by

@hPG ρphq
��¸

gPG

agg

� :�
¸
gPG

aghg.

By Maschke’s theorem KG decomposes into the direct sum of the irreducible components.
Using the theory of characters one can show that some of these irreducible components are
isomorphic and KG can be given as the following direct sum

KG �à
ν

cνVν

where each component is indexed by different conjugation class ν of G and the coefficient
cν P N, called multiplicity of Vν, is equal to the cardinality of ν. Moreover, cν is equal to the
dimension of the vector space Vν, i.e., cν � |ν| � dim Vν.

The probability measure on the set of all irreducible subrepresentations of KG given by
the formula

Planpνq :� dim V2
ν

|G| , ν – irreducible component of KG,

is called the Plancherel measure.

The correspondence between irreducible representations of Sn and Young diagrams,
cf. Example 1.4.1, yields the Plancherel distribution on Young diagrams with n boxes. The
probability of choosing the diagram λ P Yn with respect to the Plancherel measure on Sn is
equal to

Plannpλq � pdλq2
n!

(1.4.1)

where dλ denotes the number of standard tableaux of shape λ. The Plancherel measure Plann
plays a crucial role in our research, see Chapters 2 and 3.

1.5 Motivations for the results

Many combinatorial structures can be viewed as discrete versions of continuous geometric
objects. For example, Young diagram is a geometric shape on the Cartesian plane and a
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Figure 1.6: A random Young diagram with 1000 boxes (the blue angular
shape consisting of small squares) sampled according to the Plancherel mea-
sure and the limit shape of its boundary – the Vershik–Kerov–Logan–Shepp

curve (the thick red dashed curve) [LS77; VK77].

standard tableau can be viewed as a 3D block being a union of ‘small’ cuboids with the square
base 1� 1 corresponding to the size of a cell in the Young diagram (the shape of tableau)
and the height equal to the entry in the corresponding cell. We can embed these structures
into another space of some (continuous) geometric objects and ask whether there is some
typical asymptotic behaviour of these discrete shapes as their size parameter tends to infinity.
In many cases the randomly sampled element approaches some continuous limit. If this is a
case we say that the model has a limit shape. Figure 1.6 shows an example of the limit shape
phenomenon for the Plancherel distributed random diagram. The questions concerning the
limit shapes are usually formulated in the probabilistic setup.

It is worth noting that the investigation of the limit shapes of random combinatorial objects
is very appealing to wide range of mathematicians. Such problems were investigated, for
example, by a Fields medal laureate Andrei Okounkov [Oko06], Richard Stanley [Sta07] and
Anatoly Vershik [Ver95]. Also the research in this area was appreciated by the mathematical
community by invitations to give lectures on International Congress of Mathematics by
Philippe Biane [Bia02] or European Congress of Mathematics by my supervisor Piotr Śniady
[Ś13].

There are several good reasons for studying limit shapes:

• Random combinatorial objects can be often considered as models of mathematical
physics. We raise this issue in the case of Totally Asymmetric Simple Exclusion Process
(shortly TASEP) in Chapter 4.

• On one hand, the representation theory is often related to some combinatorial structures
(see Example 1.4.1 for an example). On the other hand, questions from group theory,
harmonic analysis on groups, probability on groups or quantum information theory can
be often rephrased in the language of the character theory. Therefore it is essential to
understand large combinatorial objects to answer the original question.

• The aesthetical motivation which is twofold. Firstly, the computer simulations often
gives rise to beautiful pictures. Secondly, and more importantly, the solutions of
the problems related to asymptotics of random combinatorial structures often involve
an appealing interface between seemingly distant disciplines of mathematics, such
as combinatorics, analysis, harmonic analysis, ergodic theory, representation theory,
probability theory or quantum mechanics.
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In this thesis we are going to investigate the dynamics of the growth of the first few bottom
rows of a Young diagram during the RSK insertion applied to a random input (Chapter 2),
the limit shape of the bumping route corresponding to the Schensted insertion of ‘very small’
numbers (Chapter 3) and the limit shapes of the sliding path and evacuation path in a random
tableau of rectangular shape and the dynamics of a particular TASEP process (Chapter 4). We
will describe these specific problems and their motivations more richly in the corresponding
chapters.

1.6 Content of the thesis

The proper part of this PhD thesis consists of three (almost) independent chapters.
In the first of these chapters, Chapter 2, we investigate the way in which the first k bottom

rows grow in a random Plancherel distributed diagram. To be more precise, we consider an
i.i.d. Up0, 1q infinite word w � pw1, w2, . . . q and apply iteratively the RSK algorithm to its
restrictions w|n :� pw1, . . . , wnq, n P N, and look at the obtained Young diagrams RSKpw|nq.
Each two results of the consecutive iteration steps differ by exactly one box (which was added
in some row). Our aim is to show that the growths which happen in the first k bottom rows are
asymptotically independent and that asymptotically the growth in each of them in time n can
be modelled by a Poisson process with intensity n�1{2.

In the next chapter, Chapter 3, we use the obtained result from Chapter 2 to investigate
the bumping routes in the surrounding of the first column of random Young tableau. More
precisely, to a big random Plancherel distributed standard tableau we Schensted-insert a
number m� 1

2 for some fixed m P N and look at the corresponding bumping route. We are
interested in the rows in which the bumping route ‘jumps between’ the columns. We show
that these rows (when properly seen) can be asymptotically modelled by a Poisson process.

The last chapter, Chapter 4, is devoted to the typical shapes of the sliding path and
the evacuation path in a random rectangular standard tableau. We show that each of the
investigated random paths asymptotically focuses near a random curve belonging to some
particular family. The tools used in the proofs can be applied in a more general context of
C-balanced tableaux. We then transfer these results to the setup of Totally Asymmetric Simple
Exclusion Process to obtain the description of the limit trajectory of the second class particle
in TASEP.



9

Chapter 2

Poisson limit theorems
for the Robinson–Schensted
correspondence
and for the multi-line Hammersley
process

The following chapter is a modified version of the (yet nonpublished) article [MMŚ21b]:

Marciniak, M. Marciniak, Ł. Maślanka and P. Śniady: Poisson limit theorems
for the Robinson–Schensted correspondence and for the multi-line Hammersley
process, https://arxiv.org/abs/2005.13824v2

which is available in the public repository arXiv.org.

Abstract: We consider the Robinson–Schensted–Knuth algorithm applied to a random
input and study the growth of the bottom rows of the corresponding Young diagrams. We
prove a multidimensional Poisson limit theorem for the resulting Plancherel growth process.
In this way we extend the result of Aldous and Diaconis to more than just one row. This
result can be interpreted as convergence of the multi-line Hammersley process to its stationary
distribution which is given by a collection of independent Poisson point processes.

2.1 Introduction

The notions of Young diagrams and tableaux are given in Section 1.1 We will shortly recall
the corresponding notation in the next subsection. The Robinson–Schensted–Knuth algorithm
(shortly RSK) is defined in Section 1.2.

2.1.1 Notations

Recall from Chapter 1 that we denote the set of Young diagrams with n boxes by Yn and the
set of all Young diagrams by Y. The Young graph is an oriented graph with vertices in Y. The
pair of diagrams µ and λ is connected by an oriented edge pointing from µ to λ if and only if
λ can be created from the Young diagram µ by addition of a single box (which we denote by
µ Õ λ).

Recall that the rows of any Young diagram λ � pλ0, λ1, . . . q are indexed by the elements
of N0; in particular the length of the bottom row of λ is denoted by λ0. For a tableau T
we denote by Tx,y its entry which lies in the intersection of the row y P N0 and the column
x P N0.

https://arxiv.org/abs/2005.13824v2
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Let X : Ω Ñ V be a random variable with values in some set V. When we want to phrase
this statement without mentioning the sample space Ω explicitly, we will write X P V.

If E is a random event, we denote by 1E its indicator, which is the random variable given
by

1Epωq �
#

1 if ω P E,
0 otherwise.

2.1.2 Plancherel measure, Plancherel growth process

Let Sn denote the symmetric group of order n. We will view each permutation π P Sn
as a sequence π � pπ1, . . . , πnq which has no repeated entries, and such that π1, . . . , πn P
t1, . . . , nu. Recall from Theorem 1.2.1 that the restriction of RSK to the symmetric group is a
bijection which to a given permutation from Sn associates a pair pP, Qq of standard Young
tableaux of the same shape and consisting of n boxes.

The Plancherel measure on Yn, denoted Plann, is defined as the probability distribution
of the random Young diagram RSKpwq for a uniformly random permutation w selected from
Sn, cf. Equation (1.4.1).

An infinite standard Young tableau [Ker99, Section 2.2] is a filling of the boxes in a subset
of the upper-right quarterplane with positve integers, such that each row and each column is
increasing, and each positive integer is used exactly once. There is a natural bijection between
the set of infinite standard Young tableaux and the set of infinite sequences of Young diagrams

λp0q Õ λp1q Õ � � � with λp0q � H; (2.1.1)

this bijection is given by setting λpnq to be the set of boxes of a given infinite standard Young
tableau which are ¤ n.

If w � pw1, w2, . . . q is an infinite sequence, the recording tableau Qpwq is defined as the
infinite standard Young tableau in which each non-empty entry is equal to the number of the
iteration in the infinite sequence of Schensted insertions�pH Ð w1q Ð w2

�Ð � � �

in which the corresponding box stopped being empty, see [RŚ15, Section 1.2.4]. Under the
aforementioned bijection, the recording tableau Qpwq corresponds to the sequence (2.1.1)
with

λpnq � RSKpw1, . . . , wnq.
Let ξ � pξ1, ξ2, . . . q be an infinite sequence of independent, identically distributed random

variables with the uniform distribution Up0, 1q on the unit interval r0, 1s. The Plancherel
measure on the set of infinite standard Young tableaux is defined as the probability distribution
of Qpξq. Any sequence with the same probability distribution as (2.1.1) with

λpnq � RSKpξ1, . . . , ξnq (2.1.2)

will be called the Plancherel growth process [Ker99]. For a more systematic introduction to
this topic we recommend the monograph [Rom15, Section 1.19].

2.1.3 The main result: Poisson limit theorem for the Plancherel growth process

Theorem 2.1.1. Let λp0q Õ λp1q Õ � � � be the Plancherel growth process. Let us fix k P N0.
We denote by

Λpnq �
�

λ
pnq
0 , . . . , λ

pnq
k

	
P pN0qk�1
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the random vector formed by the lengths of the bottom k� 1 rows of the random diagram λpnq.
For each n P N0 we consider the random function ∆n : R Ñ Zk�1 given by

∆nptq � Λpntq �Λpnq, (2.1.3)

where
nt � max

�
n� tt?nu, 0

	
. (2.1.4)

Then, for n Ñ8, the random function ∆n converges in distribution to a tuple pN0, . . . , Nkq
of k� 1 independent copies of the standard Poisson process. This convergence is understood
as convergence (with respect to the topology given by the total variation distance) of all
finite-dimensional marginals

�
∆npt1q, . . . , ∆nptℓq

�
over all choices of t1, . . . , tℓ P R.

The proof is postponed to Section 2.3.1.
In Sections 2.1.4 to 2.1.7 we shall discuss the connections of this theorem with the (multi-

line) Hammersley process and the assumption α of Hammersley, and in Section 2.1.8 the
connections with the work of Aldous and Diaconis [AD95, Theorem 5(b)]. In Sections 2.1.9
and 2.1.10 we will discuss links with some other areas of mathematics.

2.1.4 Local spacings in the bottom rows of the recording tableau

Theorem 2.1.1 can be interpreted as a result about the random sets of points in which the coor-
dinates of the function (2.1.3) have jumps; this interpretation gives the following immediate
corollary. For an alternative proof see Section 2.3.2.

Corollary 2.1.2. Let ξ � pξ1, ξ2, . . . q be an infinite sequence of independent, identically dis-
tributed random variables with the uniform distribution Up0, 1q on the unit interval r0, 1s and
let Qpξq �

�
Qx,y

�
x,y¥0

be the corresponding random recording tableau with the Plancherel

distribution.
Then for any integer k P N0 the collection of k� 1 random sets�"

Qx,y � n?
n

: x P N0

*
: y P t0, . . . , ku

�
(2.1.5)

converges in distribution, as n Ñ8, to a family of k� 1 independent Poisson point processes
on R with the unit intensity.

2.1.5 The Hammersley process

The information about the sequence w � pw1, . . . , wℓq can be encoded by a collection of
points pw1, 1q, . . . , pwℓ, ℓq on the plane (marked as small discs on Figure 2.1a). In the insertion
tableau

Ppwq �
��pH Ð w1q Ð w2

�Ð � � �
	
Ð wℓ (2.1.6)

the time evolution of the bottom row in the process of insertions (2.1.6) can be encoded by
the time evolution of a collection of particles on the real line (their trajectories are marked on
Figure 2.1a as blue zig-zag lines) which is subject to the following dynamics. When we have
reached one of the disks px, tq (translation: at time t, when a number x is inserted into the
bottom row of the insertion tableau. . . ) one of the following happens: (i) a particle, which is
first to the right of x, jumps left to x (translation: . . . the newly inserted number x bumps from
the bottom row the smallest number which is bigger than x), or (ii) a new particle is created in
x (translation: the number x is appended at the end of the bottom row), see Figure 2.1a for an
illustration.
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x

t

(a)
x

t

(b)

Figure 2.1: (a) The dynamics of the particles in the Hammersley process
with some initial configuration of the particles. The time flows from bottom

to top. (b) The second line of the multi-line Hammersley process.

If the locations of the disks on the upper halfplane are random, sampled according to the
Poisson point process on I �R� (for some specified set I � R) we obtain in this way the
celebrated Hammersley process on I [Ham72; AD95].

The information about all bumpings from the bottom row of the insertion tableau can be
encoded by the dual corners [FM09] (marked on Figure 2.1a by red X crosses). These crosses
are used as an input for the dynamics of the second row of the insertion tableau in an analogous
way as the disks were used for the dynamics of the bottom row, see Figure 2.1b. In other
words, the output of the Hammersley process (which will be the first line of the multi-line
Hammersley process which we will construct) is used as the input for the second line of the
multi-line Hammersley process.

This procedure can be iterated; in this way the dynamics of all rows of the insertion tableau
is fully encoded by the multi-line Hammersley process [FM09]. The name is motivated by the
analogy with the tandem queues where the happy customers who exit one waiting line are the
input for the second line.

2.1.6 Limit distribution of the multi-line Hammersley process

As we already mentioned, the entries of the bottom row of the insertion tableau can be in-
terpreted as positions of the particles in (the de-Poissonized version of) the Hammersley
interacting particle process on the unit interval r0, 1s. Therefore the following result (Corol-
lary 2.1.3 below) is a generalization of the result of Aldous and Diaconis [AD95, Theo-
rem 5(b)] which concerned only the special case k � 0 of the single-line Hammersley process
(in the Poissonized setup). For a more detailed discussion of the link between these results see
Section 2.1.8.

The general case k ¥ 0 can be interpreted as a statement about the convergence of the
multi-line version of the Hammersley process on the the unit interval r0, 1s to its stationary
distribution on the whole real line R which was calculated by Fan and Seppäläinen [FS20,
Theorem 5.1].

Note that in his original paper [Ham72, Section 9] Hammersley considered the particle
process with a discrete time parameter indexed by non-negative integers. Slightly confusingly,
this process with the modern terminology would be referred to as the de-Poissonized version
of the Hammersley process (as opposed to the Hammersley process in which the time is
continuous and the input is given by the Poisson point process on the quarterplane). It follows
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that the setup which we consider in Corollary 2.1.3 coincides with the one from the original
paper of Hammersley. The special case k � 0 of Corollary 2.1.3 was conjectured already by
Hammersley [Ham72, “assumption α” on page 371] who did not predict the exact value of
the intensity of the Poisson process.

Corollary 2.1.3. Let ξ � pξ1, . . . ξnq be a sequence of independent, identically distributed
random variables with the uniform distribution Up0, 1q on the unit interval r0, 1s and let�

Ppnqx,y

�
yPN0, 0¤x λ

pnq
y
� Ppξ1, . . . , ξnq

be the corresponding insertion tableau; we denote by λpnq its shape.
For any integer k P N0 and any real number 0   w   1 the collection of k� 1 random

sets P pnq
0 , . . . ,P pnq

k with

P pnq
y :�

"?
n
�

Ppnqx,y �w
	

: 0 ¤ x   λ
pnq
y

*
(2.1.7)

converges in distribution, as n Ñ8, to a family of k� 1 independent Poisson point processes
on R with the intensity 1?

w .
The above statement remains true for w � 1 but the limit in this case is a family of k� 1

independent Poisson point processes on the negative halfline R� with the unit intensity.

The key ingredient of the proof is to use some symmetries of the RSK algorithm which al-
low to interchange the roles of the insertion tableau and the recording tableau, see Section 2.3.3
for the details.

We were inspired to state Corollaries 2.1.2 and 2.1.3 by the work of Azangulov [Aza20]
who studied fluctuations of the last entry in the bottom row of Ppnq around w � 1; more
specifically he proved that the (shifted and rescaled) last entry in the bottom row

?
n
�

1� Ppnq
0,λpnq

0 �1



converges in law to the exponential distribution Expp1q.

2.1.7 The idea behind the proof: the link between the Ulam’s problem and the
Hammersley’s assumption α

The key idea behind the proof of Theorem 2.1.1 lies in the intimate interplay between the
Ulam’s problem and the Hammersley’s assumption α which was already subject to investigation
by several researchers in this field.

2.1.7.1 Ulam’s problem

Recall that Ulam [Ula61] asked about the value of the limit

c � lim
nÑ8

Eλ
pnq
0?
n

.

The first solution to this problem consisted of two components: proving the lower bound c ¥ 2
and the upper bound c ¤ 2; interestingly these two components have quite different proofs.

The lower bound c ¥ 2 was proved independently by Logan and Shepp [LS77] as well
as by Vershik and Kerov [VK77] by finding explicitly the limit shape of typical random
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Young diagrams distributed according to the Plancherel measure. Both proofs were based
on the hook-length formula for the number of standard Young tableaux of prescribed shape
and finding the minimizer of the corresponding functional. An alternative approach which
avoids the variational calculus is to use the results of Biane [Bia01] in order to show that the
(scaled down) transition measure of a Plancherel-distributed random diagram λpnq converges
in probability to the semicircle distribution and to deduce that the probability of the event
λ
pnq
0   p2� ϵq?n converges to zero for each ϵ ¡ 0.

This lower bound c ¥ 2 will play an important role in our paper and we will use it in order
to show Proposition 2.2.7 (more specifically, we use it in Lemma 2.2.5).

The upper bound c ¤ 2 is due to Vershik and Kerov [VK85a]. This upper bound plays
an even more important role in our paper. We will come back to this topic in Section 2.1.7.3
below.

2.1.7.2 Hammersley’s assumption α

Hammersley formulated his assumption α [Ham72, page 371] as a rather vague statement (“It
is reasonable to assume that the distribution of the discontinuities yi is locally homogenous
and random”) which we interpret as a conjecture that the local behavior of the numbers in
the bottom row of the insertion tableau Ppnq after appropriate rescaling converges to some
Poisson point process with unspecified intensity, cf. Corollary 2.1.3. Hammersley also gave an
informal argument which explained how the assumption α would give solution to the Ulam’s
problem and he correctly predicted the value of the constant c � 2.

The first proof of a result of the flavor of the assumption α is the aforementioned work of
Aldous and Diaconis [AD95, Theorem 5(b)]. Interestingly, the proof starts with two separate
parts: one which happens to give an alternative proof for the upper bound c ¤ 2 for the
constant in the Ulam’s problem, and one which happens to give an alternative proof for the
lower bound c ¥ 2. Finally, the combination of these two results gives the desired proof of
the assumption α.

The arguments in the aforementioned papers [Ham72; AD95] were based on a probabilistic
analysis of the Hammersley process viewed as an interacting particle system (see Section 2.1.5)
and thus were quite different from those mentioned in Section 2.1.7.1.

2.1.7.3 The idea of the proof

As we can see from the aforementioned papers [Ham72; AD95], the Ulam’s problem and
the assumption α are intimately related one with another and a solution to one of them gives
(at least heuristically) the solution to the other one. From this perspective it is somewhat
surprising that the original solution to the Ulam’s problem contained in the papers [LS77;
VK77; VK85a] did not result with a corresponding proof of the assumption α in the language
of the Plancherel growth process and random Young diagrams. The current paper fills this
gap.

Our strategy is to revisit the proof of the upper bound c ¤ 2 which is due to Vershik and
Kerov [VK85a, Section 3, Lemma 6] (see also [VK85b, Section 3, Lemma 6] for the English
translation; be advised that there are two lemmas having number 6 in this paper). With the
notations used in our paper (see the proof of Lemma 2.2.8), this proof can be rephrased as
an application of the Cauchy–Schwarz inequality for a clever choice of a pair of vectors X
and Y of (approximately) unit length. It is somewhat surprising that such a coarse bound as
Cauchy–Schwarz inequality gives the optimal upper bound c ¤ 2 for the Ulam’s constant.
This phenomenon is an indication that the Cauchy–Schwarz inequality is applied here in a
setting in which it becomes (asymptotically) saturated, which implies that the vectors X and Y
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are (approximately) multiples of one another and therefore X � Y. It follows in particular that

xX�Y, Yy � 0. (2.1.8)

Let λp0q Õ λp1q Õ � � � be the Plancherel growth process. It turns out that a slight
modification of the left-hand side of (2.1.8) has a natural probabilistic interpretation as the
total variation distance between:

• the probability distribution of the Young diagram λpnq, and

• the conditional probability distribution of the Young diagram λpnq under the condition
that the growth between the diagrams λpn�1q and λpnq occurred in a specified row.

In particular, (2.1.8) implies that this total variation distance converges to zero as n Ñ8, see
Lemma 2.2.8 for a precise statement.

Heuristically, this means that the information about the number of the row rpnq in which
the growth occurred between λpn�1q and λpnq does not influence too much the distribution of
the resulting random Young diagram λpnq. Since the Plancherel growth process is a Markov
process, this argument can be iterated to show that the numbers of the rows

rpn�1q, . . . , rpn�ℓq (2.1.9)

in which the growths occur in the part of the Plancherel growth process λpnq Õ � � � Õ λpn�ℓq

are approximately independent random variables, see Theorem 2.2.2 for a precise statement.
Various variants of the assumption α are now simple corollaries.

This approach gives some additional information — which does not seem to be available
by the hydrodynamic approach [AD95; CG05] — about the asymptotic independence of the
rows (2.1.9) and the shape of the final Young diagram λpn�ℓq, see Theorem 2.2.2 for more
detail. This additional information will be essential in Chapter 3 ([MMŚ21a]) devoted to the
refined asymptotics of the bumping routes.

The aforementioned Lemma 2.2.8 can be seen as an additional step in the reasoning which
was overlooked by the authors of [VK85a]. The monograph of Romik [Rom15, Section 1.19]
contains a more pedagogical presentation of these ideas of Vershik and Kerov; in the following
we will use Romik’s notations with some minor adjustments.

Note that, analogously as the proof of Aldous and Diaconis [AD95, Theorem 5(b)], our
proof of the assumption α is based on combining two components: the one which is related
to the lower bound c ¥ 2 in the Ulam’s problem (see Lemma 2.2.5) and the one related to
the upper bound c ¤ 2 (see the proof of Lemma 2.2.8) and only combination of these two
components completes the proof.

2.1.8 The link with the work of Aldous and Diaconis

Following the notations from [AD95] we consider the Hammersley process on R� (starting
from the empty configuration of the particles) and denote by N�px, tq the number of particles
at time t which have their spacial coordinate¤ x. Aldous and Diaconis [AD95, Theorem 5(b)]
proved that for each fixed w ¡ 0 the counting process�

N�pws� y, sq �N�pws, sq, y P R
	

(2.1.10)

converges in distribution, as s Ñ8, to the Poisson counting process with intensity w�1{2.



16 Chapter 2. Poisson limit theorems for Robinson–Schensted correspondence

2.1.8.1 The link of Corollary 2.1.3

In the following we sketch very briefly the proof that the special case of Corollary 2.1.3 which
corresponds to k � 0 is equivalent to the aforementioned result of Aldous and Diaconis.

Due to the space-time scale invariance [AD95, Lemma 4], the stochastic process (2.1.10)
has the same distribution as�

N�
�

w� y
s

, s2


�N�

�
w, s2

	
, y P R

�
. (2.1.11)

Let η1ps2q   η2ps2q   � � � denote the positions of the particles at time s2. The result of
Aldous and Diaconis can be therefore rephrased as convergence in distribution of the set of
jumps of the function (2.1.11) which is equal to#

s �
�

ηi

�
s2
	
�w

�
: i P N

+
(2.1.12)

towards the Poisson point process with the intensity w�1{2.
For simplicity we restrict our attention to 0   w   1 (the general case w ¡ 0 can be

obtained by an application of a slightly more involved space-time scale invariance). The above
result does not change if we modify our setup and consider the Hammersley process on the
unit interval r0, 1s. The number of disks (which are the input for the Hammersley process) in
the rectangle r0, 1s � r0, ts is equal to the value Nptq of the Poisson process at time t. With
the notations of Corollary 2.1.3, the entries

�
Ppnqx,0 : 0 ¤ x   λ

pnq
0

	
of the bottom row in the

insertion tableau Ppnq can be interpreted as the coordinates of the particles in the Hammersley
process at the time when n disks appeared; it follows that the set (2.1.12) is equal to#

s �
�

PpNps
2qq

x,0 �w
�

: 0 ¤ x   λ
pnq
0

+
. (2.1.13)

In this way we proved that the distribution of the random set (2.1.13) (which appears
in a reformulation of the result of Aldous and Diaconis) is the mixture of the probability
distribution of the random set P pnq

0 given by (2.1.7) which corresponds to the bottom row,
rescaled by the factor s?

n . The mixture is taken over n :� Nps2q which has the Poisson

distribution Poisps2q. Since the scaling factor s?
n converges in probability to 1 as s Ñ8, the

scaling is asymptotically irrelevant.
We proved in this way that the result of Aldous and Diaconis [AD95, Theorem 5(b)] is a

consequence of the special case of Corollary 2.1.3 for k � 0, obtained by a straightforward
Poissonization procedure.

The implication in the opposite direction is more challenging, but general de-Poissonization
techniques [JS98] can be used to show that the result of Aldous and Diaconis implies the
special case k � 0 of our Corollary 2.1.3.

2.1.8.2 The link of Theorem 2.1.1

In the following we sketch the proof that the special case of Theorem 2.1.1 which corresponds
to k � 0 is equivalent to the result of Aldous and Diaconis (2.1.10). For simplicity we will
consider only the special case w � 1; the general case w ¡ 0 would follow from a slightly
more complex scaling of the space-time.
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Due to the space-time scale invariance [AD95, Lemma 4], the stochastic process (2.1.10)
in the special case w � 1 has the same distribution as�

N�
�

s2 � ys, 1
	
�N�

�
s2, 1

	
, y P R



and, due to the space-time interchange property [AD95, Lemma 3], the same distribution as�

N�
�

1, s2 � ts
	
�N�

�
1, s2

	
, t P R



. (2.1.14)

By [AD95, Theorem 5(b)] the process (2.1.10) for w � 1 or, equivalently, the process (2.1.14)
converges for s Ñ 8 to the Poisson process with the unit intensity. This result does not
change if we modify our setup and consider the Hammersley process on the unit interval r0, 1s.

For each t ¥ 0 the number of disks (which are the input for the Hammersley process) in
the rectangle r0, 1s � r0, ts is equal to the value Nptq of the Poisson process at time t. Thus
the number of all particles at time t, given by N�p1, tq � λ

pNptqq
0 , is equal to the length of the

bottom row of the insertion tableau after Nptq disks appeared. In this way we proved that the
probability distribution of the process (2.1.14) coincides with the probability distribution of
the process �

λ
pNps2�tsqq
0 � λ

pNps2qq
0 , t P R



. (2.1.15)

We set n :� Nps2q and

τptq � Nps2 � tsq � Nps2qa
Nps2q (2.1.16)

so that Nps2 � tsq � nτptq with the notations from (2.1.4). In the case when Nps2q � 0
and (2.1.16) is not well-defined, we declare that nτptq � Nps2 � tsq by definition. Since the
probability of the event that Nps2q � 0 converges to zero as s Ñ 8, this will not create
problems in the following.

The random function τ converges in probability, as s Ñ 8, to the identity map t ÞÑ t
uniformly over compact subsets. With these notations the probability distribution of the
process (2.1.14) coincides with the probability distribution of the process�

λ
pnτptqq
0 � λ

pnq
0 , t P R



. (2.1.17)

By taking the average over the random values of n and τ it follows that the special case of
Theorem 2.1.1 for k � 0 implies that (2.1.17) indeed converges to the Poisson process. We
proved in this way that the result of Aldous and Diaconis [AD95, Theorem 5(b)] (at least
in the special case w � 1) is a consequence of the special case of Theorem 2.1.1 for k � 0,
obtained by a rather straightforward Poissonization procedure.

The implication in the opposite direction is more challenging, but again general de-
Poissonization techniques [JS98] can be applied.

2.1.9 Asymptotics of the bottom rows

The research related to the Ulam’s problem culminated in the works of Baik, Deift and
Johansson [BDJ99; BDJ00] as well as its extensions [BOO00; Oko00; Joh01]. Roughly
speaking, these results say that the suitably normalized lengths of the bottom rows of a
Plancherel distributed random Young diagram converge to an explicit non-Gaussian limit
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which is related to the eigenvalues of a large GUE random matrix, see the monograph [Rom15]
for a more pedagogical introduction.

Such a non-Gaussian limit behavior for the lengths of the bottom rows is at a sharp
contrast with our Theorem 2.1.1 which states that the growths of the bottom rows ∆nptq
are given by the Poisson process which with the right scaling converges to the Brownian
motion. This discrepancy is an indication that the process ∆nptq considered in that theorem
cannot be approximated by the Poisson process in the scaling as t � tpnq " 1. It would be
interesting to find the scaling in which this passage from the regime of independent growths
to the non-Gaussian regime related to the random matrices occurs. See also Problem 2.3.2.

2.1.10 Possible generalization of Corollary 2.1.3: the bottom rows in the Schur–
Weyl insertion tableau

We suspect that Corollary 2.1.3 is a special case of a conjectural result which would hold in a
much wider generality. In the current section we will present the details.

2.1.10.1 Schur–Weyl insertion tableau

For given positive integers d and n let w � pw1, . . . , wnq be a sequence of independent,
identically distributed random variables with the uniform distribution on the discrete set
t1, . . . , du with d elements; we denote by P � Ppw1, . . . , wnq the corresponding insertion
tableau. This random tableau appears naturally in the context of the Schur–Weyl duality
which we review in the following. The tensor product

�
Cd

�bn has a natural structure of a
Sn �GLdpCq-module; the irreducible components are naturally indexed by Young diagrams.
The Schur–Weyl measure is defined as the probability distribution on Young diagrams which
corresponds to sampling a random irreducible component of

�
Cd

�bn with the probability
proportional to the dimension of the component, see [Mél11] for the details. The probability
distribution of the shape of P coincides with the Schur–Weyl measure; for this reason we will
call the random tableau P itself the Schur–Weyl insertion tableau.

In the scaling when d, n Ñ8 tend to infinity in such a way that d � c
?

n for some c ¡ 0,
there is a law of large numbers for the global form of the scaled down insertion tableau P, see
[MŚ20b, Remark 1.6 and Section 1.7.3].

In the following we will concentrate on another aspect of the Schur–Weyl insertion
tableau P, namely in the entries which are located in the bottom row, near its end. For an
integer i P t1, . . . , du we denote by Mi � MipPq the number of occurrences of i in the bottom
row of P; our problem is to understand the joint distribution of the family of random variables
Mi indexed by i P I in some interval of the form

I � td� 1� ℓ, d� 2� ℓ, . . . , du (2.1.18)

for some choice of an integer ℓ ¥ 1.
There are two interesting limits which one can consider in this setup, namely the one when

the size of the alphabet d Ñ8 tends to infinity, and the one when the length of the sequence
n Ñ 8 tends to infinity. In the following we will review these two limits and discuss what
happens when these two limits are iterated.

2.1.10.2 The limit d Ñ8
When d Ñ 8 and the length n of the sequence is fixed, the probability that w1, . . . , wn are
all distinct converges to 1. In the following we consider the conditional probability space for
which w1, . . . , wn are all distinct; it is easy to check that such a conditional joint distribution of
the ratios w1

d , . . . , wn
d converges to that of a tuple ξ1, . . . , ξn of independent random variables
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with the uniform distribution Up0, 1q. It follows that the (conditional, and hence unconditional
as well) probability distribution of the tableau 1

d P (which is obtained from P by dividing each
entry by d) converges to the probability distribution of the insertion tableau Ppξ1, . . . , ξnq.

We see that the iterated limit in which we first take the limit as the size of the alphabet
d Ñ 8 tends to infinity and then the limit n Ñ 8 as the length of the sequence tends to
infinity, is the one in which we recover Corollary 2.1.3. Heuristically, we can expect that if
n Ñ 8 and d � dpnq " n2 tends to infinity fast enough, each integer from the interval I
given by (2.1.18) of moderate length ℓ � O

�
d?
n

	
will not appear more than once (except for

asymptotically negligible probability); and that the probability that a given integer i P I will
appear in the bottom row is of order

q � n
d
� 1?

n
�
?

n
d

�
?

n
d�?n

! 1

which is approximately the product of the probability that i belongs to the sequence w (which
is roughly n

d ) and the probability that a given large entry of the sequence w will be in the
bottom row (which is roughly 1?

n by Corollary 2.1.3).
Such a Bernoulli probability distribution on the set t0, 1u with the success probability q

can be approximated by the geometric distribution on the set of non-negative integers with the
parameter p � 1� q. We formalize this informal discussion as the following conjecture.

Conjecture 2.1.4. Let d � dpnq and ℓ � ℓpnq be as above.
Then the total variation distance between:

• the random vector of the multiplicities

pMi : i P Iq ,

and

• the collection of ℓ independent random variables, each with the geometric distribution
Geoppq with the parameter

p � 1�
?

n
d�?n

� d
d�?n

converges to zero, as n Ñ8.

In the following we will discuss whether this conjecture is plausible also in some other
choices of the scaling for the parameters d and n.

2.1.10.3 The limit n Ñ8
For the purposes of the current section by the d� d GUE random matrix we understand the
random matrix with the Gaussian distribution supported on Hermitian d� d matrices, which
is invariant under conjugation by unitary matrices, and normalized in such a way that the
variance of each diagonal entry is equal to d. The traceless GUE random matrix is obtained
from the above random matrix by subtracting a multiple of the identity matrix in such a way
that the trace of the outcome is equal to zero.

For m P t0, 1, . . . , du we denote by

λpÓmq � �
λ
pÓmq
0 , . . . , λ

pÓmq
m�1

� � sh P¤m
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the shape of the tableau P¤m which is obtained from the Schur–Weyl random insertion
tableau P by keeping only the boxes which are at most m; in particular λpÓdq is the shape of
P. Recall that P and, as a consequence, λpÓmq as well, depend implicitly on the choice of the
positive integers d and n. In the following we fix the value of the integer d ¥ 1 and let n vary.
Johansson [Joh01, Theorem 1.6] proved that the distribution of the random vector

dλpÓdq � n?
n

converges, as n Ñ 8, to the joint distribution of the eigenvalues spec X of the traceless
d� d GUE random matrix pXijq1¤i,j¤d . This result can be further extended using the ideas
of Kuperberg [Kup02]; one can show that the joint distribution of the random vectors

dλpÓdq � n?
n

,
dλpÓd�1q � n?

n
, . . . ,

dλpÓ1q � n?
n

converges in distribution to the joint distribution of the eigenvalues of X, together with the
eigenvalues of the minors of X obtained by iterative removal of the last row and the last
column:

specpXijq1¤i,j¤d, specpXijq1¤i,j¤d�1, . . . , specpXijq1¤i,j¤1. (2.1.19)

Since the content of the current section is mostly heuristic, we skip the details of the proof;
the key point is to use [CŚ09, Corollary 5.2].

With the above notations, for m P t2, . . . , du we have that Mm � λ
pÓmq
0 � λ

pÓm�1q
0 is

the number of entries in the bottom row of the tableau P which are equal to m. Also, for
m P t1, . . . , du let µpmq � max

�
specpXijq1¤i,j¤m

�
be the largest eigenvalue of the minor

pXijq1¤i,j¤m. The aforementioned result implies, in particular, that the probability distribution
of the random vector

d?
n
�

Md, Md�1, . . . , M2
�

(2.1.20)

which describes the content of the bottom row of P (after disregarding all entries equal to 1)
converges, as n Ñ8, to the joint distribution of the entries of the random vector�

µpdq � µpd�1q, µpd�1q � µpd�2q, . . . , µp2q � µp1q
	

. (2.1.21)

Gorin and Shkolnikov [GS17, Corollary 1.3] studied the asymptotics d Ñ 8 of the
probability distribution of any prefix of a fixed length ℓ of the random vector (2.1.21). In this
scaling the difference between the GUE random matric and the traceless GUE random matrix
turns out to be irrelevant. More specifically, they proved that for each fixed value of an integer
ℓ ¥ 1 the joint distribution of the random variables�

µpdq � µpd�1q, µpd�1q � µpd�2q, . . . , µpd�1�ℓq � µpd�ℓq
	

converges to the distribution of ℓ independent random variables, each with the exponential
distribution Expp1q.

By combining these results it follows that for each fixed integer ℓ ¥ 1 the probability
distribution of the random vector

d?
n
�

Md, Md�1, . . . , Md�1�ℓ

�
converges to that of independent exponential random variables in the iterated limit in which
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we first take the limit n Ñ8 as the length of the sequence tends to infinity, and then the limit
as the size of the alphabet d Ñ8 tends to infinity. Since the exponential distribution arises
naturally as a limit of the geometric distribution Geoppq in the scaling as p Ñ 0, we suspect
that the following stronger result is true.

Conjecture 2.1.5. Conjecture 2.1.4 remains true if d � dpnq is a sequence of positive integers
with tends to infinity in a sufficiently slow way and ℓ ¥ 1 is a fixed integer.

2.1.10.4 The joint limit d, n Ñ8
Heuristically, each of the iterated limits considered at the very end of the Sections 2.1.10.2
and 2.1.10.3 can be seen as a limit in which both variables d, n Ñ8 tend to infinity in such a
way that one of these variables grows much faster than the other one. With these two extreme
cases covered one can wonder whether Conjecture 2.1.4 holds true in general.

Conjecture 2.1.6. Conjecture 2.1.4 remains true if d � dpnq is an arbitrary sequence of
positive integers which tends to infinity and ℓ � ℓpnq is a sequence of positive integers which
is either constant or tends to infinity in such a way that ℓ � O

�
d?
n

	
.

Particularly interesting is the balanced scaling in which n and d tend to infinity in such a
way that d?

n converges to some limit so that the law of large numbers applies to the shape of P

[Bia01, Section 3] as well as to the tableau P itself [MŚ20b, Remark 1.6 and Section 1.7.3].
Conjecture 2.1.6 concerns the entries in the bottom row; we conjecture that an analogous
result for any fixed number of bottom rows remains true.

2.2 Estimates for the total variation distance

Our main tool for proving the main results of the paper is Theorem 2.2.2. It gives an insight
into the way in which the first rows of a Young diagram develop in the Plancherel growth
process (thanks to this part we will have Theorem 2.1.1 as a straightforward corollary), together
with the information about the global shape of the Young diagram. This latter additional
information will be key for the developments in Chapter 3.

2.2.1 Total variation distance

Suppose that µ and ν are probability measures on the same discrete set S. Such measures can
be identified with real-valued functions on S. We define the total variation distance between
the measures µ and ν

δpµ, νq :� 1
2

��µ� ν
��
ℓ1 � max

X�S

��µpXq � νpXq�� (2.2.1)

as half of their ℓ1 distance as functions. If X and Y are two random variables with values in
the same discrete set S, we define their total variation distance δpX, Yq as the total variation
distance between their probability distributions.

Several times we will use the following simple lemma.

Lemma 2.2.1.

(a) Let X � pX1, X2q and Y � pY1, Y2q be random vectors with independent coordinates

and such that their first coordinates have equal distribution: X1
d� Y1. Then the total



22 Chapter 2. Poisson limit theorems for Robinson–Schensted correspondence

variation distance between the vectors is equal to the total variation distance between
their second coordinates:

δpX, Yq � δpX2, Y2q.

(b) Let X � pX1, . . . , Xℓq and Y � pY1, . . . , Yℓq be random vectors with independent
coordinates. Then the total variation distance between the random vectors is bounded
by the sum of the coordinate-wise total variation distances:

δpX, Yq ¤
¸

1¤i¤ℓ

δpXi, Yiq.

(c) If µ1, . . . , µℓ and ν1, . . . , νl are discrete measures on some vector space then the total
variation distance between their convolutions is bounded by the sum of the summand-
wise total variation distances:

δ
�
µ1 � � � � � µℓ, ν1 � � � � � νℓ

� ¤ ¸
1¤i¤ℓ

δpµi, νiq.

This result seems to be folklore wisdom [pik15], nevertheless we failed to find a conven-
tional reference and we provide a proof below.

Proof. For part (a) we view the total variation distance δpX, Yq as half of the appropriate ℓ1

norm. This double sum factorizes thanks to independence.

For the part (b) we consider a collection of random vectors given by

Zi � pY1, . . . , Yi, Xi�1, . . . , Xℓq for i P t0, . . . , ℓu.

In this way Z0 � X and Zℓ � Y; the neighboring random vectors Zi�1 and Zi differ only on
the i-th coordinate. By the triangle inequality

δpX, Yq ¤
¸

1¤i¤ℓ

δpZi�1, Ziq �
¸

1¤i¤ℓ

δpXi, Yiq,

where the last equality is a consequence of part (a).

In order to prove part (c) we shall use (b) with the special choice that Xi is a random
variable with the distribution µi and Yi is a random variable with the distribution νi. An
application of the same measurable map to both arguments X � pX1, . . . , Xℓq and Y �
pY1, . . . , Yℓq cannot increase the total variation distance between them, so

δ
�
µ1 � � � � � µℓ, ν1 � � � � � νℓ

� � δpX1 � � � � � Xℓ, Y1 � � � � �Yℓq ¤ δpX, Yq.

The application of part (b) to the right-hand side completes the proof.

2.2.2 Growth of rows in Plancherel growth process

Let us fix an integer k P N0. We define the finite set N � t0, 1, . . . , k,8u which can be
interpreted as the set of the natural numbers from the perspective of a person who cannot
count on numbers bigger than k (for example, for k � 3 we would have “zero, one, two, three,
many”).

Let λp0q Õ λp1q Õ � � � be the Plancherel growth process. For integers n ¥ 1 and r P N0

we denote by Epnqr the random event which occurs if the unique box of the skew diagram
λpnq{λpn�1q is located in the row with the index r. For n ¥ 1 we define the random variable
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Rpnq which takes values in N and which is given by

Rpnq �
$&%r if the event Epnqr occurs for 0 ¤ r ¤ k,
8 if the event Epnqr occurs for some r ¡ k,

and which — from the perspective of the aforementioned person with limited counting skills
— gives the number of the row in which the growth occurred.

Let ℓ � ℓpmq be a sequence of non-negative integers such that

ℓ � O
�?

m
	

.

For a given integer m ¥ pk � 1q2 we focus on the specific part of the Plancherel growth
process

λpmq Õ � � � Õ λpm�ℓq. (2.2.2)

We will encode some partial information about the growths of the rows as well as about the
final Young diagram in (2.2.2) by the random vector

Vpmq �
�

Rpm�1q, . . . , Rpm�ℓq, λpm�ℓq
	
P N ℓ �Y. (2.2.3)

We also consider the random vector

Vpmq �
�

Rpm�1q, . . . , Rpm�ℓq, λ
pm�ℓq



P N ℓ �Y (2.2.4)

which is defined as a sequence of independent random variables; the random variables
Rpm�1q, . . . , Rpm�ℓq

have the same distribution given by

P

"
Rpm�iq � r

*
� 1?

m
for r P t0, . . . , ku, (2.2.5)

P

"
Rpm�iq � 8

*
� 1� k� 1?

m
(2.2.6)

and λ
pm�ℓq

is distributed according to Plancherel measure Planm�ℓ; in particular the random

variables λpm�ℓq and λ
pm�ℓq

have the same distribution.

Heuristically, the following result states that when Plancherel growth process is in an ad-
vanced stage and we observe a relatively small number of its additional steps, the growths of
the bottom rows occur approximately like independent random variables. Additionally, these
growths do not affect too much the final shape of the Young diagram.

Theorem 2.2.2. With the above notations, for each fixed k P N0 the total variation distance
between Vpmq and Vpmq

converges to zero, as m Ñ8; more specifically

δ

�
Vpmq, Vpmq



� o

�
ℓ?
m



.

The proof is postponed to Section 2.2.6; in the forthcoming Sections 2.2.3 to 2.2.5 we will
gather the tools which are necessary for this goal.
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2.2.3 Asymptotics of growth of a given row

Our main result in this subsection is Proposition 2.2.7 which gives asymptotics of the prob-
ability of a growth of a given row in the Plancherel growth process. This result is not new;
it was proved by Okounkov [Oko00, Proposition 2]. Nevertheless we provide an alternative
(hopefully simpler) proof below. As a preparation, we start with some auxiliary lemmas.

In the following we keep the notations from the beginning of Section 2.2.2; in particular
λp0q Õ λp1q Õ � � � is the Plancherel growth process. Let K P N0 be fixed. For n ¥ 1 we
define

spnqK �
¸

0¤r¤K

P
�

Epnqr

	
. (2.2.7)

Lemma 2.2.3. For each K P N0 the sequence sp1qK , sp2qK , . . . is weakly decreasing.

Proof. For n ¥ 1 let dn denote the unique box of the skew diagram λpnq{λpn�1q. In this way
spnqK is equal to the probability that the box dn is located in one of the rows 0, 1, . . . , K.

Romik and Śniady [RŚ15, Section 3.3] constructed a random sequence of boxes q1, q2, . . .
(which is “the jeu de taquin trajectory in the lazy parametrization”) such that for each n ¥ 1
we have equality of distributions [RŚ15, Lemma 3.4]

dn
d� qn

and, furthermore, each box qn�1 is obtained from the previous one qn by moving one node to
the right, or node up, or by staying put. In this way�

the number of the row of qn
�

n¥1

is a weakly increasing sequence of random variables. It follows that the corresponding
cumulative distribution functions evaluated in point K

spnqK � P
 

(the number of the row of dn) ¤ K
( � P

 
(the number of the row of qn) ¤ K

(
form a weakly decreasing sequence, which completes the proof.

Lemma 2.2.4. For each K P N0 and n ¥ 1

spnqK ¤ K� 1?
n

.

Proof. The monograph of Romik [Rom15, Section 1.19] contains the proof (which is based
on the work of Vershik and Kerov [VK85a; VK85b, Section 3, Lemma 6]) of the inequality

P
�

Epnqr

	
¤ 1?

n
(2.2.8)

in the special case of the bottom row r � 0. After some minor adjustments this proof is
applicable to the general case of r P N0 (in fact, these adjustments are explicitly explained
in the proof of Eq. (2.2.13) later on). The summation over r P t0, . . . , Ku concludes the
proof.

Lemma 2.2.5. For each K P N0

lim inf
nÑ8

sp1qK � � � � � spnqK?
n

¥ 2pK� 1q.
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Proof. We write λpnq � pλpnq0 , λ
pnq
1 , . . . q so that λ

pnq
r is the length of the appropriate row of

the Young diagram λpnq. The work of Logan and Shepp [LS77] as well as the work of Vershik
and Kerov [VK77] contains the proof that for each ϵ ¡ 0

lim
nÑ8P

$&%λ
pnq
r?
n
  2� ϵ

,.- � 0 (2.2.9)

in the special case of the bottom row r � 0. We will revisit this proof and explain how to
adjust it for the general case r P N0.

With the notations of Romik [Rom15, the proof of Theorem 1.23], if (2.2.9) were not
true for some ϵ ¡ 0 and r P N0, then for infinitely many values of n the corresponding
function ψn (which encodes the Young diagram λpnq in the Russian coordinate system [Rom15,

Section 1.17]) would be bounded from above by the shifted absolute value function |u| � r
b

2
n

on the interval
�?

2� ϵ?
2
,
?

2
�
. Clearly this would prevent ψn from converging uniformly

to the limit shape in contradiction to Logan–Shepp–Vershik–Kerov limit theorem [Rom15,
Theorem 1.22].

Equation (2.2.9) implies that for each r P N0

lim inf
nÑ8

Eλ
pnq
r?
n

¥ 2. (2.2.10)

We revisit the ideas of Vershik and Kerov [VK85a; VK85b, Section 3, Lemma 6], see also
[Rom15, Section 1.19]. Since the indicator of the event Epmq fulfills

1Epmq
r

� λ
pmq
r � λ

pm�1q
r

it follows that
P
�

Epmqr

	
� E1Epmq

r
� Eλ

pmq
r �Eλ

pm�1q
r .

By summing over 1 ¤ m ¤ n and over 0 ¤ r ¤ K it follows that

sp1qK � � � � � spnqK � Eλ
pnq
0 � � � � �Eλ

pnq
K .

Application of (2.2.10) completes the proof.

Lemma 2.2.6. For each K P N0

lim
nÑ8

?
n spnqK � K� 1. (2.2.11)

Proof. We will use a simplified notation and write spiq � spiqK .

The upper bound for the left-hand side is a consequence of Lemma 2.2.4.

For the lower bound, suppose a contrario that for some ϵ ¡ 0 there exist infinitely many
values of an integer n ¥ 1 for which

?
n spnq   p1� ϵqpK� 1q. (2.2.12)

Let C ¡ 0 be a number which will be fixed later in the proof and set m � n � tCnu.
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Lemmas 2.2.3 and 2.2.4 imply that

sp1q � � � � � spmq

pK� 1q?n
¤

�
sp1q � � � � � spnq

	
� pm� nqspnq

pK� 1q?n
 

1?
n

�
1?
1
� � � � � 1?

n



� p1� ϵqm� n

n
.

On the right-hand side we may bound the sum 1?
1
� � � � � 1?

n by the corresponding integral,
thusc

m
n
� sp1q � � � � � spmq

pK� 1q?m
� sp1q � � � � � spmq

pK� 1q?n
 

1?
n

» n

0

1?
x

dx� p1� ϵqm� n
n

� 2� p1� ϵqm� n
n

.

Passing to the limit n Ñ 8 for the values of n for which (2.2.12) holds true, Lemma 2.2.5
and the above inequality imply that

2
?

1� C ¤ 2� p1� ϵqC.

However, the above inequality is not fulfilled for any

0   C   4ϵ

p1� ϵq2

which completes the proof a contrario.

The following result is due to Okounkov [Oko00, Proposition 2]. We provide an alternative,
hopefully simpler proof below.

Proposition 2.2.7. For each i P N0

lim
nÑ8

?
n P

�
Epnqi

	
� 1.

Proof. From (2.2.7) it follows that

?
n P

�
Epnqi

	
� ?

n
�

spnqi � spnqi�1

	
� ?

n spnqi �?n spnqi�1.

To each of the two summands on the right-hand side we apply Lemma 2.2.6 which completes
the proof.

2.2.4 What happens after just one step?

We will prove Lemma 2.2.8 and Lemma 2.2.9 which show that the (rough) information about
the number of the row in which the growth of a Young diagram occurred does not influence
too much the probability distribution of the resulting Young diagram.

Lemma 2.2.8. For each r P N0 the total variation distance between:

• the probability distribution of λpnq (i.e., the Plancherel measure on the set Yn), and

• the conditional probability distribution of λpnq under the condition that the event Epnqr
occurred,
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converges to zero, as n Ñ8.

Proof. For a Young diagram µ � pµ0, µ1, . . . q and r P N0 we denote by

delr µ � pµ0, . . . , µr�1, µr � 1, µr�1, . . . q

the Young diagram obtained from µ by removing a single box from the row with the index r.
The Young diagram delr µ is well-defined only if µr ¡ µr�1.

We consider the finite-dimensional vector space of real-valued functions on the set Yn of
Young diagrams with n boxes. For any subset A � Yn we consider the non-negative bilinear
form on this space

x f , gyA �
¸
µPA

fµ gµ

and the corresponding seminorm

} f }A :�
b
x f , f yA.

An important special case is A � Yn with the corresponding norm } � }Yn .
We consider two special vectors X, Y in this space:

Xµ :�
$&%

1?
pn�1q! ddelr µ, if delr µ is well-defined,

0 otherwise,

Yµ :� dµ?
n!

where dµ denotes the number of standard Young tableaux of shape µ. An important feature of
these vectors is that for any set A � Yn

}Y}2
A � P

!
λpnq P A

)
,

xX, YyA �
?

n P
!

λpnq P A and Epnqr

)
,

}X}2
A � P

!
λpn�1q P delr A

)
,

see [Rom15, Section 1.19].
In particular, for the special case A � Yn

cn :� ?
n P

�
Epnqr

	
� xX, YyYn ¤ }X}Yn � }Y}Yn ¤ 1. (2.2.13)

By Proposition 2.2.7 the left-hand side converges to 1 as n Ñ 8. Since }X}Yn ¤ 1 and
}Y}Yn � 1, it follows that

lim
nÑ8 cn � lim

nÑ8xX, YyYn � lim
nÑ8 }X}Yn � 1.

As a consequence, a simple calculation using bilinearity of the scalar product shows that

lim
nÑ8

���c�1
n X�Y

���
Yn
� 0.
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For any A � Yn it follows therefore that����P!
λpnq P A

��� Epnqr

)
�P

!
λpnq P A

)���� �
�

�������
xX, YyA?
n P

�
Epnqr

	 � xY, YyA

������� �
����Ac�1

n X�Y, Y
E

A

���� ¤
���c�1

n X�Y
���

Yn
� }Y}Yn .

The right-hand side does not depend on the choice of A and converges to zero which concludes
the proof.

Lemma 2.2.9. For each k P N0 the total variation distance between:

• the probability distribution of λpnq (i.e., the Plancherel measure on the set Yn), and

• the conditional probability distribution of λpnq under the condition that the event�
Epnq0 Y � � � Y Epnqk

	c
occurred,

is of order o
�

1?
n

	
, as n Ñ8.

Proof. For real numbers x and c ¡ 0 we will denote by x� c some unspecified real number
in the interval rx� c, x� cs. In the following we will use the quantity spnqk defined in (2.2.7).
We denote

Fpnq �
�

Epnq0 Y � � � Y Epnqk

	c
.

Let Cn be the maximum (over r P t0, . . . , ku) of the total variation distance considered in
Lemma 2.2.8. The law of total probability implies that for any set A � Yn

P
!

λpnq P A
)
�¸

0¤r¤k

P
!

λpnq P A
��� Epnqr

)
P
�

Epnqr

	
�P

!
λpnq P A

��� Fpnq
)

P
�

Fpnq
	
�

¸
0¤r¤k

�
P
!

λpnq P A
)
� Cn

�
P
�

Epnqr

	
�P

!
λpnq P A

��� Fpnq
)

PpFpnqq �

P
!

λpnq P A
)

spnqk � Cnspnqk �P
!

λpnq P A
��� Fpnq

)�
1� spnqk

	
.

By solving the above equation for the conditional probability we get

P
!

λpnq P A
��� Fpnq

)
�

P
!

λpnq P A
)�

1� spnqk

	
� Cnspnqk

1� spnqk

.

In this way we proved that the total variation distance considered in the statement of the
lemma is bounded from above by

Cnspnqk

1� spnqk

. (2.2.14)

The asymptotics of the individual factors in (2.2.14) is provided by Lemma 2.2.8 (which
gives Cn � op1q) and by Lemma 2.2.6 or, equivalently, by Okounkov’s result Proposition 2.2.7�
which gives spnqk � O

�
1?
n

	�
; this completes the proof.
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2.2.5 Asymptotic independence

As an intermediate step towards the proof of Theorem 2.2.2 we consider a sequence of
independent random variables

rVpmq �
�rRpm�1q, . . . , rRpm�ℓq, rλpm�ℓq

	
P N ℓ �Y (2.2.15)

which is independent with the vectors Vpmq and Vpmq
(recall the definitions in (2.2.3) and

(2.2.4)), and such that the marginal distributions of Vpmq and (2.2.15) coincide:

rRpm�iq d� Rpm�iq, for all 1 ¤ i ¤ ℓrλpm�ℓq d� λpm�ℓq.

In particular, the probability distribution of rVpmq depends implicitly on k which is the number
of the rows of Young diagrams which we observe.

Lemma 2.2.10. For each k P N0 there exists a sequence bn � o
�

1?
n

	
with the property that

for all m ¥ pk� 1q2 and ℓ ¥ 1 and i P t1, . . . , ℓu

δ

� �rRpm�1q, . . . , rRpm�i�1q, Rpm�iq, Rpm�i�1q, . . . , Rpm�ℓq, λpm�ℓq
	

,�rRpm�1q, . . . , rRpm�i�1q, rRpm�iq, Rpm�i�1q, . . . , Rpm�ℓq, λpm�ℓq
	

¤ bm�i. (2.2.16)

The only difference between the two random vectors considered in (2.2.16) lies in the i-th
coordinate: in the first vector this coordinate is equal to Rpm�iq while in the second to rRpm�iq.

Proof. For an integer n ¥ 1 we define

bn :�
¸
rPN

P
�

Rpnq � r
	
�

¸
λPYn

����P�
λpnq � λ

��� Rpnq � r
	
�P

�
λpnq � λ

	���� .
For the summands corresponding to r P t0, . . . , ku we note that the random events

!
Rpnq � r

)
and Epnqr are equal and we apply Proposition 2.2.7 and Lemma 2.2.8. For the summand r � 8
we apply Lemma 2.2.9. This gives the desired asymptotics bn � o

�
1?
n

	
. In the following we

will show that this sequence indeed fulfills (2.2.16).

An iterative application of Lemma 2.2.1(a) shows that the left-hand side of (2.2.16) is
equal to the total variation distance of the suffixes

δ

� �
Rpm�iq, Rpm�i�1q, . . . , Rpm�ℓq, λpm�ℓq

	
,�rRpm�iq, Rpm�i�1q, . . . , Rpm�ℓq, λpm�ℓq

	

.

In order to evaluate the latter we consider an arbitrary set X � N ℓ�1�i �Y. We can write

X �
¤
rPN

tru � Xr
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for some family of sets Xr � N ℓ�i �Y indexed by r P N . Since the Plancherel growth
process (2.2.2) is a Markov process [Ker99, Sections 2.2 and 2.4],

P

��
Rpm�iq, Rpm�i�1q, . . . , Rpm�ℓq, λpm�ℓq

	
P X



�¸

rPN

¸
λPYm�i

P
�

Rpm�iq � r and λpm�iq � λ
	
�

P

��
Rpm�i�1q, . . . , Rpm�ℓq, λpm�ℓq

	
P Xr

���� λpm�iq � λ



�¸

rPN

¸
λPYm�i

P
�

Rpm�iq � r
	

P
�

λpm�iq � λ
��� Rpm�iq � r

	
�

P

��
Rpm�i�1q, . . . , Rpm�ℓq, λpm�ℓq

	
P Xr

���� λpm�iq � λ



. (2.2.17)

An analogous, but simpler calculation shows that

P

��rRpm�iq, Rpm�i�1q, . . . , Rpm�ℓq, λpm�ℓq
	
P X



�¸

rPN

¸
λPYm�i

P
�

Rpm�iq � r
	

P
�

λpm�iq � λ
	
�

P

��
Rpm�i�1q, . . . , Rpm�ℓq, λpm�ℓq

	
P Xr

���� λpm�iq � λ



. (2.2.18)

The first and the third factor on the right-hand side of (2.2.17) coincide with their coun-
terparts on the right-hand side of (2.2.18), and the third factor is bounded from above by 1.
It follows that the absolute value of the difference between (2.2.17) and (2.2.18) is bounded
from above by bm�i, as required.

2.2.6 Proof of Theorem 2.2.2

Proof. An iterative application of the triangle inequality combined with Lemma 2.2.10 implies
that

δ

� �
Rpm�1q, . . . , Rpm�ℓq, λpm�ℓq

	
,�rRpm�1q, . . . , rRpm�ℓq, rλpm�ℓq

	

� o

�
ℓ?
m



. (2.2.19)

On the other hand, thanks to the independence of the coordinates, Lemma 2.2.1(b) gives

δ

� �rRpm�1q, . . . , rRpm�ℓq, rλpm�ℓq
	

,
�

Rpm�1q, . . . , Rpm�ℓq, λ
pm�ℓq


 

¤

¸
1¤i¤ℓ

δ

�rRpm�iq, Rpm�iq



. (2.2.20)

In the remaining part of the proof we will investigate the individual summand which
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corresponds to n :� m� i. We have

δ

�rRpnq, Rpnq


� 1

2

¸
0¤r¤k

�����P�rRpnq � r
	
�P

�
Rpnq � r


������
1
2

�����P�rRpnq � 8
	
�P

�
Rpnq � 8


����� . (2.2.21)

The equality
P
�rRpnq � 8

	
� 1�

¸
0¤r¤k

P
�rRpnq � r

	
and the analogous equality for Rpnq

imply that the right-hand side of (2.2.21) can be bounded
as follows:

δ

�rRpnq, Rpnq


¤

¸
0¤r¤k

�����P�rRpnq � r
	
�P

�
Rpnq � r


����� . (2.2.22)

Below we will find the asymptotics of the individual summands on the right-hand side.
For any 0 ¤ r ¤ k, by the definitions

P
�rRpnq � r

	
� P

�
Rpnq � r

	
� P

�
Epnqr

	
and by Proposition 2.2.7 we get the asymptotics of the probability P

�rRpnq � r
	

. The

asymptotics of the probability P

�
Rpnq � r



is given by its definition (2.2.5). It follows that

the total variation distance in (2.2.22) is of order o
�

1?
n

	
.

In this way we proved that

δ

� �rRpm�1q, . . . , rRpm�ℓq, rλpm�ℓq
	

,�
Rpm�1q, . . . , Rpm�ℓq, λ

pm�ℓq

 


¤ o
�

ℓ?
m



. (2.2.23)

The triangle inequality combined with (2.2.19) and (2.2.23) completes the proof.

The following problem was asked by Maciej Dołęga.

Question 2.2.11. Plancherel growth process may be defined in terms of Schur polynomials
and the corresponding Pieri rule. Is it possible to apply the ideas presented in the current
section in the context of some other growth processes on Y (such as Jack–Plancherel growth
process [Ker00]) which are related to other classical families of symmetric polynomials (such
as Jack polynomials)?

2.3 Proofs of the main results

2.3.1 Proof of Theorem 2.1.1

Let Nptq � �
N0ptq, . . . , Nkptq

�
, t P R, be a collection of k � 1 independent copies of the

standard Poisson process. Let us fix some real number c ¡ 0; in the following we assume that
n is big enough so that n� c

?
n ¥ pk� 1q2. It follows in particular that

nt � n� tt?nu for t P r�c, cs.
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We denote
L � Lpnq � nc � n�c � tc

?
nu� t�c

?
nu.

Lemma 2.3.1. For each c ¡ 0 the total variation distance between the random vector�
Λpn�iq �Λpnq : t�c

?
nu ¤ i ¤ tc

?
nu
	
P
�

Zk�1
	L�1

(2.3.1)

and the corresponding random vector�
N
�

i?
n



: t�c

?
nu ¤ i ¤ tc

?
nu

�
P
�

Zk�1
	L�1

(2.3.2)

converges to zero, as n Ñ8 tends to infinity.

Proof. We consider the bijection

ZL Q
�

ai : t�c
?

nu ¤ i ¤ tc
?

nu with a0 � 0
	
ÞÑ�

ai � ai�1 : t�c
?

nu   i ¤ tc
?

nu
	
P ZL.

Since an application of a bijection does not change the total variation distance, the afore-
mentioned total variation distance between (2.3.1) and (2.3.2) is equal to the total variation
distance δpA, Bq between the corresponding sequences of the increments, i.e.,

A :�
�

Λpn�iq �Λpn�i�1q : t�c
?

nu   i ¤ tc
?

nu
	

�
��

1Rpn�iq�0, . . . , 1Rpn�iq�k
�

: t�c
?

nu   i ¤ tc
?

nu



and the sequence of independent random vectors

B :�
�

N
�

i?
n



�N

�
i� 1?

n



: t�c

?
nu   i ¤ tc

?
nu

�
.

In the following we use the notations from Section 2.2.2 with m :� X
n� c

?
n
\

and ℓ :� L. In

particular we consider the collection of random variables Rpmq
with the probability distribution

given by (2.2.5) and (2.2.6) for this specific value of m. We define

A :�
��

1
Rpn�iq�0

, . . . , 1
Rpn�iq�k

	
: t�c

?
nu   i ¤ tc

?
nu



;

our strategy will be to apply the triangle inequality

δpA, Bq ¤ δpA, Aq � δpA, Bq. (2.3.3)

In order to bound the first summand on the right-hand side of (2.3.3) we apply Theo-
rem 2.2.2 for the aforementioned values of m and ℓ; it follows that

δpA, Aq ¤ δ

�
Vpmq, Vpmq



� op1q.
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For the second summand on the right-hand side of (2.3.3) we apply Lemma 2.2.1(b)

δpA, Bq �
¸

t�c
?

nu i¤tc?nu

δ

��
1

Rpn�iq�0
, . . . ,1

Rpn�iq�k

	
,

Pois
�

1?
n



� � � � � Pois

�
1?
n



loooooooooooooooooooomoooooooooooooooooooon

k� 1 factors

�
� O

�
1?
n



,

where the last bound follows from a direct calculation of the total variation distance of specific
probability distributions on Nk�1

0 .

Proof of Theorem 2.1.1. For given t1, . . . , tℓ P R we select arbitrary c ¡ maxp|t1|, . . . , |tℓ|q.
Let n be big enough so that n � c

?
n ¥ pk � 1q2. We apply Lemma 2.3.1; from the two

random vectors which appear in this lemma we select the coordinates which correspond to
i P  tt1

?
nu, . . . , ttℓ

?
nu
(

. It follows that the total variation distance between the law of the
finite-dimensional marginal�

Λpnt1 q �Λpnq, . . . , Λpntℓ q �Λpnq
	

and the law of the appropriate marginal of N, that is��N

�
tt1
?

nu?
n

�
, . . . , N

�
ttℓ
?

nu?
n

�� (2.3.4)

converges to zero as n Ñ8.
On the other hand, by the maximal coupling lemma [Tho00, Section 8.3, Eq. (8.19)] (the

definition of the total variance distance therein differs from ours by the factor 2), the total
variation distance between (2.3.4) and�

N pt1q , . . . , N ptℓq
�

is bounded from above by

P

$&%N

�
tti
?

nu?
n

�
� N ptiq for some i P t1, . . . , ℓu

,.- � O
�

1?
n



.

An application of the triangle inequality for the total variation distance completes the
proof.

Problem 2.3.2. Find the precise rate of convergence in Lemma 2.2.8 and Theorem 2.2.2.
This convergence probably cannot be too fast because this would imply that an analogue
of Theorem 2.1.1 holds true also in the scaling when in (2.1.3) we study t " 1, and the
latter would potentially contradict the non-Gaussianity results for the lengths of the rows of
Plancherel-distributed Young diagrams [BDJ99; BDJ00; BOO00; Joh01].

2.3.2 Proof of Corollary 2.1.2

Proof. Let c ¡ 0 be arbitrary. We consider n P N0 which is big enough so that n� c
?

n�1 ¥
pk� 1q2. We denote

In �
"Q

n� c
?

n
U

, . . . ,
Y
n� c

?
n
]*

.
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Our strategy is to apply Theorem 2.2.2 for m :� P
n� c

?
n
T� 1 and ℓ :� |In|; in particular

in the following we will use the collection of random variables Rpiq
over i P In with the

probability distribution given by (2.2.5) and (2.2.6) for this specific value of m.
We consider the following three collections of k� 1 random subsets of In:

• the sequence A � pA0, . . . , Akq with

Ay �
!

Qx,y : x P N0

)
X In

�
!

i P In : Rpiq � y
)

obtained by selecting the entries of the bottom k � 1 rows of the recording tableau
which belong to the specified interval,

• the sequence A �
�

A0, . . . , Ak

	
with

Ay �
"

i P In : Rpiq � y
*

,

• the sequence B � pB0, . . . , Bkq obtained by independent sampling, i.e., such that the
family of random events

!
i P By

)
indexed by i P I and y P t0, . . . , ku is a family of

independent events, each having equal probability 1?
n .

Theorem 2.2.2 implies that the total variation distance δ
�

A, A
�

converges to zero, as
n Ñ8.

The information about the sequence A can be alternatively encoded by the sequence of
independent random variables pvi : i P Inq given by

vi �
�
1iPA0

, . . . ,1iPAk

	
�

�
1

Rpiq�0
, . . . ,1

Rpiq�k

	
for i P In

Analogously the information about B can be encoded by the sequence of independent random
variables pwi : i P Inq, where

wi �
�
1iPB0 , . . . ,1iPBk

�
for i P In.

By Lemma 2.2.1(b) it follows that the total variation distance for the vectors

δpA, Bq � δpv, wq ¤
¸
iPIn

δpvi, wiq

is bounded by the sum of the coordinatewise total variation distances. The asymptotics of the
individual summand

δpvi, wiq � o
�

1?
n



is a consequence of a direct calculation based on the explicit form of the two probability
distributions involved here. In this way we proved that the total variation distance δpA, Bq
converges to 0 as n Ñ8.

We apply a shift and a scaling to the random sets which form the collection A and the
collection B; it follows that the total variation distance between
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• the collection of random subsets of R�"
Qx,y � n?

n
: x P N0

*
X r�c, cs : y P t0, . . . , ku

�

obtained by truncating (2.1.5), and

• the collection of random subsets of R�"
j� n?

n
: j P By

*
: y P t0, . . . , ku

�
(2.3.5)

converges to zero as n Ñ8.
Each random set from the collection (2.3.5) converges in distribution to the Poisson

point process on the interval r�c, cs, see [DVJ08, Proposition 11.3.I], which concludes the
proof.

2.3.3 Proof of Corollary 2.1.3

We start with an auxiliary result.

Lemma 2.3.3. For real numbers p, λ ¥ 0 and for integers k ¥ 0 and n such that ppk� 1q ¤ 1
let ξ1, . . . , ξn be independent, identically distributed random variables with the uniform
distribution Up0, 1q and let Rp1q, . . . , Rpnq

be independent, identically distributed random
variables with the distribution$'''&'''%

P

"
Rpiq � r

*
� p for r P t0, . . . , ku,

P

"
Rpiq � 8

*
� 1� pk� 1qp,

(2.3.6)

cf. (2.2.5) and (2.2.6) for an analogous distribution in a similar context.
Then for any real numbers a, b such that 0 ¤ a ¤ b ¤ 1 the total variation distance

between:

(a) the collection of k� 1 random sets�
ra, bs X

"
ξi : Rpiq � y

*
: y P t0, . . . , ku

�
, (2.3.7)

and

(b) the collection of k� 1 independent Poisson point processes N0, . . . , Nk on the interval
ra, bs with the intensity λ,

is bounded from above by

pk� 1q2np2l2 � pk� 1q � ��λl � npl
�� ,

where l � b� a is the length of the interval.

Proof. For each i P t0, . . . , ku the corresponding Poisson point process Ni can be generated
by the following two-step procedure. Firstly, we sample the number of points ni; it is a random
variable with the Poisson distribution with the parameter λl, where l :� b� a is the length of
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the interval. Secondly, we take ni independent random elements of the unit interval ra, bs with
the uniform distribution. The random variables n0, . . . , nk which correspond to independent
Poisson processes are independent.

A similar construction can be performed for the collection (2.3.7) of random sets: we first
sample the vector pm0, . . . ,mkq of the cardinalities of the sets from (2.3.7) and then for each
index i P t0, . . . , ku we sample mi elements of the interval ra, bs. In this case, however, the
random variables m0, . . . ,mk are not independent.

From the above discussion it follows that the total variation distance considered in the
statement of this lemma between (a) and (b) is equal to the total variation distance between
the random vectors m � pm0, . . . ,mkq and n � pn0, . . . , nkq. In the following we will bound
the latter distance.

The distribution of the random vector

m �
¸

1¤j¤n

�
1

Rpjq�0
, . . . , 1

Rpjq�k

	
is the n-fold additive convolution of the discrete probability measure M on Zk�1 which to
each basis vector ei � r0, . . . , 0, 1, 0, . . . , 0s P Zk�1 associates the probability pl and to the
zero vector associates the remaining probability 1� pk� 1qpl.

On the other hand, the distribution of the random vector n can be alternatively seen as
the n-fold additive convolution of the product measure N � Pois

�
λl
n

	
� � � � � Pois

�
λl
n

	
on Zk�1. We also consider an auxiliary product measure N 1 � Pois

�
pl
�� � � � � Pois

�
pl
�

on Zk�1.
By Lemma 2.2.1(c) and the triangle inequality it follows that

δpm, nq ¤ n δ pM,N q ¤ n δ
�
M,N 1�� n δ

�
N 1,N

�
. (2.3.8)

For the first summand on the right-hand side, by a direct calculation of the positive part of the
difference of the two measures and its ℓ1 norm, we have

n δ
�
M,N 1� � npk� 1q

�
pl � ple�plpk�1q

�
¤ npk� 1q2 p2l2,

where the inequality follows from an elementary bound on the exponential function. For the
second summand on the right-hand side of (2.3.8) we apply Lemma 2.2.1(c) in order to bound
the total variation distance between two Poisson distributions; it follows that

n δ
�
N 1,N

� ¤ pk� 1q � ��λl � npl
��

which completes the proof.

Proof of Corollary 2.1.3. We start with the case when 0   w   1. We will show a stronger
result that for each A ¡ 0 the total variation distance between:

(i) the collection of k� 1 sets�
P pnq

y X r�A, As : y P t0, . . . , ku
	

, (2.3.9)

(cf. (2.1.7)), and

(ii) the collection of k� 1 independent Poisson point processes on the interval r�A, As
with the intensity 1?

w

converges to zero, as n Ñ8.
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As the first step, let us fix ϵ ¡ 0. Let Z1 be the number of the entries of the sequence
ξ1, . . . , ξn which are weakly smaller than w� A?

n and let Z2 be the number of the entries of

this sequence which are strictly smaller than w� A?
n ; clearly the probability distribution of

Z1 and Z2 is a binomial distribution. By Bienaymé–Chebyshev inequality it follows that the
constant

B :� A� 1?
ϵ

has the property that for each positive integer n

P pZ1   nminq ¤ ϵ, P pZ2 ¥ nmaxq ¤ ϵ (2.3.10)

with
nmin :�

Y
nw� B

?
n
]

, nmax :�
Q
nw� B

?
n
U

.

In the following we assume that n is big enough so that

1 ¤ nmin ¤ nmax ¤ n.

Without loss of generality we may assume that the entries of the sequence ξ1, . . . , ξn are
not repeated. It follows that this sequence can be encoded by two pieces of information:

• the sequence of order statistics 0   ξp1q   � � �   ξpnq   1, and

• the permutation π � pπ1, . . . , πnq which encodes the order of the entries, i.e. πi   πj
if and only if ξi   ξ j;

these two pieces of information are clearly independent and the permutation π is a uniformly
random element of the symmetric group.

Since RSK algorithm is sensitive only to the relative order of the entries and not to their
exact values, the insertion tableaux Ppξ1, . . . , ξnq can be obtained from the insertion tableau
Ppπ1, . . . , πnq by replacing each entry by the corresponding order statistic. It follows that
the entries of a given row y P N0 of the insertion tableau can be alternatively described as
follows:!

Ppnqx,y : 0 ¤ x   λ
pnq
y

)
�

!
ξpiq : i is in the row y of the tableau Ppπ1, . . . , πnq

)
.

It follows in particular that the intersection P pnq
y X r�A, As is defined in terms of (a

certain subset of) the set of these order statistics ξpiq which belong to the interval

I :� ra, bs

with
a :� w� A?

n
, b :� w� A?

n
.

If neither of the two random events appearing in (2.3.10) holds true then this set of order
statistics fulfills

I X
!

ξp1q, . . . , ξpnq
)
�

!
ξpnminq, . . . , ξpnmaxq

)
;

under this condition it follows that in order to find the number of the row of Ppnq which contains
a given order statistic ξpiq P I it is enough to know the number of the row of the tableau
Ppπ1, . . . , πnq which contains a given number j, over all choices of j P tnmin, . . . , nmaxu.
Here and in the following by the number of the row we will understand the element of the
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fixed finite set N � t0, . . . , k,8u with the convention that the element 8 corresponds to all
rows above the bottom k� 1 rows.

The insertion tableau Ppπq � Q
�

π�1
	

is equal to the recording tableau of the inverse
permutation; as a consequence the probability distribution of Ppπq is given by the Plancherel
measure, can be interpreted as (a part of) the Plancherel growth process and thus Theorem 2.2.2
is applicable to this tableau. It follows that the probability distribution of the vector formed
by the so understood numbers of the rows of the boxes nmin, . . . , nmax can be approximated
(up to an error op1q with respect to the total variation distance) by a sequence of independent
random variables with the probability distribution given by (2.3.6) for p � 1?

nmin
. Here and in

the following we assume that n is big enough so that pk� 1qp ¤ 1.
The above two paragraphs show that the total variation distance between the collection�

ra, bs X
!

Ppnqx,y : x ¥ 0
)

: y P t0, . . . , ku



, (2.3.11)

of truncated entries of the bottom rows and the collection (2.3.7) is bounded from above by
2ϵ� op1q. On the other hand, Lemma 2.3.3 applied to λ �a n

w shows that the total variation
distance between (2.3.7) and the collection of k� 1 independent Poisson point processes (b)
with the intensity λ on the interval I converges to zero. We combine these two bounds by the
triangle inequality; as a result the total variation distance between (2.3.11) and (b) is bounded
from above by 2ϵ� op1q.

We consider the affine transformation x ÞÑ ?
n px�wq which maps the interval ra, bs to

r�A, As. This affine transformation also maps the random collection (2.3.11) to (2.3.9) from
(i); it also maps the collection of Poisson processes (b) from Lemma 2.3.3 with the intensity λ
to the collection (ii) of Poisson processes with the intensity λ 1?

n � 1?
w . The application of

this affine transformation preserves the total variation distance between the random variables,
so the inequality from the previous paragraph completes the proof.

In the case when w � 1 the above proof can be easily adjusted by changing the definitions
of nmax :� n and b :� 1.
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Chapter 3

Poisson limit of bumping routes
in the Robinson–Schensted
correspondence

The following chapter is a modified version of the article [MMŚ21a]:

M. Marciniak, Ł. Maślanka and P. Śniady: Poisson limit of bumping routes in the
Robinson–Schensted correspondence, Probab. Theory Related Fields, vol. 181,
Art. no. 4, 2021, doi: 10.1007/s00440-021-01084-y

which is available also in the public repository arXiv.org, https://arxiv.org/abs/
2005.14397v2.

Abstract: We consider the Robinson–Schensted–Knuth algorithm applied to a random
input and investigate the shape of the bumping route (in the vicinity of the y-axis) when
a specified number is inserted into a large Plancherel-distributed random tableau. We show
that after a projective change of the coordinate system the bumping route converges in
distribution to the Poisson process.

3.1 Introduction

The notions of Young diagrams and tableaux are given in Section 1.1 We will shortly recall
the corresponding notation in the next subsection. The Robinson–Schensted–Knuth algorithm
(shortly RSK) is defined in Section 1.2.

3.1.1 Notations

Recall from Chapter 1 that we denote the set of all Young diagrams with n boxes by Yn and
the set of all Young diagrams by Y. The Young graph is an oriented graph with vertices in Y.
The pair of diagrams µ and λ is connected by an oriented edge pointing from µ to λ if and
only if λ can be created from the Young diagram µ by addition of a single box (which we
denote by µ Õ λ).

Recall that the rows of any Young diagram λ � pλ0, λ1, . . . q are indexed by the elements
of N0; in particular the length of the bottom row of λ is denoted by λ0. For a tableau T we
denote by Tx,y its entry which lies in the intersection of the row y P N0 and the column x P N0.
If p is a number which appears exactly once in a tableau T, we define the position of the box
with the number p as the Cartesian coordinates of the bottom-left corner of the unique square
which contains p; we denote this position by posppTq. For example, for T from Figure 3.1a,
pos53pTq � p1, 1q.

https://arxiv.org/abs/2005.14397v2
https://arxiv.org/abs/2005.14397v2
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3.1.2 Plancherel measure, Plancherel growth process

Let Sn denote the symmetric group of order n. We will view each permutation π P Sn
as a sequence π � pπ1, . . . , πnq which has no repeated entries, and such that π1, . . . , πn P
t1, . . . , nu. Recall from Theorem 1.2.1 that the restriction of RSK to the symmetric group is a
bijection which to a given permutation from Sn associates a pair pP, Qq of standard Young
tableaux of the same shape, consisting of n boxes. A fruitful area of study concerns the RSK
algorithm applied to a uniformly random permutation from Sn, especially asymptotically in
the limit n Ñ8, see [Rom15] and the references therein.

The Plancherel measure on Yn, denoted Plann, is defined as the probability distribution
of the random Young diagram RSKpwq for a uniformly random permutation w P Sn.

An infinite standard Young tableau [Ker99, Section 2.2] is a filling of the boxes in a subset
of the upper-right quarterplane with positive integers, such that each row and each column is
increasing, and each positive integer is used exactly once. There is a natural bijection between
the set of infinite standard Young tableaux and the set of infinite paths in the Young graph

λp0q Õ λp1q Õ � � � with λp0q � H; (3.1.1)

this bijection is given by setting λpnq to be the set of boxes of a given infinite standard Young
tableau which are ¤ n.

If w � pw1, w2, . . . q is an infinite sequence, the recording tableau Qpwq is defined as the
infinite standard Young tableau in which each non-empty entry is equal to the number of the
iteration in the infinite sequence of Schensted row insertions�pH Ð w1q Ð w2

�Ð � � �

in which the corresponding box stopped being empty, see [RŚ15, Section 1.2.4]. Under the
aforementioned bijection, the recording tableau Qpwq corresponds to the sequence (3.1.1)
with

λpnq � RSKpw1, . . . , wnq.
Let ξ � pξ1, ξ2, . . . q be an infinite sequence of independent, identically distributed random

variables with the uniform distribution Up0, 1q on the unit interval r0, 1s. The Plancherel
measure on the set of infinite standard Young tableaux is defined as the probability distribution
of Qpξq. Any sequence with the same probability distribution as (3.1.1) with

λpnq � RSKpξ1, . . . , ξnq (3.1.2)

will be called the Plancherel growth process [Ker99]. It turns out that the Plancherel growth
process is a Markov chain [Ker99, Sections 2.2 and 2.4]. For a more systematic introduction
to this topic we recommend the monograph [Rom15, Section 1.19].

3.1.3 Bumping route

The bumping route consists of the boxes the entries of which were changed by the action
of Schensted insertion, including the last, newly created box, see Figures 3.1b and 3.1c.
The bumping route will be denoted by Tø a or by Tøa depending on current typographic
needs. In any row y P N0 there is at most one box from the bumping route Tø a; we denote
by Tøapyq its x-coordinate. We leave Tøapyq undefined if such a box does not exist. In this
way

Tø a �
!�

Tøapyq, y
�

: y P N0

)
. (3.1.3)
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16 37 41 82
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18
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(b)

16 18 41 82

23 37 70

53 99

74

18

37

53

74

(c)

Figure 3.1: (a) The original tableau T. (b) We consider the Schensted row
insertion of the number 18 to the tableau T. The highlighted boxes form the
corresponding bumping route. The small numbers on the left (next to the
arrows) indicate the inserted/bumped numbers. (c) The output T Ð 18 of the

Schensted insertion.

For example, for the tableau T from Figure 3.1a and a � 18 we have

Tøapyq �
#

1 for y P t0, 1u,
0 for y P t2, 3u.

The bumping route Tø a can be visualized either as a collection of its boxes or as a plot
of the function

xpyq � Tøaptyuq, y P R�,

cf. the thick red line on Figure 3.2a.

3.1.4 Bumping routes for infinite tableaux

Any bumping route which corresponds to an insertion to a finite tableau is, well, also finite.
This is disadvantageous when one aims at the asymptotics of such a bumping route in a row
of index y in the limit y Ñ8. For such problems it would be preferable to work in a setup in
which the bumping routes are infinite; we present the details in the following.

Let us fix the value of an integer m P N0. Now, for an integer n ¥ m we consider
a real number 0   αn   1 and a finite sequence ξ � pξ1, . . . , ξnq of independent, identically
distributed random variables with the uniform distribution Up0, 1q on the unit interval r0, 1s.
In order to remove some randomness from this picture we will condition the choice of ξ in
such a way that there are exactly m entries of ξ which are smaller than αn; heuristically this
situation is similar to a scenario without conditioning, for the choice of

αn � m
n

. (3.1.4)

We will study the bumping route

Ppξ1, . . . , ξnqø αn (3.1.5)

in the limit as n Ñ8 and m is fixed.
Without loss of generality we may assume that the entries of the sequence ξ are all different.

Let π P Sn be the unique permutation which encodes the relative order of the entries in
the sequence ξ, that is �

πi   πj

	
ðñ

�
Xi   Xj
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1 2 3 6 16 23 24 30 31 45

4 5 9 11 29 34 42 52 61 66

7 10 18 21 32 36 47 69 71 79

8 12 20 22 38 43 49 78 81 86

13 15 28 35 39 48 56 87 98 101

14 27 37 50 58 84 106 113 124 146

17 33 41 54 72 109 120 144 149 151

19 46 57 63 73 129 139 150 173 180

25 51 65 67 91 130 148 165 175 231

1 2 3

1

2

3

4

5

6

7

x

y

(a)

1 2 3 6 16 23 24 30 31 45

4 5 9 11 29 34 42 52 61 66

7 10 18 21 32 36 47 69 71 79

8 12 20 22 38 43 49 78 81 86

1 2 3

1

2

3

4

5

6

7

x

z � 2m
y

(b)

Figure 3.2: (a) The French convention for drawing tableaux. An
example of an infinite standard Young tableau T sampled with the
Plancherel distribution. The highlighted boxes form a bumping route
obtained by adding the entry m � 1{2 for m � 3. The thick red
line is the corresponding plot of the function xpyq � Tøm�1{2ptyuq.
(b) The same tableau shown in the projective coordinates Oxz with z � 2m

y .

The thick red line is the plot of the function xpzq � Tøm�1{2pt 2m
z uq.
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for any 1 ¤ i, j ¤ n. Since the algorithm behind the Robinson–Schensted–Knuth correspon-
dence depends only on the relative order of the involved numbers and not their exact values, it
follows that the bumping route (3.1.5) coincides with the bumping route

Ppπ1, . . . , πnqø m� 1{2. (3.1.6)

The probability distribution of π is the uniform measure on Sn; it follows that the prob-
ability distribution of the tableau Ppπ1, . . . , πnq which appears in (3.1.6) is the Plancherel
measure Plann on the set of standard Young tableaux with n boxes. Since such a Plancherel-
distributed random tableau with n boxes can be viewed as a truncation of an infinite standard
Young tableau T with the Plancherel distribution, the bumping routes (3.1.5) and (3.1.6) can be
viewed as truncations of the infinite bumping route

T ø m� 1{2, (3.1.7)

see Figure 3.2a for an example.

3.1.5 The main problem: asymptotics of infinite bumping routes

The aim of the current paper is to investigate the asymptotics of the infinite bumping route
(3.1.7) in the limit m Ñ8.

Heuristically, this corresponds to investigation of the asymptotics of the finite bumping
routes (3.1.5) in the simplified setting when we do not condition over some additional proper-
ties of ξ, in the scaling in which αn does not tend to zero too fast (so that limnÑ8 αnn � 8,
cf. (3.1.4)), but on the other hand αn should tend to zero fast enough so that the bumping
route is long enough that our asymptotic questions are well defined. We will not pursue in this
direction and we will stick to the investigation of the infinite bumping route (3.1.7).

Even though Romik and Śniady [RŚ16] considered the asymptotics of finite bumping
routes, their discussion is nevertheless applicable in our context. It shows that in the balanced
scaling when we focus on the part of the bumping route with the Cartesian coordinates px, yq
of magnitude x, y � O

�?
m
�
, the shape of the bumping route (scaled down by the factor 1?

m )
converges in probability towards an explicit curve, which we refer to as the limit bumping
curve, see Figure 3.3 for an illustration.

In the current paper we go beyond the scaling used by Romik and Śniady and investigate
the part of the bumping route with the Cartesian coordinates of order x � Op1q and y " ?

m.
This part of the bumping curves was not visible on Figure 3.3; in order to reveal it one can use
the semi-logarithmic plot, cf. Figures 3.4 and 3.5.

3.1.6 The naive hyperbola

The first step in this direction would be to stretch the validity of the results of Romik and
Śniady [RŚ16] beyond their limitations and to expect that the limit bumping curve describes
the asymptotics of the bumping routes also in this new scaling. This would correspond to
the investigation of the asymptotics of the (non-rescaled) limit bumping curve

�
xpyq, y

�
in

the regime y Ñ 8. The latter analysis was performed by Marciniak [Mar21]; one of his
results is that

lim
yÑ8 xpyqy � 2;

in other words, for y Ñ 8 the non-rescaled limit bumping curve can be approximated by
the hyperbola xy � 2 while its rescaled counterpart which we consider in the current paper
by the hyperbola

xy � 2m (3.1.8)
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x
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Figure 3.3: Four sample bumping routes corresponding to an insertion
T Ð m� 1{2 for m � 100 and a random infinite standard Young tableau T
which was sampled according to the Plancherel measure. In order to improve
visibility, each bumping route is visualized as the plot of the corresponding
function y ÞÑ Tøm�1{2ptyuq, cf. Figure 3.2a, and not as a collection of boxes.
Colour and thickness were added in order to help identify the routes. The solid
line is the (rescaled) limit bumping curve. The dashed line is the hyperbola

xy � 2m, cf. Equation (3.1.8).
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Figure 3.4: The content of Figure 3.3 shown with the axis y in the logarithmic
scale.

which is shown on Figure 3.3 as the dashed line. At the very end of Section 3.1.8 we will
discuss the extent to which this naive approach manages to confront the reality.

3.1.7 In which row a bumping route reaches a given column?

Let us fix some (preferably infinite) standard Young tableau T. The bumping route in each
step jumps to the next row, directly up or to the left to the original column; in other words

Tøm�1{2p0q ¥ Tøm�1{2p1q ¥ � � �

is a weakly decreasing sequence of non-negative integers.
For x, m P N0 we denote by

Yrms
x � Yx � min

!
y P N0 : Tøm�1{2pyq ¤ x

)
(3.1.9)

the index of the first row in which the bumping route Tø m� 1{2 reaches the column with
the index x (or less, if the bumping route skips the column x completely). For example, for
the tableau T from Figure 3.2a we have

Yr3s
0 � 4, Yr3s

1 � 2, Yr3s
2 � 1, Yr3s

3 � Yr3s
4 � � � � � 0.

If such a row does not exist we set Yx � 8; the following result shows that we do not have to
worry about such a scenario.
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Figure 3.5: Zoom on a part of Figure 3.4. In this kind of scaling when
x � Op1q and y " ?

m the results of Romik and Śniady [RŚ16] are not
applicable and the rescaled limit bumping curve (the solid line) is shown for

illustration purposes only.
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Proposition 3.1.1. For a random infinite standard Young tableau T with the Plancherel
distribution

Yrms
x   8 for all x, m P N0

holds true almost surely.

The proof is postponed to Section 3.3.8. For a sketch of the proof of an equivalent result
see the work of Vershik [Ver20, Proposition 4] who uses different methods.

Theorem 3.1.2 (The main result). Assume that T is an infinite standard Young tableau with
the Plancherel distribution. With the above notations, the random set�� 2m

Yrms
0

,
2m

Yrms
1

, . . .

�
converges in distribution, as m Ñ 8, to the Poisson point process on R� with the unit
intensity.

The proof is postponed to Section 3.5.3.

Remark 3.1.3. The Poisson point process [Kin93, Section 4]

p0   ξ0   ξ1   � � � q (3.1.10)

on R� can be viewed concretely as the sequence of partial sums

ξ0 � ψ0,
ξ1 � ψ0 � ψ1,
ξ2 � ψ0 � ψ1 � ψ2,

...

for a sequence pψiq of independent, identically distributed random variables with the exponen-
tial distribution Expp1q. Thus a concrete way to express the convergence in Theorem 3.1.2 is
to say that for each l P N0 the joint distribution of the finite tuple of random variables�� 2m

Yrms
0

, . . . ,
2m

Yrms
l

�
converges, as m Ñ8, to the joint distribution of the sequence of partial sums�

ψ0, ψ0 � ψ1, . . . , ψ0 � ψ1 � � � � � ψl
�

.

Corollary 3.1.4. For each x P N0 the random variable Yrmsx
2m converges in distribution, as

m Ñ8, to the reciprocal of the Erlang distribution Erlangpx� 1, 1q.

In particular, for x � 0 it follows that the random variable Yrms0
2m which measures the (rescaled)

number of steps of the bumping route to reach the leftmost column converges in distribution,
as m Ñ8, to the Fréchet distribution of shape parameter α � 1:

lim
mÑ8P

��Yrms
0

2m
¤ u

�� e�
1
u for any u P R�. (3.1.11)
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Figure 3.6: Monte Carlo simulations of the cumulative probability distribu-

tion function for the random variable e�
2m
Y0 . The thick red line corresponds to

m � 1 (sample size is equal to 10 000); the blue line corresponds to m � 6
(sample size 3 000); the thin green line corresponds to m � 25 (sample size
2 500). The dashed line corresponds to the cumulative probability distribution
function of the uniform distribution Up0, 1q on the unit interval. Due to
constraints on computation time it was not possible to get Monte Carlo data
for all values of u. The staircase feature of the plots is due to the discrete

nature of the probability distribution of Y0.

The Fréchet distribution has a heavy tail; in particular its first moment is infinite which
provides a theoretical explanation for a bad time complexity of some of our Monte Carlo
simulations.

Equivalently, the random variable e�
2m
Y0 converges in distribution, as m Ñ8, to the uni-

form distribution Up0, 1q on the unit interval. Figure 3.6 presents the results of Monte Carlo
simulations which illustrate this result.

3.1.8 Projective convention for drawing Young diagrams

Usually in order to draw a Young diagram we use the French convention and the Oxy
coordinate system, cf. Figure 3.2a. For our purposes it will be more convenient to change
the parametrization of the coordinate y by setting

z � zpyq � 2m
y

.

This convention allows us to show an infinite number of rows of a given tableau on a finite
piece of paper, cf. Figure 3.2b. We will refer to this way of drawing Young tableaux as
the projective convention; it is somewhat reminiscent of the English convention in the sense
that the numbers in the tableau increase along the columns from top to bottom.
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Figure 3.7: The bumping routes from Figure 3.3 shown in the projective
convention (see also Figure 3.2b). The dashed line x � z corresponds to
the hyperbola (3.1.8); it is tangent in 0 to the rescaled limit bumping curve
(the solid line); it is also the plot of the mean value of the Poisson process

z ÞÑ ENpzq.

In the projective convention the bumping route can be seen as the plot of the function

xproj
T,mpzq � Tøm�1{2

�Z
2m
z

^�
for z P R� (3.1.12)

shown on Figure 3.2b as the thick red line.

With these notations Theorem 3.1.2 allows the following convenient reformulation.

Theorem 3.1.5 (The main result, reformulated). Let T be a random infinite standard Young
tableau with the Plancherel distribution. For m Ñ8 the stochastic process!

xproj
T,mpzq, z ¡ 0

)
(3.1.13)

converges in distribution to the standard Poisson counting process tNpzq, z ¡ 0u with the unit
intensity.

For an illustration see Figure 3.7.

Remark 3.1.6. In Theorem 3.1.5 above, the convergence in distribution for stochastic processes
is understood as follows: for any finite collection z1, . . . , zl ¡ 0 we claim that the joint
distribution of the tuple of random variables�

xproj
T,mpz1q, . . . , xproj

T,mpzlq
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converges in the weak topology of probability measures, as m Ñ8, to the joint distribution
of the tuple of random variables �

Npz1q, . . . , Npzlq
�
.

Proof of Theorem 3.1.5. The process (3.1.13) is a counting process. By the definition (3.1.12),
the time of its k-th jump (for an integer k ¥ 1)

inf
!

z ¡ 0 : xproj
T,mpzq � k

)
� 2m

Yrms
k�1

is directly related to the number of the row in which the bumping route reaches the column
with the index k � 1. By Theorem 3.1.2 the joint distribution of the times of the jumps
converges to the Poisson point process; it follows therefore that (3.1.13) converges to the
Poisson counting process, as required.

The plot of the mean value of the standard Poisson process z ÞÑ ENpzq is the straight line
x � z which is shown on Figure 3.7 as the dashed line. Somewhat surprisingly it coincides
with the hyperbola (3.1.8) shown in the projective coordinate system; a posteriori this gives
some justification to the naive discussion from Section 3.1.6.

3.1.9 The main result with the right-to-left approach

Theorem 3.1.2 was formulated in a compact way which may obscure the true nature of
this result. Our criticism is focused on the left-to-right approach from Remark 3.1.3 which
might give a false impression that the underlying mechanism for generating the random
variable 2m

Yrmsx�1

describing the ‘time of arrival’ of the bumping route to the column number x� 1

is based on generating first the random variable 2m
Yrmsx

related to the previous column (that is
the column directly to the left), and adding some ‘waiting time’ for the transition. In fact,
such a mechanism is not possible without the time travel because the chronological order
of the events is opposite: the bumping route first visits the column x� 1 and then lands in
the column x. In the following we shall present an alternative, right-to-left viewpoint which
explains better the true nature of Theorem 3.1.2.

For the Poisson point process (3.1.10) and an integer l ¥ 1 we consider the collection of
random variables

ξl , R0, R1, . . . , Rl�1 (3.1.14)

which consists of ξl and the ratios

Ri :� ξi�1

ξi

of consecutive entries of pξiq. Then (3.1.14) are independent random variables with the dis-
tributions that can be found easily. This observation can be used to define ξ0, . . . , ξl from
the Poisson point process by setting

ξi � ξl
1

Rl�1

1
Rl�2

� � � 1
Ri

for 0 ¤ i ¤ l.

With this in mind we may reformulate Theorem 3.1.2 as follows.
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Theorem 3.1.7 (The main result, reformulated). For any integer l ¥ 0 the joint distribution of
the tuple of random variables�

Yrms
l

2m
,

Yrms
l�1

2m
,

Yrms
l�2

2m
, . . . ,

Yrms
0

2m



(3.1.15)

converges, as m Ñ8, to the joint distribution of the random variables�
1
ξl

,
1
ξl

Rl�1,
1
ξl

Rl�1Rl�2, . . . ,
1
ξl

Rl�1 � � �R0



, (3.1.16)

where ξl , Rl�1, . . . , R0 are independent random variables, the distribution of ξl is equal to
Erlangpl � 1, 1q, and for each i ¥ 0 the distribution of the ratio Ri is supported on r1,8q
with the power law

PpRi ¡ uq � 1
ui�1 for u ¥ 1. (3.1.17)

The order of the random variables in (3.1.15) reflects the chronological order of the events,
from left to right. Heuristically, (3.1.16) states that the transition of the bumping route from
the column x� 1 to the column x gives a multiplicative factor Rx to the total waiting time,
with the factors R0, R1, . . . independent.

It is more common in mathematical and physical models that the total waiting time for
some event arises as a sum of some independent summands, so the multiplicative structure in
Theorem 3.1.7 comes as a small surprise. We believe that this phenomenon can be explained
heuristically as follows: when we study the transition of the bumping route from row y to
the next row y� 1, the probability of the transition from column x� 1 to column x seems
asymptotically to be equal to

x� 1
y

� o

�
1
y

�
for fixed value of x, and for y Ñ8.

This kind of decay would explain both the multiplicative structure (‘if a bumping route arrives
to a given column very late, it will stay in this column even longer’) as well as the power law
(3.1.17). We are tempted therefore to state the following conjecture which might explain the
aforementioned transition probabilities of the bumping routes.

Conjecture 3.1.8. For a Plancherel-distributed random infinite standard Young tableau T

P
!

Tx�1,y�1   Tx,y

)
� x

y
� o

�
1
y

�
for fixed x ¥ 1 and y Ñ8,

P
!

Tx�2,y�1   Tx,y

)
� o

�
1
y

�
for fixed x ¥ 2 and y Ñ8.

Furthermore, for each x P t1, 2, . . . u the set of points"
log

y
c

: y P tc, c� 1, . . . u and Tx�1,y�1   Tx,y

*
(3.1.18)

converges, as c Ñ8, to Poisson point process on R� with the constant intensity equal to x.

Numerical experiments are not conclusive and indicate interesting clustering phenom-
ena for the random set (3.1.18).
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3.1.10 Asymptotics of fixed m

The previous results concerned the bumping routes T ø m � 1
2 in the limit m Ñ 8 as

the inserted number tends to infinity. In the following we concentrate on another class of
asymptotic problems which concern the fixed value of m.

The following result shows that (3.1.11) gives asymptotically a very good approximation
for the distribution tail of Yrms

0 in the scaling when m is fixed and the number of the row
y Ñ8 tends to infinity.

Proposition 3.1.9. For each integer m ¥ 1

lim
yÑ8 y P

!
Yrms

0 ¥ y
)
� 2m.

This result is illustrated on Figure 3.6 in the behavior of each of the cumulative distribution
functions in the neighborhood of u � 1. The proof is postponed to Section 3.5.1.

Question 3.1.10. What can we say about the other columns, that is the tail asymptotics of
P
!

Yrms
x ¥ y

)
for fixed values of x P N0 and m ¥ 1, in the limit y Ñ8?

3.1.11 More open problems

Let T be a random Plancherel-distributed infinite standard Young tableau. We consider
the bumping tree [Duz19] which is defined as the collection of all possible bumping routes for
this tableau �

T ø m� 1{2 : m P N0
�

,

which can be visualized, for example, as on Figure 3.8. Computer simulations suggest that
the set of boxes which can be reached by some bumping route for a given tableau T is
relatively ‘small’. It would be interesting to state this vague observation in a meaningful
way. We conjecture that the pictures such as Figure 3.8 which use the logarithmic scale for
the y coordinate converge (in the scaling when x � Op1q is bounded and y Ñ 8) to some
meaningful particle jump-and-coalescence process.

3.1.12 Overview of the paper. Sketch of the proof of Theorem 3.1.2

As we already mentioned, the detailed proof of Theorem 3.1.2 is postponed to Section 3.5.3.
In the following we present an overview of the paper and a rough sketch of the proof.

3.1.12.1 Trajectory of infinity. Lazy parametrization of the bumping route

Without loss of generality we may assume that the Plancherel-distributed infinite tableau
T from the statement of Theorem 3.1.2 is of the form T � Qpξ1, ξ2, . . . q for a sequence
ξ1, ξ2, . . . of independent, identically distributed random variables with the uniform distribu-
tion Up0, 1q.

We will iteratively apply Schensted row insertion to the entries of the infinite sequence

ξ1, . . . , ξm,8, ξm�1, ξm�2, . . . (3.1.19)

which is the initial sequence ξ with our favorite symbol 8 inserted at the position m� 1. At
step m� 1 the symbol 8 is inserted at the end of the bottom row; as further elements of the
sequence (3.1.19) are inserted, the symbol 8 stays put or is being bumped to the next row,
higher and higher.
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Figure 3.8: All possible bumping routes (“the bumping tree”) for a given
Plancherel-distributed random infinite standard Young tableau. The y axis
is shown using the logarithmic scale. In order to improve visibility, each
bumping route was drawn as a piecewise-affine function connecting the

points (3.1.3) and not as a jump function as in Figure 3.2a.
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In Proposition 3.3.1 we will show that the trajectory of 8 in this infinite sequence of
Schensted row insertions��

Ppξ1, . . . , ξm,8q Ð ξm�1
�Ð ξm�2

	
Ð � � � (3.1.20)

coincides with the bumping route T ø m� 1{2. Thus our main problem is equivalent to
studying the time evolution of the position of 8 in the infinite sequence of row insertions
(3.1.20). This time evolution also provides a convenient alternative parametrization of the
bumping route, called lazy parametrization.

3.1.12.2 Augmented Young diagrams

For t ¥ m we consider the insertion tableau

T ptq � Ppξ1, . . . , ξm,8, ξm�1, . . . , ξtq (3.1.21)

which appears at an intermediate step in (3.1.20) after some finite number of row insertions
was performed. By removing the information about the entries of the tableau T ptq we obtain
the shape of T ptq, denoted by sh T ptq, which is a Young diagram with t� 1 boxes. In the
following we will explain how to modify the notion of the shape of a tableau so that it better
fits our needs.

Let us remove from the tableau T ptq the numbers ξ1, . . . , ξt and let us keep only the
information about the position of the box which contains the symbol 8. The resulting object,
called augmented Young diagram (see Figure 3.9 for an illustration), can be regarded as a pair
Λptq � pλ,lq which consists of:

• the Young diagram λ with t boxes which keeps track of the positions of the boxes with
the entries ξi, i P t1, . . . , tu, in T ptq;

• the outer corner l of λ which is the position of the box with 8 in T ptq.

We will say that sh� T ptq � Λptq is the augmented shape of T ptq.
The set of augmented Young diagrams, denoted Y�, has a structure of an oriented graph

which is directly related to Schensted row insertion, as follows. For a pair of augmented
Young diagrams Λ, rΛ P Y� we say that Λ Õ rΛ if there exists a tableau T (which contains
exactly one entry equal to 8) such that Λ � sh� T and there exists some number x such thatrΛ � sh�pT Ð xq, see Figure 3.10 and Section 3.3.4 for more details.

With these notations the time evolution of the position of 8 in the sequence of row
insertions (3.1.20) can be extracted from the sequence of the corresponding augmented shapes

Λpmq Õ Λpm�1q Õ � � � . (3.1.22)

3.1.12.3 Augmented Plancherel growth processes

The random sequence (3.1.22) is called the augmented Plancherel growth process initiated at
time m; in Section 3.3.6 we will show that it is a Markov chain with dynamics closely related
to the usual (i.e., non-augmented) Plancherel growth process. Since we have a freedom of
choosing the value of the integer m P N0, we get a whole family of augmented Plancherel
growth processes. It turns out that the transition probabilities for these Markov chains do not
depend on the value of m.

Our strategy is to use the Markov property of augmented Plancherel growth processes
combined with the following two pieces of information.
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• Probability distribution at a given time t. In Proposition 3.3.9 we give an asymptotic
description of the probability distribution of Λptq in the scaling when m, t Ñ8 in such
a way that t � Θpm2q.

• Averaged transition probabilities. In Proposition 3.4.2 we give an asymptotic description
of the transition probabilities for the augmented Plancherel growth processes between
two moments of time n and n1 (with n   n1) in the scaling when n, n1 Ñ8.

Thanks to these results we will prove Theorem 3.4.3 which gives an asymptotic description of
the probability distribution of the trajectory of the symbol 8 or, equivalently, the bumping
route in the lazy parametrization.

Finally, in Section 3.5 we explain how to translate this result to the non-lazy parametriza-
tion of the bumping route in which the boxes of the bumping route are parametrized by the
index of the row; this completes the proof of Theorem 3.1.2.

The main difficulty lies in the proofs of the aforementioned Proposition 3.3.9 and Proposi-
tion 3.4.2; in the following we sketch their proofs.

3.1.12.4 Probability distribution of the augmented Plancherel growth process at a given
time.

In order to prove the aforementioned Proposition 3.3.9 we need to understand the probability
distribution of the augmented shape of the insertion tableau T ptq given by (3.1.21) in the
scaling when m � O

�?
t
�
. Thanks to some symmetries of the RSK algorithm, the tableau T ptq

is equal to the transpose of the insertion tableau

Ppξt, ξt�1, . . . , ξm�1looooooooomooooooooon
t�m entries

,8, ξm, . . . , ξ1q (3.1.23)

which corresponds to the original sequence read backwards. Since the probability distribution
of the sequence ξ is invariant under permutations, the augmented shape of the tableau (3.1.23)
can be viewed as the value at time t of the augmented Plancherel growth process initiated at
time m1 :� t�m.

The remaining difficulty is therefore to understand the probability distribution of the
augmented Plancherel growth process initiated at time m1, after additional m steps of Schensted
row insertion were performed. We are interested in the asymptotic setting when m1 Ñ 8
and the number of additional steps m � O

�?
m1� is relatively small. This is precisely the

setting which was considered in Chapter 2 ([MMŚ21b]) about the Poisson limit theorem for
the Plancherel growth process. We summarize these results in Section 3.2; based on them we
prove in Proposition 3.3.6 that the index of the row of the symbol 8 in the tableau (3.1.23) is
asymptotically given by the Poisson distribution.

By taking the transpose of the augmented Young diagrams we recover Proposition 3.3.9,
as desired.

3.1.12.5 Averaged transition probabilities

We will sketch the proof of the aforementioned Proposition 3.4.2 which concerns an augmented
Plancherel growth process

Λpnq Õ Λpn�1q Õ � � � (3.1.24)

for which the initial probability distribution at time n is given by Λpnq � �
λpnq,lpnq�, where

λpnq is a random Young diagram with n boxes distributed (approximately) according to the
Plancherel measure and lpnq is its outer corner located in the column with the fixed index k.



56 Chapter 3. Poisson limit of bumping routes

Our goal is to describe the probability distribution of this augmented Plancherel growth
process at some later time n1, asymptotically as n, n1 Ñ8.

Our first step in this direction is to approximate the probability distribution of the Markov
process (3.1.24) by a certain linear combination (with real, positive and negative, coefficients)
of the probability distributions of augmented Plancherel growth processes initiated at time m.
This linear combination is taken over the values of m which are of order O

�?
n
�
. Finding such

a linear combination required the results which we discussed above in Section 3.1.12.4, namely
a good understanding of the probability distribution at time n of the augmented Plancherel
growth process initiated at some specified time m � O

�?
n
�
.

The probability distribution of Λpn1q is then approximately equal to the aforementioned
linear combination of the laws (this time evaluated at time n1) of the augmented Plancherel
growth processes initiated at some specific times m. This linear combination is straightfor-
ward to analyze because for each individual summand the results from Section 3.1.12.4 are
applicable. This completes the sketch of the proof of Proposition 3.4.2.

3.2 Growth of the bottom rows

In the current section we will gather some results and some notations from Chapter 2 which
will be necessary for the purposes of the current work.

3.2.1 Total variation distance

Suppose that µ and ν are (signed) measures on the same discrete set S. Such measures can be
identified with real-valued functions on S. We define the total variation distance between
the measures µ and ν

δpµ, νq :� 1
2

��µ� ν
��
ℓ1 (3.2.1)

as half of their ℓ1 distance as functions. If X and Y are two random variables with values in
the same discrete set S, we define their total variation distance δpX, Yq as the total variation
distance between their probability distributions (which are probability measures on S).

Usually in the literature the total variation distance is defined only for probability measures.
In such a setup the total variation distance can be expressed as

δpµ, νq � max
X�S

��µpXq � νpXq�� � ���pµ� νq�
���
ℓ1

. (3.2.2)

In the current paper we will occasionally use the notion of the total variation distance also for
signed measures for which (3.2.1) and (3.2.2) are not equivalent.

3.2.2 Growth of rows in Plancherel growth process

Let λp0q Õ λp1q Õ � � � be the Plancherel growth process. For integers n ¥ 1 and r P N0

we denote by Epnqr the random event which occurs if the unique box of the skew diagram
λpnq{λpn�1q is located in the row with the index r.

The following result was proved by Okounkov [Oko00, Proposition 2], see also Proposi-
tion 2.2.7 for an alternative proof.

Proposition 3.2.1. For each r P N0

lim
nÑ8

?
n P

�
Epnqr

	
� 1.
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Let us fix an integer k P N0. We define N � t0, 1, . . . , k,8u. For n ¥ 1 we define
the random variable Rpnq P N which is given by

Rpnq �
$&%r if the event Epnqr occurs for 0 ¤ r ¤ k,
8 if the event Epnqr occurs for some r ¡ k.

Let ℓ � ℓpnq be a sequence of non-negative integers such that

ℓ � O
�?

n
	

.

For a given integer n ¥ pk� 1q2 we focus on the specific part of the Plancherel growth process

λpnq Õ � � � Õ λpn�ℓq. (3.2.3)

We will encode some partial information about the growths of the rows as well as about
the final Young diagram in (3.2.3) by the random vector

Vpnq �
�

Rpn�1q, . . . , Rpn�ℓq, λpn�ℓq
	
P N ℓ �Y. (3.2.4)

We also consider the random vector

Vpnq �
�

Rpn�1q, . . . , Rpn�ℓq, λ
pn�ℓq



P N ℓ �Y (3.2.5)

which is defined as a sequence of independent random variables; the random variables
Rpn�1q, . . . , Rpn�ℓq

have the same distribution given by

P

"
Rpn�iq � r

*
� 1?

n
for r P t0, . . . , ku, 1 ¤ i ¤ ℓ,

P

"
Rpn�iq � 8

*
� 1� k� 1?

n

and λ
pn�ℓq

is distributed according to the Plancherel measure Plann�ℓ; in particular the

random variables λpn�ℓq and λ
pn�ℓq

have the same distribution.

Heuristically, the following result states that when the Plancherel growth process is in
an advanced stage and we observe a relatively small number of its additional steps, the growths
of the bottom rows occur approximately like independent random variables. Additionally,
these growths do not affect too much the final shape of the Young diagram.

Theorem 3.2.2 ([MMŚ21b, Theorem 2.2]). With the above notations, for each fixed k P N0

the total variation distance between Vpnq and Vpnq
converges to zero, as n Ñ 8; more

specifically

δ

�
Vpnq, Vpnq



� o

�
ℓ?
n



.

3.3 Augmented Plancherel growth process

In this section we will introduce our main tool: the augmented Plancherel growth process
which keeps track of the position of a very large number in the insertion tableau when new
random numbers are inserted.
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3.3.1 Lazy parametrization of bumping routes

Our first step towards the proof of Theorem 3.1.2 is to introduce a more convenient parametriza-
tion of the bumping routes. In (3.1.3) we used y, the number of the row, as the variable which
parametrizes the bumping route. In the current section we will introduce the lazy parametriza-
tion.

Let us fix a (finite or infinite) standard Young tableau T and an integer m P N0. For
a given integer t ¥ m we denote by

l
lazy
T,m ptq �

�
xlazy

T,m ptq, ylazy
T,m ptq

	
the coordinates of the first box in the bumping route T ø m� 1{2 which contains an entry
of T which is bigger than t. If such a box does not exists, this means that the bumping route is
finite, and all boxes of the tableau T which belong to the bumping route are ¤ t. If this is the
case we define llazy

T,m ptq to be the last box of the bumping route, i.e. the box of the bumping
route which lies outside of T. We will refer to

t ÞÑ �
xlazy

T,m ptq, ylazy
T,m ptq

�
(3.3.1)

as the lazy parametrization of the bumping route.
For example, for the infinite tableau T from Figure 3.2a and m � 3 the usual parametriza-

tion of the bumping route is given by

Tøm�1{2pyq �

$'''''''&'''''''%

3 for y � 0,
2 for y � 1,
1 for y � 2,
1 for y � 3,
0 for y ¥ 4,

while its lazy counterpart is given by

l
lazy
T,m ptq �

�
xlazy

T,m ptq, ylazy
T,m ptq

	
�

$'''''''''''''''&'''''''''''''''%

p3, 0q for t P t3, 4, 5u,
p2, 1q for t P t6, 7, 8u,
p1, 2q for t � 9,
p1, 3q for t P t10, 11u,
p0, 4q for t � 12,
p0, 5q for t � 13,
p0, 6q for t P t14, 15, 16u,

...

Clearly, the set of values of the function (3.3.1) coincides with the bumping route under-
stood in the traditional way (3.1.3).

We denote by T|¤t the outcome of keeping only these boxes of T which are at most t.
Note that the element of the bumping route

l
lazy
T,m ptq � sh

�
T|¤t Ð m� 1{2� { sh

�
T|¤t

�
(3.3.2)

is the unique box of the difference of two Young diagrams on the right-hand side.
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3.3.2 Trajectory of 8

Let ξ � pξ1, ξ2, . . . q be a sequence of independent, identically distributed random variables
with the uniform distribution Up0, 1q on the unit interval r0, 1s and let m ¥ 0 be a fixed integer.
We will iteratively apply Schensted row insertion to the entries of the infinite sequence

ξ1, . . . , ξm,8, ξm�1, ξm�2, . . .

which is the initial sequence ξ with our favorite symbol 8 inserted at position m � 1.
(The Readers who are afraid of infinity may replace it by any number which is strictly
bigger than all of the entries of the sequence ξ.) Our goal is to investigate the position of
the box containing8 as a function of the number of iterations. More specifically, for an integer
t ¥ m we define

l
traj
m ptq � Pos8

�
Ppξ1, . . . , ξm,8, ξm�1, . . . , ξtq

�
(3.3.3)

to be the position of the box containing 8 in the appropriate insertion tableau. This problem
was formulated by Duzhin [Duz19]; the first asymptotic results in the scaling in which m Ñ8
and t � Opmq were found by Marciniak [Mar21]. In the current paper we go beyond this
scaling and consider m Ñ8 and t � O

�
m2

	
; the answer for this problem is essentially

contained in Theorem 3.4.3.
The following result shows a direct link between the above problem and the asymptotics

of bumping routes. This result also shows an interesting link between the papers [RŚ16] and
[Mar21].

Proposition 3.3.1. Let ξ1, ξ2, . . . be a (non-random or random) sequence and T � Qpξ1, ξ2, . . . q
be the corresponding recording tableau. Then for each m P N the bumping route in the lazy
parametrization coincides with the trajectory of 8 as defined in (3.3.3):

l
lazy
T,m ptq � l

traj
m ptq for each integer t ¥ m. (3.3.4)

We will provide two proofs of Proposition 3.3.1. The first one is based on the following
classic result of Schützengerger.

Fact 3.3.2 ([Sch63]). For any permutation σ the insertion tableau Ppσq and the recording
tableau Qpσ�1q, which corresponds to the inverse of σ, are equal.

The first proof of Proposition 3.3.1. Let π � pπ1, . . . , πtq P St be the permutation gener-
ated by the sequence pξ1, . . . , ξtq, that is the unique permutation such that for any choice of in-
dices i   j the condition πi   πj holds true if and only if ξi ¤ ξ j. Let π�1 � pπ�1

1 , . . . , π�1
t q

be the inverse of π. Since RSK depends only on the relative order of entries, the restricted
tableau T|¤t is equal to

T|¤t � Qpξ1, . . . , ξtq � Qpπq � Ppπ�1q. (3.3.5)
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By (3.3.2), (3.3.5) and Fact 3.3.2 it follows that

l
lazy
T,m ptq � sh

�
Ppπ�1q Ð m� 1{2

	
{ sh Ppπ�1q

� sh P
�

π�1
1 , . . . , π�1

t , m� 1{2
	
{ sh P

�
π�1

1 , . . . , π�1
t

	
� Post�1

�
Q
�

π�1
1 , . . . , π�1

t , m� 1{2
	


Fact 3.3.2� Post�1
�
Ppπ1, . . . , πm, t� 1, πm�1, . . . , πtq

�
� Pos8

�
Ppξ1, . . . , ξm,8, ξm�1, . . . , ξtq

�
� l

traj
m ptq

since the permutation pπ1, . . . , πm, t � 1, πm�1, . . . , πtq is the inverse of the permutation
generated by the sequence pπ�1

1 , . . . , π�1
t , m� 1{2q.

The above proof has an advantage of being short and abstract. The following alternative
proof highlights the ‘dynamic’ aspects of the bumping routes and the trajectory of infinity.

The second proof of Proposition 3.3.1. We use induction over the variable t.

The induction base t � m is quite easy: llazy
T,m pmq is the leftmost box in the bottom row

of T which contains a number which is bigger than m. This box is the first to the right of
the last box in the bottom row in the tableau Qpξ1, . . . , ξmq. On the other hand, since this
recording tableau has the same shape as the insertion tableau Ppξ1, . . . , ξmq, it follows that
l

traj
m pmq � l

lazy
T,m pmq and the proof of the induction base is completed.

We start with an observation that 8 is bumped in the process of calculating the row
insertion

Ppξ1, . . . , ξm,8, ξm�1, . . . , ξtq Ð ξt�1 (3.3.6)

if and only if the position of 8 at time t, that is ltraj
m ptq, is the unique box which belongs to

the skew diagram
RSKpξ1, . . . , ξt�1q{RSKpξ1, . . . , ξtq.

The latter condition holds true if and only if the entry of T located in the box ltraj
m ptq fulfills

T
l

traj
m ptq � t� 1.

In order to make the induction step we assume that the equality (3.3.4) holds true for some
t ¥ m. There are the following two cases.

Case 1. Assume that the entry of T located in the box llazy
T,m ptq is strictly bigger than t� 1.

In this case the lazy bumping route stays put and

l
lazy
T,m pt� 1q � l

lazy
T,m ptq.

By the induction hypothesis, the entry of T located in the boxltraj
m ptq � l

lazy
T,m ptq is bigger

than t� 1. By the previous discussion, 8 is not bumped in the process of calculating the row
insertion (3.3.6) hence

l
traj
m pt� 1q � l

traj
m ptq

and the inductive step holds true.

Case 2. Assume that the entry of T located in the boxllazy
T,m ptq is equal to t� 1. In this case

the lazy bumping route moves to the next row. It follows that llazy
T,m pt� 1q is the leftmost box
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of T in the row above llazy
T,m ptq which contains a number which is bigger than T

l
lazy
T,m ptq

� t� 1.

By the induction hypothesis, T
l

traj
m ptq � T

l
lazy
T,m ptq

� t� 1, so 8 is bumped in the process

of calculating the row insertion (3.3.6) to the next row r. The box ltraj
m pt� 1q is the first

to the right of the last box in the row r in RSKpξ1, . . . , ξt, ξt�1q. Clearly, this is the box in
the row r of T which has the least entry among those which are bigger than t� 1, so it is
the same as llazy

T,m pt� 1q.

3.3.3 Augmented Young diagrams. Augmented shape of a tableau

For the motivations and heuristics behind the notion of augmented Young diagrams see
Section 3.1.12.2.

A pair Λ � pλ,lq will be called an augmented Young diagram if λ is a Young diagram
and l is one of its outer corners, see Figure 3.9b. We will say that λ is the regular part of Λ
and that l is the special box of Λ.

The set of augmented Young diagrams will be denoted by Y� and for n P N0 we will
denote by Y�

n the set of augmented Young diagrams pλ,lq with the additional property that
λ has n boxes (which we will shortly denote by |λ| � n).

Suppose T is a tableau with the property that exactly one of its entries is equal to 8. We
define the augmented shape of T

sh� T �
�

sh
�
Tzt8u� , Pos8 T

	
P Y�,

as the pair which consists of (a) the shape of T after removal of the box with 8, and (b) the
location of the box with 8 in T, see Figure 3.9.

3.3.4 Augmented Young graph

The set Y� can be equipped with a structure of an oriented graph, called augmented Young
graph. We declare that a pair Λ Õ rΛ forms an oriented edge (with Λ � pλ,lq P Y� andrΛ � prλ, rlq P Y�) if the following two conditions hold true:

λ Õ rλ and rl �

$'''&'''%
the outer corner of rλ

which is in the row above l if rλ{λ � tlu ,

l otherwise,

(3.3.7)

see Figure 3.9 for an illustration. If Λ Õ rΛ (with Λ � pλ,lq P Y� and rΛ � prλ, rlq P Y�)
are such that l � rl (which corresponds to the first case on the right-hand side of (3.3.7)), we
will say that the edge Λ Õ rΛ is a bump.

The above definition was specifically tailored so that the following simple lemma holds
true.

Lemma 3.3.3. Assume that T is a tableau which has exactly one entry equal to 8 and let x
be some finite number. Then �

sh� T
�Õ �

sh�pT Ð xq� .
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16 37 41 82

23 53 8

74

(a) (b)

Figure 3.9: (a) Example of a tableau T which has exactly one entry equal
to 8. (b) The augmented shape sh� T � pλ,lq of the tableau T. The regular
part λ � p4, 2, 1q is shown as the Young diagram drawn with solid lines, the
position of the special box l � pxl, ylq � p2, 1q is marked as the decorated
box drawn with the dotted lines. With the notations of Section 3.4.2 this

augmented Young diagram corresponds to pxl, λq � p2, λq P N0 �Y.

Proof. Let T1 :� T{t8u be the tableau T with the box containing 8 removed. Denote
pλ,lq � sh� T and prλ, rlq � sh�pT Ð xq; their regular parts

λ � sh T1,rλ � sh
�
T1 Ð x

�
clearly fulfill λ Õ rλ.

The position rl of 8 in T Ð x is either:

• in the row immediately above the position l of 8 in T (this happens exactly if 8 was
bumped in the insertion T Ð x; equivalently if rλ{λ � tlu), or

• the same as the position l of 8 in T (this happens exactly when 8 was not bumped;
equivalently if rλ{λ � tlu).

Clearly these two cases correspond to the second condition in (3.3.7) which completes the
proof.

3.3.5 Lifting of paths

We consider the ‘covering map’ p : Y� Ñ Y given by taking the regular part

Y� Q pλ,lq pÞÝÑ λ P Y.

Lemma 3.3.4. For any Λpmq P Y� and any path in the Young graph

λpmq Õ λpm�1q Õ � � � P Y (3.3.8)

with a specified initial element λpmq � p
�
Λpmq� there exists the unique lifted path

Λpmq Õ Λpm�1q Õ � � � P Y�

in the augmented Young graph with the specified initial element Λpmq, and such that λptq �
p
�
Λptq� holds true for each t P tm, m� 1, . . . u.

Proof. From (3.3.7) it follows that for each pλ,lq P Y� and each rλ such that λ Õ rλ there
exists a unique rl such that pλ,lq Õ prλ, rlq. This shows that, given Λpiq, the value of
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Figure 3.10: A part of the augmented Young graph. For each vertex pλ,lq P
Y� the regular part λ is drawn with the solid line and the special box l is
indicated as a decorated dotted square. For clarity this figure shows only
the direct neighborhood of the augmented Young diagram pλ,lq with λ �
p4, 2, 1q and l � p2, 1q. The double thick arrows indicate the edges which

are bumps.

Λpi�1q is determined uniquely. This observation implies that the lemma can be proved by a
straightforward induction.

3.3.6 Augmented Plancherel growth process

We keep the notations from the beginning of Section 3.3.2, i.e., we assume that ξ �
pξ1, ξ2, . . . q is a sequence of independent, identically distributed random variables with
the uniform distribution Up0, 1q on the unit interval r0, 1s and m ¥ 0 is a fixed integer. We
consider a path in the augmented Young graph

Λpmq
m Õ Λpm�1q

m Õ � � � (3.3.9)

given by

Λptq
m � sh� Ppξ1, . . . , ξm,8, ξm�1, . . . , ξtq for any integer t ¥ m

(Lemma 3.3.3 shows that (3.3.9) is indeed a path in Y�). We will call (3.3.9) the augmented
Plancherel growth process initiated at time m. The coordinates of the special box of Λptq

m ��
λptq,lptq

m
�

will be denoted by

l
ptq
m � �

xptqm , yptqm
�
.

Theorem 3.3.5. The augmented Plancherel growth process initiated at time m is a Markov
chain with the transition probabilities given for any t ¥ m by

P
�

Λpt�1q
m � rΛ ��� Λptq

m � Λ
	
�

$&%P
�

λpt�1q � rλ ��� λptq � λ
	

if Λ Õ rΛ,

0 otherwise
(3.3.10)

for any Λ, rΛ P Y�, where λ is the regular part of Λ and rλ is the regular part of rΛ. These tran-
sition probabilities do not depend on the choice of m. The conditional probability on the right-
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hand side is the transition probability for the Plancherel growth process λp0q Õ λp1q Õ � � � .
Proof. The path (3.3.9) is the unique lifting (cf. Lemma 3.3.4) of the sequence of the regular
parts

λpmq Õ λpm�1q Õ � � � (3.3.11)

with the initial condition that the special box lpmq
m is the outer corner of λpmq which is located

in the bottom row. It follows that for any augmented Young diagrams Σm, . . . , Σt�1 P Y�

with the regular parts σm, . . . , σt�1 P Y

P
�

Λpmq
m � Σm, . . . , Λpt�1q

m � Σt�1

	
�

�

$''''''&''''''%

P
�

λpmq � σm, . . . , λpt�1q � σt�1

	
if Σm Õ � � � Õ Σt�1 and

the special box of Σm

is in the bottom row,

0 otherwise.

(3.3.12)

The sequence of the regular parts (3.3.11) forms the usual Plancherel growth process (with
the first m entries truncated) hence it is a Markov chain (the proof that the usual Plancherel
growth process is a Markov chain can be found in [Ker99, Sections 2.2 and 2.4]). It follows
that the probability on the top of the right-hand side of (3.3.12) can be written in the product
form in terms of the probability distribution of λpmq and the transition probabilities for the
Plancherel growth process.

We compare (3.3.12) with its counterpart for t :� t� 1; this shows that the conditional
probability

P
�

Λpt�1q
m � Σt�1

��� Λpmq
m � Σm, . . . , Λptq

m � Σt

	
is equal to the right-hand side of (3.3.10) for rΛ :� Σt�1 and Λ :� Σt. In particular, this
conditional probability does not depend on the values of Σm, . . . , Σt�1 and the Markov
property follows.

The special box in the augmented Plancherel growth process can be thought of as a test
particle which provides some information about the local behavior of the usual Plancherel
growth process. From this point of view it is reminiscent of the second class particle in the
theory of interacting particle systems or jeu de taquin trajectory for infinite tableaux [RŚ15].

3.3.7 Probability distribution of the augmented Plancherel growth process

Proposition 3.3.6 and Proposition 3.3.9 below provide information about the probability
distribution of the augmented Plancherel growth process at time t for t Ñ8 in two distinct
asymptotic regimes: very soon after the augmented Plancherel process was initiated (that is
when t � m�Op?mq, cf. Proposition 3.3.6) and after a very long time after the augmented
Plancherel process was initiated (that is when t � Θpm2q " m, cf. Proposition 3.3.9).

Proposition 3.3.6. Let z ¡ 0 be a fixed positive number and let t � tpmq be a sequence of
positive integers such that tpmq ¥ m and with the property that

lim
mÑ8

t�m?
t
� z.

Let Λpmq
m Õ Λpm�1q

m Õ � � � be the augmented Plancherel growth process initiated at time m.
We denote Λptq

m � �
λptq,lptq

m
�
; let lptq

m � �
xptqm , yptqm

�
be the coordinates of the special box
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of Λptq
m .

a) The probability distribution of yptqm converges, as m Ñ8, to the Poisson distribution
Poispzq with parameter z.

b) For each k P N0 the total variation distance between

• the conditional probability distribution of λptq under the condition that yptqm � k,
and

• the Plancherel measure Plant

converges to 0, as m Ñ8.

c) The total variation distance between

• the probability distribution of the random vector�
λptq, yptqm

	
P Y�N0 (3.3.13)

and

• the product measure
Plant �Poispzq

converges to 0, as m Ñ8.

Let us fix an integer k ¥ 0. We use the notations from Section 3.2.2 for n :� m and
ℓ � t�m so that n� ℓ � t; we assume that m is big enough so that m ¥ pk� 1q2. Our
general strategy is to read the required information from the vector Vpnq given by (3.2.4) and
to apply Theorem 3.2.2. Before the proof of Proposition 3.3.6 we start with the following
auxiliary result.

For s ¥ m we define the random variable ypsqm ÓN PN by

ypsqm ÓN �
$&%ypsqm if ypsqm P t0, 1, . . . , ku,
8 otherwise.

We also define the random variable Fs P t0, . . . , ku by

Fs �
$&%ypsqm ÓN if ypsqm ÓN� 8,

arbitrary element of t0, . . . , ku otherwise.

Lemma 3.3.7. For each s ¥ m the value of Fs can be expressed as an explicit function of
the entries of the sequence R related to the past, that is

Rpm�1q, . . . , Rpsq.

For any integer p P t0, . . . , ku the equality ypsqm � p holds true if and only if there are
exactly p values of the index u P tm� 1, . . . , su with the property that

Rpuq � Fu�1. (3.3.14)

The inequality ypsqm ¡ k holds if and only if there are at least k� 1 values of the index
u P tm� 1, . . . , su with this property.
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Proof. There are exactly ypsqm edges which are bumps in the path

Λpmq Õ � � � Õ Λpsq (3.3.15)

because each bump increases the y-coordinate of the special box by 1. Note that an edge
Λpu�1q Õ Λpuq in this path is a bump if and only if

the event Epuqr occurs for the row r � ypu�1q
m . (3.3.16)

If ypsqm ¤ k then for any u P tm� 1, . . . , su the equality Fu � ypuqm holds true; furthermore
the event (3.3.16) occurs if and only if Rpuq � ypu�1q

m . It follows that there are exactly ypsqm
values of the index u P tm� 1, . . . , su such that (3.3.14) holds true.

On the other hand, if ypsqm ¡ k we can apply the above reasoning to the truncation of the
path (3.3.15) until after the pk� 1q-st bump occurs. It follows that in this case there are at
least k� 1 values of the index u P tm� 1, . . . , su with the property (3.3.14). In this way we
proved the second part of the lemma.

By the second part of the lemma, the value of ypsqm ÓN can be expressed as an explicit
function of both (i) the previous values

ypmqm ÓN , . . . , yps�1q
m ÓN , (3.3.17)

and (ii) the entries of the sequence R related to the past, that is

Rpm�1q, . . . , Rpsq. (3.3.18)

By iteratively applying this observation to the previous values (3.3.17) it is possible to express
the value of ypsqm ÓN purely in terms of (3.3.18). Also the value of

Fs � Fs

�
Rpm�1q, . . . , Rpsq

	
can be expressed as a function of the entries of the sequence R related to the past, as required.

Proof of Proposition 3.3.6. Lemma 3.3.7 shows that the event yptqm � k can be expressed in
terms of the vector Vpnq given by (3.2.4). We apply Theorem 3.2.2; it follows that the proba-
bility P

!
yptqm � k

)
is equal, up to an additive error term op1q, to the probability that there are

exactly k values of the index u P tm� 1, . . . , tu with the property that

Rpuq � Fu�1

�
Rpm�1q, . . . , Rpu�1q



. (3.3.19)

We denote by Au the random event that the equality (3.3.19) holds true.

Let i1   � � �   il be an increasing sequence of integers from the set tm� 1, . . . , tu for
l ¥ 1. We will show that

P
�

Ai1 X � � � X Ail

� � 1?
m

P
�

Ai1 X � � � X Ail�1

	
. (3.3.20)

Indeed, by Lemma 3.3.7, the event Ai1 X � � � X Ail�1 is a disjoint finite union of some random
events of the form

Brm�1,...,rj �
"

Rpm�1q � rm�1, Rpm�2q � rm�2, . . . , Rpjq � rj

*
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over some choices of rm�1, rm�2, . . . , rj P N , where j :� il � 1. Since the random variables�
Rpiq�

are independent, it follows that

P
�

Brm�1,...,rj X Ail

	
� 1?

m
P
�

Brm�1,...,rj

	
. (3.3.21)

By summing over the appropriate values of rm�1, . . . , rj P N the equality (3.3.20) follows.
By iterating (3.3.20) it follows that the events Am�1, . . . , At are independent and each

has equal probability 1?
m .

By the Poisson limit theorem [Dur10, Theorem 3.6.1] the probability of k successes in ℓ
Bernoulli trials as above converges to the probability of the atom k in the Poisson distribution
with the intensity parameter equal to

lim
mÑ8

ℓ?
m
� lim

mÑ8
t�m?

t
� z

which concludes the proof of part a).

The above discussion also shows that the conditional probability distribution considered
in point b) is equal to the conditional probability distribution of the last coordinate λptq

of the vector Vpnq under certain condition which is expressed in terms of the coordinates
Rpm�1q, . . . , Rptq. By Theorem 3.2.2 this conditional probability distribution is in the dis-
tance op1q (with respect to the total variation distance) to its counterpart for the random
vector Vpnq

. The latter conditional probability distribution, due to the independence of the
coordinates of Vpnq

, is equal to the Plancherel measure Plant, which concludes the proof
of b).

Part c) is a direct consequence of parts a) and b).

For an augmented Young diagram Λ � �
λ, px, yq� we define its transpose ΛT ��

λT, py, xq�.

Lemma 3.3.8. For any integers m, m1 ¥ 0 the probability distributions at time t � m�m1

of the augmented Plancherel growth processes initiated at times m and m1 respectively are
related by

Λptq
m

d�
�
Λptq

m1

�T
.

Proof. Without loss of generality we may assume that the random variables ξ1, . . . , ξt are
distinct real numbers. An application of Greene’s theorem [Gre74, Theorem 3.1] shows that
the insertion tableaux which correspond to a given sequence of distinct numbers and this
sequence read backwards

Ppξ1, . . . , ξm,8, ξm�1, . . . , ξtq �
�
Ppξt, ξt�1, . . . , ξm�1,8, ξm, ξm�1, . . . , ξ1q

�T

are transposes of one another. It follows that also the augmented shapes are transposes of one
another:

Λptq
m � sh� Ppξ1, . . . , ξm,8, ξm�1, . . . , ξtq ��

sh� Ppξt, ξt�1, . . . , ξm�1looooooooomooooooooon
m1 entries

,8, ξm, ξm�1, . . . , ξ1q
�T

.
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Since the sequence pξiq and its any permutation
�

ξσpiq
	

have the same distributions, the

right-hand side has the same probability distribution as
�
Λptq

m1

�T
, as required.

Proposition 3.3.9. Let z ¡ 0 be a fixed real number. Let t � tpmq be a sequence of positive
integers such that tpmq ¥ m and with the property that

lim
mÑ8

m?
t
� z.

Let Λpmq
m Õ Λpm�1q

m Õ � � � be the augmented Plancherel growth process initiated at time m.
We denote Λptq

m � �
λptq,lptq

m
�
; let lptq

m � �
xptqm , yptqm

�
be the coordinates of the special box at

time t.
The total variation distance between

• the probability distribution of the random vector�
xptqm , λptq

	
P N0 �Y (3.3.22)

and

• the product measure
Poispzq � Plant

converges to 0, as m Ñ8.

Proof. By Lemma 3.3.8 the probability distribution of (3.3.22) coincides with the probability
distribution of �

yptqm1 ,
�
λptq

�T
	

(3.3.23)

for m1 :� t � m. The random vector (3.3.23) can be viewed as the image of the vector�
yptqm1 , λptq

�
under the bijection

id�T : py, λq ÞÑ py, λTq.

By Proposition 3.3.6 it follows that the total variation distance between (3.3.23) and the
push-forward measure

pid�Tq �Poispzq � Plant
� � Poispzq � Plant

converges to zero as m Ñ8; the last equality holds since the Plancherel measure is invariant
under transposition.

3.3.8 Lazy version of Proposition 3.1.9. Proof of Proposition 3.1.1

In Section 3.1.7 we parametrized the shape of the bumping route by the sequence Y0, Y1, . . .
which gives the number of the row in which the bumping route reaches a specified column,
cf. (3.1.9). With the help of Proposition 3.3.1 we can define the lazy counterpart of these
quantities: for x, m P N0 we denote by

Trms
x � Tx � min

!
t : xptqm ¤ x

)
the time it takes for the bumping route (in the lazy parametrization) to reach the specified
column.

The following result is the lazy version of Proposition 3.1.9.



3.4. Transition probabilities for the augmented Plancherel growth process 69

Lemma 3.3.10. For each integer m ¥ 1

lim
uÑ8

?
u P

!
Trms

0 ¡ u
)
� m.

Proof. By Lemma 3.3.8, for any u P N0

P
!

Trms
0 ¡ u

)
� P

!
xpuqm ¥ 1

)
� P

!
ypuqu�m ¥ 1

)
.

In the special case m � 1 the proof is particularly easy: the right-hand side is equal to
P
�

Epuq0

	
and Proposition 3.2.1 provides the necessary asymptotics.

For the general case m ¥ 1 we use the notations from Section 3.2.2 for k � 0, and
n � u�m, and ℓ � m. The event ypuqu�m ¥ 1 occurs if and only if at least one of the numbers
Rpn�1q, . . . , Rpn�ℓq is equal to 0. We apply Theorem 3.2.2; it follows that the probability of
the latter event is equal, up to an additive error term of the order o

�
m?

u�m

	
� o

�
1?
u

	
, to

the probability that in m Bernoulli trials with success probability 1?
n there is at least one

success. In this way we proved that

P
!

ypuqu�m ¥ 1
)
� m?

u
� o

�
1?
u



,

as desired.

Proof of Proposition 3.1.1. Since Yrms
0 ¥ Yrms

1 ¥ � � � is a weakly decreasing sequence, it is
enough to consider the case x � 0. We apply Lemma 3.3.10 in the limit u Ñ8. It follows
that the probability that the bumping route T ø m� 1{2 does not reach the column with the
index 0 is equal to

lim
uÑ8P

!
Trms

0 ¥ u
)
� 0,

as required.

3.4 Transition probabilities for the augmented Plancherel growth
process

Our main result in this section is Theorem 3.4.3. It will be the key tool for proving the main
results of the current paper.

3.4.1 Approximating Bernoulli distributions by linear combinations of Poisson
distributions

The following Lemma 3.4.1 is a technical result which will be necessary later in the proof of
Proposition 3.4.2. Roughly speaking, it gives a positive answer to the following question: for
a given value of k P N0, can the point measure δk be approximated by a linear combination
of the Poisson distributions in some explicit, constructive way? A naive approach to this
problem would be to consider a scalar multiple of the Poisson distribution ez Poispzq which
corresponds to the sequence of weights

N0 Q m ÞÑ 1
m!

zm

and then to consider its k-th derivative with respect to the parameter z for z � 0. This is not
exactly a solution to the original question (the derivative is not a linear combination), but since
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the derivative can be approximated by the forward difference operator, this naive approach
gives a hint that an expression such as (3.4.1) in the special case p � 1 might be, in fact,
a good answer.

Lemma 3.4.1. Let us fix an integer k ¥ 0 and a real number 0 ¤ p ¤ 1. For each h ¡ 0
the linear combination of the Poisson distributions

νk,p,h :� 1�
eh � 1

�k

¸
0¤j¤k

p�1qk�j
�

k
j



ejh Poisppjhq (3.4.1)

is a probability measure on N0.
As h Ñ 0, the measure νk,p,h converges (in the sense of total variation distance) to

the binomial distribution Binompk, pq.
Proof. The special case p � 1. For a function f on the real line we consider its forward
difference function ∆r f s given by

∆r f spxq � f px� 1q � f pxq.

It follows that the iterated forward difference is given by

∆kr f spxq �
¸

0¤j¤k

p�1qj
�

k
j



f px� k� jq.

A priori, νk,1,h is a signed measure with the total mass equal to

1�
eh � 1

�k

¸
0¤j¤k

p�1qk�j
�

k
j



ejh � 1�

eh � 1
�k ∆k

�
ehx

�
p0q. (3.4.2)

The right-hand side of (3.4.2) is equal to 1, since the forward difference of an exponential
function is again an exponential:

∆
�
ehx

�
�

�
eh � 1

	
ehx.

The atom of νk,1,h at an integer m ¥ 0 is equal to

νk,1,hpmq �
1�

eh � 1
�k m!

¸
0¤j¤k

p�1qk�j
�

k
j



pjhqm � hm�

eh � 1
�k m!

∆k �xm� p0q.
Note that the monomial xm can be expressed in terms of the falling factorials xp with
the coefficients given by the Stirling numbers of the second kind:

xm �
¸

0¤p¤m

"
m
p

*
xp ,

hence

∆k �xm� �¸
p

"
m
p

*
∆k �xp� � ¸

p¥k

"
m
p

*
pk xp�k.

When we evaluate the above expression at x � 0, there is only one non-zero summand

∆k �xm� p0q � "
m
k

*
k!.
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Thus

νk,1,hpmq �
hmk!�

eh � 1
�k m!

"
m
k

*
¥ 0,

and the above expression is non-zero only for m ¥ k. All in all, νk,1,h is a probability measure
on N0, as required.

It follows that the total variation distance between Binompk, 1q � δk and νk,1,h is equal to

8̧

i�0

�
δkpiq � νk,1,hpiq

�� � 1� νk,1,hpkq � 1� hk�
eh � 1

�k
hÑ0ÝÝÑ 0,

as required.

The general case. For a signed measure µ which is supported on N0 and 0 ¤ p ¤ 1 we
define the signed measure Cprµs on N0 by

Cprµspkq �
¸
j¥k

µpjq
�

j
k



pkp1� pqj�k.

In the case when µ is a probability measure, Cprµs has a natural interpretation as the probability
distribution of a compound binomial random variable BinompM, pq, where M is a random
variable with the probability distribution given by µ.

It is easy to check that for any 0 ¤ q ¤ 1 the image of a binomial distribution

CprBinompn, qqs � Binompn, pqq

is again a binomial distribution, and for any λ ¥ 0 the image of a Poisson distribution

CprPoispλqs � Poisppλq

is again a Poisson distribution. Since Cp is a linear map, by the very definition (3.4.1) it
follows that

Cprνk,1,hs � νk,p,h; (3.4.3)

in particular the latter is a probability measure, as required. By considering the limit h Ñ 0 of
(3.4.3) we get

lim
hÑ0

νk,p,h � Cp
�
Binompk, 1q� � Binompk, pq

in the sense of total variation distance, as required.

3.4.2 The inclusion Y� � N0 �Y

We will extend the meaning of the notations from Section 3.3.3 to a larger set. The map

Y� Q pλ,lq ÞÑ pxl, λ q P N0 �Y, (3.4.4)

where l � pxl, ylq, allows us to identify Y� with a subset of N0 �Y. For a pair px, λq P
N0 �Y we will say that λ is its regular part.

We define the edges in this larger set N0 �Y � Y� as follows: we declare that px, λq Õ
prx, rλq if the following two conditions hold true:

λ Õ rλ and rx �
$''&''%

max
!rλi : rλi ¤ x

)
if the unique box of rλ{λ

is located in the column x,

x otherwise.

(3.4.5)
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In this way the oriented graph Y� is a subgraph of N0 �Y.
An analogous lifting property as in Lemma 3.3.4 remains valid if we assume that the initial

element Λpmq P N0 �Y and the elements of the lifted path

Λpmq Õ Λpm�1q Õ � � � P N0 �Y

are allowed to be taken from this larger oriented graph.
With these definitions the transition probabilities (3.3.10) also make sense if Λ, rΛ P

N0 �Y are taken from this larger oriented graph and can be used to define Markov chains
valued in N0 �Y.

3.4.3 Transition probabilities for augmented Plancherel growth processes

For the purposes of the current section we will view Y� as a subset of N0 �Y, cf. (3.4.4).
In this way the augmented Plancherel growth process initiated at time m, cf. (3.3.9), can be
viewed as the aforementioned Markov chain��

xptqm , λptq
�	

t¥m
(3.4.6)

valued in N0 �Y.
Let us fix some integer n P N0. For each integer m P t0, . . . , nu we may remove some

initial entries of the sequence (3.4.6) and consider the Markov chain��
xptqm , λptq

�	
t¥n

(3.4.7)

which is indexed by the time parameter t ¥ n. In this way we obtain a whole family of
Markov chains (3.4.7) indexed by an integer m P t0, . . . , nu which have the same transition
probabilities (3.3.10).

The latter encourages us to consider a general class of Markov chains��
xptq, λptq

�	
t¥n

(3.4.8)

valued in N0 �Y � Y�, for which the transition probabilities are given by (3.3.10) and for
which the initial probability distribution of

�
xpnq, λpnq

�
can be arbitrary. We will refer to each

such a Markov chain as augmented Plancherel growth process.

Proposition 3.4.2. Let an integer k P N0 and a real number 0   p   1 be fixed, and let
n1 � n1pnq be a sequence of integers such that n1 ¥ n and

lim
nÑ8

c
n
n1
� p.

For a given integer n ¥ 0 let (3.4.8) be an augmented Plancherel growth process with
the initial probability distribution at time n given by

δk � Plann .

Then the total variation distance

δ

"�
xpn

1q, λpn
1q
	

, Binom
�
k, p

�� Plann1

*
(3.4.9)

converges to 0, as n Ñ8.
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Proof. Let ϵ ¡ 0 be given. By Lemma 3.4.1 there exists some h ¡ 0 with the property that
for each q P t1, pu the total variation distance between the measure νk,q,h defined in (3.4.1)
and the binomial distribution Binompk, qq is bounded from above by ϵ.

Let T be a map defined on the set of probability measures on N0 �Yn in the following
way. For a probability measure µ on N0 �Yn consider the augmented Plancherel growth
process (3.4.8) with the initial probability distribution at time n given by µ and define Tµ to be
the probability measure on N0 �Yn1 which gives the probability distribution of

�
xpn

1q, λpn
1q�

at time n1.
It is easy to extend the map T so that it becomes a linear map between the vector space

of signed measures on N0 �Yn and the vector space of signed measures on N0 �Yn1 . We
equip both vector spaces with a metric which corresponds to the total variation distance. Then
T is a contraction because of Markovianity of the augmented Plancherel growth process.

For m P t0, . . . , nu and t ¥ n we denote by µmptq the probability measure on N0 �Y,
defined by the probability distribution at time t of the augmented Plancherel growth process�
xptqm , λptq

�
initiated at time m. For the aforementioned value of h ¡ 0 we consider the signed

measure on N0 �Yt given by the linear combination

Pptq :� 1�
eh � 1

�k

¸
0¤j¤k

p�1qk�j
�

k
j



ejhµtjh

?
nuptq

(which is well-defined for sufficiently big values of n which assure that kh
?

n   n ¤ t).
We apply Proposition 3.3.9; it follows that for any j P t0, . . . , ku the total variation

distance between µtjh
?

nupnq and the product measure

Poispjhq � Plann

converges to 0, as n Ñ 8; it follows that the total variation distance between Ppnq and
the product measure

νk,1,h � Plann (3.4.10)

converges to 0, as n Ñ8. On the other hand, the value of h ¡ 0 was selected in such a way
that the total variation distance between the probability measure (3.4.10) and the product
measure

δk � Plann (3.4.11)

is smaller than ϵ. In this way we proved that

lim sup
nÑ8

δ
!

Ppnq, δk � Plann

)
¤ ϵ.

An analogous reasoning shows that

lim sup
nÑ8

δ
!

Ppn1q, Binompk, pq � Plann1
)
¤ ϵ.

The image of Ppnq under the map T can be calculated by linearity of T:

Ppn1q � TPpnq.

By the triangle inequality and the observation that the map T is a contraction,

(3.4.9) ¤ δ

"�
xpn

1q, λpn
1q
	

, Ppn1q
*
� ϵ ¤ δ

"�
xpnq, λpnq

	
, Ppnq

*
� ϵ ¤ 2ϵ



74 Chapter 3. Poisson limit of bumping routes

holds true for sufficiently big values of n, as required.

3.4.4 Bumping route in the lazy parametrization converges to the Poisson
process

Let
�

Nptq : t ¥ 0
�

denote the Poisson counting process which is independent from the
Plancherel growth process λp0q Õ λp1q Õ � � � . The following result is the lazy version
of Theorem 3.1.5.

Theorem 3.4.3. Let l ¥ 1 be a fixed integer, and z1 ¡ � � � ¡ zl be a fixed sequence of positive
real numbers.

Let Λpmq
m Õ Λpm�1q

m Õ � � � be the augmented Plancherel growth process initiated at
time m. We denote Λptq

m � �
λptq,lptq

m
�
; letlptq

m � �
xptqm , yptqm

�
be the coordinates of the special

box at time t.
For each 1 ¤ i ¤ l let ti � tipmq be a sequence of positive integers such that

lim
mÑ8

m?
ti
� zi.

We assume that t1 ¤ � � � ¤ tl . Then the total variation distance between

• the probability distribution of the vector�
xpt1q

m , . . . , xptlq
m , λptlq

	
, (3.4.12)

and

• the probability distribution of the vector�
Npz1q, . . . , Npzlq, λptlq

	
(3.4.13)

converges to 0, as m Ñ8.

Proof. We will perform the proof by induction over l. Its main idea is that the collection of
the random vectors (3.4.12) over l P t1, 2, . . . u forms a Markov chain; the same holds true
for the analogous collection of the random vectors (3.4.13). We will compare their initial
probability distributions (thanks to Proposition 3.3.9) and — in a very specific sense — we will
compare the kernels of these Markov chains (with Proposition 3.4.2). We present the details
below.

The induction base l � 1 coincides with Proposition 3.3.9.

We will prove now the induction step. We start with the probability distribution of the vec-
tor (3.4.12) (with the substitution l :� l � 1). Markovianity of the augmented Plancherel
growth process implies that this probability distribution is given by

P

"�
xpt1q

m , . . . , xptl�1q
m , λptl�1q

	
� px1, . . . , xl�1, λq

*
�¸

µPYtl

P

"�
xpt1q

m , . . . , xptlq
m , λptlq

	
� px1, . . . , xl , µq

*
�

�P

"�
xptl�1q

m , λptl�1q
	
� �

xl�1, λ
� ���� �xptlq

m , λptlq
	
� �

xl , µ
�*

(3.4.14)
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for any x1, . . . , xl�1 P N0 and λ P Y. We define the probability measure Q on Nl�1
0 �Y

which to a tuple
�
x1, . . . , xl�1, λ

�
assigns the probability

Q
�
x1, . . . , xl�1, λ

�
:�¸

µPYtl

P
!�

Npz1q, . . . , Npzlq
� � px1, . . . , xlq

)
� Plantlpµq�

�P

"�
xptl�1q

m , λptl�1q
	
� �

xl�1, λ
� ���� �xptlq

m , λptlq
	
� �

xl , µ
�*

. (3.4.15)

In the light of the general definition (3.4.8) of the augmented Plancherel growth process,
the measures (3.4.14) and (3.4.15) on Nl�1

0 �Y can be viewed as applications of the same
Markov kernel (which correspond to the last factors on the right-hand side of (3.4.14) and
(3.4.15))

P

"�
xptl�1q

m , λptl�1q
	
� �

xl�1, λ
� ���� �xptlq

m , λptlq
	
� �

xl , µ
�*

, µ P Ytl ,

to two specific initial probability distributions. Since such an application of a Markov kernel is
a contraction (with respect to the total variation distance), we proved in this way that the total
variation distance between (3.4.14) and (3.4.15) is bounded from above by the total variation
distance between the initial distributions, that is the random vectors (3.4.12) and (3.4.13). By
the inductive hypothesis the total variation distance between the measures P and Q converges
to zero as m Ñ8. The remaining difficulty is to understand the asymptotic behavior of the
measure Q.

Observe that the sum on the right hand side of (3.4.15)

¸
µPYtl

Plantlpµq �P

"�
xptl�1q

m , λptl�1q
	
� �

xl�1, λ
� ���� �xptlq

m , λptlq
	
� �

xl , µ
�* �

� P

"�
xpn

1q, λpn
1q
	
� �

xl�1, λ
� ���� �xpnq, λpnq

	
d� δk � Plann

*
(3.4.16)

is the probability distribution of the random vector
�
xpn

1q, λpn
1q� which appears in Proposi-

tion 3.4.2 with n1 � tl�1, and n � tl , and p � zl�1
zl

, and k � xl . Therefore we proved that
the measure Q is in an op1q-neighborhood of the following probability measure

Q1 �x1, . . . , xl�1, λ
�

:�
P
!�

Npz1q, . . . , Npzlq
� � px1, . . . , xlq

)
�

� Plann1pλq Binom
�

xl ,
zl�1

zl



pxl�1q. (3.4.17)

It is easy to check that

P
�

Npzl�1q � xl�1
�� Npzlq � xl

� � Binom
�

xl ,
zl�1

zl



pxl�1q.

Hence the probability of the binomial distribution which appears as the last factor on the right-
hand side of (3.4.17) can be interpreted as the conditional probability distribution of the
Poisson process in the past, given its value in the future.

We show that the Poisson counting process with the reversed time is also a Markov process.
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Since the Poisson counting process has independent increments, the probability of the event�
Npz1q, . . . , Npzlq

� � px1, . . . , xlq

can be written as a product; an analogous observation is valid for l :� l � 1. Due to
cancellations of the factors which contribute to the numerator and the denominator, the
following conditional probability can be simplified:

P
�

Npzl�1q � xl�1

��� �Npz1q, . . . , Npzlq
� � px1, . . . , xlq

	
�

�
P
!�

Npz1q, . . . , Npzl�1q
� � px1, . . . , xl�1q

)
P
!�

Npz1q, . . . , Npzlq
� � px1, . . . , xlq

) �

� P
�

Npzlq � xl ^ Npzl�1q � xl�1
�

P
�

Npzlq � xl
� �

� P
�

Npzl�1q � xl�1
�� Npzlq � xl

�
.

By combining the above observations with (3.4.17) it follows that

Q1 �x1, . . . , xl�1, λ
� � P

!�
Npz1q, . . . , Npzl�1q

� � px1, . . . , xl�1q
)

Plantl�1pλq

is the probability distribution of (3.4.13) (with the obvious substitution l :� l � 1) which
completes the inductive step.

3.4.5 Lazy version of Remark 3.1.3

The special case l � 0 of the following result seems to be closely related to a very recent work
of Azangulov and Ovechkin [AO20] who used different methods.

Proposition 3.4.4. Let pψiq be a sequence of independent, identically distributed random
variables with the exponential distribution Expp1q.

For each l P N0 the joint distribution of the finite tuple of random variables��� mb
Trms

0

, . . . ,
mb
Trms

l

�� (3.4.18)

converges, as m Ñ8, to the joint distribution of the sequence of partial sums�
ψ0, ψ0 � ψ1, . . . , ψ0 � ψ1 � � � � � ψl

�
.

Proof. For any s0, . . . , sl ¡ 0 the cumulative distribution function of the random vector
(3.4.18)

P

��� mb
Trms

0

  s0, . . . ,
mb
Trms

l

  sl

���
P
�

xpt0q
m ¡ 0, xpt1q

m ¡ 1, . . . , xptlq
m ¡ l

	
(3.4.19)
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can be expressed directly in terms of the cumulative distribution of the random vector�
xpt0q

m , . . . , xptlq
m

	
with

ti � tipmq �
[�

m
si


2
_

.

Theorem 3.4.3 shows that the right-hand side of (3.4.19) converges to

P
�

Nps0q ¡ 0, Nps1q ¡ 1, . . . , Npslq ¡ l
	
�

P
�

ψ0 ¤ s0, ψ0 � ψ1 ¤ s1, . . . , ψ0 � � � � � ψl ¤ sl

	
,

where
ψi � inf

!
t : Nptq ¥ i� 1

)
� inf

!
t : Nptq ¥ i

)
, i P N0,

denote the time between the jumps of the Poisson process. Since pψ0, ψ1, . . . q form a sequence
of independent random variables with the exponential distribution, this concludes the proof.

3.4.6 Conjectural generalization

We revisit Section 3.3.2 with some changes. This time let

ξ � p. . . , ξ�2, ξ�1, ξ0, ξ1, . . . q

be a doubly infinite sequence of independent, identically distributed random variables with the
uniform distribution Up0, 1q on the unit interval r0, 1s. Let us fix m P R�. For s, t P R� we
define

�
xmps, tq, ymps, tq� � Pos8

��P

�
ξ�tmsu, . . . , ξ�2, ξ�1,8, ξ1, ξ2, . . . , ξYm2

t2

]
��.

Let N denote the Poisson point process with the uniform unit intensity on R2�. For
s, t P R� we denote by

Ns,t � N
�r0, ss � r0, ts�

the number of sampled points in the specified rectangle.

Conjecture 3.4.5. The random function

R2
� Q ps, tq ÞÑ xmps, tq (3.4.20)

converges in distribution to Poisson point process

R2
� Q ps, tq ÞÑ Ns,t (3.4.21)

in the limit as m Ñ8.

Note that the results of the current paper show the convergence of the marginals which
correspond to (a) fixed value of s and all values of t ¡ 0 (cf. Theorem 3.4.3), or (b) fixed
value of t and all values of s ¡ 0 (this is a corollary from the proof of Proposition 3.3.9).

It is a bit discouraging that the contour curves obtained in computer experiments (see
Figure 3.11) do not seem to be counting the number of points from some set which belong to
a specified rectangle, see Figure 3.12 for comparison. On the other hand, maybe the value
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Figure 3.11: Computer simulation of the level curves of the function (3.4.20)
for m � 100. A part of the plot which corresponds to small values of t was

not shown due to restrictions on the computation time.

of m used in our experiments was not big enough to reveal the asymptotic behavior of these
curves.

3.5 Removing laziness

Most of the considerations above concerned the lazy parametrization of the bumping routes. In
this section we will show how to pass to the parametrization by the row number and, in this way,
to prove the remaining claims from Section 3.1 (that is Theorem 3.1.2 and Proposition 3.1.9).

3.5.1 Proof of Proposition 3.1.9

Our general strategy in this proof is to use Lemma 3.3.10 and to use the observation that a
Plancherel-distributed random Young diagram with n boxes has approximately 2

?
n columns

in the scaling when n Ñ8.

Proof of Proposition 3.1.9. We denote by cpnq the number of rows (or, equivalently, the length
of the leftmost column) of the Young diagram λpnq. Our proof will be based on an observation
(recall Proposition 3.3.1) that

Yrms
0 � c

�
Trms0

	
.

Let ϵ ¡ 0 be fixed. Since cpnq has the same distribution as the length of the bottom row
of a Plancherel-distributed random Young diagram with n boxes, the large deviation results
[DZ99; Sep98] show that there exists a constant Cϵ ¡ 0 such that

P

�
sup
n¥n0

�����cpnq?
n
� 2

����� ¡ ϵ

�
¤

¸
n¥n0

P

������cpnq?
n
� 2

����� ¡ ϵ

�
¤

¸
n¥n0

e�Cϵ
?

n � O
�

e�Cϵ
?

n0
	
¤ o

�
1
n0



(3.5.1)
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Figure 3.12: Computer simulation of the level curves of the function (3.4.21)
for Poisson point process.

in the limit as n0 Ñ8.

Consider an arbitrary integer y ¥ 1. Assume that (i) the event on the left-hand side of
(3.5.1) does not hold true for n0 :� y, and (ii) Yrms

0 ¥ y. Since Trms
0 ¥ Yrms

0 ¥ y it follows
that �������

Yrms
0b
Trms

0

� 2

������� �
�������
c
�

Trms0

	
b

Trms
0

� 2

������� ¤ ϵ

hence

Trms
0 ¥

�
y

2� ϵ


2

. (3.5.2)

By considering two possibilities: either the event on the left-hand side of (3.5.1) holds
true for n0 :� y or not, it follows that

P
!

Yrms
0 ¥ y

)
¤ o

�
1
y

�
�P

#
Trms

0 ¥
�

y
2� ϵ


2
+

.

Lemma 3.3.10 implies therefore that

P
!

Yrms
0 ¥ y

)
¤ p2� ϵqm

y
� o

�
1
y

�

which completes the proof of the upper bound.

For the lower bound, assume that (i) the event on the left-hand side of (3.5.1) does not
hold true for

n0 :�
S�

y
2� ϵ


2
W
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and (ii) Trms
0 ¥ n0. In an analogous way as in the proof of (3.5.2) it follows that

Yrms
0 ¥ p2� ϵq

b
Trms

0 ¥ p2� ϵq?n0 ¥ y.

By considering two possibilities: either the event on the left-hand side of (3.5.1) holds
true or not, it follows that that

P
!

Trms
0 ¥ n0

)
¤ o

�
1
y

�
�P

!
Yrms

0 ¥ y
)

.

Lemma 3.3.10 implies therefore that

P
!

Yrms
0 ¥ y

)
¥ p2� ϵqm

y
� o

�
1
y

�

which completes the proof of the lower bound.

3.5.2 Lazy parametrization versus row parametrization

Proposition 3.5.1. For each x P N0

lim
mÑ8

Yrms
xb
Trms

x

� 2

holds true in probability.

Regretfully, the ideas used in the proof of Proposition 3.1.9 (cf. Section 3.5.1 above) are
not directly applicable for the proof of Proposition 3.5.1 when x ¥ 1 because we are not
aware of suitable large deviation results for the lower tail of the distribution of a specific row a
Plancherel-distributed Young diagram, other than the bottom row.

Our general strategy in this proof is to study the length µ
ptq
x of the column with the fixed

index x in the Plancherel growth process λptq, as t Ñ8. Since we are unable to get asymptotic
uniform bounds for ������µ

ptq
x?
t
� 2

������ (3.5.3)

over all integers t such that t
m2 belongs to some compact subset of p0,8q in the limit m Ñ8,

as a substitute we consider a finite subset of p0,8q of the form!
cp1� ϵq, . . . , cp1� ϵql

)
for arbitrarily small values of c, ϵ ¡ 0 and arbitrarily large integer l ¥ 0 and prove the

appropriate bounds for the integers tipmq for which
ti

m2 are approximately elements of this
finite set. We will use monotonicity in order to get some information about (3.5.3) also for the
integers t which are between the numbers ttipmqu.
Proof. Let ϵ ¡ 0 be fixed. Let δ ¡ 0 be arbitrary. By Proposition 3.4.4 the law of the random
variable m?

Trmsx
converges to the Erlang distribution which is supported on R� and has no

atom in 0. Let W be a random variable with the latter probability distribution; in this way the
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law of Trmsx
m2 converges to the law of W�2. Let c ¡ 0 be a sufficiently small number such that

P
�

W�2   c
	
  δ.

Now, let l P N0 be a sufficiently big integer so that

P
�

cp1� ϵql   W�2
	
  δ.

We define
ti � tipmq �

Y
m2cp1� ϵqi

]
for i P t0, . . . , lu.

With these notations there exists some m1 with the property that for each m ¥ m1

P
�

t0   Trms
x ¤ tl

	
¡ 1� 2δ. (3.5.4)

Let µpnq � �
λpnq

�T be the transpose of λpnq; in this way µ
pnq
x is the number of the boxes

of T which are in the column x and contain an entry ¤ n. The probability distribution of µpnq

is also given by the Plancherel measure. The monograph of Romik [Rom15, Theorem 1.22]
contains that proof that

µ
ptipmqq
xa
tipmq

PÝÑ 2

holds true in the special case of the bottom row i � 0; it is quite straightforward to check that
this proof is also valid for each i P t0, . . . , lu, for the details see the proof of Lemma 2.2.5.
Hence there exists some m2 with the property that for each m ¥ m2 the probability of the event������ µ

ptipmqq
xa
tipmq

� 2

������   ϵ holds for each i P t0, . . . , lu (3.5.5)

is at least 1� δ.

Let us consider an elementary event T with the property that the event considered in
(3.5.4) occurred, that is t0   Trms

x ¤ tl , and the event (3.5.5) occurred. Since t0 ¤ � � � ¤ tl
form a weakly increasing sequence, there exists an index j � jpTq P t0, . . . , l � 1u such that

tj   Trms
x ¤ tj�1.

It follows that
µ
ptjq
x   Yrms

x ¤ µ
ptj�1q
x

hence

p2� ϵq 1?
1� ϵ� op1q  

µ
ptjq
xa
tj�1

¤ Yrms
xb
Trms

x

¤ µ
ptj�1q
xa

tj
 

p2� ϵq
�?

1� ϵ� op1q
	

. (3.5.6)

In this way we proved that for each m ¥ maxpm1, m2q the probability of the event (3.5.6)
is at least 1� 3δ, as required.
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3.5.3 Proof of Theorem 3.1.2

Proof. For each integer l ¥ 0 Proposition 3.4.4 gives the asymptotics of the joint probability
distribution of the random variables Trms

0 , . . . , Trms
l which concern the shape of the bumping

route in the lazy parametrization. On the other hand, Proposition 3.5.1 allows us to express
asymptotically these random variables by their non-lazy counterparts Yrms

0 , . . . , Yrms
l . The

discussion from Remark 3.1.3 completes the proof.
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Chapter 4

Second class particles
and limit shapes of
evacuation and sliding paths
for random tableaux

The following chapter is a modified version of the (yet nonpublished) article [MŚ22]:

Ł. Maślanka and P. Śniady: Second class particles and limit shapes of evacuation
and sliding paths for random tableaux, https://arxiv.org/abs/1911.
08143v3

which is available in the public repository arXiv.org. The 12-page extended abstract [MŚ20a]
of this article was published in the proceedings of the 32nd International Conference on
Formal Power Series and Algebraic Combinatorics, FPSAC 2020.

Abstract: We investigate two closely related setups. In the first one we consider a
TASEP-style system of particles with specified initial and final configurations. The probability
of each history of the system is assumed to be equal. We show that the rescaled trajectory of
the second class particle converges (as the size of the system tends to infinity) to a random arc
of an ellipse.

In the second setup we consider a uniformly random Young tableau of square shape
and look for typical (in the sense of probability) sliding paths and evacuation paths in the
asymptotic setting as the size of the square tends to infinity. We show that the probability
distribution of such paths converges to a random meridian connecting the opposite corners of
the square. We also discuss analogous results for non-square Young tableaux.

4.1 Introduction

The results of the current chapter concern two distinct setups which are closely connected.
The first one, presented in Section 4.1.1, involves a certain interacting particle system. The
second one, presented in Section 4.1.3, involves random Young tableaux. Basic informations
concerning Young tableaux are given in Section 1.1.

4.1.1 TASEP system with the uniform distribution over histories

4.1.1.1 The setup

For given integers N, M ¥ 1 we consider the particle system depicted on Figure 4.1. There
are N � M� 1 nodes, labeled by the integers from the set

t�N � 1, . . . , 0, 1, . . . , M� 1u. (4.1.1)

https://arxiv.org/abs/1911.08143v3
https://arxiv.org/abs/1911.08143v3
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x

�N � 1 �2 �1 0 1 2 M� 1M� N

(a)

x

�N � 1 �2 �1 0 1 2 M� 1M� N

(b)

Figure 4.1: (a) The initial configuration of the particle system. The first class
particles are depicted as filled blue circles, the holes are depicted as empty
circles. The striped red circle denotes the second class particle. (b) The final

configuration of the particle system.

ó

(a)

ó

(b)

ó

(c)

Figure 4.2: Three allowed types of transitions: (a) a first class particle can
jump to the right if the next node is free, (b) the second class particle can
jump to the right if the next node is free, (c) the first class particle can jump to
the right if the next node is occupied by the second class particle; in this case
the second class particle has to yield and the particles exchange their places.

In the initial configuration (which corresponds to the time t � 1) the N� 1 nodes which corre-
spond to the negative integers are occupied by the first class particles, the M� 1 nodes which
correspond to the positive integers are empty (or, equivalently, are occupied by holes), and the
node which corresponds to zero is occupied by the second class particle, see Figure 4.1a.

In each step exactly one of the following transitions occurs:

• any particle (first or second class) may jump right to the next node provided that this
node is empty, see Figures 4.2a and 4.2b, or

• a first class particle may jump right to the next node provided that this node is occupied
by the second class particle. In this case the second class particle has to yield and jumps
one node to the left, see Figure 4.2c.

The second class particle is an analogue of a passenger with a cheap second class ticket who
has to yield the seat to any passenger with a more expensive first class ticket.

It is not very difficult to show that no matter which transitions occur, the system termi-
nates at time tmax � MN (that is after MN � 1 transitions) in the configuration shown on
Figure 4.1b in which no additional transition is allowed.

By the history we will understand the information about the state of the particle system
over all values of the time t P t1, . . . , tmaxu, see Figure 4.3 for an example. We consider the
finite set of all possible histories of the particle system and associate to each such a history
equal probability. In other words, we consider a version of the TASEP (which is an acronym
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X

T

1

0 1�1
?

θ� 1?
θ

Figure 4.3: Sample history of the particle system for N � 4 and M � 8.
The trajectories of the first class particles are shown as solid blue lines, the
trajectory of the second class particle is shown as the thick red line. The thick
green rectangle indicates the bounding box. The dashed line indicates the

arctic ellipse which corresponds to the shape parameter θ � M
N � 2.

for Totally Asymmetric Simple Exclusion Process) system [Spi70] with modified transition
probabilities.

4.1.1.2 Why second class particles?

Macroscopic quantities describing an interacting particle system (such as particle density) are
usually described by nonlinear partial differential equations (PDEs for short). For example,
the famous Burgers equation [Bur48] describes the density profile in the hydrodynamical limit
for the asymmetric simple exclusion process [BF87]. Weak solutions of nonlinear PDEs can
develop singularities, often referred to as shocks. The shocks can be found by looking for
the crossings of the characteristic lines of the PDE.

Ferrari [Fer92] discovered that a second class particle, depending on the place in which
it begins its journey, can identify microscopically the location of the shock or describe
the behavior of the characteristic lines of the limiting hydrodynamic equation. Ferrari and
Fontes showed in [FF94] that this hydrodynamical limit converges to the traveling wave
solution of the inviscid Burgers equation. This connection was later transferred to more
general settings by Rezakhanlou [Rez95], Ferrari and Kipnis [FK95], Seppäläinen [Sep01] and
others. Furthermore, the second class particle enters naturally in the study of the fluctuations
of the current of particles [FF94].

A pictorial interpretation of TASEP as a traffic model is given in [MG05]. The particles are
interpreted as cars on a single-line highway with no possibility of passing (which corresponds
to the exclusion rule) and the shock corresponds to the front of the traffic jam. The motion of
the shock is referred to as the propagation of the shock or the rarefaction wave (or rarefaction
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Figure 4.4: An analogue of Figure 4.3 for N � 15 and M � 30.

fan) depending whether the shock moves to the left or is being resorpted. The second class
particle identifies the shock and allows to qualitatively describe its motion.

Mountford and Guiol [MG05] studied in fact a more advanced physical interpretation of
the TASEP model as a moving interface on the plane (space-time). This gave them a powerful
tool to analyze the shocks in the TASEP process in terms of the last passage percolation.

A nice heuristic (as well as rigorous) explanation of the shocks behavior and the importance
of the second class particles in this context can be found in the book of Liggett [Lig99, Part III].

4.1.1.3 The asymptotic setup

We assume that pMiq and pNiq are two sequences of positive integers which tend to infinity
and such that their ratio

lim
iÑ8

Mi

Ni
� θ ¡ 0

converges to some positive limit which we call the shape parameter. For t P t1, . . . , MiNiu
we denote by uiptq P t�Ni � 1, . . . , Mi � 1u the position of the second class particle at time
t. In order to keep the notation lightweight we will sometimes omit the index i and instead of
Mi, Ni, uiptq we will write shortly M, N, uptq.

Until now we parameterized the space using the integer parameter x P t�N� 1, . . . , M�
1u and the time using the integer parameter t P t1, . . . , MNu, however for asymptotic
questions it is more convenient to pass to the rescaled coordinates

X � x?
MN

P
�
� 1a

M{N ,
a

M{N
�

,

T � t
tmax

P r0, 1s,
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see Figures 4.3 and 4.4. The rectangle

Bθ �
#
pX, Tq : X P

�
� 1?

θ
,
?

θ

�
, T P r0, 1s

+
(4.1.2)

which shows the range in which the coordinates X and T vary asymptotically will be called
the bounding box; on Figures 4.3 to 4.5 it is shown as the green rectangle.

For each value of the parameter s P r�1, 1s we define a function

Ξs : r0, 1s Ñ
�
� 1?

θ
,
?

θ

�
given by

ΞspTq � 2
a

Tp1� Tq s� θ � 1?
θ

T,

see Figure 4.5.

4.1.1.4 The main result 1: the trajectory of the second class particle

Theorem 4.1.1. We keep the assumptions and notations from Section 4.1.1.3.
Then there exists a sequence pSiq of random variables with the property that the supremum

distance

sup
TPr0,1s

���� 1?
MiNi

ui
�
rTMiNis

�� ΞSipTq
����

converges in probability to zero, as i Ñ8.
The probability distribution of Si is supported on the interval r�1, 1s and for i Ñ 8 it

converges to the standard semicircular distribution with the density

fSCpxq � 2
π

a
1� x2 for x P r�1, 1s. (4.1.3)

This theorem is illustrated on Figure 4.5. Its proof is postponed to Section 4.11. This
result is analogous to the results of Ferrari and Kipnis [FK95], as well as Mountford and Guiol
[MG05] for the usual TASEP system starting from a decreasing shock profile.

4.1.1.5 The limit trajectories

Each curve Ξs for the parameter s P r�1, 1szt0u is an arc of an ellipse which fits into the
bounding box Bθ , passes through the points

p0, 0q,
�

θ � 1?
θ

, 1



, (4.1.4)

and is tangent there to the bottom and the top edge of the bounding box Bθ . In the degenerate
case s � 0 the curve Ξ0 is a straight line connecting the aforementioned two points (4.1.4).
The union of the two extreme curves Ξ�1 and Ξ1 is the unique ellipse (which we call the
arctic ellipse) which is inscribed into the bounding box Bθ and is tangent to its bottom and its
top side in the aforementioned two points (4.1.4), see Figure 4.5. In the special case θ � 1 the
scaling of the axes can be chosen in such a way that the arctic ellipse becomes a circle which
we call the “the arctic circle”. Our use of this name is not a coincidence since it turns out to
be indeed related to the celebrated arctic circle theorem [Rom12].



88 Chapter 4. Second class particles, typical evacuation and sliding paths
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θ�1?
θ
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1
1�θ

θ
1�θ

1�1 � 1?
θ

?
θ

Figure 4.5: The dashed lines are arcs of ellipses Ξs for the shape parameter
θ � 2. The shown values of the parameter s P F�1

SC

 
0{10, 1{10, . . . , 10{10

(
are

the deciles of the semicircle distribution (above FSC : r�1, 1s Ñ r0, 1s denotes
the cumulative distribution function of the semicircle distribution (4.1.3)).
The shaded region forms the arctic ellipse. The four black dots are the points
where the arctic ellipse is tangent to the bounding box. The solid zigzag lines
are trajectories of the second class particle for N � 500 and M � 1000.
These trajectories were selected from a sample of 1000 simulations; each of
them corresponds to an appropriate empirical decile of the distribution of the

second class particle at time T � 1
2 .



4.1. Introduction 89

4.1.2 Random sorting networks

Theorem 4.1.1 can be regarded as the solution to a toy version of the problem of random sorting
networks considered by Angel, Holroyd, Romik, and Virág [Ang+07]. More specifically, we
consider the symmetric group SN � M� 1 viewed as the set of permutations of the set of
nodes (4.1.1) and the permutation ρN,M P SN � M� 1 defined as

ρN,Mpiq �

$''&''%
i� M if i P t�N � 1, . . . ,�1u,
M� N if i � 0,
i� N if i P t1, . . . , M� 1u

which describes the change of the positions of the particles and holes during the passage from
the initial configuration shown on Figure 4.1a to the final configuration shown on Figure 4.1b.
For an integer s P t�N � 1, . . . , M� 2u denote the adjacent transposition at location s by
τs � ps, s� 1q P SN � M� 1.

Any history of the particle system considered in Section 4.1.1.1 can be encoded by the
sequence s1, . . . , stmax�1 P t�N � 1, . . . , M� 2u, where st and st � 1 are the nodes which
are interchanged in t-th transition. It is easy to check that

ρN,M � τstmax�1 τstmax�2 � � � τs2 τs1 (4.1.5)

and the corresponding sequence of partial products

id, τs1 , τs2 τs1 , . . . , τstmax�1 τstmax�2 � � � τs2 τs1 (4.1.6)

is a shortest path from the identity permutation id to ρN,M in the Cayley graph of the symmetric
group SN � M� 1 generated by adjacent transpositions.

Conversely, each shortest path (4.1.6) in the Cayley graph gives a valid history of the
particle system. Any such a shortest path will be called a sorting network. The trajectory of
the second class particle�

uptq : t P t1, . . . , tmaxu
� ��

0, τs1p0q, τs2 τs1p0q, . . . , τstmax�1 � � � τs2 τs1p0q
�

(4.1.7)

corresponds in this language to the sequence of images of 0 under the action of the entries of
the sequence (4.1.6).

Angel, Holroyd, Romik, and Virág [Ang+07] considered a more difficult version of this
setup in which the permutation ρN,M is replaced by the reverse permutation ρ P SN � M� 1
given by

ρpiq � M� N � i

and—among several other results—stated some conjectures concerning the asymptotic be-
havior of the right-hand side of (4.1.7) for a random sorting network, i.e., a random shortest
path from the identity permutation id to the reverse permutation ρ, sampled with the uniform
distribution. We focus today on [Ang+07, Conjecture 1] which is a direct analogue of our
Theorem 4.1.1. A minor difference is that the limit curves which appear in Theorem 4.1.1 form
a one-parameter family of arcs of ellipses while the limit curves which appear in [Ang+07,
Conjecture 1] form a one-parameter family of sine curves. (At first sight it might appear that
the family of curves in [Ang+07] has two parameters, but one of these parameters can be
eliminated by the requirement about the positions of the endpoints.)

The aforementioned conjecture [Ang+07, Conjecture 1] was proved only very recently by
Dauvergne and Virág [DV20] who used methods quite different from those which we use in
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Figure 4.6: (a) The Young diagram λ � p4, 3, 1, 1q shown in the Cartesian
coordinate system. (b) Example of a standard Young tableau of shape λ.

the current paper.

4.1.3 Sliding paths and evacuation paths in random tableaux

As promised, we turn now to the second interest area of the current paper, namely to random
Young tableaux.

4.1.3.1 Notations related to Young diagrams and tableaux

We assume the reader’s basic knowledge of tableaux theory, including partitions, (skew)
Young diagrams, standard (skew) Young tableaux, RSK algorithm, jeu de taquin, rectification,
Littlewood–Richardson coefficients and basics of the representation theory of the symmetric
groups (you may recall some of these definitions in Chapter 1).

We denote the set of all partitions of n by Yn. We draw Young diagrams on the Carte-
sian plane using the French convention, that is, we draw them from the bottom to the top,
see Figure 4.6a.

For any Young diagram λ we denote the set of standard Young tableaux of shape λ by Tλ.
The shape of a tableau T will be denoted by shpTq and its size by | shpTq|, or shortly |T|.

Let T be a tableau. If p is a number which appears exactly once in T (which will always
be the case in our considerations), we define the position of the box with the number p as the
Cartesian coordinates of the bottom-left corner of the unique square which contains p; we
denote this position by posppTq. For example, for T from Figure 4.6b, pos5pTq � p2, 0q.

We will have a particular interest in Young diagrams and tableaux of square shape. By
lN P YN2 we denote the square diagram with side of length N.

4.1.3.2 Sliding paths and evacuation paths

Jeu de taquin acts on Young tableaux in the following way (see Figures 4.8a and 4.8b): we
remove the bottom-left box of the given tableau T and obtain a hole in its place. Then we
look at the two boxes: the one to the right and the one above the hole, and choose the one
which contains the smaller number. We slide this smaller box into the location of the hole, see
Figure 4.7. As a result, the hole moves in the opposite direction. We continue this operation
as long as there is some box to the right or above the hole. The path which was traversed by
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Figure 4.7: Elementary step of the jeu de taquin transformation: (a) the
initial configuration of boxes, (b) the outcome of the slide in the case when
r   s, (c) the outcome of the slide in the case when s   r. Copyright ©2014
Society for Industrial and Applied Mathematics. Reprinted from [Śni14] with

permission. All rights reserved.
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Figure 4.8: (a) A standard Young tableau T of shape λ � p5, 4, 2, 1q. The
highlighted boxes form the sliding path. (b) The outcome jpTq of the jeu de
taquin transformation. (c) The result B�pTq of the dual promotion applied to

T.

the ‘traveling hole’ will be called the sliding path, see Figure 4.8a. The result of jeu de taquin
applied to a tableau T will be denoted by jpTq, see Figure 4.8b.

If T is a standard tableau then jpTq is no longer standard because the numbering of its
boxes starts with 2; however, if we decrease each entry of jpTq by 1 then it becomes standard.
This observation allows us to define the dual promotion B� : Tλ Ñ Tλ which is a bijection on
the set of standard Young tableaux of any fixed shape λ. The idea is to put once again the box
with the number |T| to the aforementioned standardized version of the tableau jpTq in the
place where we removed a box during jeu de taquin, see Figure 4.8c.

For a given tableau T P Tλ with n � |λ| boxes the jeu de taquin transformation j can be
iterated n times until we end with the empty tableau. During each iteration the box with the
biggest number n either moves one node left or down, or stays put. Its trajectory

evacpTq �
�

posnpTq, posn

�
jpTq�, . . . , posn

�
jn�1pTq�	 (4.1.8)

will be called the evacuation path.

4.1.3.3 The main results 2 and 3: asymptotics of sliding paths and evacuation paths

Observe that if we draw the boxes of a given square tableau T P TlN as little squares of
size 1

N then the corresponding sliding path is a zigzag line connecting the opposite corners
of the unit square r0, 1s2. Let T P TlN be a random standard Young tableau of square shape
(sampled with the uniform probability distribution on TlN which will be denoted PN). Our
goal is to find asymptotics of such random zigzag lines in the limit as N Ñ8, see Figure 4.9.
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x
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1

1

Figure 4.9: The nine zigzag lines are sample sliding paths for random
square tableaux of size N � 100, selected so that they cross the anti-diagonal
near the corresponding meridians (smooth thick curves) with the longitudes
ψ P t1{10, 2{10, . . . , 9{10u. The gray lines are the meridians with the longitudes
ψ P t2{100, 4{100, . . . , 98{100u. See also the blue-to-red family of curves on

Figure 4.13.

We will show that there exists a family of smooth lines, called meridians, which connect the
opposite corners of the unit square, with the property that the probability distribution of the
scaled sliding path for a random tableau converges, as N Ñ8, to a random meridian.

An analogous result holds true for the scaled evacuation path for a random square tableau:
during iteratively applied jeu de taquin operations j, the biggest box of the tableau asymptoti-
cally moves along a random meridian.

A version of this result applies also to the other boxes of the tableau; it follows that the
time evolution of the tableau in the iterated applications of jeu de taquin

T, jpTq, j2pTq, . . . , jN2pTq (4.1.9)

converges in probability, as N Ñ 8, to dynamics of an incompressible liquid which flows
along the meridians.

For the details of our results, see Theorems 4.2.3 and 4.2.4 in Section 4.2.
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Figure 4.10: Sample sliding paths in random Young tableaux of an L-shape
with 3600 boxes.

4.1.3.4 Not only squares

For simplicity and concreteness we stated our main results concerning random Young tableaux
only for large random Young tableaux of square shape. However, analogous results hold
true also for random tableaux of shape which is a balanced Young diagram (see Section 4.3
for the definition and Figure 4.10 for a teaser). In Section 4.10 we present a way in which
the results obtained in this paper can be used (or generalized) in order to cover the class of
balanced Young diagrams.

4.1.4 The content of the paper

The paper is organized as follows.
In Section 4.2 we state the main results (Theorems 4.2.3 and 4.2.4) about the typical

shapes of the evacuation paths and sliding paths in square Young tableaux.
In Section 4.3 we give basic definitions on permutations and representation theory.
In Section 4.4 we introduce a ‘surfers’ language which we will use to describe dynamics

of the box with the biggest entry (which we will call ‘the surfer’) and the smaller boxes (‘the
water’). In this spirit we also introduce the story of the multisurfers which will play a crucial
role in our proofs and considerations. We will use this new multisurfer story later as a point
of reference for the original problem of the (single) surfer in order to prove Theorem 4.4.1
concerning the position of the surfer along its journey. We sketch the proof in Section 4.4.4.

In Section 4.5 we show the way in which we will embed simultaneously both the story of
the single surfer and the story of the multisurfers into a common universe.

In Section 4.6 we provide Theorem 4.6.2 concerning the distribution of the multisurfers
on the water. We use here the Jucys–Murphy elements to give a direct link between the
statistical properties of the multisurfers and the symmetric group characters evaluated on
certain polynomials in the Jucys–Murphy elements.

In Section 4.7 we use the aforementioned results from Sections 4.5 and 4.6 to prove
Theorem 4.4.1.

In Section 4.8 we prove Theorem 4.2.3 concerning typical evacuation paths.
Section 4.9 is devoted to the proof of Proposition 4.9.1 which shows the equivalence

between the problems of finding the sliding paths and the evacuation paths in random Young
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tableaux of given shape.
In Section 4.10 we extend our main results (Theorem 4.10.5) concerning typical evacuation

and sliding paths to some subset of C-balanced Young tableaux.
In Section 4.11 we provide the link between the trajectory of the second class particle

in an interacting particle system and the sliding path for a random Young tableau and prove
Theorem 4.1.1.

4.2 The limit shape of sliding paths and evacuation paths

4.2.1 Asymptotics of a single box in the evacuation trajectory

As we mentioned in Section 4.1.3, we will focus on random standard Young tableaux of square
shape lN sampled according to the uniform measure PN . The symbol TN will be reserved
for such a uniformly random square Young tableau of shape lN .

The position of each of the boxes in the evacuation path (4.1.8) coincides with the position
of a specific box in the standard Young tableau obtained by iterating the dual promotion B�:

posN2

�
jipTNq

� � posN2�i

�B�ipTNq
�
. (4.2.1)

Since B� : TlN Ñ TlN is a bijection, for each i ¥ 0 the latter standard tableaux B�ipTNq
is also a uniformly random square Young tableau. It follows that the solution to the (much
simpler) problem of understanding the asymptotics of a single element of the evacuation trajec-
tory (4.1.8) follows from the work of Pittel and Romik [PR07], see also Section 4.2.3 below. In
the current section we will recall the details of their work and we will use it to state our second
main result, Theorem 4.2.3 (which addresses the more complex problem of understanding the
whole evacuation trajectory (4.1.8)) and the third main result, Theorem 4.2.4.

4.2.2 The circles of latitude gα

The Russian coordinate system is given by the following transformation of the Cartesian
plane (warning: our notations differ from those of Pittel and Romik [PR07] who scale the
coordinates below by an additional factor 1{?2):

u :� x� y, v :� x� y,

see Figure 4.11.
For each 0 ¤ α ¤ 1 and u P

�
�2

a
αp1� αq, 2

a
αp1� αq

�
define

kα,u :�
b

4αp1� αq � u2

and for any 0   α   1 the function

hα :
�
�2

a
αp1� αq, 2

a
αp1� αq

�
Ñ R

given by

hαpuq :�

$'''&'''%
2u
π arctan

�
1�2α
kα,u

� u
	
� 2

π arctan
�

kα,u
1�2α

	
if 0   α   1

2 ,

2� 2u
π arctan

�
2α�1
kα,u

� u
	
� 2

π arctan
�

kα,u
2α�1

	
if 1

2   α   1,

1 if α � 1
2 .

(4.2.2)
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Figure 4.11: The Cartesian and the Russian coordinate systems on the plane.

In the expression above there may occur kα,u � 0 in the denominator; in such case (for fixed
α P p0, 1q) we consider the appropriate limit: if u0 � �2

a
αp1� αq then

hαpu0q :� lim
uÑu0

hαpuq �
#

u0 for 0   α   1
2 ,

2� u0 for 1
2   α   1.

Additionally we define the one-point functions h0p0q :� 0 and h1p0q :� 2.
For any α P r0, 1s we consider the curve which in the Russian coordinate system is defined

as
gRus

α :�
!�

u, hαpuq
�

: |u| ¤ 2
a

αp1� αq
)
� R2 (4.2.3)

and, equivalently, in the Cartesian coordinates is given by (see Figures 4.12 and 4.13)

gα :�
#�

u� hαpuq
2

,
hαpuq � u

2



: |u| ¤ 2

a
αp1� αq

+
� r0, 1s2.

We call gα the circle of latitude with the latitude α.

Roughly speaking, for each α P r0, 1s the (scaled down) α-level curve (which separates
the boxes with entries ¤ αN2 from the boxes bigger than this threshold, see Figure 4.12) in
a uniformly random square tableau TN converges in probability, as N Ñ8, to the circle of
latitude gα, see [PR07, Theorem 1] for a precise statement.

4.2.3 The random position of the box tαN2u, the limit measure να

Pittel and Romik [PR07, Theorem 2] also found the explicit formula for the limit distribution
of the scaled down location

1
N

postαN2u pTNq

of the entry tαN2u in a uniformly random square Young tableau TN , as N Ñ8. This limit
distribution turns out to be supported on the circle of latitude gα and thus it is uniquely
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Figure 4.12: A scaled down sample random square tableau of size N � 10.
The zigzag lines are the level curves for α P t1{4, 2{4, 3{4u. The smooth lines
are the corresponding circles of latitude gα, see also the orange-to-green

family of curves on Figure 4.13.
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determined by the probability distribution of the u-coordinate. The latter, denoted by να, turns
out to be the semicircular distribution on the interval

�
�2

a
αp1� αq, 2

a
αp1� αq

�
with the

density

fναpuq :� kα,u

2παp1� αq . (4.2.4)

4.2.4 Geographic coordinates on the square

For any point p � px, yq P r0, 1s2 of the unit square there is exactly one α � αppq P r0, 1s
such that p lies on the curve gα. We say that the latitude of p is equal to α. With the notations
of Pittel and Romik [PR07] the latitude αpx, yq � Lpx, yq is just the limit height function of
random square standard Young tableaux.

The longitude of p, which we denote by

ψppq � να

���8, x� y
�	 � Fναpx� yq,

is defined as the mass of the points on the curve gα which have their u-coordinate not greater
than the u-coordinate of the point p or, equivalently, in terms of the cumulative distribution
function Fνα of the measure να. Notice that ψpp0, 0qq � ψpp1, 1qq � 1. The set of points of
the unit square r0, 1s2 with equal longitude ψ is a curve called the meridian ψ, see Figures 4.9
and 4.13.

For given α P p0, 1q and ψ P r0, 1s we denote by

Pα,ψ �
�

xψ
α , yψ

α

	
P r0, 1s2

the unique point of the unit square r0, 1s2 with the latitude α and the longitude ψ. We set
additionally P0,ψ � p0, 0q and P1,ψ � p1, 1q for any ψ P r0, 1s. We denote by

uψ
α :� xψ

α � yψ
α and vψ

α :� xψ
α � yψ

α

the u- and v-coordinate of the point
�

xψ
α , yψ

α

	
� Pα,ψ.

Remark 4.2.1. We will not use the following observation, but fans of cartography may find it
interesting: for reasons which will hopefully become obvious later on, the map

r0, 1s2 Q pα, ψq ÞÑ Pα,ψ P r0, 1s2

is equiareal which manifests by equality of the areas of the curvilinear rectangles on Fig-
ure 4.13.
Remark 4.2.2. The result of Pittel and Romik [PR07, Theorem 2] is a special case of a general
phenomenon of existence of the level curves (circles of latitudes) for random Young tableaux
of specified shape. Biane [Bia98] proved that such level curves exist for any balanced sequence
of Young diagrams, see Section 4.10 for more information.

4.2.5 The second main result. Typical evacuation path

For a given tableau TN P TlN and t P r0, 1q we denote by

Xt � XtpTNq � 1
N

posN2

�
jttN2upTNq

	
P r0, 1s2 (4.2.5)

the scaled down position of the point from the evacuation path evacpTNq, cf. (4.1.8). Clearly,
the parameter t indicates how many boxes were removed so far and therefore we can relate to
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Figure 4.13: The geographic coordinate system on the unit square r0, 1s2.
The blue-to-red family of thick colored curves connecting the bottom left
and the upper right corner are the meridians with the longitudes ψ P
t1{10, 2{10, . . . , 9{10u. The gray lines are the meridians with the longitudes
ψ P t2{100, 4{100, . . . , 98{100u, cf. Figure 4.9. The orange-to-green family
of thick colored curves are the circles of latitudes gα with the latitudes
α P t1{10, 2{10, . . . , 9{10u. The thin, gray lines are the circles of latitude gα

with the latitudes α P t2{100, 4{100, . . . , 98{100u, see Figure 4.12. The shown
meridians and circles of latitude split the square into a 50� 50 grid of curvi-

linear rectangles with equal areas.

it as the time.

Our second main result states that, asymptotically, the scaled evacuation path in a random
square tableau is a random meridian, see Figure 4.9.

Theorem 4.2.3. For each N P N there exists a random variable ΨN : TlN Ñ r0, 1s such
that the supremum distance

sup
tPr0,1s

���XtpTNq � P1�t,ΨNpTNq
��� (4.2.6)

converges in probability to zero, as N Ñ8. More explicitly: for each ε ¡ 0

lim
NÑ8

PN

!
TN P TlN : sup

tPr0,1s

���XtpTNq � P1�t,ΨNpTNq
��� ¡ ε

)
� 0.
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The probability distribution of the random variable ΨN converges, as N Ñ8, to the uni-
form distribution on the unit interval r0, 1s.

In other words (with a small abuse of notation), the random trajectory
�
XtpTNq

�
tPr0,1s with

respect to the supremum norm converges in distribution to a random meridian
�

P1�t,ψ

	
tPr0,1s

when N Ñ8, that is shortly,�
XtpTNq

�
tPr0,1s

dÝÝÝÑ
NÑ8

�
P1�t,ψ

	
tPr0,1s

,

where ψ is a random variable with the uniform Up0, 1q distribution.

The proof is postponed to Section 4.8 and the preparations to it will take the majority of
time.

4.2.6 The third main result. Typical sliding path

Let T be a standard Young tableau with n boxes. Sometimes when investigating the sliding
path, we are concerned not only about its shape, but also we would like to be able to tell which
entries were placed in the rearranged boxes. This motivates the notion of the sliding path
in the lazy parametrization (or shortly the lazy sliding path) which is a sequence of boxes
qpTq :� pq1, . . . , qnq � N2 where qi is the last box along the sliding path corresponding
to T (cf. Figure 4.8a) which contains a number ¤ i, cf. [Rom15, Section 3.3].

Our third main result is stated in the language of lazy sliding path and says that, asymp-
totically, the scaled sliding path in a random square tableau is, just like in Theorem 4.2.3,
a random meridian, see Figure 4.9.

Theorem 4.2.4. For each N P N there exists a random variable rΨN : TlN Ñ r0, 1s such
that the supremum distance

sup
tPr0,1s

���� 1
N

qrtN2spTNq � Pt,rΨNpTNq

����
converges in probability to zero, as N Ñ8.

The probability distribution of the random variable rΨN converges, as N Ñ8, to the
uniform distribution on the unit interval r0, 1s.

In other words (with a small abuse of notation), the lazy sliding path
�

qrtN2spTNq
	

tPr0,1s
with respect to the supremum norm converges in distribution to a random meridian

�
Pt,ψ

	
tPr0,1s

when N Ñ8, that is shortly,

1
N

qrtN2spTNq dÝÝÝÑ
NÑ8

Pt,ψ

where ψ is a random variable with the uniform Up0, 1q distribution.

The proof is postponed to Section 4.9.2 and is based on showing that the random lazy
sliding path and the (reversed) random evacuation path have the same distribution, cf. Propo-
sition 4.9.1. In other words, we show that the problem of finding typical sliding paths is
equivalent to the problem of finding typical evacuation paths from Theorem 4.2.3.

4.2.7 Conjecture on the independence of the iterated sliding paths.

Recall from Section 4.1.3.2 that the dual promotion B� is a bijection defined by a two-step
procedure in which first we apply the jeu de taquin and then we add the box which was
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removed from the initial tableau T. We can iterate B� on the random tableau TN and get the
sequence of iterated sliding paths

qpTNq , q
�B�pTNq

�
, q

�
pB�q2pTNq

	
, . . . . (4.2.7)

Since B� is a bijection, Theorem 4.2.4 provides asymptotics of the distribution of each element
of the sequence (4.2.7) separately. The following conjecture aims to provide asymptotic
information about their joint distribution.

Conjecture 4.2.5. For each integer k ¥ 1 the probability distribution of the random vector�rΨNpTNq, rΨN
�B�pTNq

�
, . . . , rΨN

�pB�qk�1pTNq
�	

converges, as N Ñ8, to the uniform distribution on the unit cube r0, 1sk.

Romik and the second named author proved an analogue of this conjecture in the case
of the Plancherel-distributed random infinite tableaux, see [Rom15, the comment below
Theorem 1.5] and Section 4.2.8 for more details.

4.2.8 Something old, something new, something borrowed: sliding paths for
random infinite tableaux

The problem of the asymptotic shape of a sliding path (analogous to the one from Theo-
rem 4.2.4) was studied before by Romik and the second named author [Rom15, Section 1.3]
for a certain infinite random Young tableau, more specifically for the recording tableau
Qpx1, x2, . . . q obtained by applying the Robinson–Schensted correspondence to an infinite se-
quence px1, x2, . . . q of independent, identically distributed random variables with the uniform
distribution on the unit interval r0, 1s. Such a choice corresponds to sampling the random
Young tableau according to, so called, the Plancherel measure.

In such a setting the sliding path happens to converge almost surely to a straight line with
a random direction [Rom15, Theorem 1.1], in other words the analogue of our meridians in
the context of the Plancherel measure is given by the straight lines emanating from the origin
of the coordinate system.

One of the main difficulties in the proof of Theorem 4.2.4 will be the construction of the
random variables rΨN which provide the longitude of the meridian along which the sliding
path travels. This difficulty is absent in [Rom15] because in that context the analogue of the
longitude turns out to be simply equal to x1, the first entry of the random sequence to which
the Robinson–Schensted correspondence is applied.

It would be tempting to repeat the approach from [Rom15] in our context, for example
one could proceed as follows. Let

πpNq �
�

π
pNq
1 , . . . , π

pNq
N2

	
be a uniformly random element of the set of extremal Erdős–Szekeres permutations, i.e.,
permutations with the property that the corresponding tableaux associated via the Robinson–
Schensted correspondence have the square shape lN . Then the corresponding recording
tableau TN � QpπpNqq is, as required, a uniformly random standard Young tableau of square
shape lN . A naive guess would be that one possible choice for the random variable rΨN is
again (a rescaled version of) the first entry of the permutation, i.e., π

pNq
1 .

Uniformly random extremal Erdős–Szekeres permutations were investigated by Romik
[Rom06] who proved, among other results, that the probability distribution of 1

N2 π
pNq
1 con-

verges to the point measure concentrated in 1
2 . For this reason it seems that the random
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variables π
pNq
1 do not carry any information which would be useful for our purposes, hence

the approach from [Rom15] is not applicable here directly, and the construction of the random
variables rΨN must follow different ideas.

Despite this fundamental difference, an astute reader may notice that our proof of The-
orem 4.2.3 follows a path parallel to the one of [Rom15, Theorem 5.1]. For example, the
counterpart of our Proposition 4.6.5 (which can be viewed as a result about a certain random
process of removal of boxes from a Young diagram) is [Rom15, Theorem 4.4] (which concerns
a certain random process of addition of boxes to a Young diagram).

4.3 Preliminaries

4.3.1 Permutations, Young diagrams and Young tableaux, continued

We continue Section 4.1.3.1 where some basic definitions were introduced.
For any natural number n, we define the set rns :� t1, . . . , nu. From the following on

(unlike in Section 4.1.2) we will view the symmetric group Sn as the group of permutations
of the set rns. We define the length of a permutation π to be the minimal number of factors
necessary to write π as a product of (arbitrary, not necessarily adjacent!) transpositions, and
denote it by |π|.

For any Young diagram λ, we denote the number of standard Young tableaux of shape λ
by dλ � |Tλ|. If T P Tλ and 0 ¤ p ¤ |λ| we consider the restriction of T to its p least boxes
by removing the entries which are bigger than p, and denote the obtained tableau by T|¤p
(clearly, it is also a standard Young tableau).

For C ¥ 1 we say that a Young diagram λ is C-balanced if λ has at most C
a
|λ| rows

and at most C
a
|λ| columns.

For a tableau T and an integer p which appears exactly once in T (which will always be
the case in our considerations) we define the u-coordinate of the box with the entry p as

uT
p :� x� y for px, yq � posppTq.

Note that in the literature, for instance in [CSST10], such a u-coordinate is called the content.
We will also consider skew tableaux obtained by removing some boxes from Young

tableaux. Let T P Tλ be a standard Young tableau. If T with the boxes with entries a1, . . . , ai
removed is a skew tableau, we denote it by Tzta1, . . . , aiu. Clearly, Tztp� 1, . . . , |λ|u �
T|¤p is also a standard Young tableau.

4.3.2 Representation theory

Reader may recall the basics of the representation theory in Section 1.4.
If G is a finite group and ρ : G Ñ End V is its representation on a finite-dimensional

complex linear space V, then by

ξVpgq :� Tr ρpgq, g P G,

we denote its character (we write just ξ if it is clear which representation we consider). We
also consider the normalized character χV : G Ñ C given by

χV :� 1
dim V

� ξV � 1
ξVpidq � ξV .
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Additionally, for any element of the group algebra

f �
¸
gPG

fgg P CG

we denote by χV p f q the extension of the character by linearity given by

χV p f q :�
¸
gPG

fg χV pgq P C.

On the vector space of functions G :� t f : G Ñ Cu we consider the standard scalar
product given by @

f , g
D

:� 1
|G|

¸
hPG

f phq gphq, for f , g P G,

where c denotes the complex conjugation.
We will denote by Ĝ the family of irreducible representations (irreps for short) of G. It is

known that the system of irreducible characters tξVxuxPĜ is orthonormal. Therefore for the
normalized irreducible characters the following holds:

A
χV1

, χV2

E
�

$&%
1

dim V1
if χV1

� χV2
,

0 otherwise.

Let V be a finite-dimensional representation and let

V � à
xPĜ

mxVx

be its decomposition into irreducible components, where mx P N denotes the multiplicity
of x. By a random irreducible component of V we will understand a random element of Ĝ
sampled according to the probability measure PV which is proportional to the total dimension
of all copies of a given irrep in V:

PVpxq :� mx dim Vx

dim V
� pdim Vxq2 �

@
χV , χx

D
for x P Ĝ. (4.3.1)

The trivial representation will be denoted by triv. If H is a subgroup of G then we denote
by ρÓG

H the restriction of a representation ρ to H (if G is fixed we just write ρÓH).

For λ P Yn we denote by ρλ : Sn Ñ End Vλ the irreducible representation of the sym-
metric group Sn corresponding to the Young diagram λ and by χ

λ
its normalized character.

4.3.3 Asymptotics of characters and the approximate factorization property

We will use two results concerning asymptotics of characters. The first one, due to Feráy and
the second named author, gives an upper bound on the irreducible characters.

Fact 4.3.1 ([FŚ11, Theorem 1]). There exists a constant a ¡ 0 such that for any Young
diagram λ and any permutation π P S|λ|

��χ
λ
pπq�� ¤ �

a max
�

rpλq
|λ| ,

cpλq
|λ| ,

|π|
|λ|


�|π|
(4.3.2)

where rpλq and cpλq stand, accordingly, for the number of rows and the number of columns
of λ.
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The second result, due to Biane (and its generalization due to the second-named author),
shows that the character calculated on the product of two fixed permutations with disjoint
supports approximately factorizes.

Fact 4.3.2 ([Bia98, Corollary 1.3], [Bia01, Section 0], [Śni06, Theorem 1]). Let C ¥ 1 and
m P N. There exists a constant K ¡ 0 such that for each C-balanced Young diagram λ and
all permutations σ, τ P S|λ| with disjoint supports and satisfying |σ|, |τ| ¤ m we have

��χ
λ
pστq � χ

λ
pσqχ

λ
pτq�� ¤ K�a

|λ|
	|σ|�|τ|�2 .

4.3.4 Jucys–Murphy elements

In the applications of Fact 4.3.1 and Fact 4.3.2 we will encounter the expressions in the
left-hand-side of (4.3.4). The lemma below gives an upper bound for their values.

Its proof uses Jucys–Murphy elements which often appear in the modern approach to the
representation theory of the symmetric groups (see [CSST10]) and are defined as the following
elements of the symmetric group algebra CSn

Jk :�
¸

1¤i k

pi, kq � p1, kq � � � � � pk� 1, kq P CSn for 1 ¤ k ¤ n. (4.3.3)

The elements J1, . . . , Jn P CSn form a commuting family in the symmetric group algebra.
We will use them intensively in Section 4.6.

Lemma 4.3.3. For any c ¡ 0 and n P N

¸
πPSn

c|π|   exp

�
n2c
2

�
. (4.3.4)

Proof. For any c P C the following simple identity in the symmetric group algebra holds true¸
πPSn

c|π|π � p1� cJ1qp1� cJ2q � � � p1� cJnq.

By applying the trivial representation to both sides of the above equality we get that for c ¡ 0

¸
πPSn

c|π| � p1� cqp1� 2cq � � � �1� pn� 1qc�   ece2c � � � epn�1qc   exp

�
n2c
2

�
.

4.4 The longitude and surfing

Our strategy towards the proof of Theorem 4.2.3 is to pass to the geographic coordinates of the
point Xt � XtpTNq from the scaled evacuation trajectory (4.2.5). Having the choice between
the latitude and the longitude, we start with the more challenging problem of understanding
how the longitude ψpXtq changes over time t.

Instead of considering the longitude ψpXtq directly, it will be more convenient to study
the following random variable which we call the theoretical longitude:

Ψth
Nptq :� Fν1�t

�
upXtq

�
, (4.4.1)

where upXtq denotes the u-coordinate of Xt � XtpTNq, and Fν1�t
is the cumulative distri-

bution function of the limit measure ν1�t which was defined in Section 4.2.3. Notice that
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if in time t the box with the biggest number is positioned exactly on the circle of latitude
α � 1� t, that is, αpXtq � 1� t, then the theoretical longitude coincides with the longitude,
i.e., Ψth

Nptq � ψpXtq. Heuristically one would expect that Ψth
Nptq � ψpXtq for N Ñ8.

Roughly speaking, the following result states that (away from the polar regions which
correspond to t � 0 and t � 1) the theoretical longitude of Xt does not change too much over
time.

Theorem 4.4.1. Assume that 0   t1   t2   1. Then for each ε ¡ 0

lim
NÑ8

PN

"
TN P TlN :

��Ψth
Npt2q �Ψth

Npt1q
�� ¡ ε

*
� 0.

In other words, the difference Ψth
Npt2q �Ψth

Npt1q converges in probability to 0 when N Ñ8,
that is shortly,

Ψth
Npt2q �Ψth

Npt1q PÝÝÝÑ
NÑ8

0.

The proof is quite involved; Sections 4.4 to 4.7.2 are a preparation while the proof of
Theorem 4.4.1 itself will be given in Sections 4.7.3 and 4.7.4. The remaining part of the
current section is devoted to a rough sketch of the proof.

Clearly, Theorem 4.4.1 is equivalent to the conjunction of the following two statements
for ε ¡ 0:

lim
NÑ8

PN

"
TN P TlN : Ψth

Npt2q �Ψth
Npt1q ¡ ε

*
� 0, (4.4.2)

lim
NÑ8

PN

"
TN P TlN : Ψth

Npt2q �Ψth
Npt1q   �ε

*
� 0. (4.4.3)

We start with the proof of the upper bound (4.4.2). Then we will use the symmetry of the
problem in order to prove the lower bound (4.4.3).

4.4.1 The single surfer scenario

We would like to present the problem of the evacuation path in a different, more vivid light.
We will speak about a square pool of side N (=the square Young diagram lN) filled with
N2 � 1 particles of water (=the Young tableau TN with the largest entry removed), a passive
surfer (=the box with the biggest entry N2) and its trajectory (or behavior) when the pool is
being drained (=iteratively applying jeu de taquin). Our goal in Theorem 4.2.3 is to show that,
when the pool is big enough, the surfer has some typical paths along which he/she moves as
the pool is being drained.

In our proof of Theorem 4.4.1 we start our analysis at time t1 when jeu de taquin was
already applied

m1 :� tt1N2u (4.4.4)

times. Our starting point is therefore the standard tableau

T1
N :� B�m1pTNq

��
¤N2�m1

(4.4.5)

with N2 �m1 boxes (compare with (4.1.9)). We denote

w1 � N2 �m1 � 1. (4.4.6)

In this way the boxes with numbers 1, . . . , w1 correspond to the water and the box with the
maximal number w1 � 1 to the surfer. The position of the latter box will be called the initial
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position of the surfer and we will refer to the tableau T1
N as the initial surfer configuration.

By removing the box with the surfer

W1
N :� T1

Nztw1 � 1u (4.4.7)

we get a standard Young tableau which encodes the initial configuration of the water.
As time goes by, at the time t2 the jeu de taquin was already applied

m2 :� tt2N2u

times and we investigate the tableau

T2
N � B�m2pTNq

��
¤N2�m2

� B�m2�m1pT1
Nq
��
¤N2�m2

with w2 � 1 boxes, where
w2 � N2 �m2 � 1. (4.4.8)

The boxes with the numbers 1, . . . , w2 correspond to the remaining particles of water and the
box with the maximal number w2 � 1 corresponds to the surfer; the position of the latter box
will be called the final position of the surfer.

Our aim is to relate the final position of the surfer at the time t2 to its initial position at the
time t1, preferably in the language of the theoretical longitude. As a point of reference we
will introduce an additional multisurfer story which happens in a parallel universe in which
we pay attention to k surfers.

4.4.2 Pieri tableaux

We consider the partial order on the plane R2 defined by:

px1, y1q ¨ px2, y2q ðñ
�
x1 ¤ x2 ^ y1 ¥ y2

�
.

Let k be a fixed natural number and M be a tableau in which the k largest entries are
numbered by consecutive integers l � 1, . . . , l � k. We say that the tableau M is a k-Pieri
tableau if these k largest boxes are placed in the increasing order with respect to ¨ (i.e., they
are placed from north-west to south-east) or, equivalently, their u-coordinates are ordered
increasingly, that is:

uM
l�1   � � �   uM

l�k.

If the value of the number k is clear from the context, we will shortly say that M is Pieri.
It is easy to check that if M has at least k� 1 boxes then M is a k-Pieri tableau if and only

if jpMq is a k-Pieri tableau.

For standard Young tableaux we will consider the following more general notion. For
a (skew) standard Young tableau T with n boxes and positive integers w and k such that
w� k ¤ n we say that T is a pw� 1, w� kq-Pieri tableau if

uT
w�1   � � �   uT

w�k. (4.4.9)

The set of pw�1, w� kq-Pieri standard tableaux of (skew) shape λ will be denoted by rT pw�1,w�kq
λ .
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4.4.3 The multisurfer scenario

For the multisurfer scenario let k � kpNq be a sequence of positive integers such that

lim
NÑ8

k � 8 and lim
NÑ8

k2

N
� 0. (4.4.10)

For a fixed value of N we consider the N � N square pool filled with N2 � k particles of
water on which k surfers (=k boxes with the biggest entries) are positioned in the increasing
order. Formally speaking, by rTlN � rT pN2�k�1,N2q

lN

we denote the set of standard Young tableaux of the square shape lN which are k-Pieri,
and by rPN the uniform distribution on the set rTlN . We assume that MN is a random tableau
sampled with the uniform probability distribution rPN on the set rTlN In this scenario, in order
to refer to the k surfers, we will use the name multisurfers.

We start our analysis when jeu de taquin was already applied m1 � 1� k times with m1
given again by (4.4.4) (notice that m1 � 1� k ¥ 0 for N big enough). Our starting point is
therefore the tableau

M1
N :� B�m1�1�kpMNq

��
¤N2�m1�1�k (4.4.11)

with N2 �m1 � 1� k � w1 � k boxes. We will refer to this tableau as the initial multisurfer
configuration. In this way, just as in the single surfer scenario, the boxes with the numbers
1, . . . , w1 correspond to the water (in particular, there is the same number of water particles as
in the single surfer scenario). On the other hand, the boxes with the numbers w1� 1, . . . , w1�
k correspond to the multisurfers. By removing the multisurfers

rW1
N :� M1

Nztw1 � 1, . . . , w1 � ku (4.4.12)

we get a standard Young tableau which encodes the initial configuration of the water.
As time goes by, at the time t2 the jeu de taquin was already applied m2 � 1� k times

and we investigate the tableau

M2
N � B�m2�1�kpMNq

��
¤w2�k � B�m2�m1pM1

Nq
��
¤w2�k (4.4.13)

which consists of w2 � k boxes which correspond to w2 particles of water and k multisurfers;
we will refer to this tableau as the final multisurfer configuration.

4.4.4 Sketch of the proof of the upper bound (4.4.2)

4.4.4.1 The collective behavior of the multisurfers is not very random

Since the number of the multisurfers is small in comparison to the number of the rows/columns,
as a first-order approximation we may treat the set of positions of k multisurfers at any fixed
time as a collection of k independent copies of the position of a single surfer. We can expect
therefore that the law of large numbers is applicable and, as k Ñ8, the multisurfer empirical
measure (which is a random measure which encodes the scaled down u-coordinates of the
multisurfers) converges in probability to the probability distribution of the position of the
single surfer. In other words: the collective behavior of the multisurfers is much less random
than the behaviour of the single surfer. This phenomenon is beneficial and will allow us to
use the multisurfers as a moving frame of reference for tracing the position of the single surfer
over time.

The above naive first-order approximation clearly cannot be true if k � kpNq grows too
fast with the size N of the square. Nevertheless, in Theorem 4.6.2 we will show that if
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k � kpNq grows at the right speed then a version of the law of large numbers indeed holds
true. The proof of Theorem 4.6.2 is quite technically involved and the whole Section 4.6 is
devoted to its proof.

4.4.4.2 The multisurfers provide information about the surfer

Let us fix some common initial configuration of the water for both the surfer and the multi-
surfers. In another first-order approximation let us assume for a moment that the density of
the multisurfers is small enough that during the time interval rt1, t2s all neighboring pairs of
multisurfers are separated so that the multisurfers do not touch each other. If this is indeed the
case and there are no interferences between the multisurfers then the time evolution of each
multisurfer clearly coincides with the time evolution of the single surfer who would have the
same initial position; by reversing the optics this means that we have a very direct information
about some specific single surfer trajectories (namely, the ones which start from the positions
of the multisurfers) in terms of the dynamics of the multisurfers, which we understand pretty
well thanks to the aforementioned Theorem 4.6.2.

It is very convenient that for a fixed initial configuration of the water, the trajectory of the
single surfer depends in a monotonic way on the initial position of the surfer. For this reason
it is possible to get some partial information also about the single surfer trajectories starting
from the points between the initial positions of two multisurfers. If the number k � kpNq of
the multisurfers tends to infinity as N Ñ8 such neighboring multisurfers should not be too
far (in comparison to the size N of the square) which is enough to prove Theorem 4.4.1.

4.4.4.3 The single surfer and the multisurfer scenario on the same water configuration

Above we used the idea of considering the single surfer scenario and the multisurfer scenario
on the same configuration of water. This idea sounds self-contradictory because each of these
two scenarios gives rise to a different probability distribution on the set of configurations of the
water. In Section 4.5 we shall explain how to overcome this difficulty and to (asymptotically)
couple the surfer and the multisurfers on a single probability space. The resulting object can
be visualized as water on which in two parallel universes there is (i) a single surfer, and (ii)
k multisurfers. The single surfer and the multisurfers are like ghosts to one another and do
not interact. Furthermore, as long as the multisurfers do not touch each other, the relative
position (with respect to the partial order   on the plane) of the surfer and the ghosts of the
multisurfers does not change over time: overtaking of the surfer by the multisurfers is not
allowed.

4.4.4.4 Overtaking is allowed in one direction only

The above discussion was based on a simplistic assumption that the multisurfers do not touch
each other. Regretfully, in the real world this is not the case; multisurfers might influence each
other and hence the multisurfer trajectories might differ from the single surfer trajectories on
the same configuration of the water.

On the bright side, the assumption that the multisurfers are ordered as in the definition
of the Pieri tableaux implies that the movement of each multisurfer depends only on (1) the
configuration of the water, and (2) on these multisurfers which are to the north-west; the other
multisurfers which are south-east have no influence on its dynamics. Furthermore, the impact
of the multisurfers is unidirectional: the presence of the north-west multisurfer-neighbor can
only push the multisurfer in the south-east direction. For the ‘coupling’ of the stories of the
single surfer and the multisurfers on the common water this means that the ghosts of the
multisurfers are allowed to overtake the surfer, but only in one direction. More precisely, the
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number of the multisurfers which are north-west to the single surfer can only decrease over
time (see Lemma 4.7.1 for the formal description of the above heuristics).

4.4.4.5 The order in which the proof of the upper bound (4.4.2) will be conducted

The rigorous proof of (4.4.2) will be conducted in the following order. First in Section 4.5
we will develop the content of Section 4.4.4.3. Then in Section 4.6 we will deal with the
collective behavior of the multisurfers described in Section 4.4.4.1. In Section 4.7.1 we will
work out the dynamics contained in Section 4.4.4.4. Finally, in the rest of Section 4.7 we will
formally justify the heuristics from Section 4.4.4.2 and complete the proof.

4.5 Single surfer versus the multisurfer scenario

In Sections 4.4.1 and 4.4.3 we considered two random tableaux: T1
N and M1

N defined
on two different probability spaces (which correspond to the single surfer and the multi-
surfer scenario respectively). In order to proceed with the ideas sketched in Section 4.4.4.3
we need to define some random tableaux T1

N and M1
N on a common probability space with

(almost) the same distributions as T1
N and M1

N and such that the corresponding configurations
of water coincide. A solution to this problem is provided by Proposition 4.5.1 below which is
also the main result of the current section. We will compare the distributions with respect to
the total variation distance.

Suppose that X and Y are random variables (possibly defined on different probability
spaces) taking values in some finite set S with probability distributions PX and PY respec-
tively. We define the total variation distance between the random variables X and Y [Dur10,
Section 3.6.1] (or, alternatively, between the probability distributions PX and PY) as

δpX, Yq � δpPX, PYq :� 1
2

¸
sPS

��PXpsq �PYpsq
�� � max

Z�S

��PXpZq �PYpZq
�� . (4.5.1)

Sometimes we will also denote this quantity by δpX, PYq, etc.

Proposition 4.5.1. For each C ¥ 1 and ∆ P p0, 1q there exists a constant d ¡ 0 with the
following property.

Let λ be a C-balanced Young diagram and let k, w, a be positive integers such that
w   p1� ∆q |λ| and w ¤ a ¤ |λ| � k.

Then there exists a pair of random tableaux T and M which are defined on the same
probability space with the following properties:

(a) T is a uniformly random element of Tλ;

(b) M is a random element of rT pa�1,a�kq
λ ;

(c) the total variation distance between the distribution of M and the uniform distribution
on rT pa�1,a�kq

λ fulfills the bound

δ

�
M, P rT pa�1,a�kq

λ



  d

k2a
|λ| �w

; (4.5.2)

(d) T
��
¤w � M

��
¤w holds true almost surely.

The proof is postponed to Section 4.5.3. In the next two subsections we prepare to it by
proving general lemmas on the probabilities of some particular events in the multisurfers
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scenario (Section 4.5.1) and comparing the distributions of water beneath surfer(s) in both
scenarios (Section 4.5.2). It turns out that these distributions are similar in terms of the total
variation distance which asymptotically converges to 0, see Lemma 4.5.4.

4.5.1 Probability that a random tableau is Pieri

Lemma 4.5.2. Let λ{µ be a skew Young diagram with n boxes and let 1 ¤ k ¤ n. Then the
cardinality of the set rT pw�1,w�kq

λ{µ for w P t0, . . . , n� ku (4.5.3)

does not depend on the choice of w.

Proof. There is a simple bijection between the set rT pw�1,w�kq
λ{µ and the set of semistandard

skew tableaux of shape λ{µ and of weight p1w, k, 1n�w�kq which is defined as follows. For a
tableau T P rT pw�1,w�kq

λ{µ we replace each entry from the set tw� 1, . . . , w� ku by the same
number w� 1, and we replace each entry i P tw� k � 1, . . . , nu by i � 1� k. It follows
therefore that the cardinality of (4.5.3) is equal to the coefficient�

x1 � � � xwxk
w�1xw�2 � � � xn�1�k

�
sλ{µ

in the expansion of the skew Schur function in the basis of monomials. Since the skew Schur
function is a symmetric polynomial, the proof is completed.

Some notions defined for ordinary Young diagrams have their natural counterparts in the
skew setup, given as follows. For C ¥ 1 we say that a skew Young diagram λ{µ is C-balanced
if λ{µ has at most C

a|λ{µ| rows and at most C
a|λ{µ| columns. Moreover we denote by

Pλ{µ the uniform measure on the set of standard Young tableaux of skew shape λ{µ.

We calculate now the probability of choosing a Pieri tableau from the set of standard
Young tableaux of a specified skew shape.

Lemma 4.5.3. For each C ¥ 1 there exists a constant c ¡ 0 with the following property. Let
λ{µ be a C-balanced skew Young diagram with n boxes. Let k and w be integers such that
1 ¤ k   4

?
n and 0 ¤ w ¤ n� k. Then����k! Pλ{µ

� rT pw�1,w�kq
λ{µ

	
� 1

����   c
k2
?

n
. (4.5.4)

Proof. Let T be a uniformly random standard tableau of skew shape λ{µ. It is easy to check
that T is pw� 1, w� kq-Pieri if and only if the rectified tableau rect T is pw� 1, w� kq-Pieri
(see Section 4.4.2 for the definition of Pieri tableaux). In the following we will describe the
probability distribution of rect T.

Recall that the plactic skew Schur polynomial Sλ{µ is the formal sum of the elements in
the plactic monoid which correspond to all semistandard tableaux of shape λ{µ. The relations
in the plactic monoid [Ful97, Section 2, Corollary 1] allow us to identify a skew tableau with
its rectification and to express the skew plactic Schur polynomial as a linear combination of
(non-skew) plactic Schur polynomials [Ful97, Section 5.1, Corollary 4]:

Sλ{µ
dλ{µ

�
¸

ν

cλ
µνdν

dλ{µ
� Sν

dν
, (4.5.5)

where cλ
µν is the Littlewood–Richardson coefficient. If we restrict our attention only to the

summands which correspond to (skew) standard tableaux, the left-hand side can be identified
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with the probability distribution of rect T. The right-hand can be interpreted as a linear
combination (over some Young diagrams ν) of the uniform measure on the set Tν.

In this way we proved that a random tableau with the same distribution as rect T can be
generated by the following two step procedure. Firstly, we select a random Young diagram ν
with the probability distribution

Ppνq � cλ
µνdν

dλ{µ
.

Secondly, we select a uniformly random standard tableau with the shape ν.
In particular, the probability that rect T is a pw� 1, w� kq-Pieri tableau is a weighted

arithmetic mean (over certain diagrams ν) of the probability that a uniformly random element
of Tν is a pw � 1, w � kq-Pieri tableau. It follows that it is enough to prove a version of
the inequality (4.5.4) in which the skew diagram λ{µ is replaced by any diagram ν which
contributes to (4.5.5); we will do it in the following.

We start with an observation that in the process of rectification the number of rows and the
number of columns of a tableau cannot increase. Since λ{µ is C-balanced, it follows that any
Young diagram ν which contributes to (4.5.5) is also C-balanced.

By Lemma 4.5.2 it is enough to consider the case w � 0. Let T be a uniformly random
standard tableau of shape ν and let ξ � sh T|¤k be the positions of the first k boxes of T.
The tableau T is p1, kq-Pieri if and only if ξ � pkq is the one-row diagram. The remaining
difficulty is therefore to identify the probability distribution of ξ.

The link between the combinatorics of standard Young tableaux and the irreducible
representations of the symmetric groups (in particular, the branching rule) implies that the
probability distribution of ξ coincides with the measure PVνÓSk

on the irreducible components

of VνÓSk
which was defined in (4.3.1). Equation (4.3.1) gives therefore an exact formula

k! P
�

T P rT p1,kq
ν

	
� k!PVνÓSk

ptrivq � k!
A

χν

��
Sk

, χtriv

E
�¸

πPSk

χνpπq χtrivpπq � 1�
¸

πPSk
π�id

χνpπq. (4.5.6)

In the following we will find an asymptotic bound for the second summand on the right-hand
side.

By Fact 4.3.1 there exists a universal constant a ¡ 0 (which depends only on C) such that
for any π P Sk ��χνpπq

�� ¤ �
a?
n


|π|
. (4.5.7)

It follows that the second summand on the right-hand side of (4.5.6) is bounded by����� ¸
πPSk
π�id

χνpπq
����� ¤ ¸

πPSk

�
a?
n


|π|
� 1 ¤ e

ak2?
n � 1 � O

�
k2
?

n

�
,

where we used Lemma 4.3.3 and the assumption that k2?
n � Op1q.

4.5.2 Comparison of distributions of water beneath surfer(s) in both scenarios

The following lemma shows that in the asymptotic setting the probability distributions of
water beneath surfer(s) in the single surfer and the multisurfer scenarios are nearly equal.
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Lemma 4.5.4. For each C ¥ 1 and ∆ P p0, 1q there exists a constant d ¡ 0 with the following
property.

Let λ be a C-balanced Young diagram and k, w and a be positive integers such that
w   p1� ∆q |λ| and w ¤ a ¤ |λ| � k. Denote by T a uniformly random element of Tλ and
by M a uniformly random element of rT pa�1,a�kq

λ . The total variation distance between the
distributions of the restricted tableaux T

��
¤w and M

��
¤w fulfills the bound

δ
�

T
��
¤w, M

��
¤w

	
  d

k2a
|λ| �w

. (4.5.8)

Proof. We start with an observation that the total variation distance is trivially bounded
from above by 1. It follows that (provided d ¥ 1) it is enough to consider the case when
k4 ¤ |λ| �w.

Notice that the probability distribution P rT pa�1,a�kq
λ

p�q coincides with the conditional proba-

bility PTλ

�
� �� rT pa�1,a�kq

λ

	
. Therefore, for any µ P Yw such that µ � λ and any S P Tµ we

have, by the Bayes rule, that

P rT pa�1,a�kq
λ

�
M
��
¤w � S

	
�

PTλ

�
M P rT pa�1,a�kq

λ

��� M
��
¤w � S

	
PTλ

� rT pa�1,a�kq
λ

	 �PTλ

�
M
��
¤w � S

	
.

By elementary algebra this equality can be rewritten as

P rT pa�1,a�kq
λ

�
M
��
¤w � S

	
�PTλ

�
M
��
¤w � S

	
�

� P rT pa�1,a�kq
λ

�
M
��
¤w � S

	�
1� k! PTλ

� rT pa�1,a�kq
λ

	�
�

�PTλ

�
M
��
¤w � S

	�
k! PTλ

�
M P rT pa�1,a�kq

λ

��� M
��
¤w � S

	
� 1

�
. (4.5.9)

Our strategy is to find an upper bound for the absolute value of the right-hand side.

The conditional probability in the second summand on the right-hand side, i.e.,

PTλ

�
M P rT pa�1,a�kq

λ

��� M
��
¤w � S

	
, (4.5.10)

is equal to the conditional probability that the restricted tableau M|¡w is an pa� 1, a� kq-
Pieri tableau. In order to calculate this conditional probability we notice that the conditional
probability distribution of the restricted tableau M|¡w (under the condition M

��
¤w � S) is

the uniform measure on the set of tableaux of shape λ{µ such that their entries form the
multiset pw� 1, . . . , nq. In other words, the probability distribution of the random tableau�

M|¡w
��w (which is obtained by decreasing each entry of M|¡w by w) is given by PTλ{µ .

In this way we proved that (4.5.10) is equal to

PTλ{µ

� rT pa�1�w,a�k�wq
λ{µ

	
. (4.5.11)

By comparing the number of rows and columns, as well as the number of boxes of the
skew diagram λ{µ with their counterparts for λ it follows that λ{µ is C1-balanced with

C1 � C

d
|λ|

|λ| �w
  C?

∆
.
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A fortiori λ and λ{µ are C2-balanced, where C2 is the right-hand side of the above inequality.

We apply Lemma 4.5.3 twice: for both expressions in the square brackets on the right-hand
side of (4.5.9). It follows that there exists a universal constant c ¡ 0 (which depends only
on C2) such that����P rT pa�1,a�kq

λ

�
M
��
¤w � S

	
�PTλ

�
M
��
¤w � S

	���� ¤
¤ P rT pa�1,a�kq

λ

�
M
��
¤w � S

	 ck2a
|λ| �PTλ

�
M
��
¤w � S

	 ck2a
|λ| �w

.

By summing over all choices of S we get (4.5.8) for d :� maxp1, 2cq, as required.

4.5.3 Proof of Proposition 4.5.1

Proof of Proposition 4.5.1. We will sample the random tableaux T and M by the following
two-step procedure. Firstly, we sample T with the uniform probability measure on Tλ, that
is PpT � Tq :� PTλ

pTq for any T P Tλ. After the tableau T was selected, we sample the
tableau M with the conditional probability

P
�� �� T � T

�
:� P rT pa�1,a�kq

λ

�
�
��� !M P rT pa�1,a�kq

λ : M|¤w � T|¤w

)

.

In this way the condition (d) is fulfilled trivially.
Therefore the probability distribution of M is given by

P pM � Mq � PTλ

 
T P Tλ : T|¤w � M|¤w

(�
P rT pa�1,a�kq

λ

�
M

��� !T P rT pa�1,a�kq
λ : T|¤w � M|¤w

)

. (4.5.12)

The probability measure P rT pa�1,a�kq
λ

can be written in an analogous way as

P rT pa�1,a�kq
λ

pMq � P rT pa�1,a�kq
λ

!
T P rT pa�1,a�kq

λ : T|¤w � M|¤w

)
�

P rT pa�1,a�kq
λ

�
M

�� !T P rT pa�1,a�kq
λ : T|¤w � M|¤w

)

. (4.5.13)

It follows that the process of sampling M as well as the process of sampling the uniformly
random element of rT pa�1,a�kq

λ can be viewed as a two-step procedure: we first sample the
positions of the boxes 1, . . . , w and in the second step the remaining boxes. Notice that in
both sampling procedures in the second step we sample the remaining boxes with the same
conditional distribution. It follows that the total variation distance between the measures
(4.5.12) and (4.5.13) is bounded from above by the total variation distance (4.5.8) from
Lemma 4.5.4 which completes the proof.

4.6 The distribution of the u-coordinates of the multisurfers

Our main result in this section is Theorem 4.6.2 which shows that the multisurfer empirical
measure (i.e., the distribution of the u-coordinates of the multisurfers) after draining a p1� αq-
fraction of the water converges to the limit measure να (the limit distribution of the u-
coordinate of the single surfer on the level curve gα, cf. Section 4.2.3). Also Proposition 4.6.5
might be interesting from the viewpoint of algebraic combinatorics as it provides a direct



4.6. The distribution of the u-coordinates of the multisurfers 113

link between the statistical properties of uniformly random pa, bq-Pieri tableaux of some fixed
shape and the celebrated Jucys–Murphy elements.

The following assumption on the ‘amount of water’ and the number of multisurfers will
be central in the forthcoming results (Theorem 4.6.2 and Propositions 4.7.2 and 4.6.3).

Assumption 4.6.1. Let c ¡ 0 be the constant in Lemma 4.5.3 obtained for C � 1 for which
(4.5.4) holds. We assume that k � kpNq and w � wpNq are sequences of positive integers
which fulfill

lim
NÑ8

kpNq � 8 and k  
c

N
2c

and w� k   N2.

4.6.1 Counting multisurfers gives the longitude

Let w � wpNq and k � kpNq be sequences of nonnegative integers such that 0   w� k   N2.
Let MN be a uniformly random tableau from rT pw�1,w�kq

lN
. We use a shorthand notation

un :� uMN
n for the u-coordinate of the box with the number n in the tableau MN . For u P R

we define the random variable GNpuq to be the fraction of the multisurfers which have their
scaled u-coordinate smaller than u, that is

GNpuq :� 1
k

max
"

p P t1, . . . , ku :
1
N

uw�p ¤ u
*

. (4.6.1)

Clearly, GN is the cumulative distribution function of the random measure mN on R

mN :� 1
k

¸
1¤p¤k

δN�1 uw�p

where δx denotes the delta measure concentrated at x.

Theorem 4.6.2. Let α P p0, 1q. Let w � wpNq and k � kpNq fulfill Assumption 4.6.1 and

lim
NÑ8

w
N2 � α.

Then for each ε ¡ 0

P rT pw�1,w�kq
lN

"
MN : sup

uPR

��Fναpxq �GNpxq
�� ¡ ε

*
� O

�
1
k
� k2

N

�

with the constant in the O-notation depending only on α and ε.
In particular, if kpNq Ñ 8 and kpNq � op?Nq, i.e., (4.4.10) is satisfied, then the

random sequence of cumulative distribution functions GN with respect to the supremum norm
converges in probability to the cumulative distribution function Fνα when N Ñ 8, that is
shortly,

sup
xPR

��Fναpxq �GNpxq
�� PÝÑ 0.

In order to prove this result we will compare the (random) moments of the empirical
measure mN and the moments of the measure να which gives the asymptotics of the u-
coordinate of a single box, cf. Section 4.2.3. In Proposition 4.6.3 below we shall calculate
the moments of the empirical measure mN . In Section 4.6.8 we will complete the proof of
Theorem 4.6.2.
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4.6.2 Moments of the empirical measure GN

For each β P N we define the β-th moment of the random measure mN as

Mβ :� Mβpw, kq :�
»

R

zβ dmNpzq � 1
k

N�β
¸

1¤p¤k

uβ
w�p.

Notice that Mβ is also a random variable. The following result expresses the first two moments
of the random variable Mβpw, kq (which is related to the problem of multisurfers) in terms
of the first moment of the random variable Mβpw, 1q (which is related to the much simpler
problem of a single surfer). This proposition is crucial to the proof of Theorem 4.6.2.

Proposition 4.6.3. Let w � wpNq and k � kpNq fulfill Assumption 4.6.1. For each β P N,
we have

ErPN
Mβpw, kq � EPN Mβpw, 1q �O

�
k2

N

�
; (4.6.2)

VarrPN
Mβpw, kq � O

�
1
k
� k2

N

�
(4.6.3)

with the constants in the O-notation depending only on β.

Remark 4.6.4. The counterpart of the above proposition in the paper of Romik and the second
named author is [Rom15, Theorem 4.6]. There the error terms for the expected value and
variance are much smaller, accordingly, O

�
k
N

	
and O

�
1
k � k

N

	
. There are two reasons for

which our error terms are much bigger, of the form, accordingly, O
�

k2

N

	
and O

�
1
k � k2

N

	
.

• In the proof of Proposition 4.6.5 we will view the probability distribution of the multi-
surfers as a conditional distribution of the boxes with certain numbers in a uniformly
random standard skew tableau with a specified shape under the condition that these
boxes are suitably ordered (i.e., the tableau is Pieri). Unfortunately, the probability of
the latter event depends heavily on the shape of the diagram and we do not have a very
good control over the error term, see Lemma 4.5.3.

Using our terminology in their context, the placement of the multisurfers by Romik
and the second named author can also be seen as a conditional process: one first adds
k boxes to a given Young diagram λ by k independent steps of the Plancherel growth
process, and then conditions that these boxes are suitably ordered. In this case, however,
the conditioning does not create additional difficulties because the probability of the
event that the newly created boxes are Pieri is equal to 1

k! and does not depend on the
shape of λ.

• The error O
�

k2

N

	
also appears during the application of Proposition 4.6.9. Romik and

the second named author make use of [Rom15, Theorem 4.4] which is a counterpart of
ours Proposition 4.6.5. They deal with the character of the left-regular representation
which obviously is not troublesome and need not be estimated.

The proof of Proposition 4.6.3 is quite long. In Sections 4.6.3 to 4.6.5 we gather some
tools helpful in proving Proposition 4.6.3. In particular, the goal of Section 4.6.3 is to provide
a connection between the statistical properties of the multisurfers and the representation
theory (see Proposition 4.6.5). Section 4.6.4 gives background for calculating the character
χ
lN

of the cosets appearing in (4.6.4). Section 4.6.5 is devoted mostly to an analysis of the
permutations arising from the powers of Jucys–Murphy elements. Eventually, in Section 4.6.6
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we give the proof of (4.6.2) and in Section 4.6.7 the proof of (4.6.3) which completes the
proof of Proposition 4.6.3.

4.6.3 Multisurfers and the representation theory

The following result, Proposition 4.6.5, provides a link between the statistical properties of
the multisurfers and the representation theory of the symmetric groups.

Let w, k, n be positive integers such that w � k ¤ n. With a small abuse of notation
we denote by Sw the group of permutations of the set t1, . . . , wu and by Sk the group of
permutations of the set tw� 1, . . . , w� ku. In this way Sw and Sk are commuting subgroups
of Sw � k � Sn. We define the element of the symmetric group algebra

pSk �
1
k!

¸
σPSk

σ P CSn.

Recall from Section 4.3.4 that the Jucys–Murphy elements J1, . . . , Jn form a commuting
family in the symmetric group algebra CSn and are given by

Jk :�
¸

1¤i k

pi, kq � p1, kq � � � � � pk� 1, kq P CSn for 1 ¤ k ¤ n.

Proposition 4.6.5. Let w, k, n be positive integers such that w� k ¤ n. Let Wpx1, . . . , xkq be
a symmetric polynomial in k variables. Let λ P Yn be a Young diagram and T be a random
element (sampled with the uniform distribution) of the set rT pw�1,w�kq

λ of pw� 1, w� kq-Pieri
tableaux of shape λ. Then

E W
�

uT
w�1, . . . , uT

w�k

	
�

χ
λ

�
W
�

Jw�1, . . . , Jw�k
� � pSk

	
χ

λ

�
pSk

� (4.6.4)

�
χ

λ

�
W
�

Jw�1, . . . , Jw�k
� � pSk

	
PTλ

� rT pw�1,w�kq
λ

	 .

The proof is postponed until the end of the current section until we gather the necessary
tools.

We start with the following fundamental property of Jucys–Murphy elements.

Fact 4.6.6 ([Juc74]). Let λ P Yn be a Young diagram, and let u1, . . . , un be the u-coordinates
of its boxes (listed in an arbitrary order). Let Wpx1, . . . , xnq be a symmetric polynomial in n
variables. Then:

• WpJ1, . . . , Jnq P CSn belongs to the center of the group algebra.

• The operator ρλ

�
WpJ1, . . . , Jnq

�
is a multiple of the identity operator, so it can be

identified with a complex number. The value of this number is equal to

χ
λ

�
WpJ1, . . . , Jnq

	
� Wpu1, . . . , unq. (4.6.5)

Lemma 4.6.7. Let µ P Yw�k be a Young diagram and let Wpx1, . . . , xkq be a symmetric
polynomial in k variables. Then the operator

ρµ

�
WpJw�1, . . . , Jw�kq

�
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acts on each irreducible component Vν of the restriction Vµ

��Sw�k
Sw

as a multiple of the identity
operator and can be identified with the complex number

W
�

uµ{ν
w�1, . . . , uµ{ν

w�k

	
. (4.6.6)

Above, for a diagram ν with w boxes such that ν � µ we denote by uµ{ν
w�1, . . . , uµ{ν

w�k the u-
coordinates of the boxes of the skew diagram µ{ν (listed in an arbitrary order).

Proof. We will show that the lemma holds in the particular case when W is the power-sum
symmetric function, that is

Wpx1, . . . , xkq :� pβpx1, . . . , xkq :�
¸

1¤i¤k

xβ
i

for some β P N0. Since the power-sum symmetric functions generate the algebra of the sym-
metric polynomials and the representation ρµ is an algebra homomorphism, in this way we will
prove that the lemma holds true in general.

Clearly,

W
�

Jw�1, . . . , Jw�k
� � pβ

�
Jw�1, . . . , Jw�k

� �
� pβ

�
J1, . . . , Jw�k

�� pβ pJ1, . . . , Jwq .

By Fact 4.6.6, the operator pβ

�
J1, . . . , Jw�k

�
acts on the component Vµ as multiplication by

the factor
pβ

�
uµ

1 , . . . , uµ
w�k

	
�

¸
1¤i¤w�k

�
uµ

i

	β
. (4.6.7)

Again by Fact 4.6.6, for any ν P Yw, the operator pβ pJ1, . . . , Jwq acts on the component Vν

as multiplication by the factor

pβ

�
uν

1, . . . , uν
w
� � ¸

1¤i¤w

�
uν

i
�β . (4.6.8)

Let ν � µ. The multiset of the u-coordinates of the boxes of µ is the union of (i) the
multiset of the u-coordinates of the boxes of ν, and (ii) the multiset of the u-coordinates of
the boxes of µ{ν. Therefore, by subtracting (4.6.8) from (4.6.7), we get that the operator
pβ

�
Jw�1, . . . , Jw�k

�
acts on the component Vν of the restriction Vµ ÓSw�k

Sw
as multiplication

by the scalar

pβ

�
uµ{ν

w�1, . . . , uµ{ν
w�k

	
�

¸
1¤i¤k

�
uµ{µ

w�i

	β
,

as required.

Proof of Proposition 4.6.5. Observe that any tableau T P rT pw�1,w�kq
λ can be split into the

following three parts: (i) a standard tableau P with entries from t1, . . . , wu; we denote its
shape by ν, (ii) a skew tableau Q which is k-Pieri with entries in tw� 1, . . . , w� ku; we
denote its shape by µ{ν, and (iii) a skew tableau R with the entries ¡ w� k with shape λ{µ.

For fixed partitions µ and ν it is easy to count the number of tableaux P which contribute
to (i) and the number of tableaux R which contribute to (iii): their cardinalities are by definition
given by dν and dλ{µ respectively. The number of k-Pieri tableaux Q which contribute to
(ii) is slightly more challenging: it is equal to 1 if µ{ν has at most one box in each column
and is equal to zero otherwise. A combinatorial interpretation of the Littlewood–Richardson
coefficient cµ

ν,pkq for a single-row partition pkq (or, nomen omen, the Pieri rule) implies that
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this coefficient coincides with the latter cardinality.
In this way we proved that the left-hand side of (4.6.4) is given by

E W
�

uT
w�1, . . . , uT

w�k

	
�

1��� rT pw�1,w�kq
λ

���
¸

TP rT pw�1,w�kq
λ

W
�

uT
w�1, . . . , uT

w�k

	
�

1��� rT pw�1,w�kq
λ

���
¸

µPYw�k
µ�λ

¸
νPYw
ν�µ

dλ{µ dν cµ
ν,pkq W

�
uµ{ν

w�1, . . . , uµ{ν
w�k

	
. (4.6.9)

We will now investigate the numerator on the right hand side of (4.6.4). Each multiplic-
ity dλ{µ in the decomposition of the restriction of Vλ into irreducible components

Vλ

��S2
N

Sw�k �
à

µPYw
µ�λ

dλ{µVµ

is equal to the number of skew standard Young tableaux of shape λ{µ. Since W
�

Jw�1, . . . , Jw�k
� �

pSk P CSw � k, we get that

Cλ :� χ
λ

�
W

�
Jw�1, . . . , Jw�k

� � pSk

	
�

� 1
dim Vλ

TrVλ
ρλ

�
W

�
Jw�1, . . . , Jw�k

� � pSk

	
�

� 1
dλ

¸
µPYw�k

µ�λ

dλ{µ TrVµ ρλ

�
W

�
Jw�1, . . . , Jw�k

� � pSk

	
. (4.6.10)

The multiplicities in the decomposition of the restricted representation into irreducible
components

Vµ

��Sw�k
Sw�Sk

� à
νPYw
ξPYk

cµ
ν,ξVν bVξ

are given by Littlewood–Richardson coefficients. Therefore, since pSk is a projection to
the trivial representation, its image is given by

pSk

�
Vµ

	
� pSk

�
Vµ

��Sw�k
Sw�Sk

	
� à

νPYw

cµ
ν,pkqVν bVpkq �

à
νPYw

cµ
ν,pkqVν. (4.6.11)

By combining (4.6.10), (4.6.11), and Lemma 4.6.7 we get the following closed formula
for the numerator on the right-hand side of (4.6.4)

Cλ � 1
dλ

¸
µPYw�k

µ�λ

¸
νPYw

dλ{µ cµ
ν,pkq dν W

�
uµ{ν

w�1, . . . , uµ{ν
w�k

	
. (4.6.12)

On the other hand, by (4.6.12) evaluated for the constant polynomial W � 1, we get the
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following formula for the denominator on the right-hand side of (4.6.4)

χ
λ

�
pSk

� � 1
dλ

¸
µPYw�k

µ�λ

¸
νPYw

dλ{µcµ
ν,pkqdν � 1

dλ
�
��� rT pw�1,w�kq

λ

��� (4.6.13)

where the last equality comes from (4.6.9) evaluated for W � 1. Observe also that

PTλ

� rT pw�1,w�kq
λ

	
� dλ��� rT pw�1,w�kq

λ

��� . (4.6.14)

Equations (4.6.9), (4.6.12), (4.6.13) and (4.6.14) complete the proof of (4.6.4).

4.6.4 Character on a coset

Let us call small the elements of the set t1, . . . , wu and big the elements of the set tw �
1, . . . , w� ku. As before, we view the symmetric group Sk as the subgroup of Sw � k which
consists of the permutations which can permute only the big elements.

For a Young diagram λ P Yn and a permutation π P Sw � k we define the value of the
character χ

λ
on a left coset πSk P Sw � k{Sk as an appropriate sum over the coset, that is

χ
λ
pπSkq :�

¸
σPπSk

χ
λ
pσq.

This definition is motivated by Proposition 4.6.5 because expressions of a similar flavor (up to
the factor 1

k! ) appear on the right-hand side of (4.6.4). Our goal in this section is to understand
the asymptotics of such characters on cosets.

For a left coset πSk P Sw � k{Sk we define its length as

}πSk} :� w� #pcycles of π which consist of only small elementsq. (4.6.15)

It is easy to check that if π1Sk � π2Sk then the cycles of π1 which consist of only small
elements coincide with the analogous cycles of π2; it follows that the above definition does
not depend on the choice of the representative π of the coset.

Remind that for a permutation π we denote by |π| the length of π, i.e., the minimal
number of transpositions required to write π as their product.

Lemma 4.6.8. For each left coset πSk

}πSk} � min
 |σ| : σ P πSk

(
. (4.6.16)

There exists a unique permutation π0 P πSk for which the minimum on the right-hand side is
achieved; the permutation π0 � π0pπSkq with this property will be called minimal for the
coset πSk.

This minimal permutation has the following additional properties:

(a) for each σ P Sk,
|π0σ| � }πSk} � |σ| . (4.6.17)

(b) If π is such that each of its cycles permutes at most one big element, then π � π0 is
the minimal element.

Proof. We begin with the proof of the first assertion of the lemma. The permutation π can
be written as a product of disjoint cycles π � π1 � � �πℓπℓ�1 � � �πL, where π1, . . . , πℓ are
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the cycles which permute at least one big element, and πℓ�1, . . . , πL permute only small
elements.

Fix i P t1, . . . , ℓu. Then πi is a cycle of the form

πi �
�

p1,1, . . . , p1,r1 , q1, p2,1, . . . , p2,r2 , q2, . . . , pn,1, . . . , pn,rn , qn
�

,

for some n P N and r1, . . . , rn P N0, some big numbers q1, . . . , qn and some small numbers
pr,s. Define

τi :� �
qn, qn�1, . . . , q1

� P Sk

as the cycle permuting (in the reverse direction) the big elements of the cycle πi. Clearly,

πiτi �
�

p1,1, . . . , p1,r1 , q1
� � � � �pn,1, . . . , pn,rn , qn

�
gives a product of disjoint cycles, each permuting exactly one big element.

Then
π0 :� pπ1τ1q � � � pπℓτℓqπℓ�1 � � �πL P πSk (4.6.18)

provides a decomposition into disjoint cycles which has the property that each cycle permutes
at most one big element. Hence for any σ P Sk which permutes only big elements, the decom-
position into disjoint cycles of the product π0σ P πSk is obtained by merging appropriate
cycles of π0, it follows therefore that

|π0σ| � |π0| � |σ| . (4.6.19)

As a consequence, the minimum on the right-hand side of (4.6.16) is achieved on π0 and it is
the unique permutation with this property, as required.

We shall now show that the equality (4.6.16) holds true. It is enough to prove it in the
special case when as the coset representative we take π0 given by (4.6.18). In this special case
(4.6.16) is equivalent to

}π0Sk} � |π0| . (4.6.20)

The explicit decomposition into disjoint cycles (4.6.18) implies that the left-hand side is
equal to

w� pL� ℓq.
On the other hand, (4.6.18) implies that π0 has exactly L� ℓ cycles which permute only

small elements and k additional cycles, one for each big element. It follows that the right-hand
side of (4.6.20) is equal to

|π0| � pw� kq � �
L� ℓ� k

� � w� pL� ℓq

which concludes the proof of (4.6.16).

Property (a) is now a direct consequence of (4.6.19) and (4.6.20).

For the proof of property (b), if π is such that each of its cycles permutes at most one
big element then our construction gives π � π0 so π is the minimal representative of the
coset.

The next proposition gives an insight to the irreducible characters corresponding to square
diagrams evaluated on left cosets.

Proposition 4.6.9. For each positive integer L there exists a constant CL with the following
property.
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Let positive integers w and k be arbitrary and let π0 P πSk be the minimal representative
of a left coset πSk P Sw � k{Sk. If }πSk} ¤ L and N2 ¥ w� k and N ¡ k2 then���χlN

pπSkq � χ
lN
pπ0q

���   CLk2

N}πSk}�1 , (4.6.21)

���χlN
pπSkq

���   2CL

N}πSk} . (4.6.22)

Proof. Let d � dpLq ¥ 1 be a constant (which depends only on L) big enough so that it
guarantees that

L� k ¤ dN.

By Fact 4.3.1, Lemma 4.6.8(a) and Lemma 4.3.3 we have

���χlN
pπSkq � χ

lN
pπ0q

��� ¤ ¸
σPSk
σ�id

���χlN
pπ0σq

��� ¤ ¸
σPSk
σ�id

�
ad
N


|π0σ|
¤

�
ad
N


}πSk}
��exp

�
adk2

2N

�
� 1

�� � padq}πSk}�1

2
k2

N}πSk}�1

exp
�

adk2

2N

	
� 1

adk2

2N

.

Since ex�1
x is a bounded function on the interval

�
0, ad

2

�
, we get (4.6.21) as required.

By (4.6.21) and Fact 4.3.1 we get

���χlN
pπSkq

���   CLk2

N}πSk}�1 �
�

ad
N


|π0|
� 1

N}πSk}

�
CL

k2

N
� padq}πSk}

�
.

It follows that we can increase the value of the constant CL in such a way that both (4.6.21)
and (4.6.22) are fulfilled.

4.6.5 Products of Jucys–Murphy elements

4.6.5.1 Set partitions

For calculations of the moments (4.6.2) and (4.6.3) we will need to better understand the sum
of products

°k
p�1 Jβ

w�p. We will use similar concepts and notions to the ones from [Rom15,
Section 4.9]. Notice that

Jβ
w�p �

¸
1¤j1,...,jβ¤w�p�1

pj1, w� pq � � � pjβ, w� pq. (4.6.23)

We denote the summands contributing to the right-hand side of (4.6.23) in the following way.
For any p and a sequence j � pj1, . . . , jβq P rw� p� 1sβ define

σp,j :� pj1, w� pq � � � pjβ, w� pq. (4.6.24)

We also denote

ZΣ
�

j
�

:�  
r P t1, . . . , βu : jr ¤ w

(
;

ZΠ
�

j
�

:�  
r P t1, . . . , βu : jr ¡ w

(
.
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The sets ZΣpjq and ZΠpjq indicate which elements of the sequence j are, respectively, small
and big. Notice that ZΣ Y ZΠ � t1, . . . , βu and, since ZΣpjq and ZΠpjq are disjoint,��ZΣpjq

��� ��ZΠpjq
�� � β.

We consider the equivalence relation � on ZΣpjq (respectively, on ZΠpjq) given by

m � n ðñ jm � jn.

We denote by Σpjq and Πpjq the sets of the equivalence classes of the relation � on, respec-
tively, ZΣpjq and ZΠpjq. Then the numbers of the equivalence classes��Σpjq�� � ���tj1, . . . , jβu X t1, . . . , wu

��� ,��Πpjq�� � ���tj1, . . . , jβu X tw� 1, . . . , w� ku
���

indicate how many different small / big elements appear in the sequence j.

We say that A is a set a set-partition of X, and denote it by A P SParpXq, if A is a
collection of disjoint non-empty subsets of X such that

�
A � X.

We call pA, Bq a pair of complementary set-partitions of X if AY B is a set-partition of X
such that �¤

A
	
X
�¤

B
	
� H.

This terminology may be a bit misleading since neither A nor B need to be a set-partition
of X. Note also that we allow the situations when A � H or B � H. For example, consider a
sequence j P rw� p� 1sβ, then the pair

�
Σpjq, Πpjq� is a pair of complementary set-partitions

of rβs.
For a pair pΣ, Πq of complementary set-partitions of rβs we will say that the sequence

j P rw� p� 1sβ is of type pΣ, Πq if Σ � Σpjq and Π � Πpjq. If this is the case, we will use
a shorthand notation j P pΣ, Πq.
Lemma 4.6.10. Let p1, p2 P t1, . . . , ku and s P rw � p1 � 1sβ, and t P rw � p2 � 1sβ.
Suppose that s and t are of the same type. Denote σ1 :� σp1,s and σ2 :� σp2,t. Then

(a) There exists a permutation g P Sw �Sk such that gpw� p1q � w� p2 and gpsmq �
tm for m P t1, . . . , βu;

(b) Permutations σ1 and σ2 are conjugate by g, that is σ1 � g�1σ2g;

(c) }σ1Sk} � }σ2Sk}.
Proof. Denote

A¤w :� rwsztsm : m � 1, . . . , βu;
B¤w :� rwszttm : m � 1, . . . , βu.

Since Σpsq � Σptq, we have |A¤w| � |B¤w|, so there exists a bijection δ1 : A¤w Ñ B¤w.
For the same reason, there exists a bijection δ2 : A¡w Ñ B¡w between analogously defined
sets

A¡w :� tw� 1, . . . , w� kuz �tsm : m � 1, . . . , βu Y tw� p1u
�

;
B¡w :� tw� 1, . . . , w� kuz �ttm : m � 1, . . . , βu Y tw� p2u

�
.
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Then g : Sw � k Ñ Sw � k given by

gpxq :�

$'''&'''%
w� p2 if x � w� p1,
tm if x � sm for some m P t1, . . . , βu,
δ1pxq if x P A¤w,
δ2pxq if x P A¡w.

clearly fulfills the properties required in (a) and it is easy to check that (b) indeed holds true.
In order to prove (c) it is enough to notice that (b) implies that σ1 and σ2 have the same

number of cycles permuting only small elements.

4.6.5.2 Inequalities concerning the character of Jβ
w�p

In the proof of Proposition 4.6.3 we will deal with the numbers of the form OpNxq where
the exponent is given by the right-hand-side of (4.6.25). Our next aim is to show that these
exponents are always nonpositive and only in some special cases are equal to 0.

Lemma 4.6.11. Let x1, x2, . . . P t1, . . . , w � ku and y1, y2, . . . P tw � 1, . . . , w � ku be
infinite sequences. Define a function f : N0 Ñ Z by

f pℓq :� 2#
�tx1, . . . , xℓu X t1, . . . , wu��

#
�tx1, . . . , xℓu X tw� 1, . . . , w� ku��

}px1, y1q � � � pxℓ, yℓqSk} � ℓ. (4.6.25)

Then f ¤ 0 and f is weakly decreasing.

Moreover, suppose that ℓ P N is such that xℓ�1 P tx1, . . . , xℓu and xℓ�1 and yℓ�1
belong to different cycles in the cycle decomposition of the product px1, y1q � � � pxℓ, yℓq. Then
f pℓ� 1q   f pℓq and, in particular, f pnq   0 for all n ¥ ℓ� 1.

Proof. Let ℓ be a non-negative integer; we will show that f pℓ� 1q ¤ f pℓq.
Consider first the case xℓ�1 ¡ w. Then

px1, y1q � � � pxℓ�1, yℓ�1qSk � px1, y1q � � � pxℓ, yℓqSk

so

f pℓ� 1q �
#

f pℓq � 1 if xℓ�1 P txi : i ¤ ℓu,
f pℓq otherwise,

(4.6.26)

thus f pℓ� 1q ¤ f pℓq, as required.

Assume now that xℓ�1 ¤ w. Our strategy is to compare the cycle decomposition of the
products

px1, y1q � � � pxℓ, yℓq and px1, y1q � � � pxℓ�1, yℓ�1q (4.6.27)

and to deduce in this way (via the definition (4.6.15)) the relationship between the coset
lengths

}px1, y1q � � � pxℓ�1, yℓ�1qSk} and }px1, y1q � � � pxℓ, yℓqSk}.
Consider the following two cases.

• Suppose xℓ�1 R txi : i ¤ ℓu. Then the cycle decomposition of the permutation on the
right-hand side of (4.6.27) arises from its counterpart on the left-hand side by merging
the fixpoint xℓ�1 with the cycle which contains yℓ�1. It follows that

}px1, y1q � � � pxℓ�1, yℓ�1qSk} � }px1, y1q � � � pxℓ, yℓqSk} � 1
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hence f pℓ� 1q � f pℓq, as required.

• Suppose xℓ�1 P txi : i ¤ ℓu. The cycle decomposition of the right-hand side of (4.6.27)
is obtained from its counterpart on the left-hand side either by merging two cycles or by
splitting one cycle into two cycles. Each of these two operations can change the number
of cycles which permute only small elements by at most 1. It follows that

}px1, y1q � � � pxℓ�1, yℓ�1qSk} ¥ }px1, y1q � � � pxℓ, yℓqSk} � 1

so f pℓ� 1q ¤ f pℓq, as required.

This completes the proof that f is weakly decreasing.
Since f p0q � 0 it follows that f ¤ 0 and the proof of the first part of the lemma is

complete.

We will prove the second part of the lemma by revisiting the above proof.
If xℓ�1 ¡ w then by (4.6.26), f pℓq � f pℓ� 1q � 1, as required.
On the other hand, when xℓ�1 ¤ w the cycle decomposition of the right-hand side of

(4.6.27) is obtained from its counterpart on the left-hand side by merging two cycles: the
one containing xℓ�1 with the one containing yℓ�1. Therefore the number of cycles which
consist of only small elements at the right-hand side of (4.6.27) is bounded from above by its
counterpart for the left-hand side of (4.6.27). Hence

}px1, y1q � � � pxℓ�1, yℓ�1qSk} ¥ }px1, y1q � � � pxℓ, yℓqSk}

and so f pℓ� 1q ¤ f pℓq � 1, as required.

Corollary 4.6.12. Let x1, . . . , xℓ P t1, . . . , w � ku and y1, . . . , yℓ P tw � 1, . . . , w � ku.
Denote

|Σ| :� #
�tx1, . . . , xℓu X t1, . . . , wu� ;

|Π| :� #
�tx1, . . . , xℓu X tw� 1, . . . , w� ku� ;

}σSk} :� }px1, y1q � � � pxℓ, yℓqSk}.

Then for N ¥ 1

N2 |Σ| k|Π| N�}σSk}�ℓ ¤
�

k
N


|Π|
.

4.6.6 The mean value of Mβ – the proof of (4.6.2)

Proof of (4.6.2). Our goal is to calculate the expected value of the moment Mβpw, kq (re-
call Section 4.6.2). By Proposition 4.6.5,

ErPN
Mβ pw, kq � 1

PN

� rT pw�1,w�kq
lN

	 � 1
k

N�βχ
lN

�
J pSk

� �
� 1

k! PN

� rT pw�1,w�kq
lN

	 � 1
k

N�βχ
lN
pJSkq (4.6.28)

where (recall the definition (4.6.24) of σp,j)

J :�
ķ

p�1

Jβ
w�p �

ķ

p�1

¸
jPrw�p�1sβ

σp,j P CSw � k.
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Since lN is C-balanced with C � 1, by Lemma 4.5.3 the denominator on the right-hand side
of (4.6.28) fulfills

k! PN

� rT pw�1,w�kq
lN

	
� 1�O

�
k2

N

�
with the constant in the O-notation equal to c from Lemma 4.5.3. By Assumption 4.6.1 the
right hand side is separated from 0 and therefore

1

k! PN

� rT pw�1,w�kq
lN

	 � 1�O

�
k2

N

�
. (4.6.29)

Equation (4.6.32) from Proposition 4.6.13 below provides the necessary asymptotics of the
numerator and completes the proof of (4.6.2).

We consider an analogue of J in which each summand is replaced by the minimal element
of the appropriate coset

J0 :� π0 pJ q �
ķ

p�1

¸
jPrw�p�1sβ

π0
�
σp,j

� P CSw � k.

The following proposition provides the missing element of the above proof of (4.6.2).

Proposition 4.6.13. Let β P N be fixed. Let k, N P N be such that N2 ¡ w� k and k2   N.
Then

χ
lN
pJ0q � kNβ

�
EPN Mβpw, 1q �O

�
k
N


�
; (4.6.30)

χ
lN
pJSkq � χ

lN
pJ0q �O

�
kNβ k2

N

�
; (4.6.31)

χ
lN
pJSkq � kNβ

��EPN Mβpw, 1q �O

�
k2

N

��� (4.6.32)

with the constants in the O-notation depending only on β.

The remaining part of this section is devoted to its proof.

4.6.6.1 Decomposition of χ
lN
pJ0q

Denote

A :�
ķ

p�1

¸
jPrwsβ

χ
lN

�
π0

�
σp,j

	

;

and for a pair of complementary set-partitions pΣ, Πq of rβs let us also denote

BpΣ,Πq :�
ķ

p�1

¸
jPpΣ,Πq

χ
lN

�
π0

�
σp,j

	

. (4.6.33)
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With these notations
χ
lN
pJ0q � A�

¸
pΣ,Πq
Π�H

BpΣ,Πq. (4.6.34)

Notice that the number of summands is finite, depends only on β and does not depend on
N or k. Therefore, it is enough to find the asymptotics for each individual summand on the
right-hand side.

4.6.6.2 Asymptotics of A

By Lemma 4.6.8(b), π0

�
σp,j

	
� σp,j for all j P rwsβ. Since the character is constant on each

conjugacy class, the contribution of the summands in A to the character is the same for each
value of p and

A �
ķ

p�1

χ
lN

��� ¸
jPrwsβ

σp,j

��� k � χ
lN

�
Jβ
w�1

	
.

We apply Proposition 4.6.5 for k � 1; in this special case pS1 � id and χ
lN
ppS1q � 1, thus

A � k EPN uβ
w�1 � kNβ EPN Mβpw, 1q. (4.6.35)

4.6.6.3 Asymptotics of BpΣ,Πq

Let j P rw� p� 1sβ. By Lemma 4.6.8 the coset length

}σp,jSk} ¤ }σp,j} ¤ β

is uniformly bounded from above by the number of factors in (4.6.24). By Fact 4.3.1 and
Lemma 4.6.8 it follows that there exists a universal constant Cβ such that�����χlN

�
π0

�
σp,j

	
����� ¤ CβN�}σp,jSk}

holds true for each j P rw� p� 1sβ.
Let us fix a pair pΣ, Πq of complementary set-partitions of rβs. The number of the

summands on the right-hand side of (4.6.33) is equal to the following sum of falling factorials

ķ

p�1

pwq|Σ| � ppq|Π| ¤ N2|Σ| k|Π|�1.

By combining these observations with Corollary 4.6.12 we conclude that

���BpΣ,Πq
��� ¤ CβN�}σp,jSk} � N2|Σ| k|Π|�1 ¤ Cβ kNβ

�
k
N


|Π|
. (4.6.36)

The last two arguments imply also that for any p P t1, . . . , ku
¸

jPpΣ,Πq

k2

N}σp,jSk}�1 ¤
k2

N
Nβ

�
k
N


|Π|
. (4.6.37)
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4.6.6.4 Proof of Proposition 4.6.13

Proof of Proposition 4.6.13. The asymptotics of the summands which contribute to the right-
hand side of (4.6.34) is provided by the equality (4.6.35) and the estimate (4.6.36) (for pairs
pΣ, Πq of complementary set-partitions of rβs with Π � H). In this way the proof of (4.6.30)
is complete.

By Proposition 4.6.9 there exists Hβ ¡ 0 such that

���χlN
pJSkq � χ

lN
pJ0q

��� ¤ Hβ

ķ

p�1

¸
jPrw�p�1sβ

k2

N}σp,jSk}�1 . (4.6.38)

The summands on the right-hand side can be grouped according to the type pΣ, Πq of the
sequence j. For a fixed value of β there are only finitely many possible types, and the total
contribution of the sequences j of a specific type pΣ, Πq is bounded from above by (4.6.37)
which completes the proof of (4.6.31).

Equation (4.6.32) is a direct consequence of (4.6.30) and (4.6.31).

4.6.7 The variance of Mβ – the proof of (4.6.3)

We will mimic the concepts from Section 4.6.6, however, the calculations will be more
involved.

Proof of (4.6.3). We first calculate the second moment of Mβ. By Proposition 4.6.5 and then
(4.6.29)

ErPN
Mβpw, kq2 � 1

k! PN

� rT pw�1,w�kq
lN

	 � 1
k2 N�2βχ

lN

�
J 2Sk

	

�
��1�O

�
k2

N

�� 1
k2 N�2βχ

lN

�
J 2Sk

	
(4.6.39)

where (recall the definition (4.6.24) of σp,j)

J 2 :�
�� ķ

p�1

Jβ
w�p

�2

�
ķ

p1,p2�1

¸
sPrw�p1�1sβ
tPrw�p2�1sβ

σp1,sσp2,t P CSw � k.

Equation (4.6.42) from Proposition 4.6.14 below provides the necessary asymptotics of
the numerator in (4.6.39) and gives us

ErPN
Mβpw, kq2 � 1

k
EPN M2βpw, 1q �

�
1� 1

k


�
EPN Mβpw, 1q

	2
�O

�
k2

N

�

with the constant in the O-notation depending only on β. By (4.6.2) we finally get

VarrPN
Mβpw, kq � ErPN

Mβpw, kq2 �
�

ErPN
Mβpw, kq

	2
�

1
k

�
EPN M2β pw, 1q �

�
EPN Mβ pw, 1q

	2
�
�O

�
k2

N

�
� O

�
1
k
� k2

N

�
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with the constant in the O-notation depending only on β. This completes the proof of (4.6.3)
(and Proposition 4.6.3).

We consider an analogue of J 2 in which each summand is replaced by the minimal
element of the appropriate coset

J 2
� :� π0

�
J 2

	
�

ķ

p1,p2�1

¸
sPrw�p1�1sβ
tPrw�p2�1sβ

π0

�
σp1,sσp2,t

	
P CSw � k.

The following proposition provides the missing component of the above proof of (4.6.3).

Proposition 4.6.14. Let β P N and k, N P N be such that N2 ¥ w� k and k2   N. Then

χ
lN

�
J 2
�
	
� k2N2β

�
1
k

EPN M2β pw, 1q�
�

1� 1
k


�
EPN Mβpw, 1q

	2
�O

�
k
N


�
; (4.6.40)

χ
lN

�
J 2Sk

	
� χ

lN

�
J 2
�
	
�O

�
k2N2β k2

N

�
; (4.6.41)

χ
lN

�
J 2Sk

	
� k2N2β

�
1
k

EPN M2β pw, 1q�
�

1� 1
k


�
EPN Mβpw, 1q

	2
�O

�
k2

N

��
(4.6.42)

with the constants in the O-notation depending only on β.

The remaining part of this section is devoted to its proof.

4.6.7.1 Decomposition of χ
lN

�
J 2�

	
For any p1, p2 P t1, . . . , ku denote

Pp1,p2pβq :� rw� p1 � 1sβ � rw� p2 � 1sβ

and let

A :�
ķ

p�1

¸
s,tPrwsβ

χ
lN

�
π0

�
σp,sσp,t

	

;

Let us define the concatenation of sequences a � pa1, . . . , axq and b � pb1, . . . , byq as
the sequence a\ b :� pa1, . . . , ax, b1, . . . , byq. For any pair of complementary set-partitions
pΣ, Πq of the set r2βs let us denote

BpΣ,Πq :�
ķ

p1,p2�1

¸
ps,tqPPp1,p2 pβq,

s\t P pΣ,Πq

χ
lN

�
π0

�
σp1,sσp2,t

	

(4.6.43)



128 Chapter 4. Second class particles, typical evacuation and sliding paths

and if Σ is a set-partition of r2βs denote

CΣ :�
¸

p1,p2Pt1,...,ku,
p1�p2

¸
s,tPrwsβ,

s\tPpΣ,Hq

χ
lN

�
π0

�
σp1,sσp2,t

	

. (4.6.44)

With these notations
χ
lN

�
J 2
�
	
� A�

¸
pΣ,Πq
Π�H

BpΣ,Πq �
¸
Σ

CΣ. (4.6.45)

Notice that the number of summands on the right hand side of (4.6.45) is finite, depends only
on β and does not depend on N or k. Therefore, it is enough to find the asymptotics for each
individual summand on the right-hand side.

4.6.7.2 Asymptotics of A

We proceed in the same way as in Section 4.6.6.2 to get an exact formula

A � kN2β EPN M2βpw, 1q. (4.6.46)

4.6.7.3 Asymptotics of BpΣ,Πq

We follow the lines from Section 4.6.6.3.
Let us fix some pair pΣ, Πq of complementary set-partitions of r2βs. By Fact 4.3.1 and

Lemma 4.6.8 there exists Cβ ¡ 0 such that each summand corresponding to ps, tq P Pp1,p2pβq
such that s\ t P pΣ, Πq fulfills the asymptotic bound�����χlN

�
π0

�
σp1,sσp2,t

	
����� ¤ CβN�}σp1,sσp2,tSk}.

On the other hand, the number of the summands on the right-hand side of (4.6.43) is bounded
from above by

ķ

p1,p2�1

w|Σ| �maxtp1, p2u|Π| ¤ N2|Σ| k|Π|�2.

By combining these observations with Corollary 4.6.12 used for the concatenated sequence
s\ t we conclude that ���BpΣ,Πq

��� ¤ Cβ k2N2β

�
k
N


|Π|
. (4.6.47)

The last two arguments imply also that

ķ

p1,p2�1

¸
ps,tqPPp1,p2 pβq,

s\t P pΣ,Πq

k2

N}σp1,sσp2,tSk}�1 ¤
k2

N
� k2N2β

�
k
N


|Π|
. (4.6.48)

These estimations show that if a pair pΣ, Πq of complementary set-partitions of r2βs is
such that Π � H then the contribution of BpΣ,Πq to (4.6.45) is of relatively small order.

4.6.7.4 Asymptotics of CΣ. Connected set-partitions of r2βs
We will need to be much more subtle in calculating (and estimating) the summand CΣ. We
will treat the summand CΣ in two different ways depending on the structure of Σ.



4.6. The distribution of the u-coordinates of the multisurfers 129

Let Σ be a set-partition of r2βs. We say that Σ is connected if there exists a block π P Σ
which contains simultaneously some element of the set t1, . . . , βu and some element of the
set tβ � 1, . . . , 2βu, that is formally, π X rβs � H and π X tβ � 1, . . . , 2βu � H. Each
such a block π P Σ will be called a link. If Σ does not have any links then we say that Σ is
disconnected.

4.6.7.5 Asymptotics of CΣ for connected Σ

Let us fix a connected set-partition Σ of r2βs. We set

nΣ :� min
 

i P tβ� 1, . . . , 2βu : DπPΣ pi P π and π is a link in Σq( .

In other words, nΣ indicates the least number i ¡ β belonging to some link π of Σ.
Notice that for distinct p1, p2 and a pair of sequences ps, tq such that s\ t P pΣ,Hq the

assumptions of the second part of Lemma 4.6.11 are fulfilled for the sequences pxiq � s\ t
and pyiq � pp1, . . . , p1, p2, . . . , p2q, and ℓ :� β� nΣ � 1. Therefore an inequality

2 |Σ| � }σp1,sσp2,tSk} � 2β ¤ �1

holds for any ps, tq such that s\ t P pΣ,Hq with Σ connected.
We now follow the lines in Section 4.6.7.3 to get the upper bound���CΣ

��� ¤ Cβ pk2 � kqN2β�1 (4.6.49)

which holds for each connected set-partition Σ of the set r2βs. This shows that the contribution
of CΣ with connected Σ to (4.6.45) is of relatively small order.

4.6.7.6 Asymptotics of CΣ for disconnected Σ

We will show that¸
Σ:

Σ is disconnected

CΣ � pk2 � kqN2β

��
EPN Mβpw, 1q�2 �O

�
N�2

	

(4.6.50)

with the constant in the O-notation depending only on β.
Recall that the CΣ, defined in (4.6.44), is the sum of characters χ

lN
evaluated on the min-

imal permutations π0

�
σp1,sσp2,t

	
. When Σ is disconnected and p1 � p2, in the permutation

σp1,sσp2,t each cycle permutes at most one big element, so by Lemma 4.6.8(b) σp1,sσp2,t is the
minimal permutation. Hence whenever Σ is disconnected

CΣ �
¸

p1,p2Pt1,...,ku,
p1�p2

¸
s,tPrwsβ,

s\tPpΣ,Hq

χ
lN

�
σp1,sσp2,t

	
.

For any set partition Σ of r2βs let us define

rCΣ :�
¸

p1,p2Pt1,...,ku,
p1�p2

¸
s,tPrwsβ,

s\tPpΣ,Hq

χ
lN

�
σp1,s

	
χ
lN

�
σp2,t

	
.
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Then by Proposition 4.6.5 applied twice for k � 1

¸
Σ

rCΣ �
¸

p1,p2Pt1,...,ku,
p1�p2

��� ¸
sPrwsβ

χ
lN

�
σp1,s

	��
��� ¸

tPrwsβ
χ
lN

�
σp2,t

	���
pk2 � kqN2β

�
EPN Mβpw, 1q�2. (4.6.51)

Our aim is to show that (4.6.51) is a good approximation for the left-hand-side of (4.6.50).

By Fact 4.3.2 there exists a constant Kβ ¡ 0 which depends only on β (in particular it
does not depend on N or k) such that for any distinct p1, p2 and a pair of sequences ps, tq such
that s\ t P pΣ,Hq with Σ disconnected����χlN

�
σp1,sσp2,t

	
� χ

lN

�
σp1,s

	
χ
lN

�
σp2,t

	���� ¤ Kβ

�
N�|σp1,s|�|σp2,t|�2

	
.

Let us denote for any set-partition Σ of r2βs

RΣ :�
¸

p1,p2Pt1,...,ku,
p1�p2

¸
s,tPrwsβ,

s\tPpΣ,Hq

N�|σp1,s|�|σp2,t|�2.

With the introduced notation the following inequality holds��������
¸
Σ

rCΣ �
¸
Σ:

Σ is disconnected

CΣ

�������� ¤
¸
Σ:

Σ is disconnected

KβRΣ �
¸
Σ:

Σ is connected

��� rCΣ
��� . (4.6.52)

We now investigate the asymptotics of the sums on the right-hand-side of (4.6.52).

4.6.7.7 Asymptotics of the right-hand-side of (4.6.52)

Observe that if Σ is connected and ps, tq is a pair of sequence such that s\ t P pΣ,Hq then

|Σ| � |Σps\ tq| ¤ |Σpsq| � |Σptq| � 1.

We follow the lines from Section 4.6.6.3 to get the upper bound��� rCΣ
��� ¤ C2

β pk2 � kqN2β�2 (4.6.53)

for any connected Σ with universal constant Cβ ¡ 0 depending only on β.
On the other hand, by Lemma 4.6.8(b) and (4.6.37) for any set-partition Σ of r2βs

RΣ ¤ pk2 � kq

��� ¸
sPrwsβ

N�|σp1,s|�1

���
2

¤ pk2 � kqN2β�2. (4.6.54)

Inserting approximations (4.6.53) for connected Σ and (4.6.54) for disconnected Σ into
(4.6.52) and taking into account (4.6.51) proves (4.6.50).
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4.6.7.8 Asymptotics of the sum
¸
Σ

CΣ

By (4.6.49) and (4.6.50) we get¸
Σ

CΣ � pk2 � kqN2β

��
EPN Mβpw, 1q�2 �O

�
N�1

	

. (4.6.55)

4.6.7.9 Finishing the proof of Proposition 4.6.14

Proof of Proposition 4.6.14. Inserting the equality (4.6.46) and approximations (4.6.47) (for
complementary set-partitions pΣ, Πq with Π � H) and (4.6.55) into (4.6.45) we conclude
that (4.6.40) holds true.

By Proposition 4.6.9 there exists Cβ ¡ 0 such that

����χlN

�
J 2Sk

	
� χ

lN

�
J 2
�
	���� ¤ Cβ

ķ

p1,p2�1

¸
ps,tqPPp1,p2 pβq

k2

N}σp1,sσp2,tSk}�1 . (4.6.56)

The summands on the right-hand side can be grouped according to the types pΣ, Πq of the
sequences s\ t. By (4.6.48) the right-hand side of (4.6.56) estimates by k2

N k2N2β which ends
the proof of (4.6.41).

Equation (4.6.42) is a direct consequence of (4.6.40) and (4.6.41).

This finishes the proof of Proposition 4.6.3

4.6.8 Proof of Theorem 4.6.2

The proof is based on [Rom15, Section 4.10]. We start with a general fact.

Lemma 4.6.15. Let ε ¡ 0 and µ be a compactly supported probability measure on R. Let
x P R be a continuity point of the cumulative distribution function Fµ of µ. Then there exist
δ ¡ 0 and an integer A ¡ 0 with the following property:
if m is a probability measure on R such that its moments (up to order A) are δ-close to the
moments of µ then ���Fµpxq � Fmpxq

��� ¤ ε

where Fm is the cumulative distribution function of m.

Proof. If this would not be the case, there would exist a sequence of probability measures
which converges to µ in moments, but would not converge to µ in the weak topology of
probability measures. This is not possible, since µ is compactly supported and therefore
uniquely determined by its moments [Dur10, Section 3.3.5].

We now prove Theorem 4.6.2.

Proof of Theorem 4.6.2. We mimic the proof of [Rom15, Theorem 4.1]. Pittel and Romik
[PR07, Theorem 2] found explicitly the limit distribution να which describes the u-coordinate
of the (scaled) position of the box with the entry tαN2u in a uniformly random tableau
TN P TlN as the semicircle distribution (4.2.4) (recall Section 4.2.3). In our setting this result
describes the u-coordinate of the surfer after draining 1� α fraction of water. Since ‘the
amount of remaining water w’ is such that w

N2 Ñ α, the β-th moment γβ of the distribution να

equals

γβ :�
»

xβ dναpxq � lim
NÑ8

EPN Mβpw, 1q.
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By Proposition 4.6.3 we get using Chebyshev’s inequality that for any ε ¡ 0 and β P N

P rT pw�1,w�kq
lN

����Mβpw, kq � γβ

��� ¡ ε
	
� O

�
1
k
� k2

N

�
.

The cumulative distribution function Fνα of the semicircle measure να is continuous and
therefore any x P R is its continuity point. Let x P R and let A and δ be the constants given
by Lemma 4.6.15. Then by the union bound

P rT pw�1,w�kq
lN

" ��Fναpxq �GNpxq
�� ¡ ε

*
¤

A̧

β�1

P rT pw�1,w�kq
lN

����Mβpw, kq � γβ

��� ¡ δ
	
� O

�
1
k
� k2

N

�
(4.6.57)

with the constant in the O-notation depending only on ε.

For the proof of Theorem 4.6.2 we need to obtain the uniform version of (4.6.57) in which
the event on the left hand side is taken with supremum over u P R. This can be easily done by
choosing a finite set X � R with the property that its image Fνα is an ϵ-net for the interval
r0, 1s; such a set exists because Fνα is continuous. The pointwise result (4.6.57) implies that
the following estimate for the supremum over the finite set X holds true:

P rT pw�1,w�kq
lN

"
MN : sup

xPX

��Fναpxq �GNpxq
�� ¡ ε

*
� O

�
1
k
� k2

N

�
. (4.6.58)

Let x1   � � �   xℓ be the elements of X. The assumption about the set X implies that

Fναpx1q   ϵ, Fναpxi�1q   Fναpxiq � 2ϵ, Fναpxℓq ¡ 1� ϵ. (4.6.59)

The elements of X divide the real line into ℓ� 1 intervals:

p�8, x1s, rx1, x2s, . . . , rxℓ�1, xℓs, rxℓ,8q.

By considering each interval separately, using monotonicity of the cumulative distribution
function Fνα and the monotonicity of GN , as well as (4.6.59) it follows that

sup
xPR

��Fναpxq �GNpxq
��   2ϵ� sup

xPX

��Fναpxq �GNpxq
�� .

In this way (4.6.58) completes the proof.

4.7 Proof of Theorem 4.4.1

The current section is devoted to the proof of Theorem 4.4.1.

4.7.1 Overtaking only in one direction

We start with a precise statement of the heuristic ideas from Section 4.4.4.4.

Lemma 4.7.1. Fix k, n P N. Let tableaux T P Tµ of shape µ with n� 1 boxes and M PrT pn�1,n�kq
ν of shape ν with n� k boxes be such that

T|¤n � M|¤n.
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If 1 ¤ p ¤ k is such that

posTpn� 1q ¨ posMpn� pq ¨ � � � ¨ posMpn� kq

then jeu de taquin preserves the latter relations, that is

posjpTqpn� 1q ¨ posjpMqpn� pq ¨ � � � ¨ posjpMqpn� kq.

Proof. Clearly, jpTq��¤n � jpMq��¤n. Notice also that the boxes in jeu de taquin paths for
tableaux T and M match at least to the boxes ¤ n. As mentioned in Section 4.4.2, jpMq is a
k-Pieri tableau, so

posjpMqpn� pq ¨ � � � ¨ posjpMqpn� kq
and therefore it remains to prove that

posjpTqpn� 1q ¨ posjpMqpn� pq. (4.7.1)

We consider the following two cases:

1. The box n � 1 in T slid during jeu de taquin, i.e., posTpn� 1q � posjpTqpn � 1q.
Consider two subcases:

1a) The box n� 1 in T slid to the left; in this case it does not matter how (and if)
the box n� p in M slid and (4.7.1) holds.

1b) The box n� 1 in T slid to the bottom. Then we use the assumption that M is
k-Pieri to show that if posMpn� pq � posTpn� 1q then n� p in M also slid to
the bottom and (4.7.1) holds. On the other hand if posTpn� 1q   posMpn� pq
then the box n� p in M must be strictly to the right of n� 1 in T and it does not
matter if it slides or not, so (4.7.1) also holds.

2. The box n� 1 in T did not slide, i.e., posTpn� 1q � posjpTqpn� 1q. In this case, the
JDT path in T ends on some box ¤ n which is strictly left-top or strictly right-bottom
to the posTpn� 1q. Hence, if posTpn� 1q � posMpn� pq then the box n� p in M
does not slide. Otherwise, (by the initial relation) it must be strictly to the right (and
weakly to the bottom) of posTpn� 1q and it does not matter if it slides or not. All in
all, (4.7.1) holds.

4.7.2 Relative position of the surfer

We recommend the reader to recall the notions in Section 4.4 and heuristics for the proof of
Theorem 4.4.1 in Section 4.4.4.

Let 0   t1   t2   1 and denote

w :� rp1� t1qN2s� 1.

Let k be a positive integer such that w � k ¤ N2. By Proposition 4.5.1 used for C � 1,
∆ � t1, a � w and λ � lN there exists a pair of random tableaux T, M defined on the same
probability space with the following properties:

(A1) T is a uniformly random element of TlN ;

(A2) M is a random element of rT pw�1,w�kq
lN

sampled according to the distribution which
fulfills the following total variation distance bound

δ

�
M, P rT pw�1,w�kq

lN



¤ d

k2
?

N2 �w
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for some universal constant d ¡ 0 which depends only on t1;

(A3) T
��
¤w � M

��
¤w holds true almost surely.

Since the dual promotion B� is a bijection, by (A1) the tableau T|¤w�1 has the same distribu-
tion as the initial configuration of the single surfer T1

N (see (4.4.5)) and by (A2) the tableau
M
��
¤w�k has approximately the same distribution (up to the total variation distance in (A2)) as

the initial configuration of the multisurfers M1
N (see (4.4.11)). Moreover, by (A3) the initial

configurations of water are the same for both stories. Therefore we will refer to the box w� 1
in T as the surfer and to the boxes w� 1, . . . , w� k in M as the multisurfers.

Recall that the definition (4.6.1) of the random variable GNpuq depends implicitly on
the choice of the tableau MN . For an integer 0 ¤ q ¤ w we denote by Gq

Npuq this random
variable obtained by substituting MN with jqpMq. We underline here that MN and jqpMq
need not have the same distribution. We also define rG q

N to be the fraction of the multisurfers
which are to the left of the surfer, more precisely

rG q
N :� Gq

N

�
1
N

ujqpTq
w�1



� 1

k
max

!
p P t1, . . . , ku : ujqpMq

w�p ¤ ujqpTq
w�1

)
. (4.7.2)

The following proposition gives a relation between rG q
N and the theoretical longitude of the

surfer on the common probability space of the surfer and multisurfers defined in the beginning
of this section.

Proposition 4.7.2. Let s ¥ 0 and t ¡ 0 be such that s� t   1. Let wpNq � rp1� tqN2s� 1
for N P N and let k � kpNq fulfill Assumption 4.6.1. Let q � qpNq be a sequence of
non-negative integers such that

0 ¤ qpNq ¤ tp1� tqN2u and lim
NÑ8

q
N2 � s.

Then for any ε ¡ 0

P

�
pT, Mq :

����� rG q
N � Fν1�t�s

�
1
N

ujqpTq
w�1


����� ¡ ε

�
� O

�
1
k
� k2

N

�

and the constant in the O-notation depends only on s, t� s and ε.

Proof. By the discussion below Equation (4.7.2)

P

�
pT, Mq :

����� rG q
N � Fν1�t�s

�
1
N

ujqpTq
w�1


����� ¡ ε

�
�

P

�
pT, Mq :

�����Gq
N

�
1
N

ujqpTq
w�1



� Fν1�t�s

�
1
N

ujqpTq
w�1


����� ¡ ε

�
.

The latter is bounded from above by

P

�
pT, Mq : sup

xPR

���Gq
Npxq � Fν1�t�s

pxq
��� ¡ ε

�
. (4.7.3)

The random event in (4.7.3) is expressed purely in terms of the random tableau jqpMq and
does not involve the random tableau T. For this reason the probability in (4.7.3), due to the
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condition (A2) on page 133 and the bijectivity of the dual promotion B�, is equal to

P rT pw�q�1,w�q�kq
lN

�
MN : sup

xPR

���GNpxq � Fν1�t�s
pxq

��� ¡ ε

�
�O

�
k2

N

�

with the constant in the O-notation depending only on t. Since lim w�q
N2 � 1� t� s ¡ 0 we

can apply Theorem 4.6.2 which completes the proof.

4.7.3 Proof of the upper bound (4.4.2) in Theorem 4.4.1

Let k � kpNq be such that kpNq Ñ 8 and kpNq � op?Nq, i.e., (4.4.10) is satisfied. We will
use the results from Section 4.7.2 to prove the upper bound (4.4.2). Let q :� tt2N2u� tt1N2u.
Recall that w � rp1� t1qN2s� 1 (cf. Section 4.7.2).

By (A1) from Section 4.7.2 we can translate the probability on the left-hand-side of (4.4.2)
into the setting of T in the following way

PN

�
T P TlN : Ψth

Npt2q �Ψth
Npt1q ¡ ε

	
�

P

�
pT, Mq : Fν1�t2

�
1
N

ujqpTq
w�1



� Fν1�t1

�
1
N

uT
w�1



¡ ε

�
;

note that the event on the right-hand side does not involve the tableau M. The latter probability
can be estimated from above via the union bound by the sum of probabilities of the following
three events:

• the fraction of the multisurfers in the final position (i.e., in time t2) which are to the left
of the surfer is ‘unusually small’, that is

A :�
#
pT, Mq : Fν1�t2

�
1
N

ujqpTq
w�1



� rG q

N ¡ ε

2

+
;

• the number of the multisurfers which are to the left of the surfer increases over time,
more precisely

B :�
!
pT, Mq : rG q

N � rG 0
N ¡ 0

)
;

• the fraction of the multisurfers in the initial position (i.e, in time t1) which are to the
left of the surfer is ‘unusually big’, that is

C :�
#
pT, Mq : rG 0

N � Fν1�t1

�
1
N

uT
w�1



¡ ε

2

+
.

By Proposition 4.7.2 the probabilities of the events A and C are of order O
�

1
k � k2

N

	
. By

Lemma 4.7.1 the event B � H is impossible. The choice of the sequence k as in the beginning
of this subsection implies that the upper bound (4.4.2) holds.

4.7.4 Proof of the lower bound (4.4.3) in Theorem 4.4.1

For any Young diagram λ and tableau T P Tλ we will denote by λtr and Ttr, respectively, the
diagram and the tableau obtained by a transposition of the diagram λ and the tableau T.

The transposition of tableaux gives a natural bijection between the sets Tλ and Tλtr

of standard tableaux, respectively, of shape λ and its transpose λtr. Moreover, under the
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transposition the u-coordinate of the given box in a standard tableau T changes its sign,
namely for any n P t1, . . . , |T|u

uT
n � �uTtr

n . (4.7.4)

In particular, the u-coordinate of the surfer upXtq changes its sign under the transposition, i.e.,
upXtq � �upXtr

t q where Xtr
t denotes the position of the surfer in the transposed tableau Ttr.

Recall that for any α P p0, 1q by να we denote the limit measure found by Pittel and Romik
on the circle of latitude α, see Section 4.2.3. The pushforward of the measure να under the
involution R Q z ÞÑ �z is a measure ν̃α which fulfills the following equality

ν̃α

�p�8, us� � να

�r�u,8q� for all u P R. (4.7.5)

Notice that by (4.7.4) the measure ν̃α is the limit measure on the circle of latitude α for the
transposed sequence of Young diagrams pltr

Nq.
Let us denote the position of the surfer in the transposed tableau by X�

t , cf. (4.2.5), and
the theoretical longitude of the surfer in the transposed tableau by η, i.e.,

ηptq :� Fν̃1�t

�
upX�

t q
�

for t P r0, 1s.

Observe that by (4.7.5) and the continuity of Fν1�t

ηptq � 1� Fν1�t

��upX�
t q
�
. (4.7.6)

Equation (4.4.2) applied to the transposed tableaux gives

lim
NÑ8

PN

"
T P Tltr

N
: ηpt2q � ηpt1q ¡ ε

*
� 0.

On the other hand by (4.7.6) and then (4.7.4) we get

ηpt2q � ηpt1q �
�
1� Fν1�t2

��upX�
t2
q��� �

1� Fν1�t1

��upX�
t1
q�� �

Fν1�t1

�
u
�pX�

t1
qtr�	� Fν1�t2

�
u
�pX�

t2
qtr�	.

Since pX�
t qtr reflects the position of the surfer in the original (not-transposed) tableau we have

ηpt2q � ηpt1q � Ψth
Npt1q �Ψth

Npt2q.

Since we consider the uniform distribution on the set of tableaux, this ends the proof of the
lower bound (4.4.3) and completes the proof of Theorem 4.4.1.

4.8 Proof of Theorem 4.2.3

4.8.1 Plan for the proof of Theorem 4.2.3

We will make the following steps in the proof of Theorem 4.2.3:

(S1) Pick a candidate for the random variable ΨN : TlN Ñ r0, 1s.
(S2) Prove a pointwise version of Theorem 4.2.3: with the help of Lemma 4.8.1 and Theo-

rem 4.4.1 we will show that the chosen candidate gives a good approximation of surfer’s
position for an arbitrary t P p0, 1q, i.e.,

@tPp0,1q lim
NÑ8

PN

�
TN P TlN :

���XtpTNq � P1�t,ΨNpTNq
��� ¡ ε

	
� 0. (4.8.1)
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The proof will be given in Section 4.8.5.

(S3) Prove the full (i.e., the original) version of Theorem 4.2.3, i.e.,

lim
NÑ8

PN

��TN P TlN : sup
tPr0,1s

���XtpTNq � P1�t,ΨNpTNq
��� ¡ ε

�� 0.

We will start with a finite ε-net of the family of level curves thα : α P r0, 1su parame-
terized by 0 � α0   α1   � � �   αp   αp�1 � 1. By the previous point, (4.8.1) holds
uniformly for t P tα0, . . . , αp�1u in a finite set. Then for the intermediate moments
of time αi   t   αi�1 we will use the monotonicity of the sliding path and in this
way justify that (4.8.1) holds uniformly over t P p0, 1q. This proof will be given in
Section 4.8.6.

In the very end, in Section 4.8.7, we will show that the probability distribution of the ran-
dom variable ΨN converges to the uniform distribution on the unit interval r0, 1s.

4.8.2 Auxiliary notation

In the proof we will switch between the position of the surfer in the XY and the UV coordinate
systems as well as in the geographic coordinates. For any t P p0, 1q let us introduce the
notation for the true and the theoretical u� and v�coordinate; namely we define the following
functions TlN Ñ R by

ut :� upXtq ,

vt :� vpXtq
and

uth
t :�

�
Fν1�t

	�1�
Ψth

Nptq
	

,

vth
t :� h1�t

�
uth

t

	
(recall that Ψth

Nptq � Fν1�t
putq, cf. (4.4.1), and see Section 4.2.2 for the definition of ht).

Denote additionally for any t P r0, 1s

�
xt, yt

�
:� Xt and

�
xth

t , yth
t

	
:�

�
vth

t � uth
t

2
,

uth
t � vth

t
2

�
.

4.8.3 The surfer’s position can be asymptotically recovered from the theoretical
longitude

We start with the result which shows that, in principle, it is possible to recover the the true
position of the surfer Xt in the time t P p0, 1q from its theoretical longitude Ψth

Nptq.
Lemma 4.8.1. Let 0   t   1. For any ε ¡ 0

lim
NÑ8

PN

�
TN P TlN : utpTNq � uth

t pTNq
	
� 0 (4.8.2)

and

lim
NÑ8

PN

�
TN P TlN :

���vtpTNq � vth
t pTNq

��� ¡ ε
	
� 0. (4.8.3)

Proof. Let 0   t   1 and ε ¡ 0. We start with the proof of (4.8.2). Recall that the position of
the surfer Xt corresponds to the position of the box with the number rp1� tqN2s in the tableau
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pB�qttN2upTNq, cf. (4.2.5), and so by [PR07, Theorem 2] the random variable ut converges in
distribution to the measure ν1�t which has no atoms and has a compact connected support

supppν1�tq �
�
�2

a
tp1� tq, 2

a
tp1� tq

�
.

Observe that since ν1�t has no atoms, whenever ut P supppν1�tq then by the definition

uth
t � F�1

ν1�t

�
Ψth

Nptq
	
� ut. (4.8.4)

On the other hand

PN
�
TN P TlN : utpTNq R supppν1�tq

� NÑ8ÝÝÝÑ 0. (4.8.5)

Indeed, for any ε ¡ 0 consider the function fε : R Ñ R given by

fεpxq :� 1�min
"

1,
1
ε

dist
�
x, Rz supppν1�tq

�*
, x P R,

where distpx, Aq :� inftdpx, yq : y P Au is the Hausdorff distance of the point x from a
set A. Clearly fε is continuous and bounded.

The distribution of the random variable ut is a pushforward of the measure PN under the
mapping TN ÞÑ utpTNq. Therefore by the convergence in distribution of the random variable
ut to the distribution given by the measure ν1�t we get for any ε ¡ 0

PN
�
TN P TlN : utpTNq R supppν1�tq

� ¤ »
TlN

fεputqdPN
NÑ8ÝÝÝÑ

»
R

fε dν1�t. (4.8.6)

Clearly, fε converges pointwise as ε Ñ 0 to the indicator function 1
Rz supppν1�tq, therefore by

the Lebesgue dominated convergence theorem

lim
εÑ0

»
R

fε dν1�t � ν1�t

�
Rz supppν1�tq

	
� ν1�t

�
B� supppν1�tq

�	 � 0.

This together with (4.8.6) implies (4.8.5).
A conjunction of (4.8.4) and (4.8.5) proves (4.8.2).

Equation (4.8.3) follows from the result of Biane [Bia98, Theorem 1.5.1]. We will shortly
describe it here, but the more developed discussion and precise statements formulated using
our notation are placed in Section 4.10.

The boundary of a Young diagram λ seen in the pu, vq-coordinate system can be viewed as
a non-negative 1-Lipschitz function ωλ, see Figure 4.14. The function ωλ is initially defined
on the interval I given by the range of the u-coordinates of λ, but it can be extended to a
function defined on the real line R by gluing ωλ|I with the modulus function x ÞÑ |x|. This
extended function ωλ : R Ñ R� is called the profile of λ, cf. Section 4.10.1.

The restriction T|¤rp1�tqN2s of the random tableau T has a (random) shape

λ1�t :� sh T|¤rp1�tqN2s

whose (random) profile ωλ1�t is such that the following equality in terms of the u- and
v-coordinates of the surfer (in time t) holds true:

vtpTNq � ωλ1�t

�
utpTNq

�
.
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Figure 4.14: A Young diagram λ � p4, 3, 1q shown in the Russian con-
vention. The blue solid line represents its profile ωλ. The pu, vq-coordinate
system corresponding to the Russian convention and the XY- coordinate

system corresponding to the French convention are shown.

On the other hand if utpTNq � uth
t pTNq then

vth
t pTNq � h1�tputh

t pTNqq � h1�tputpTNqq.

We proved in (4.8.2) that the set of tableaux TN P TlN for which utpTNq � uth
t pTNq has

asymptotically full probability. Therefore with asymptotically full probability the following
inequality holds ���vtpTNq � vth

t pTNq
��� ¤ sup

xPR

���ωλ1�tpxq � h1�tpxq
��� . (4.8.7)

By the aforementioned result [Bia98, Theorem 1.5.1] (see Proposition 4.10.1 for the
precise general statement) the right-hand-side of (4.8.7) converges in probability to 0. This
completes the proof of (4.8.3) and Lemma 4.8.1.

4.8.4 A candidate for the random variable ΨNpTNq, development of (S1)

Pick any t0 P p0, 1q and define for TN P TlN

ΨNpTNq :� Ψth
Npt0qpTNq.

We will show that the random variable ΨN has the desired properties from Theorem 4.2.3.
For any t P r0, 1s we define the approximated u- and v-coordinate of the surfer as

uΨ
t :�

�
Fν1�t

	�1
pΨNq ,

vΨ
t :� h1�t

�
uΨ

t

	
.

These definitions were chosen in such a way that that the approximated position of the surfer
in the XY coordinate system

�
xΨ

t , yΨ
t

	
:�

�
vΨ

t � uΨ
t

2
,

uΨ
t � vΨ

t
2

�
� P1�t,ΨNpTNq

is the point which appears in the statement of Theorem 4.2.3 and Eq. (4.8.1).
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With this notation the expression in the modulus in the event in (4.8.1) takes the form���XtpTNq � P1�t,ΨNpTNq
��� � 1?

2

����put, vtq �
�

uΨ
t , vΨ

t

	���� .
4.8.5 The proof of (S2) – the pointwise version of Theorem 4.2.3

Let ε ¡ 0 and t P p0, 1q. By the triangle inequality,���utpTNq � uΨ
t pTNq

��� ¤ ���utpTNq � uth
t pTNq

���� ���uth
t pTNq � uΨ

t pTNq
��� (4.8.8)

and ���vtpTNq � vth
t pTNq

��� ¤ ���vtpTNq � vth
t pTNq

���� ���vth
t pTNq � vΨ

t pTNq
��� . (4.8.9)

By Lemma 4.8.1, in each of the above two inequalities the first summand on the right-hand
side converges in probability to 0, that is,���utpTNq � uth

t pTNq
��� PÝÑ 0 and

���vtpTNq � vth
t pTNq

��� PÝÑ 0.

The second summands on the right hand side of (4.8.8) and (4.8.9) are the distances be-
tween the values of uniformly continuous functions, respectively, ψ ÞÑ uψ

t and the composition
ψ ÞÑ h1�tpuψ

t q evaluated at the arguments

Ψth
Nptq and Ψth

Npt0q � ΨN .

By Theorem 4.4.1 with t1 � minpt, t0q and t2 � maxpt, t0q the distance between these two
arguments converges in probability to 0, i.e.,

Ψth
Nptq �ΨN

PÝÑ 0.

Therefore we get���uth
t pTNq � uΨ

t pTNq
��� PÝÑ 0 and

���vth
t pTNq � vΨ

t pTNq
��� PÝÑ 0.

As the result ���utpTNq � uΨ
t pTNq

��� PÝÑ 0 and
���vtpTNq � vΨ

t pTNq
��� PÝÑ 0

which completes the proof (4.8.1) which is the pointwise version of Theorem 4.2.3.

4.8.6 The proof of (S3) – the full version of Theorem 4.2.3

4.8.6.1 Uniform continuity of the geographic coordinate system

We start with showing that the geographic coordinate system on the square (recall Sec-
tion 4.2.4) is uniformly continuous.

Lemma 4.8.2. The function

r0, 1s � r0, 1s Q pα, ψq ÞÑ Pα,ψ �
�

xψ
α , yψ

α

	
is uniformly continuous.
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Proof. Since the mapping
�

xψ
α , yψ

α

	
ÞÑ 1?

2

�
uψ

α , vψ
α

	
is an isometry (as a rotation in R2) it is

enough to show that each coordinate of the function

r0, 1s � r0, 1s Q pα, ψq ÞÑ
�

uψ
α , vψ

α

	
�

�
uψ

α , h1�α

�
uψ

α

	

is uniformly continuous.

Recall that the limit distribution να has density (4.2.4). It is easy to show that for any
α P p0, 1q the cumulative distribution function Fνα of να fulfills the equation

Fναpuq � FSC

�
u

2
a

αp1� αq

�
for all |u| ¤ 2

a
αp1� αq

where FSC denotes the cumulative distribution function of the standard semicircle distribution
with the density (4.1.3). This implies that for any ψ P r0, 1s and α P p0, 1q we get

ψ � Fν1�α

�
uψ

α

	
� FSC

�
uψ

α

2
a

αp1� αq

�
,

which after applying F�1
SC gives

uψ
α � 2

a
αp1� αq � F�1

SC pψq. (4.8.10)

Moreover, by the definition P0,ψ � p0, 0q P R2 and P1,ψ � p1, 1q P R2 (cf. Section 4.2.4),
hence (4.8.10) holds for all ψ P r0, 1s and α P r0, 1s.

Therefore the mapping pα, ψq ÞÑ uψ
α is uniformly continuous since ψ ÞÑ F�1

SC pψq is
uniformly continuous. Indeed, F�1

SC is the inverse function of FSC which is injective on�
�2

a
αp1� αq, 2

a
αp1� αq

�
, continuous and has compact domain and range.

The function pα, uq ÞÑ hαpuq is uniformly continuous on the domain

♢ :�
!
pα, uq : α P r0, 1s and |u| ¤ 2

a
αp1� αq

)
(as a continuous mapping on the compact set ♢). Hence the function pα, ψq ÞÑ vψ

α is uniformly
continuous as the composition of two uniformly continuous functions:

♢ Q pα, uq ÞÑ hαpuq and pα, ψq ÞÑ p1� α, uψ
α q P ♢.

4.8.6.2 The proof of (S3) – the full version of Theorem 4.2.3

Let ε ¡ 0. By Lemma 4.8.2 the function

r0, 1s � r0, 1s Q pα, ψq ÞÑ Pα,ψ

is uniformly continuous, so there exists δ ¡ 0 such that

@s,tPr0,1s |s� t|   δ ùñ @ψPr0,1s
���Ps,ψ � Pt,ψ

���   ε. (4.8.11)

Let us take a finite δ-net 0 � α1   � � �   αn � 1 of the interval r0, 1s. By the pointwise
version (S2) of Theorem 4.2.3, which we proved in Section 4.8.5,���XαipTNq � P1�αi ,ΨNpTNq

��� PÝÑ 0 for i P t1, . . . , nu (4.8.12)
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(the latter holds for i � 1 and i � n by the definition of Pα,ψ, cf. Section 4.2.4). Therefore
there exists a subset T �

N � TlN of asymptotically full measure which consists of tableaux TN
with the property that for each i P t1, . . . , nu���xαipTNq � xΨ

αi
pTNq

���   ε and
���yαipTNq � yΨ

αi
pTNq

���   ε. (4.8.13)

By the monotonicity of the sliding path for any i P t1, . . . , n� 1u and t P rαi, αi�1s

xαi�1 ¤ xt ¤ xαi and yαi�1 ¤ yt ¤ yαi . (4.8.14)

By (4.8.13) and (4.8.14) for any TN P T �
N and any i P t1, . . . , n� 1u and t P rαi, αi�1s

the following system of inequalities is satisfied:$'&'%
�ε�

�
xΨ

αi�1
� xΨ

t

	
¤ xt � xΨ

t ¤
�

xΨ
αi
� xΨ

t

	
� ε;

�ε�
�

yΨ
αi�1

� yΨ
t

	
¤ yt � yΨ

t ¤
�

yΨ
αi
� yΨ

t

	
� ε.

Since for any t P r0, 1s

Xt � pxt, ytq and P1�t,ΨNpTNq �
�

xΨ
t , yΨ

t

	
and by (4.8.11) for any i P t1, . . . , n� 1u and t P rαi, αi�1s

max
!���xΨ

αi
� xΨ

t

��� , ���xΨ
αi�1

� xΨ
t

��� , ���yΨ
αi
� yΨ

t

��� , ���yΨ
αi�1

� yΨ
t

���)   ε

we infer that for TN P T �
N

sup
tPr0,1s

���XtpTNq � P1�t,ΨNpTNq
���   2ε.

This completes the proof of (S3) since T �
N has asymptotically full probability.

4.8.7 Limit distribution of the random variable ΨN

We will show the second component of Theorem 4.2.3, namely that the random variable ΨN
converges in distribution to the uniform distribution on the unit interval r0, 1s.

Let GN denote the cumulative distribution function of the random variable ΨN : TlN Ñ
r0, 1s. For any z P r0, 1s we have (recall (4.4.1))

GNpzq � PN

�
TN : Fν1�t0

�
ut0pTNq

� ¤ z
	
�

PN

�
TN P TlN : ut0pTNq ¤

�
Fν1�t0

	�1
pzq



. (4.8.15)

By [PR07, Theorem 2], the distribution of the random variable ut0 converges weakly (as
N Ñ8) to the measure ν1�t0

which has no atoms, so the right-hand side of (4.8.15) converges
to

Fν1�t0

�
F�1

ν1�t0
pzq



� z

which is the cumulative distribution function of the uniform measure Up0, 1q. This completes
the proof of the second component of Theorem 4.2.3, and hence the proof of Theorem 4.2.3.
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4.9 The correspondence between evacuation and sliding paths

The results which we consider in this section hold for general, not necessarily square tableaux.
For a tableau T P Tλ with n � |λ| boxes we denote by

revevacpTq �
�

posn

�
jn�1pTq�, . . . , posn

�
j1pTq�, posnpTq

	
the evacuation path (4.1.8) written in the reverse order.

The following result shows an intimate relationship between the sliding paths and the
evacuation paths and, in particular, implies equivalence of Theorems 4.2.3 and 4.2.4 (see
Section 4.9.2 for the proof).

Proposition 4.9.1. Let λ be a fixed Young diagram and let T P Tλ be a random standard Young
tableau sampled according to the uniform measure on Tλ. Then the probability distributions
of the lazy sliding path qpTq and the evacuation path revevacpTq coincide.

Proof. We will construct a certain bijection ε� : Tλ Ñ Tλ on the set of tableaux of shape
λ. Clearly, the random tableaux T and ε�pTq have the same distribution. An application of
Proposition 4.9.3 below completes the proof.

In the remaining part of this section we will present the details of the map ε� and we will
prove that Proposition 4.9.3 indeed holds true.

4.9.1 Dual evacuation

The dual evacuation has a beautiful algorithmic description in terms of the manipulations
of the boxes of T, cf. [PW11, Definition 2.10], however we will not make use of it. For
our purposes it is more convenient to define the dual evacuation ε� implicitly by Robinson–
Schensted–Knuth correspondence as follows. For a permutation σ � pσ1, . . . , σnq P Sn we
denote

σ7 :� pn� 1� σn, . . . , n� 1� σ1q P Sn.

If σ corresponds to a pair pP, Qq under RSK, then σ7 corresponds to
�
ε�pPq, ε�pQq� under

RSK, see [Sta99, A1.2.10].

We will use the following fact (see [Sag01, Proposition 3.9.3] for the proof).

Fact 4.9.2 ([Sch63]). For any σ P Sn, the following identity holds up to renumbering of the
boxes on the left-hand side, so that the resulting tableau becomes standard�

j �Q
� pσq � pQ � sq pσq for σ � pσ1, . . . , σnq P Sn (4.9.1)

where spσq � spσ1, σ2, . . . , σnq :� pσ2, . . . , σnq is a shift.

Proposition 4.9.3.
qpTq � revevac

�
ε�pTq�.

Proof. For any tableaux R, S we will use a shorthand notation

R{S � sh R{ sh S

for the skew diagram obtained by subtracting their shapes. In all examples below this skew
diagram R{S � tlu consists of a single box; we will write shortly l � R{S.

Let T � Qpσq be a recording tableau of some permutation σ; with these notations
ε�pTq � Q

�
σ7
	

.
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By (4.9.1), the lazy sliding path fulfills for i P rns

qipTq � Q pσ1, . . . , σiq {j
�
Q pσ1, . . . , σiq

� � Q pσ1, σ2, . . . , σiq {Q pσ2, . . . , σiq . (4.9.2)

On the other hand, by (4.9.1), applying jeu de taquin n� i times to ε�pTq � Q
�

σ7
	

,
leads to the tableau (up to renumbering boxes on the left-hand side so that the tableau becomes
standard)

jn�i �ε�pTq� � Q pn� 1� σi, . . . , n� 1� σ2, n� 1� σ1q .

The position of the box with the maximal entry in a recording tableau can be found by
comparing this tableau to the recording tableau of a truncated sequence; it follows that

posn jn�i �ε�pTq� � Q pn� 1� σi, . . . , n� 1� σ2, n� 1� σ1q {
Q pn� 1� σi, . . . , n� 1� σ2q . (4.9.3)

By the result of Schensted [Sch61, Lemma 7] and Greene theorem [Gre74, Theorem 3.1] the
shapes of the tableaux which contribute to the right-hand sides of (4.9.2) and (4.9.3) are equal
which concludes the proof.

4.9.2 Proof of Theorem 4.2.4

Proof of Theorem 4.2.4. Let N P N. Let ΨN : TlN Ñ r0, 1s be the random variable which
is given by Theorem 4.2.3. We define the random variable rΨN : TlN Ñ r0, 1s by

rΨNpTNq :� ΨNpε�pTNqq.

Since ε� is a bijection,

PN

!
TN P TlN : sup

tPr0,1q

���XtpTNq � P1�t,ΨNpTNq
��� ¡ ε

)
�

PN

!
TN P TlN : sup

tPr0,1q

���Xtpε�pTNqq � P1�t,ΨNpε�pTNqq
��� ¡ ε

)
�

PN

!
TN P TlN : sup

tPr0,1q

���� 1
N

qrp1�tqN2spTNq � P1�t,rΨNpTNq

���� ¡ ε
)
�

PN

!
TN P TlN : sup

tPp0,1s

���� 1
N

qrtN2spTNq � Pt,ΨNpTNq

���� ¡ ε
)

,

where the second equality is a consequence of Proposition 4.9.3. By Theorem 4.2.3 the
left-hand side converges to 0 in the limit N Ñ8; on the other hand the right-hand side is the
probability which appears in Theorem 4.2.4.

4.10 Generalizations of the main results for non-square tableaux

4.10.1 Continuous diagrams

We call a function ω : R Ñ R a continuous diagram [Ker93a; Ker98] if

• ω is a 1-Lipschitz function, i.e.,

|ωpu1q �ωpu2q| ¤ |u1 � u2| for all u1, u2 P R;
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• ωpuq � |u| for sufficiently large |u|.
We will denote the set of continuous diagrams by CY ; we endow this set with the L8-metric.
(Our definition is more specific than the one of Kerov [Ker93a] who allows to additionally
translate our centered continuous diagrams along the real line.)

Any (usual) Young diagram λ seen in the pu, vq-coordinate system is a 1-Lipschitz function
defined on some interval (given by the range of the u-coordinates of λ) and has slopes equal
to�1. It can be extended outside its initial domain by a modulus function x ÞÑ |x|. In this way
we obtain a continuous diagram ωλ to which we will refer as the profile of λ, see Figure 4.14.

Let s ¡ 0. For a continuous diagram ω we define the scaling of ω by s as the following
continuous diagram denoted by sω

sω : R Q u ÞÑ s �ω
�

s�1u
	

.

Let pλNq be a sequence of Young diagrams with the property that the sequence of the
corresponding rescaled profiles �

1a
|λN|

ωλN

�
converges to a continuous diagram Λ in the L8-metric, that is,

sup
uPR

����� 1a
|λN|

ωλN

�a
|λN| u

	
�Λpuq

����� NÑ8ÝÝÝÑ 0.

We will call Λ the limit shape for the sequence of Young diagrams pλNq and denote such
convergence by 1?

|λN |
λN Ñ Λ.

4.10.2 The asymptotic setup

Let C ¥ 1 be a fixed constant. For each integer N ¥ 1 let λN be a C-balanced Young diagram.
We assume that

lim
NÑ8

|λN| � 8

and that there exists a limit shape Λ P CY for the sequence pλNq, i.e., that 1?
|λN |

λN Ñ Λ.

Our goal in Section 4.10 is to find counterparts of Theorems 4.2.3 and 4.2.4 in which the
sequence plNq of square diagrams is replaced by the sequence pλNq of C-balanced Young
diagrams.

4.10.3 The limit curves

The result of Pittel and Romik concerning the existence of the level curves [PR07, Theo-
rem 1(i)], cf. Section 4.2.2, is a special case of a more general phenomenon. Using the results
of Biane [Bia98, Theorem 1.2 and Theorem 1.5.1] one can show that under the assumptions
from Section 4.10.2 there exists a family of level curves for a uniformly random Young tableau
of the shape λN (in the limit as N Ñ8). The following proposition describes precisely this
result.

Proposition 4.10.1. Let pλNq be a sequence of C-balanced Young diagrams such that
|λN| Ñ 8 and 1?

|λN |
λN Ñ Λ for some continuous diagram Λ P CY (i.e., pλNq ful-

fills the assumptions in Section 4.10.2). For any α P r0, 1s there exists a continuous diagram
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Λα P CY such that
1a
|λN|

sh
�

TN
��
¤tα�|λN |u

	
PÝÑ Λα

where TN is a uniformly random element of TλN .

We will say that Λα is the α-level curve for the sequence pλNq or, shortly, the α-level
curve for the diagram Λ. Note that Λ0 is the empty diagram and Λ1 � Λ.

For example, in the case when λN � lN is a square Young diagram, the α-level curve for
pλNq is the curve hα, cf. Section 4.2.2.

Remark 4.10.2. Biane proved his results [Bia98, Theorem 1.2 and Theorem 1.5.1] with the
tools of the free probability theory [MS17], but Proposition 4.10.1 can be also showed using
the beam models [Sun18] or by solving a gradient variational problem [KP21].

4.10.4 The limit measures on the level curves

The second result of Pittel and Romik which gives explicitly the limit measure on the α-level
curve for the square diagram [PR07, Theorem 2], cf. Section 4.2.3, is a special case of another
general result. It turns out that to every continuous diagram we can associate two natural
measures – the transition measure and the cotransition measure – which have very natural
interpretations in the case of the usual Young diagrams.

4.10.4.1 Transition measure of a continuous diagram

To any continuous diagram ω P CY , one can associate a probability measure µω, called the
transition measure of ω [Ker93b; Bia98], as the unique compactly supported measure on R

such that its Cauchy transform

Gµωpzq :�
»

R

1
z� x

dµωpxq

is given by the equation

Gµωpzq �
1
z

exp
»

R

1
x� z

σ1pxqdx � 1
z

exp
»

R

1
px� zq2 σpxqdx

where σpuq :� pωpuq � |u|q{2.
The motivations for this notion are related to random walks on the set of Young diagrams:

the atoms of the transition measure µωλ
of a usual Young diagram λ correspond to the

Markov’s transition probabilities in the Plancherel growth process starting in λ [Ker93b,
Section 3.2].

The mapping which to a continuous diagram ω assigns the transition measure µω is
a homeomorphism [Ker93b, Section 2.3]. Moreover, a continuous diagram is uniquely
determined by its transition measure.

4.10.4.2 Cotransition measure of a continuous diagram

For a continuous diagram ω P CY we define its area as the area of the region between the
profile and the x- and the y-axis:

Apωq �
»

R

�
ωpxq � |x|�dx.
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The cotransition measure νω of ω is defined as the unique probability measure with the
Cauchy transform Gνω given by the following equation [Rom04, Equation (8)]:

Apωq
2

Gνωpxq � x� 1
Gµωpxq

. (4.10.1)

By convention, the cotransition measure of the empty diagram νωH � δ0 is defined to be the
measure concentrated in 0.

The cotransition measure νωλ
of a usual Young diagram λ is the distribution of the u-

coordinate of the box with the maximal entry |λ| in a uniformly random standard tableau of
shape λ, cf. [Rom04, page 628 and the comment below Eq. (6)]. In particular, the measure
να introduced in Section 4.2.3 to which we referred as the limit measure is the cotransition
measure corresponding to the continuous diagram hα (more precisely, to the proper extension
of the function hα given by (4.2.2) by x ÞÑ |x| and x ÞÑ 2� |x|).

Be advised that diagrams of different shape may have the same cotransition measure.
For example, the square Young diagram lN has the same cotransition measure νωlN

� δ0
concentrated at the point u � 0, no matter which size of the square N P N we choose.
However, if we restrict our considerations to the set of (centered) continuous diagrams of fixed
positive area, then any diagram is uniquely determined by its cotransition measure and this
correspondence is a homeomorphism, [Rom04, Theorem 6].

4.10.4.3 The limit measures on the level curves of continuous diagram

We will refer to the cotransition measure νΛα
corresponding to the α-level curve Λα for a

continuous diagram Λ as the limit (or cotransition) measure on the level curve Λα.
The cumulative distribution function of the limit measure νΛα

will be denoted by FΛα
, i.e.,

FΛα
puq :� νΛα

�p�8, us� for each u P R.

The density of the limit measure νΛα
will be denoted by fΛα

, whenever this density exists.

4.10.5 The geographic coordinate system

We will endow a continuous diagram Λ with the system of geographic coordinates, cf. Sec-
tion 4.2.4. For this purpose we view the shape Λ as the following compact subset of the
px, yq-Cartesian plane

ΛCart :�  px, yq P R2 : |x� y|   x� y   Λpx� yq( � px, yq P r0,8q2 : x� y   Λpx� yq(.

(Recall that u � x� y and v � x� y are the pu, vq coordinates, cf. Section 4.2.2.)
For any α P r0, 1s we define the quantile function for the limit measure νΛα

by the formula

QΛα
pψq :� inf

 
u P supppνΛα

q : FΛα
puq ¥ ψ

(
for ψ P r0, 1s (4.10.2)

where supppµq denotes the support of the measure µ. In particular, QΛ0 � 0.
For given α P r0, 1s and ψ P r0, 1s there is exactly one point p � px, yq P ΛCart such that

• p lies on the level curve Λα seen in the XY-coordinates system, i.e.,

x� y � Λαpx� yq;
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• the u-coordinate of p is given by the quantile function:

uppq � x� y � QΛα
pψq.

We will denote this point by Pα,ψ :� pxψ
α , yψ

α q P ΛCart. In particular, by the definition of
νΛ0 � δ0 we have P0,ψ � p0, 0q P R2 for any ψ P r0, 1s. Additionally we denote by

uψ
α :� xψ

α � yψ
α and vψ

α :� xψ
α � yψ

α

the u- and v-coordinate of the point Pα,ψ.
We will refer to the mapping r0, 1s2 Q pα, ψq ÞÑ Pα,ψ P ΛCart as to the geographic

coordinates system.

Remark 4.10.3. There may be some problem with defining the counterparts of the longitude
and the latitude (the geographic coordinates) of the point p P ΛCart like we did in Sec-
tion 4.2.4. We defined the latitude as the unique α P r0, 1s for which p lies on the level curve
hα (more precisely, on the restriction of the level curve hα to the support of the corresponding
cotransition measure να). We are not sure if such uniqueness holds in a general case when
Λ is an arbitrary continuous diagram. To make things worse, the definition of the longitude
depends on the limit measure νΛαppq corresponding to the αppq-level curve (circle of latitude
with the latitude αppq, cf. Sections 4.2.2 and 4.2.4). In the worst scenario, not only we shall
pick some latitude αppq, but also the limit measure νΛαppq may have atoms. In particular, an
attempt of using these direct counterparts of the definitions from Section 4.2.4 in the more
general context may lead to the situation in which several points have the same geographic
coordinates or some geographic coordinates pα, ψq are not used. The case of the L-shape
diagram, see Figure 4.10, is an example of the first problem.

Problem 4.10.4. Let Λ be a continuous diagram. Show that for any point

p P ΛUV :�  pu, vq : u P R and |u|   v   Λpuq(
there is a unique α P r0, 1s with the property that

p P  pu, Λαpuqq : u P supppνΛα
q( .

In other words, show that for any point p P ΛUV there exists a unique level curve Λα (for
some α P r0, 1s) which restricted to the support of the corresponding cotransition measure
νΛα

contains p.

4.10.6 Extension of the main results

Theorem 4.10.5. Let pλNq fulfill the assumptions in Section 4.10.2) and assume that

(�) the geographic coordinates system is continuous, i.e., the map r0, 1s2 Q pα, ψq ÞÑ Pα,ψ,
is continuous.

Then the analogues of Theorems 4.2.3 and 4.2.4 hold true, i.e., if TN is a uniformly random
element of TλN then:

• there exists a family of random variables ΨN : TλN Ñ r0, 1s indexed by N P N such
that

sup
tPr0,1s

���XtpTNq � P1�t,ΨNpTNq
��� PÝÑ 0, (4.10.3)
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• there exists a family of random variables rΨN : TλN Ñ r0, 1s indexed by N P N such
that

sup
tPr0,1s

���� 1
N

qrt|λN |spTNq � Pt,rΨNpTNq

���� PÝÑ 0.

The probability distribution of the random variable ΨN (respectively, rΨN) converges, as
N Ñ8, to the uniform distribution on the unit interval r0, 1s.
Proof. The proof of Theorem 4.2.3 is applicable in this more general case – one shall replace
all occurrences of the lN by λN and change the references to the limit measures. We
enumerate the properties of square Young diagrams which played the crucial role in the proof
of Theorem 4.2.3.

• lN is a 1-balanced Young diagram (we used this property in Proposition 4.5.1 and The-
orem 4.6.2);

• the cotransition measure να corresponding to the level curve hα has no atoms and has a
connected support (we used this property in Theorem 4.4.1 and Proposition 4.5.1);

• the distribution of uα – the u-coordinate of the surfer in time α – converges to the
cotransition measure ν1�α (we used this property in Lemma 4.8.1);

• the uniform continuity of the geographic coordinates system, i.e., the uniform continuity
of the mapping pα, ψq ÞÑ Pα,ψ, cf. Lemma 4.8.2.

Notice that the counterparts of all these properties are present in our new setting. In particular,
the distribution of the u-coordinate of the surfer converges to the proper limit measure since
the correspondence between the (centered) continuous diagrams of fixed positive area and the
cotransition measures is a homeomorphism, cf. Section 4.10.4.2. Moreover, the assumption (�)
on the continuity of the geographic coordinates system assures that for any α P r0, 1s the
support of the limit measure νΛα

is connected.

4.10.7 Example: random rectangular tableaux

For any real numbers a, b ¡ 0 let la�b denote the rectangle with the left bottom corner
positioned in p0, 0q P R2 and with sides a and b (on X and Y axis, respectively, when seen in
the px, yq-coordinates system).

Let pMiq and pNiq be two sequences of positive integers which fulfill the conditions from
Section 4.1.1.3, i.e., Mi Ñ8 and Ni Ñ8, and there is some (shape parameter) θ ¡ 0 such
that

lim
iÑ8

Mi

Ni
� θ.

We define for i P N

λi :� lMi�Ni

to be the rectangular Young diagram which has Mi rows and Ni columns.
The following theorem generalizes Theorem 4.2.4 (which is a special case for Mi � Ni � i).

Corollary 4.10.6. For i P N let Ti be a uniformly random tableau of the shape lMi�Ni . Then
the rescaled lazy sliding path 1?

Mi Ni
qpTiq with respect to the supremum norm converges in

probability to the random function

t ÞÑ ΞSptq � 2
a

tp1� tq S� θ � 1?
θ

t (4.10.4)

where S denotes the random variable with the standard semicircular distribution, cf. (4.1.3).
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Proof. We will check that the assumptions of Theorem 4.10.5 are fulfilled and find the explicit
formula for the geographic coordinates system.

Clearly, the sequence
�

1?
Mi Ni

lMi�Ni

	
converge to the limit shape Λ � l?

θ�1{?θ . We

apply Lemma 4.10.7 below with a :� 1{
?

θ and b :�
?

θ to see that

• the geographic coordinates system on l?
θ�1{?θ is continuous,

• for any ψ P r0, 1s and α P r0, 1s the ψ-th quantile uψ of the cotransition measure νΛα
is

given by

uψ � 2
a

αp1� αqF�1
SC pψq �

θ � 1?
θ

α

where FSC denotes the cumulative distribution function of the standard semicircle
distribution, cf. (4.1.3).

Notice that if U is a random variable with the uniform Up0, 1q distribution then F�1
SC pUq

has the standard semicircle distribution.
By Theorem 4.10.5 (its second and third part) the (rescaled) lazy sliding path 1?

Mi Ni
qpTiq

with respect to the supremum norm converges in probability to the random function (4.10.4).

Lemma 4.10.7. Let a, b ¡ 0 and Λ :� ωla�b be the profile of la�b. Then for any α P p0, 1q
the cotransition measure νΛα

corresponding to the α-level curve Λα has the density

fνΛα
pxq � 1

2
a

ab � αp1� αq fSC

�
x� αpa� bq

2
a

ab � αp1� αq

�
(4.10.5)

where fSC is the density of the standard semicircular distribution, cf. (4.1.3).

Proof. The following calculations use (4.10.1) and some relations between the R-transform
and the Cauchy transform of the appropriate transition measures, see [MS17, Section 3] for
the theory.

The Cauchy transform of the transition measure µΛ of the rectangular diagram is given by
[Rom04, Equation (2)]

Gpzq :� GµΛpzq �
z� pb� aq
pz� aqpz� bq . (4.10.6)

It is an analytic function and in some neighborhood of 8 it is invertible [MS17, Section 3,
Theorem 17(i)]. Moreover, there exists a neighborhood U � C of 0 for which G|G�1pUq is
invertible [MS17, Section 3, Theorem 17(ii)] and we can calculate the R-transform of the
measure µΛ with the formula [MS17, Section 3, Theorem 17(iii)]

Rpzq :� RµΛpzq � G�1pzq � 1
z

for z P Uzt0u.

Substituting in the latter z with Gpz1q (for some z1 P G�1pUzt0uq) we get the relation

z � R
�
Gpzq�� 1

Gpzq for z P G�1pUzt0uq. (4.10.7)

We use this equality in order to substitute each occurrence of the variable z on the right-hand
side of (4.10.6); by clearing of the denominator we obtain

RpGq � 1
G
� pb� aq � G �

�
RpGq � 1

G
� a


�
RpGq � 1

G
� b



, (4.10.8)
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where we used the shorthand notation G � Gpzq. By the choice of U as the neighborhood of
0 we get that (4.10.8) is fulfilled with G replaced by any complex number z P Uzt0u, i.e., the
R-transform fulfills the following quadratic equation for any z P Uzt0u

Rpzq � 1
z
� pb� aq � z �

�
Rpzq � 1

z
� a


�
Rpzq � 1

z
� b



. (4.10.9)

Now, we will calculate the Cauchy transform of the transition measure µΛα
on the level

curve Λα. Denote by Rα and Gα, respectively, the R-transform and the G-transform of µΛα
.

The R-transforms of the transition measures µΛ and µΛα
are related by the following corre-

spondence [Bia98, Theorem 1.2]

Rαpzq :� RµΛα
pzq � Rpα � zq for z P Uzt0u.

Let us put α � z instead of z in (4.10.9) (this substitution is legal since the neighborhood U can
be taken to be a convex set). Equation (4.10.9) implies therefore that Rαpzq is a solution to
the following quadratic equation

Rαpzq � 1
αz
� pb� aq � αz

�
Rαpzq � 1

αz
� a


�
Rαpzq � 1

αz
� b



(4.10.10)

for any z P Uzt0u.
In (4.10.10) we substitute each occurrence of the variable z by Gαpzq; this substitution is

valid as long as |z| is big enough so that Gαpzq P Uzt0u. Let us denote additionally Hα � 1
Gα

;
then we use the relation (4.10.7) and substitute each occurrence of Rα

�
Gαpzq

�
by z� Hαpzq.

Then (4.10.10) takes the form

Hαpzq
�

z� pb� aq �
�

1
α
� 1



Hαpzq

�
�

α

�
z� a�

�
1
α
� 1



Hαpzq

��
z� b�

�
1
α
� 1



Hαpzq

�
(4.10.11)

which holds if |z| is big enough. For any z big enough, the latter is a quadratic equation in
Hαpzq which has two solutions given by explicit (but complicated, so we omit writing them
here) formulas. These solutions come from two branches of the complex square root. The
function Hα must be analytic in some neighborhood of 8 and therefore can be given by only
one (family) of these solutions. Moreover, Hα must have a proper asymptotics, more precisely
[MS17, Section 3.1, Lemma 3]

lim
yÑ8

Hαpiyq
y

� i,

which allows us to choose the proper solution.
The formula for Hα gives also an explicit formula for the Cauchy transform of the

cotransition measure νΛα
on the level curve Λα as (cf. (4.10.1))

GνΛα
pzq � 1

αab
�
z� Hαpzq

�
.

The function GνΛα
is analytic (since Hα is analytic); we will use its analytic continuation to

the upper halfplane C�.
With this (complicated) formula for GνΛα

we can now recover the density of the cotransi-
tion measure νΛα

using the Stieltjes inversion formula [MS17, Section 3, Theorem 6]. One
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can easily show that this density is the properly rescaled and translated standard semicircle
distribution, cf. (4.1.3).

4.10.8 What if the geographic coordinates system is not uniformly continuous?

The situation when the geographic coordinates system pα, ψq ÞÑ Pα,ψ P ΛCart (recall Sec-
tion 4.10.5) is not uniformly continuous is not rare. One among many examples is the limit
shape Λ which is the L-shape, cf. Figure 4.10. In this case there are some α-level curves
(for α big enough) for which the corresponding cotransition measure is supported on two
disjoint intervals. This forces the function ψ ÞÑ Pα,ψ to have a discontinuity related to the hole
between the intervals. Therefore in such situation Theorem 4.10.5 does not apply since the
assumption (�) is not fulfilled.

Problem 4.10.8. Find a counterpart of the assumption (�) for which the conclusion of Theo-
rem 4.10.5 holds true.

4.11 The correspondence between Young tableaux and particle
systems. Proof of Theorem 4.1.1

We will first describe a bijection which links a recording tableau with a unique history of a
particular Totally Asymmetric Simple Exclusion Process, recall Section 4.1.1. We will base
on the articles of Rost [Ros81], as well as Romik and the second named author [Rom15,
Section 7]. Then, in Section 4.11.3 we will prove Theorem 4.1.1.

4.11.1 The correspondence between a Young diagram with a distinguished
corner and a configuration of particles – Rost’s mapping

Let λ be a non-empty Young diagram and l be one of its inner corners, i.e., l is a cell of
λ such that the shape λzl is still a Young diagram, see Figure 4.15. Following [Rom15,
Section 7.1], we will present the two-step algorithm in which to the pair pλ,lq we assign
a configuration of holes and particles with exactly one second class particle. To our best
knowledge the foundations for this mapping were first laid in [Ros81, Remark 1], and therefore
we will call it Rost’s mapping.

In the first step of the Rost’s mapping, given a Young diagram λ we draw its profile ωλ in
the Russian coordinates system (see Figure 4.14 and Section 4.10.1 for the definition of the
profile). To the profile ωλ there corresponds a unique configuration of holes and (first class)
particles on Z1 :� Z� 1

2 which appears in the following way. For each m P Z exactly one of
the following two cases holds true:

• in the case when the slope of the profile ωλ on the interval rm, m� 1s is equal to �1
then we put a (first class) particle at the site m� 1

2 of the lattice Z1 :� Z� 1
2 ;

• in the case when the slope of the profile ωλ on the interval rm, m� 1s is equal to �1
then we put a hole at the site m� 1

2 (in other words, the site m� 1
2 is vacant).

The distinguished inner corner l corresponds in the above particle system to a hole–particle
pair. We outline this hole–particle pair with a red rectangle, see the top and the middle part of
Figure 4.15.

In the second step of Rost’s mapping we define a particle configuration on Z. We start
with merging the hole–particle pair outlined in the red rectangle into the single particle which
we will call the second class particle. We put it in the middle of the initial interval containing
the hole-particle pair. Then we translate all holes and particles which are placed to the left
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u

u

�5 �4 �3 �2 �1 0 1 2 3 4 5

Figure 4.15: Above: the Young diagram p4, 4, 2q and its marked inner corner
in the second row. In the middle: the corresponding configuration of parti-
cles on the shifted lattice Z1 via Rost’s mapping. The marked inner corner
corresponds to the pair of nodes in the rectangle. Below: the corresponding
configuration of particles (including the second class particle) on the lattice Z.

of the second class particle by �1
2 and we translate all holes and particles which are placed

to the right of the second class particle by �1
2 . These steps are illustrated in the middle and

bottom part of Figure 4.15. In this way we end up with the configuration of particles on Z

with a single second class particle.

4.11.2 The correspondence between the standard tableaux and the histories of
TASEP

Recall that for a standard tableau T and a positive integer p ¤ |T| we define the restricted
tableau T|¤p to be the tableau which consists of only these boxes of T which have entries ¤ p.

For a standard tableau T with n ¥ 1 boxes and any p P t1, . . . , nu let us define

λppq :� λppqpTq :� sh
�

T|¤p

	
,

lppq :� lppqpTq :� qppTq,

that is,
�
λppq,lppq� is the pair which consists of the Young diagram λppqpTq which is the

shape of the restricted tableau T|¤p and the last box along the sliding path in T which contains
a number ¤ p, cf. Section 4.2.6.

Let T be a standard tableau with n ¥ 1 boxes. For any t P t1, . . . , nu let us consider the
system of particles Pt :� PtpTq which corresponds to the pair pλptq,lptqq via Rost’s mapping
defined in Section 4.11.1. Notice that the initial configuration P1 is such that the second
class particle is located at the site u � 0, all negative nodes are occupied by the first class
particles and all positive nodes are occupied by holes. Such configuration is called the Dirac
sea. Observe that for any t P t1, . . . , n� 1u the neighboring states Pt and Pt�1 differ by one
of the three transitions described in Section 4.1.1.1 (cf. Figure 4.2, see [Rom15, Sections 7.2
and 7.3] for a step-by-step proof). Therefore the family pPtqtPt1,...,nu is a history of the particle
system starting from the Dirac sea.

Given the above observation, it is easy to see that the mapping which to the standard
tableau T with n boxes associates the history

�
PtpTq

�
tPt1,...,nu of the particle system is a
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bijection between the set of standard tableaux with n boxes and the possible n-step histories of
particle systems starting from the Dirac sea. Moreover, for a tableau T and any t P t1, . . . , |T|u
the u-coordinate of the box qtpTq in the lazy sliding path is the position of the second class
particle in time t in the corresponding TASEP, see [Rom15, Proposition 7.1].

4.11.3 Proof of Theorem 4.1.1

Proof of Theorem 4.1.1. Let us denote by TM�N the set of standard tableaux of M � N
rectangular shape (where M is a number of rows and N is a number of columns).

In the following we discard the particles and holes which do not occupy the nodes (4.1.1).
In this way the correspondence defined in Section 4.11.2 gives a bijection between TMi�Ni and
the set of histories of the particle system considered in Section 4.1.1.1. In this correspondence
for any t P t1, . . . , MiNiu the position of the second class particle in time t in the TASEP
corresponds to the u-coordinate of the box qtpTq in the lazy sliding path. In the special case
Mi � Ni � i when Mi � Ni � li an application of Theorem 4.2.4 completes the proof. In
the general case we apply Corollary 4.10.6 instead.
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