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Wprowadzenie

Niech G b¦dzie lokalnie zwart¡1 grup¡ abelow¡. Wraz z G mo»emy zwi¡za¢ Ĝ, zbiór
(mocno ci¡gªych) reprezentacji nieprzywiedlnych. Wszystkie reprezentacje nieprzywiedlne

grup abelowych s¡ jedno-wymiarowe, a zatem na Ĝ mo»emy zde�niowa¢ mno»enie poprzez
(χη)(g) = χ(g)η(g) (χ, η ∈ Ĝ, g ∈ G). Wraz z odpowiedni¡ topologi¡ (zwarto � otwart¡),

Ĝ staje si¦ lokalnie zwart¡ grup¡ abelow¡, zwan¡ grup¡ dualn¡ do G w sensie Pontryagina.
Konstrukcj¦ t¦ mo»emy powtórzy¢ dla Ĝ � wówczas wrócimy do grupy wyj±ciowej: mamŷ̂
G ' G gdzie g ∈ G odpowiada reprezentacji Ĝ danej poprzez Ĝ 3 χ 7→ χ(g) ∈ T.
Najbardziej znanymi przykªadami grup dualnych w sensie Pontryagina s¡ R̂ ' R oraz
T̂ ' Z. Naturalnym pytaniem jest, czy dualno±¢ Pontryagina mo»emy w jaki± sposób
rozszerzy¢ do klasy grup lokalnie zwartych które niekoniecznie s¡ przemienne. Problem jaki
napotykamy próbuj¡c zde�niowa¢ Ĝ jest nast¦puj¡cy: je±li G jest grup¡ lokalnie zwart¡
która nie jest przemienna, to b¦dzie ona miaªa reprezentacje nieprzywiedlne dziaªaj¡ce na
przestrzeniach Hilberta wy»szego wymiaru. Nie mamy w takiej sytuacji naturalnej metody
zde�niowania dziaªania grupowego na zbiorze reprezentacji nieprzywiedlnych � iloczyn ten-
sorowy reprezentacji nieprzywiedlnych nie musi by¢ nieprzywiedlny.

Jednym z wniosków jakie mo»na wyci¡gn¡¢ z powy»szych rozwa»a« jest konkluzja, »e
aby uzyska¢ satysfakcjonuj¡c¡ teori¦ zamkni¦t¡ na dualno±¢ i rozszerzaj¡c¡ teori¦ grup
abelowych, nale»y wprowadzi¢ do niej równie» obiekty innego typu, nie tylko grupy �
obiekty takie nazywane s¡ zwykle grupami kwantowymi. Proponowano ró»ne de�nicje
grup kwantowych: wspomnijmy tutaj algebry Kaca [36]. Przeªomem okazaªy si¦ badania
Woronowicza, który zde�niowaª zwarte grupy kwantowe (oraz dualne do nich dyskretne
grupy kwantowe) w j¦zyku C∗-algebr, oraz skonstruowaª nietrywialn¡ (tzn. nie b¦d¡c¡
klasyczn¡ lub dualn¡ do klasycznej) zwart¡ grup¦ kwantow¡ SUq(2) [99, 101, 70]. Wielkim
sukcesem de�nicji Woronowicza byª wynik pokazuj¡cy istnienie i jedyno±¢ caªki Haara na
zwartych grupach kwantowych. Najbardziej popularn¡ de�nicj¦ lokalnie zwartych grup
kwantowych zaproponowali Kustermans oraz Vaes [57, 56], i to z ich de�nicji b¦dziemy
korzysta¢ (alternatywn¡ de�nicj¦ zaproponowaª równie» Woronowicz [100]). W przeci-
wie«stwie do de�nicji Woronowicza, tym razem punktem wyj±cia jest j¦zyk algebr von Neu-
manna, natomiast istnienie caªek Haara jest cz¦±ci¡ de�nicji. Ka»d¡ lokalnie zwart¡ grup¦
G mo»emy traktowa¢ jako lokalnie zwart¡ grup¦ kwantow¡ w sensie Kustermansa�Vaesa,
natomiast kwantowa grupa dualna Ĝ zwi¡zana jest z algebrami operatorów badanymi w
abstrakcyjnej analizie harmonicznej: grupowymi C∗-algebrami C∗r(G),C∗(G) oraz grupow¡
algebr¡ von Neumanna L(G).

Niezwykle interesuj¡cym fenomenem który pojawia si¦ w teorii grup kwantowych jest
nie±ladowo±¢ caªek Haara; je±li oznaczymy caªk¦ Haara na SUq(2) (0 < q < 1) symbolem
h, to mo»emy znale¹¢ takie a, b ∈ C(SUq(2)) dla których h(ab) 6= h(ba). Nie±ladowo±¢
caªek Haara jest ¹ródªem wielu interesuj¡cych problemów i zjawisk które s¡ w sercu tej

1W tym wprowadzeniu zakªadamy, »e przestrzenie lokalnie zwarte s¡ Hausdor�a.
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rozprawy. Korzystaj¡c z teorii Tomity�Takesakiego mo»emy skonstruowa¢ grupy automor-
�zmów modularnych (σϕt )t∈R, (σ

ψ
t )t∈R zwi¡zane z lew¡ ϕ oraz praw¡ ψ caªk¡ Haara. Poza

tym, istnieje równie» trzecia grupa automor�zmów � grupa skalowania (τt)t∈R. Odwzorowa-
nia te dziaªaj¡ na algebrze von Neumanna L∞(G), zwanej algebr¡ funkcji ograniczonych na
lokalnie zwartej grupie kwantowej G. Tych grup automor�zmów nie widzimy (s¡ trywialne)
w przypadku grup klasycznych. Grupy automor�zmów modularnych obecne s¡ jednak ju»
w przypadku niektórych grup kwantowych dualnych do klasycznych. Je±li G jest klasyczn¡
grup¡ lokalnie zwart¡ to caªka Haara ϕ̂ na Ĝ jest ±ladowa (równowa»nie: automor�zmy
modularne (σϕ̂t )t∈R s¡ trywialne) wtedy i tylko wtedy gdy G jest unimodularna. Widzimy
wi¦c na tym przykªadzie, »e istnieje zwi¡zek mi¦dzy unimodularno±ci¡ grupy kwantowej,
a ±ladowo±ci¡ caªek Haara na kwantowej grupie dualnej. W ogólnym przypadku zwi¡zek
ten jest nieco bardziej skomplikowany � mi¦dzy innymi relacje tego typu bada¢ b¦dziemy
w Rozdziale 3.

W Rozdziale 1 wprowadzamy notacj¦ której b¦dziemy u»ywa¢ w pracy. W kolejnym
rozdziale przypominamy podstawowe wyniki dotycz¡ce teorii wag na C∗-algebrach i alge-
brach von Neumanna, w tym wyniki pochodz¡ce z teorii Tomity�Takesakiego. Nast¦pnie
wprowadzamy niezb¦dne poj¦cia i rezultaty teorii Woronowicza oraz Kustermansa�Vaesa.
Przedstawiamy równie» kilka przykªadów lokalnie zwartych grup kwantowych.

Rozdziaª 3 po±wi¦cony jest teorii grup kwantowych typu I. Zaczynamy od wprowadzenia
kluczowego rezultatu Desmedta z [31] mówi¡cego o istnieniu miary Plancherela oraz sto-
warzyszonych z ni¡ obiektów. W szczególno±ci, daje nam on unitarny operator QL : L2(G)

→
∫ ⊕

Irr(G)
HS(Hπ) dµ(π) który przenosi algebr¦ von Neumanna L∞(Ĝ) na caªk¦ prost¡∫ ⊕

Irr(G)
B(Hπ) ⊗ 1Hπ dµ(π) oraz pozwala wyrazi¢ lew¡ caªk¦ Haara ϕ̂ na Ĝ przy pomocy

mierzalnego pola ±ci±le dodatnich samosprz¦»onych operatorów (Dπ)π∈Irr(G) (analogiczny

wynik mamy równie» dla prawej caªki ψ̂ � dla niej pojawia si¦ pole (Eπ)π∈Irr(G)). Po przy-
pomnieniu twierdzenia Desmedta, rozwijamy wyniki uzyskane przez Caspersa w [17, 18].

Mi¦dzy innymi, uzyskujemy wyra»enia na pewne operatory zwi¡zane kanonicznie z G, Ĝ
wyra»one na poziomie caªek prostych (twierdzenia 3.24, 3.25):

∇−it
ψ̂

= Q∗L
(∫ ⊕

Irr(G)

E2it
π ⊗ (E−2it

π )> dµ(π)
)
QL,

∇it
ϕ̂ = Q∗L

(∫ ⊕
Irr(G)

D−2it
π ⊗ (D2it

π )> dµ(π)
)
QL,

δ̂it = ν−
i
2
t2Q∗L

(∫ ⊕
Irr(G)

D2it
π E−2it

π ⊗ 1Hπ dµ(π)
)
QL

(0.1)

dla t ∈ R, gdzie ∇ψ̂,∇ϕ̂ to operatory modularne zwi¡zane z caªkami ψ̂, ϕ̂, ν to staªa

skalowania, a δ̂ to element modularny Ĝ (zobacz Rozdziaª 2.2). W dalszej cz¦±ci tego
rozdziaªu badamy implikacje mi¦dzy warunkami takimi jak unimodularno±¢ czy ±ladowo±¢
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caªek Haara. Wykorzystujemy równie» wcze±niej udowodnione równania (takie jak te zgro-
madzone w (0.1)) aby dla grup kwantowych typu I wyrazi¢ te wªasno±ci w terminach
operatorówDπ, Eπ (π ∈ Irr(G)). W ostatniej cz¦±ci tego rozdziaªu opisujemy dwa przykªady

grup kwantowych typu I: dyskretn¡ grup¦ kwantow¡ ŜUq(2) oraz kwantow¡ grup¦ az + b.
Wyniki zgromadzone w tym rozdziale pochodz¡ z pracy [49].

W Rozdziale 4 przedstawiamy wynik uzyskany wraz z Piotrem Soªtanem w [51]: mówi
on o tym, »e dysk kwantowy (opisywany przez algebr¦ Toeplitza) nie ma struktury zwartej
grupy kwantowej. Dowód, który przedstawimy korzysta z teorii grup kwantowych typu I i
wyników uzyskanych w Rozdziale 3.

Kolejny rozdziaª zawiera rezultaty uzyskane wraz z Mateuszem Wasilewskim w [52].
Problemem który badali±my jest pytanie, czy algebra von Neumanna CO+

F
generowana

przez charaktery jest maksymalnie przemienna w L∞(O+
F ), algebrze funkcji ograniczonych

na kwantowej grupie ortogonalnej O+
F , w przypadku gdy grupa ta nie jest typu Kaca

(tzn. caªka Haara nie jest ±ladowa). Uzyskali±my odpowied¹ przecz¡c¡. Nasze techniki poz-
woliªy równie» udowodni¢ interesuj¡ce wyniki dotycz¡ce algebry von Neumanna L∞(U+

F )
funkcji ograniczonych na kwantowej grupie unitarnej U+

F : (pod pewnymi
warunkami) pokazali±my, »e relatywny komutant C ′

U+
F

∩ L∞(U+
F ) nie jest zawarty w CU+

F
.

Rezultaty te uzyskali±my korzystaj¡c z poj¦cia quasi-rozszczepialno±ci wªo»enia CG ⊆
L∞(G). W rozdziale tym przedstawimy równie» konstrukcj¦ zwartej grupy kwantowej
H, powstaj¡cej jako iloczyn bikrzy»owy H = SUq(2) ./ Q. Ma ona ciekawe wªasno±ci:
niektóre automor�zmy skalowania H s¡ wewn¦trzne, a algebra von Neumanna L∞(H) jest
injektywnym faktorem typu II∞.

W Rozdziale 6 przedstawiamy wyniki ª¡cz¡ce wªasno±ci aproksymacyjne grupy kwan-
towej (zwykle dyskretnej) G oraz algebry von Neumanna L∞(Ĝ). Skupiamy si¦ na ±red-
niowalno±ci dla grupy kwantowej G oraz w∗-w peªni dodatniej wªasno±ci aproksymacyjnej
(w∗-CPAP) dla L∞(Ĝ). Zwi¡zki takie znane s¡ w literaturze w sytuacji gdy G ma ±ladowe

caªki Haara (czyli Ĝ jest typu Kaca), jednak dla ogólnych kwantowych grup dyskret-

nych równowa»no±¢ mi¦dzy ±redniowalno±ci¡ G a w∗-CPAP algebry von Neumanna L∞(Ĝ)
jest problemem otwartym. Uzyskali±my wynik cz¦±ciowy: równowa»no±¢ ta zachodzi je±li
zmody�kujemy w∗-CPAP tak aby braªa pod uwag¦ równie» algebr¦ `∞(G).

Rozdziaªem 7 jest dodatek - zawiera on podstawowe informacje dotycz¡ce teorii caªek
prostych oraz lematy z teorii operatorów i grup kwantowych.
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Introduction

Let G be a locally compact2 abelian group. With G we can associate Ĝ, the set of (strongly
continuous) irreducible representations. Since irreducible representations of abelian groups

are one-dimensional, we can introduce on Ĝ a multiplication via (χη)(g) = χ(g)η(g) (χ, η ∈
Ĝ, g ∈ G). Once equipped with the appropriate (compact � open) topology, Ĝ becomes
a locally compact abelian group, known as the dual of G in the sense of Pontryagin. We
can perform this construction also for Ĝ � we will end up with the original group: we havê̂
G ' G, where g ∈ G corresponds to the representation of Ĝ given by Ĝ 3 χ 7→ χ(g) ∈ T.
The most known examples of groups dual in the sense of Pontryagin are R̂ ' R and T̂ ' Z.

It is a natural question to ask, whether the Pontryagin duality can be extended in some
way to the larger class of all locally compact (not necesarilly abelian) groups. A problem

that arises when one tries to de�ne Ĝ is as follows: if G is a locally compact group which
is not abelian, then it has irreducible representations acting on Hilbert spaces of higher
dimension. In this situation we do not have a natural way of de�ning multiplication on
the set of irreducible representations � tensor product of irreducible representations does
not need to be irreducible.

One of the conclusions that we may draw from these considerations is the constatation,
that in order to obtain a satisfactory theory closed under duality and extending the theory
of abelian groups, one has to include also objects which are not groups � such objects are
usually called quantum groups. Various de�nitions of quantum groups were proposed: let
us mention the theory Kac algebras [36]. The work of Woronowicz turned out to be a
breakthrough. He de�ned compact quantum groups (and dual discrete quantum groups)
in the language of C∗-algebras, and constructed a non-trivial (i.e. not classical or dual to
classical) compact quantum group SUq(2) [99, 101, 70]. A great success of Woronowicz's
de�nition was the result showing existence and uniqueness of the Haar integral on any
compact quantum group. The most popular de�nition of locally compact quantum groups
was proposed by Kustermans and Vaes [57, 56], it is this de�nition we will use in our
dissertation (an alternative de�nition was proposed by Woronowicz [100]). Unlike in the
de�nition of Woronowicz, this time the starting point is the language of von Neumann
algebras and existence of Haar integrals has to be postulated as a part of de�nition. Every
locally compact group G can be treated as a locally compact quantum group in the sense of
Kustermans and Vaes, wheras the dual quantum group Ĝ is associated with the operator
algebras studied in the abstract harmonic analysis: group C∗-algebras C∗r(G),C∗(G) and
the group von Neumann algebra L(G).

An exceptionally interesting phenomenon that appears in the theory of quantum groups
is non-traciality of Haar integrals; if we denote the Haar integral on SUq(2) (0 < q < 1) by
h, then we can �nd such a, b ∈ C(SUq(2)) for which h(ab) 6= h(ba). Non-traciality of Haar
integrals is a source of many intriguing problems which are at the heart of this disserta-

2In this introduction we assume that locally compact spaces are Hausdor�.
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tion. Using the Tomita�Takesaki theory we can de�ne groups of modular automorphisms
(σϕt )t∈R, (σ

ψ
t )t∈R associated with the left ϕ and the right ψ Haar integral. Besides those,

there is also a third group of automorphisms � the scaling group (τt)t∈R. These maps act
on the von Neumann algebra L∞(G), called the algebra of bounded functions on the locally
compact quantum group G. We do not see these groups of automorphisms in the classical
case (they are trivial). However, groups of modular automorphisms appear already in the
case of quantum groups dual to classical ones. If G is a classical locally compact group,
then the Haar integral ϕ̂ on Ĝ is tracial (equivalently: the modular automorphisms (σϕ̂t )t∈R
are trivial) if, and only if G is unimodular. We can see in this example, that there is a
relation between unimodularity of a quantum group, and traciality of Haar integrals on
its dual. In the general case, this connection is more complicated � among others, we will
study relations of this type in the Section 3.

In Section 1 we introduce the notation that will be used in the dissertation. In the next
section we recall the basic results concerning the theory of weights on C∗-algebras and von
Neumann algebras, including results coming from the Tomita�Takesaki theory. Next, we
introduce necessary notions and results from the theory of Woronowicz and Kustermans�
Vaes. We also present a couple of examples of locally compact quantum groups.

Section 3 is devoted to the theory of type I quantum groups. We start with introducing
the seminal result of Desmedt from [31]. It establishes an existence of the Plancherel
measure and associated objects. In particular, it gives us a unitary operator QL : L2(G)→∫ ⊕

Irr(G)
HS(Hπ) dµ(π) which transports the von Neumann algebra L∞(Ĝ) onto the direct

integral
∫ ⊕

Irr(G)
B(Hπ) ⊗ 1Hπ dµ(π) and allows us to express the left Haar integral ϕ̂ on Ĝ

using a measurable �eld of strictly positive, self-adjoint operators (Dπ)π∈Irr(G) (we also

have an analogous result for the right Haar integral ψ̂ � it uses another �eld of operators
(Eπ)π∈Irr(G)). After recalling the result of Desmedt, we further develop results of Caspers
obtained in [17, 18]. Among others, we obtain expressions for the operators associated

with G, Ĝ on the level of direct integrals (theorems 3.24, 3.25):

∇−it
ψ̂

= Q∗L
(∫ ⊕

Irr(G)

E2it
π ⊗ (E−2it

π )> dµ(π)
)
QL,

∇it
ϕ̂ = Q∗L

(∫ ⊕
Irr(G)

D−2it
π ⊗ (D2it

π )> dµ(π)
)
QL

δ̂it = ν−
i
2
t2Q∗L

(∫ ⊕
Irr(G)

D2it
π E−2it

π ⊗ 1Hπ dµ(π)
)
QL

(0.2)

for t ∈ R, where ∇ψ̂,∇ϕ̂ are the modular operators associated with integrals ψ̂, ϕ̂, ν is

the scaling constant, and δ̂ is the modular element of Ĝ (see Section 2.2). In the next
part of this section, we study implications between conditions like unimodularity or tra-
ciality of the Haar integrals. In the case of type I quantum groups, we use previously
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obtained equations (like these in (0.2)) to express these properties in terms of operators
Dπ, Eπ (π ∈ Irr(G)). In the last part we describe two examples of type I quantum groups:

the discrete quantum group ŜUq(2) and the quantum group az + b. Results collected in
this section are taken from the paper [49].

In Section 4 we present the theorem obtained together with Piotr Soªtan in [51]: it says
that the quantum disc (described by the Toeplitz algebra) does not admit a structure of a
compact quantum group. The proof we present uses theory of type I quantum groups and
results obtained in Section 3.

The next section contains results obtained together with Mateusz Wasilewski in [52].
The problem we were studying is a question whether the von Neumann algebra CO+

F
gen-

erated by characters is maximal abelian in L∞(O+
F ), the algebra of bounded functions on

the quantum orthogonal group O+
F , in the non-Kac case (i.e. when the Haar integral is

not tracial). We obtained a negative answer. Our techniques allowed us to obtain also
an interesting result concerning the von Neumann algebra L∞(U+

F ) of bounded functions
on a quantum unitary group U+

F : (under some conditions) we showed that the relative
commutant C ′

U+
F

∩L∞(U+
F ) is not contained in CU+

F
. These results were obtained using the

notion of quasi-split inclusion CG ⊆ L∞(G). In this section we also present a construction
of a compact quantum group H, which appears as the bicrossed product H = SUq(2) ./ Q.
It has interesting properties: some of its scaling automorphisms are inner, and its von
Neumann algebra L∞(H) is the injective type II∞ factor.

In Section 6 we present results connecting approximation properties of a (usually dis-

crete) quantum group G and the von Neumann algebra L∞(Ĝ). We focus on amenability
for the quantum group G and w∗-completely positive approximation property (w∗-CPAP)

for L∞(Ĝ). Connections like this are present in the literature in the case when G has

tracial Haar integrals (that is, when Ĝ is of Kac type), but in the general case of discrete

quantum groups, equivalence between the amenability of G and w∗-CPAP of L∞(Ĝ) is
an open problem [13, 7]. We obtained a partial result: equivalence of this type is true,
provided we modify the w∗-CPAP in a such way that it takes into consideration also the
von Neumann algebra `∞(G).

Section 7 is an appendix - it contains basic information regarding theory of direct
integrals and some lemmas from the theory of operators and quantum groups.
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1 Notation

We will write ⊗alg,⊗, ⊗̄ for respectively: the (algebraic) tensor product of vector spaces,
the minimal (spatial) tensor product of C∗-algebras and the spatial tensor product of von
Neumann algebras. The tensor �ip will be denoted by χ.

Whenever we have an unbounded operator x on a Hilbert space H, its domain will be
denoted by Dom(x) ⊆ H. If x, y are unbounded operators on H, then x ◦ y is given by

x ◦ y : Dom(x ◦ y) = {ξ ∈ Dom(y) | yξ ∈ Dom(x)} 3 ξ 7→ x(yξ) ∈ H.

If x ◦ y is closable, its closure will be denoted by xy.
Let H be a Hilbert space. The identity operator on H will be denoted by 1H (or 1 if it is

clear from the context on which space 1 acts) and K(H) will be the C∗-algebra of compact
operators on H. Scalar products are linear from the right. We denote by H the complex
conjugate of H, i.e. the Hilbert space consisting of symbols ξ (ξ ∈ H) and the Hilbert space
structure given by

αξ = αξ, ξ + η = ξ + η, 〈ξ | η〉 = 〈η | ξ〉 (α ∈ C, ξ, η ∈ H).

The canonical antilinear map H 3 ξ 7→ ξ ∈ H will be denoted by JH. With T ∈ B(H) we
associate the operator T> ∈ B(H) acting via

T>ξ = T ∗ξ (ξ ∈ H).

The map B(H) 3 T 7→ T> ∈ B(H) is easily seen to be linear, bijective, antimultiplicative
and ?-preserivng. If π is a representation of a C∗-algebra A on H, then πc will denote the
representation of the opposite algebra Aop on H given by

πc(a) = π(a)> (a ∈ A).

For a C∗-algebra A, its spectrum will be denoted by Irr(A). If θ is a weight on A,
its GNS Hilbert space, GNS map and representation will be denoted by Hθ, Λθ, πθ. The
modular conjugation and the modular operator will be denoted by Jθ,∇θ (for details and
assumptions see Section 2.1).

All von Neumann subalgebras are assumed to be unital unless said otherwise.
If (X,µ) is a measure space, then supx∈X (or sup) will mean the essential supremum.
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2 Preliminaries

In this disseration we will work in the language of operator algebras: C∗-algebras and von
Neumann algebras. We refer the reader to the sources [33, 34, 78, 81, 82, 10] for their basic
theory.

Let A be a C∗-algebra. According to the Gelfand-Naimark theorem, there is a faithful
nondegenerate representation π of A on some Hilbert space H (nondegeneracy of π means
that the set {π(a)ξ | a ∈ A, ξ ∈ H} is linearly dense in H). Because π is faithful, let us
write a instead of π(a) (a ∈ A). De�ne

M(A) = {T ∈ B(H) |TA,AT ⊆ A}.

This is a unital C∗-algebra known as the3 multiplier algebra of A. It is easy to check that
A is an ideal in M(A). Note that when A is unital, we have M(A) = A � we will use the
C∗-algebra M(A) only when working with non-unital algebras. On M(A) besides the norm
topology, there is also another useful topology known as the strict topology. We say that
a net (Ti)i∈I in M(A) converges strictly to some T ∈ M(A) if Tia −−→

i∈I
Ta and aTi −−→

i∈I
aT

for all a ∈ A. It is not di�cult to see (using an approximate identity) that A is strictly
dense in M(A).

Let A,B be two C∗-algebras. A morphism from A to B is a ?-homomorphism π : A →
M(B) which is nondegenerate in the sense that spanπ(A)B = B. Then π extends uniquely
to a strictly continuous ?-homomorphism M(A)→ M(B). We denote this extension by the
same letter π. The set of morphisms from A to B will be denoted by Mor(A,B).

2.1 Theory of weights

Let A be a C∗-algebra (in particular A can be a von Neumann algebra).

De�nition 2.1. A weight on A is a map θ : A+ → [0,+∞] such that

� θ(a+ b) = θ(a) + θ(b) (a, b ∈ A+),

� θ(λa) = λθ(a) (λ ∈ R≥0, a ∈ A+).

A basic and motivational example of a weight is given by the integration θ(f) =
∫
X
f dµ,

where µ is a measure on a topological space X (and then A = C0(X)) or on a measurable
space X (and then A = L∞(X,µ)).

When A is non-commutative, θ should be thought of as a �non-commutative integral�
or an integral on a �non-commutative space�. An example of weight on such an algebra is
given by the trace θ(T ) = Tr(T ) where A = B(H) is the von Neumann algebra of bounded
operators on a Hilbert space H. A well known property of Tr is its traciality : equation
Tr(TT ∗) = Tr(T ∗T ) holds for all T ∈ B(H). However, not all weights are tracial: for

3Other (equivalent) constructions of the multiplier algebra are also possible � this will be the most
convenient for us. It does not depend on the choice of a faithful nondegenerate representation.
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example, we can take a positive operators a ∈ B(H)+ and form a new weight on B(H)
via θ(T ) = Tr(aT ). In general (more precisely, when a /∈ R≥01), such ϕ will not be
tracial. This causes a lot of di�culties and at the same time introduces new intriguing
phenomena � in this section we will give an overview of basic tools that one uses to deal
with non-traciality of weights.

First, let us introduce more notation associated with a weight θ on A.

De�nition 2.2. Let θ be a weight on a C∗-algebra A. De�ne the following subsets

M+
θ = {a ∈ A+ | θ(a) < +∞}

Nθ = {b ∈ A | θ(b∗b) < +∞}
Mθ = spanM+

θ = N∗θNθ.

One can check that M+
θ is a face in A+, Nθ is a left ideal and Mθ is a ?-subalgebra

in A. Furthermore, θ extends uniquely to a linear map Mθ → C � following the standard
convention, we will denote this map also by θ.

The above subsets are adaptations of subsets used in a (classical) integration theory:
if θ is a weight on L∞(X,µ) given by integration, then

M+
θ = L∞(X,µ) ∩ L1(X,µ)+, Nθ = L∞(X,µ) ∩ L2(X,µ), Mθ = L∞(X,µ) ∩ L1(X,µ).

De�nition 2.3. A weight θ on a C∗-algebra A is said to be faithful if θ(a) = 0 implies
a = 0 for all a ∈ A+.

Besides faithfulness, one usually imposes more conditions on weights. These are however
di�erent, depending on whether A is a von Neumann algebra or a C∗-algebra. This is why
we postpone them to the next subsections.

Before we deal with more advanced theory, let us recall the GNS representation4. As
usual, let θ be a weight on a C∗-algebra A. We introduce a sesquilinear map via

Nθ ×Nθ 3 (a, b) 7→ 〈a | b〉θ = θ(a∗b) ∈ C

and let ker(θ) = {a ∈ A | θ(a∗a) = 0}. Next, de�ne a Hilbert space Hθ as the completion
of the quotient space Nθ/ ker(θ) under the norm induced by 〈· | ·〉θ. Let us introduce maps

� Λθ : Nθ → Hθ the canonical map,

� πθ : A → B(Hθ) representation given by πθ(a)Λθ(b) = Λθ(ab) (a ∈ A, b ∈ Nθ).

πθ is called the GNS representation associated with θ. It can be showed that πθ is
always non-degenerate and faithful if θ is faithful. In such case, we will not write πθ and
simply treat A as a C∗-subalgebra of B(Hθ).

We refer the reader to [77, 78, 81, 82] for more information about weights and proofs
of results presented in this section.

4It is named after three mathematicians: Israel Gelfand, Mark Naimark and Irving Segal.

10



2.1.1 Theory of weights on von Neumann algebras

Let us assume now that A = M is a von Neumann algebra with a weight θ.

De�nition 2.4. We say that

� θ is normal if θ(supi∈I ai) = supi∈I θ(ai) for all norm-bounded increasing nets (ai)i∈I
in M+,

� θ is semi�nite if Nθ is w∗-dense in M.

We will be dealing solely with normal, semi�nite, faithful5 weights (abbreviated n.s.f.)
on von Neumann algebras. If θ is normal, its GNS representation πθ : M→ B(Hθ) is nor-
mal, i.e. w∗-continuous. By a result of Haagerup (see e.g. [77, Theorem 1.3]) the following
conditions are equivalent

� θ is normal,

� θ is lower w∗-semicontinuous, i.e. the set {a ∈ M+ | θ(a) ≤ λ} is w∗-closed for all
λ ≥ 0,

� θ(a) = sup{ω(a) |ω ∈ M+
∗ : ω ≤ θ} for all a ∈ M+.

Using this result one can quite easily show ([82, Theorem VII 2.7]) that on every von
Neumann algebra there is a n.s.f. weight.

A theory that is indispensable when dealing with non-tracial weights is called the
Tomita�Takesaki theory. It has its begginings in the 60's, in the work of Tomita. Initially
however, his work did not receive much attention. It was only when Takesaki improved it
and gave clearer presentation ([80]), when it was recognised as a fundamental achievement.
To name a few consequences, it were these results that lead to a proof of the tensor product
commutation theorem ( (M1 ⊗̄M2)′ = M′1 ⊗̄M′2 for all von Neumann algebras M1,M2) and
to classi�cation results due to Connes and Haagerup ([23, 43]).

For a fuller account on the Tomita�Takesaki theory, see e.g. [80, 82, 77, 78], here we
will present a very brief overview. Our main motivation for introducing this theory, is to
use it for Haar integrals on locally compact quantum groups (which are n.s.f. weights with
special features). This is why we will use the more down-to-earth language of weights,
rather than more abstract theory of Hilbert algebras.

Assume that θ is a n.s.f. weight on a von Neumann algebra M. Recall that we consider
M as a subalgebra of B(Hθ). Consider an (unbounded) antilinear map

Sθ,0 : Dom(Sθ,0) = {Λθ(a) | a ∈ Nθ ∩Nθ
∗} → Hθ : Λθ(a) 7→ Λθ(a

∗).

5One can work with weights on von Neumann algebras which are normal and semi�nite but not nec-
essarily faithful, by introducing the support of a weight [82, Section VII]. We do not need this level of
generality, hence we will stick to faithful weights for the sake of simplicity.
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Because we do not assume that θ is tracial, this map can be unbounded. It is however
densely de�ned and closable. Let Sθ : Dom(Sθ)→ Hθ be its closure. Next, let us introduce

maps Jθ and ∇
1
2
θ via the polar decomposition of Sθ:

Sθ = Jθ∇
1
2
θ . (2.1)

Operator Jθ, called the modular conjugation is antilinear, bounded, self-adjoint and in-
volutive. ∇θ called the modular operator on the other hand is (in general) unbounded,
linear, strictly positive and self-adjoint. The main result of Tomita�Takesaki theory is the
following:

Theorem 2.5.

� Jθ M Jθ = M′,

� For all t ∈ R we have ∇it
θ M∇−itθ = M.

The second part of the above theorem allows us to de�ne maps

σθt : M 3 a 7→ ∇it
θ a∇−itθ ∈ M (t ∈ R). (2.2)

One can easily check that each σθt is an automorphism � (σθt )t∈R is called the modular group
of θ. It is not di�cult to see that θ is tracial if, and only if ∇θ = 1 (and consequently
σθt = id (t ∈ R)).

In practical calculations, it is often desirable to �move� y outside Λθ in an expression of
the form Λθ(xy) (we will not care for a moment about domain issues). When θ is tracial,
we can do this as follows:

Λθ(xy) = JθΛθ(y
∗x∗) = Jθy

∗Λθ(x
∗) = Jθy

∗JθΛθ(x)

simply because Sθ = Jθ. However, when θ is non-tracial we need to take into consideration
the modular operator of θ, i.e. ∇θ. Performing similar (informal) calculation and using
Jθ∇z

θ = ∇−zθ Jθ (z ∈ C) we arrive at

Λθ(xy) = Jθ∇
1
2
θ Λθ(y

∗x∗) = Jθ∇
1
2
θ y
∗Λθ(x

∗) = Jθ∇
1
2
θ y
∗Jθ∇

1
2
θ Λθ(x)

= Jθ∇
1
2
θ y
∗∇−

1
2

θ JθΛθ(x) = Jθ(∇
− 1

2
θ y∇

1
2
θ )∗JθΛθ(x).

Notice (looking at expression (2.2)) that ∇−
1
2

θ y∇
1
2
θ looks as σθt (y) for t = z = i/2. However,

so far we have de�ned σθt only for t ∈ R. Clearly the de�nition of σθi/2(y) must raise some

di�culties of a technical kind � simply because the operators ∇
1
2
θ , ∇

− 1
2

θ are unbounded.

In order to make sense of the expression σθz(a) for z ∈ C, we will use an analytical
continuation. We say that an operator a ∈ M belongs to the domain Dom(σθ−iz) of σ

θ
−iz if
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there exists a function F : {w ∈ C | − ε1 ≤ Re(w) ≤ ε2} → M for some ε1, ε2 ≥ 0 such that
−ε1 ≤ Re(z) ≤ ε2, which is w∗-continuous on the whole strip, analytical in its interior and
satis�es6

F (it) = σθt (a) (t ∈ R).

Then we de�ne σθ−iz(a) via
F (z) = σθ−iz(a).

In other words, a ∈ Dom(σθ−iz) if the map iR 3 it 7→ σθt (a) ∈ M extends to a w∗-continuous
map on some vertical strip containing z, which is analytic in its interior.

The family of (linear) maps (σθz)z∈C have nice properties, to name a few we have

a ∈ Dom(σθz) ⇒ a∗ ∈ Dom(σθz), σ
θ
z(a)∗ = σθz(a

∗),

a, b ∈ Dom(σθz) ⇒ ab ∈ Dom(σθz), σ
θ
z(ab) = σθz(a)σθz(b),

a ∈ Dom(σθz), σ
θ
z(a) ∈ Dom(σθz′) ⇒ a ∈ Dom(σθz+z′), σ

θ
z′(σ

θ
z(a)) = σθz+z′(a)

and
a ∈ Dom(σθz) ⇒ σθz(a) = ∇iz

θ a∇
−iz
θ �Dom(∇−izθ )

where above · stands for a closure of a closable operator (see [77, Section 2.14]). Further-
more, for each z ∈ C the domain of σθz is sot

∗-dense in M.
One can rigorously prove ([77, Proposition 2.14]) that if y ∈ Dom(σθi/2) then

Λθ(xy) = Jθσ
θ
i/2(y)∗JθΛθ(x) (x ∈ Nθ).

Another useful property we would like to mention is the following: we say that an element
a ∈ M is called analytic (w.r.t. the modular group (σθt )t∈R) if a ∈

⋂
z∈C Dom(σθz). For such

an element we have ([77, Section 2.15])

Nθa ⊆ Nθ, aMθ, Mθa ⊆Mθ.

We have said that the Tomita�Takesaki theory helps us dealing with non-tracial weights.
Let us end this part with a result which is an extension of the trace property: let z ∈ C.
If x ∈ Nθ

∗ ∩ Dom(σθz−i), σ
θ
z−i ∈ Nθ, y ∈ Nθ ∩ Dom(σθz), σ

θ
z(y) ∈ Nθ

∗ then ([77, Proposition
2.17])

θ(xy) = θ(σθz(y)σθz−i(x)).

Let θ, η be two n.s.f. weights on a von Neumann algebra M. We will now brie�y describe
the notion of the Connes' cocycle derivative between θ and η, which is a non-commutative
analog of the classical Radon-Nikodym derivative.

There exists a unique sot-continuous family ((Dθ : Dη)t)t∈R of unitary operators in M
such that

� (Dθ : Dη)t+s = (Dθ : Dη)t σ
η
t ((Dθ : Dη)s) (t, s ∈ R),

6Setting F (it) = σθt (a) rather then F (t) = σθt (a) is a matter of convention.
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� (Dθ : Dη)t σ
η
t (Nθ

∗ ∩Nη) = Nθ
∗ ∩Nη (t ∈ R),

� for x ∈ Nθ ∩Nη
∗, y ∈ Nθ

∗ ∩Nη there exists a continuous function F : {z ∈ C | 0 ≤
Im(z) ≤ 1} → C, analytic in its interior, which satis�es

F (t) = θ((Dθ : Dη)t σ
η
t (y)x), F (t+ i) = η(x (Dθ : Dη)t σ

η
t (y)) (t ∈ R),

� σθt (x) = (Dθ : Dη)t σ
η
t (x) (Dθ : Dη)∗t (t ∈ R, x ∈ M).

For a full discussion, see [82, Section VIII.3].

We will use the cocycle derivative for the left and the right Haar integrals on G (see
Section 2.2). More precisely, we will use the following result: let as before θ, η be two
n.s.f. weights on a von Neumann algebra M. Assume that there exists a positive number
ν > 0 such that θ ◦ σηt = ν−tθ. Then ([87, Proposition 5.5]) there exists a strictly positive,
self-adjoint operator δ a�liated with M such that

σηt (δis) = νistδis, (Dθ : Dη)t = ν
1
2
it2δit (s, t ∈ R)

and θ = ηδ (and alternative notation for ηδ is η(δ
1
2 · δ 1

2 )). Let us explain the meaning of
this last assertion (see [87]). The weight ηδ is de�ned as follows: �rst, let

N0 = {a ∈ M | a ◦ δ
1
2 is bounded and aδ

1
2 ∈ Nη}.

It is a core for Ληδ and we have

Ληδ : Nηδ ⊇ N0 3 a 7→ Λη(aδ
1
2 ) ∈ Hη.

The weight ηδ is n.s.f. and its GNS representation can be identi�ed with this of η. Fur-
thermore, the modular conjugation, modular operator and the modular automorphisms of
ηδ are given by

Jηδ = ν
i
4Jη, ∇it

ηδ
= δit(Jηδ

itJη)∇it
η , σηδt (a) = δitσηt (a)δ−it (t ∈ R, a ∈ M).

We note that these results can be extended to a situation when ν is a strictly positive,
self-adjoint operator a�liated with Z(M).

2.1.2 Theory of weights on C∗-algebras

In the theory of locally compact quantum groups, we will occasionally encounter also
weights on C∗-algebras. These are usually more di�cult to handle than weights on von
Neumann algebras, hence � whenever possible � we will try to work with von Neumann
algebras. For material presented here, we refer to [53] (see also [61, Appendix C]).

Let A be a C∗-algebra with a weight θ. As before, we start with introducing conditions
on θ.
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De�nition 2.6. We say that θ is

� densely de�ned (sometimes called locally �nite) if Nθ is dense in A,

� lower semicontinuous if {a ∈ A+ | θ(a) ≤ t} is closed in A for all t ≥ 0.

Let (Hθ, πθ,Λθ) be the objects given by the GNS construction for θ. We would like
to know that we can de�ne a n.s.f. weight θ̃ on the von Neumann algebra πθ(A)′′ via
θ̃πθ(a) = θ(a) (a ∈ A+). This is not always the case � we need to introduce an extra
condition on θ:

De�nition 2.7. Assume that θ is a densely de�ned, lower semicontinuous weight on A.
Furthermore, let (σt)t∈R be a continuous group of automorphisms of A, i.e. the map R 3
t 7→ σt(a) ∈ A is continuous for each a ∈ A. We say that θ is a KMS weight with respect
to (σt)t∈R if

� θ ◦ σt = σt for all t ∈ R,

� for every x, y ∈ Nθ
∗∩Nθ there exists a continuous function on a strip f : {z ∈ C | 0 ≤

Re(z) ≤ 1} → C, analytic in its interior, such that

f(it) = θ(σt(x)y), f(it+ 1) = θ(yσt(x)) (t ∈ R).

We say that θ is a KMS weight if there exists a continuous group (σt)t∈R with respect to
which θ is a KMS weight.

(See [53, Theorem 6.36] and [53, De�nition 2.8]). Group (σt)t∈R is not always unique �
however, one can show that it is unique if the weight θ is faithful.

By [53, Theorem 6.20], if θ is a densely de�ned, lower semicontinuous KMS weight on
a C∗-algebra A, then there exists a unique n.s.f. weight θ̃ on πθ(A)′′ which extends θ in the
sense that θ̃ ◦ πθ = θ. Furthermore we have [53, Section 6]

πθ(σt(a)) = ∇it
θ̃
πθ(a)∇−it

θ̃
, Λθ(σt(b)) = ∇it

θ̃
Λθ(b) (a ∈ A, b ∈ Nθ, t ∈ R).

2.2 Locally compact quantum groups

The de�nition of a locally compact quantum group which we will use was introduced by
Kustermans and Vaes in the seminal paper [56] (see also [57]). Their approach was to de�ne
a locally compact quantum group G via a (possibly non-commutative) von Neumann alge-
bra L∞(G) (playing a role of the algebra of (classes of) measurable bounded functions on
a "quantum space" G)7 and a map ∆G : L∞(G)→ L∞(G)⊗̄L∞(G) called comultiplication
corresponding to the group operation. We also assume an existence of n.s.f. weights ϕ, ψ
on L∞(G) satisfying the left/right invariance conditions � these are called Haar integrals
and should be thought of as integrals over G with respect to Haar measures. The precise
de�nition is as follows:

7Following this notational convention, the predual of L∞(G) is denoted by L1(G).
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De�nition 2.8. A locally compact quantum group G is a pair (L∞(G),∆G) consisting of

� a von Neumann algebra L∞(G) and

� a normal unital ?-homomorphism ∆G : L∞(G)→ L∞(G)⊗̄L∞(G) satisfying
(∆G ⊗ id) ◦∆G = (id⊗∆G) ◦∆G.

Furthermore, we assume existence of n.s.f. weights ϕ, ψ : L∞(G)+ → [0,+∞] such that

ϕ((ω ⊗ id)∆G(x)) = ω(1)ϕ(x), ψ((id⊗ ω)∆G(y)) = ω(1)ψ(y)

for all ω ∈ L1(G)+, x ∈M+
ϕ , y ∈M+

ψ .

(We will sometimes write ∆ instead of ∆G if there is no risk of confusion).

In this section we will present fundamental results of the theory which will be used
throughout the dissertation. We will not present their proofs � it would take up too much
space � rather than that, we refer the reader to the literature. Besides the above mentioned
papers [57, 56] results presented here come from Van Daele's work [93] and Kustermans'
paper concerning universal quantum groups [55]. See also [36].

To begin with, let us denote by L2(G) the GNS Hilbert space associated with a left Haar
integral ϕ. Since ϕ is n.s.f., the von Neumann algebra L∞(G) is represented in a faithful
way on L2(G) � henceforth we will treat L∞(G) as a subset of B(L2(G)). The canonical
map Nϕ → L2(G) will be denoted by Λϕ. The choice of the left Haar integral over the
right invariant one was arbitrary � luckily one can prove that there exists a number ν > 0,
called the scaling constant, such that

ϕ ◦ σψt = νtϕ, ψ ◦ σϕt = ν−tψ (t ∈ R).

This has a number of consequences8. First, the GNS Hilbert space of ψ can be identi�ed
in a canonical way with L2(G). Furthermore,

Jψ = ν
i
4Jϕ, ∇it

ψΛϕ(x) = ν−
1
2
tΛϕ(σψt (x)) (x ∈ Nϕ, t ∈ R) (2.3)

and there exists a strictly positive self-adjoint operator δ a�liated with L∞(G) such that

(Dψ : Dϕ)t = ν
i
2
t2δit, ψ = ϕ(δ

1
2 · δ

1
2 ) and σψt (x) = δitσϕt (x)δ−it (2.4)

for x ∈ L∞(G), t ∈ R. The operator δ will be called the modular element9 of G. Whenever
ϕ = ψ we say that G is unimodular � this happens if and only if δ = 1. Let us denote by
Λψ the analog of map Λϕ for ψ. Then the identi�cation is given by Λϕ(x) = Λψ(xδ

1
2 ) for

8See a slightly broader discussion of this result in Section 2.1
9We use this name rather then �modular function� because in the classical setting the modular function

is de�ned as the Radon�Nikodym derivative �dϕ/dψ� � here morally speaking we have �δ ≈ dψ/dϕ�,
which could lead to confusion.
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su�ciently nice elements x. To be more precise, this equation holds provided x ∈ Nϕ is an

operator for which the composition x ◦ δ 1
2 is closable and its closure xδ

1
2 belongs to Nψ.

Starting from the axioms in de�nition 2.8, one can construct a number of objects. Besides
the modular element δ, the most important are the two unitary operators W,V acting on
the Hilbert space L2(G)⊗ L2(G). They are de�ned by the following equalities:

((ω ⊗ id)W∗) Λϕ(x) = Λϕ((ω ⊗ id)∆G(x)), ((id⊗ ω)V) Λψ(y) = Λψ((id⊗ ω)∆G(y))

which hold for ω ∈ B(L2(G))∗, x ∈ Nϕ, y ∈ Nψ. It is not di�cult to show that the left leg
of W belongs to L∞(G) and the right leg of V belongs to L∞(G)′ (see equation (2.17)).
Furthermore, these operators are related to the comultiplication via

∆G(x) = W∗(1⊗ x)W, ∆G(x) = V(x⊗ 1)V∗ (x ∈ L∞(G)) (2.5)

and (using the leg numbering notation)

(∆G ⊗ id)W = W13W23, (id⊗∆G)V = V12V13. (2.6)

It is also not terribly di�cult to establish these properties. In fact, the toughest feature of
these operators to show, is the fact that they are unitary. Relations (2.6) are equivalent
to the so-called pentagonal equations

W23W12 = W12W13W23, V23V12 = V12V13V23. (2.7)

Before we move further, let us mention here a number of useful density results:

{(id⊗ ω)W |ω ∈ B(L2(G))∗}
w∗

= L∞(G),

{(ω ⊗ id)V |ω ∈ B(L2(G))∗}
w∗

= L∞(G),

span w∗{(id⊗ ω)∆G(x) |ω ∈ L1(G), x ∈ L∞(G)} = L∞(G),

span w∗{(ω ⊗ id)∆G(x) |ω ∈ L1(G), x ∈ L∞(G)} = L∞(G).

The property of W,V being unitary turns out to be closely related to the existence of
the antipode S. It is a densely de�ned, w∗� closed operator on L∞(G) such that for any
ω ∈ B(L2(G))∗ we have (id⊗ ω)W ∈ Dom(S) and

S((id⊗ ω)W) = (id⊗ ω)W∗.

The space of operators (ω ⊗ id)W (ω ∈ B(L2(G))∗) forms a w∗� core for S.
It is rather di�cult to work directly with the antipode S. Instead, we will use its po-
lar decomposition. First, there exists a linear, normal, ?-preserving, antimultiplicative
bounded operator R : L∞(G)→ L∞(G) satisfying R2 = id (see also equation (2.15)). This
operator is called the unitary antipode of G. Next, one can de�ne a point w∗� continu-
ous group of ?-automorphism of L∞(G), (τt)t∈R called the scaling group of G satisfying
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R ◦ τt = τt ◦R (t ∈ R). Its analytic continuation to the point z = − i
2
together with R form

the polar decomposition of S, namely

S = R ◦ τ− i
2
.

It turns out that the Haar integrals are relatively invariant under the scaling group, i.e.
ϕ◦τt = ν−tϕ, ψ ◦τt = ν−tψ. Using the scaling group of G one can de�ne a strictly positive
self-adjoint operator P via

P itΛϕ(x) = ν
t
2 Λϕ(τt(x)) (x ∈ Nϕ, t ∈ R).

This operator implements (τt)t∈R, i.e. τt(x) = P itxP−it (x ∈ L∞(G), t ∈ R) (see also
equation (2.13)) and satis�es

P itΛψ(y) = ν−
t
2 Λψ(τt(y)) (y ∈ Nψ, t ∈ R).

Besides the scaling group we have two modular automorphism groups coming from the
Haar integrals, (σϕt )t∈R, (σ

ψ
t )t∈R. They are uniquely determined � it is a consequence of

the important and non-trivial result that Haar integrals on G are unique up to positive
constants. In particular, we can choose these constants in such a way that the equality
ϕ◦R = ψ holds. Let us end this part of Section 2.2 with a collection of formulas connecting
the already de�ned objects:

∆G ◦ τt = (τt ⊗ τt) ◦∆G = (σϕt ⊗ σ
ψ
−t) ◦∆G,

∆G ◦ σϕt = (τt ⊗ σϕt ) ◦∆G, ∆G ◦ σψt = (σψt ⊗ τ−t) ◦∆G,

∆G ◦R = (R⊗R) ◦∆op
G , R ◦ σϕt = σψ−t ◦R,

(2.8)

where ∆op
G is the comultiplication ∆G composed with the tensor �ip. Furthermore, groups

of ?−automorphisms (σϕt )t∈R, (σ
ψ
t )t∈R, (τt)t∈R commute. There is also a number of formulas

concerning the modular element10 δ:

σϕt (δis) = νitsδis, σψt (δis) = νitsδis, τt(δ
is) = δis, R(δis) = δ−is (t, s ∈ R). (2.9)

It turns out that we also have ∆G(δit) = δit⊗δit (t ∈ R) though it is more di�cult to prove
and requires (at least in the approach of [93]) passing to the dual quantum group.

An important result in the theory of locally compact quantum groups is an existence
of the dual locally compact quantum group Ĝ. Its von Neumann algebra L∞(Ĝ) is de�ned
via

L∞(Ĝ) = {(ω ⊗ id)W |ω ∈ L1(G)}
w∗

,

in particular it is represented on L2(G). To see that this subspace is closed under mul-
tiplication one has to use the equation (∆G ⊗ id)W = W13W23. It is also closed under

10Whenever possible we will use the unitary operators δit ∈ L∞(G) (t ∈ R) rather than δ to avoid
unnecessary technical complications.
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the adjoint � we have ((ω ⊗ id)W)∗ = (ω′ ⊗ id)W for nice enough ω ∈ L1(G) (namely for
ω analytic with respect to the group of automorphisms of L1(G), predual to (τt)t∈R) and
certain ω′ ∈ L1(G). Recall that χ stands for the �ip map on B(L2(G))⊗̄B(L2(G)). De�ne

unitary operator11 Ŵ = χ(W∗). Using this operator we de�ne comultiplication on L∞(Ĝ)
as

∆Ĝ(x) = Ŵ∗(1⊗ x)Ŵ (x ∈ L∞(Ĝ)).

It turns out that Ŵ is the right �W operator�12 for Ĝ. Showing that there exists a left-
invariant weight ϕ̂ on L∞(Ĝ) is highly non-trivial and is done using the theory of Hilbert
algebras. One can identify the GNS Hilbert space for ϕ̂ with L2(G) and basically by
de�nition of Λϕ̂ we have

〈Λϕ(x) |Λϕ̂((ω ⊗ id)W)〉 = ω(x∗)

for x ∈ Nϕ and �nice enough� ω ∈ L1(G). The right Haar integral on Ĝ is de�ned via

ψ̂ = ϕ̂ ◦ R̂, where
R̂(x) = Jϕx

∗Jϕ (x ∈ L∞(Ĝ)). (2.10)

is the unitary antipode of Ĝ and, as usual, Jϕ is the modular conjugation associated with
ϕ.
There is a number of formulas relating objects associated with G and Ĝ. To begin with,
the scaling constant of Ĝ is ν̂ = ν−1 and P̂ = P holds. Next, the modular conjugation Jϕ̂
can be used to relate operators W and V:

V = (Jϕ̂ ⊗ Jϕ̂)χ(W∗)(Jϕ̂ ⊗ Jϕ̂), (2.11)

we also have
(R⊗ R̂)W = W. (2.12)

Another important relation expresses the scaling group of G using modular operators ∇ϕ̂:

τt(x) = ∇it
ϕ̂ x∇−itϕ̂ (x ∈ L∞(G), t ∈ R). (2.13)

There are also various commutation relations:

Jϕ̂Jϕ = ν
i
4JϕJϕ̂, ∇it

ψ = Jϕ̂∇−itϕ Jϕ̂, ∇it
ψ = δit(Jϕδ

itJϕ)∇it
ϕ

JϕP
it = JϕP

it, ∇is
ϕP

it = P it∇is
ϕ , ∇is

ψP
it = P it∇is

ψ , (2.14)

∇it
ψ = δ̂−itP−it, δitδ̂is = νistδ̂isδit, P−2it = δit(Jϕδ

itJϕ)δ̂it(Jϕ̂δ̂
itJϕ̂).

One can show that the bidual of G is isomorphic to G, so in particular we can put hats in
all of the above formulas � for example equation (2.10) implies

R(x) = Jϕ̂ x
∗Jϕ̂ (x ∈ L∞(G)). (2.15)

11We will follow this convention and decorate objects corresponding to the dual group with hats.
12Known also as the Kac-Takesaki operator.
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We can obtain information concerning the relative position of von Neumann algebras
L∞(G),L∞(Ĝ) inside B(L2(G)):

L∞(G) ∩ L∞(Ĝ) = C1, L∞(G) ∩ L∞(Ĝ)′ = C1,

L∞(G)′ ∩ L∞(Ĝ) = C1, L∞(G)′ ∩ L∞(Ĝ)′ = C1.
(2.16)

So far we have considered quantum groups described using von Neumann algebras. Sim-
ilarly to the classical theory, aside from the algebra of essentialy bounded measurable
functions (i.e. L∞(G)), there is also the algebra of bounded continuous functions which
vanish at in�nity: C0(G). It is de�ned via the following formula:

C0(G) = {(id⊗ ω)W |ω ∈ B(L2(G))∗}.

It is not hard to see that

W ∈ M(C0(G)⊗ C0(Ĝ)) ⊆ L∞(G)⊗̄L∞(Ĝ). (2.17)

Since W is unitary, C0(G) ⊆ B(L2(G)) is non-degenerate. Note also that (2.17) implies
that ∆G restricts to a morphism, i.e. an element of Mor(C0(G),C0(G)⊗C0(G)). It is also
not di�cult to check, using already introduced relations, that the scaling group, modular
automorphisms (associated with ϕ and ψ) and the unitary antipode preserve C0(G). Haar
integrals after restriction become faithful, densely de�ned and lower-semicontinuous KMS
weights on the C∗-algebra C0(G).
Another important C∗-algebra is the universal version of the C∗-algebra of continuous
functions vanishing at in�nity: Cu

0(G). It was introduced by Kustermans in [55], let us
mention here only these results which will be of use to us.
First, there is a unitary operator

W ∈ M(Cu
0(G)⊗ C0(Ĝ))

satisfying

Cu
0(G) = {(id⊗ ω)W |ω ∈ B(L2(G))∗}.

Next, there exists a ?-epimorphism

ΛG : Cu
0(G)→ C0(G)

such that (ΛG ⊗ id)W = W. Similarly, we can de�ne Cu
0(Ĝ) and corresponding

ΛĜ : Cu
0(Ĝ)→ C0(Ĝ), W∈ M(C0(G)⊗ Cu

0(Ĝ)) : (id⊗ ΛĜ) W= W.

There is also an operator V Vwith �both legs universal�, i.e. V V∈ M(Cu
0(G) ⊗ Cu

0(Ĝ)). It
satis�es

(ΛG ⊗ id)V V= W, (id⊗ ΛĜ)V V= W.
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The above objects have similar properties to their reduced versions. Using �W operators�
one can de�ne comultiplications on the universal C∗-algebras, there are also lifts of the
Haar integrals, corresponding modular automorphisms, scaling group, modular element
and the unitary antipode. These objects will be decorated with u, e.g. ϕu is the left Haar
integral on Cu

0(G). Note however that ϕu, ψu are not necessarily faithful.
A result of utmost importance is the fact that (non-degenerate) representations of C∗-

algebra Cu
0(Ĝ) are in one-to-one correspondence with (unitary) representations ofG, i.e. uni-

taries U ∈ M(C(G)⊗K(HU)) (where HU is a complex Hilbert space) satisfying (∆G⊗id)U =
U12U13. This correspondence is given by the following prescription: having a representation
π ∈ Mor(Cu

0(Ĝ),K(HU)), the corresponding representation of G is given by U = (id⊗π) W

� one can show that all representations of G arise in this way.
Let us introduce a useful notation:

λ(ω) = (ω ⊗ id)W ∈ C0(Ĝ), λu(ω) = (ω ⊗ id) W∈ Cu
0(Ĝ)

for ω ∈ L1(G). The images of these maps generate C0(Ĝ),Cu
0(Ĝ).

In a couple of places (most notably Section 6, but also when discussing examples)
we will meet the notions of amenability and coamenability of a locally compact quantum
group. They are de�ned as follows:

De�nition 2.9. Let G be a locally compact quantum group. We say that G is amenable,
if there exists a state m ∈ L∞(G) (called a mean) such that

m((ω ⊗ id)∆G(x)) = m((id⊗ ω)∆G(x)) = m(x)ω(1) (x ∈ L∞(G), ω ∈ L1(G)).

We say that G is coamenable, when ΛG is an isomorphism � in such case we identify C0(G)
with Cu

0(G).

Let us mention that coamenability has a number of equivalent formulations [8, Theorem
3.1].

One can quite easily see that coamenability of G implies amenability of Ĝ [8, Theorem
3.2], while whether the converse holds is a major open problem. It is known that amenabil-

ity of Ĝ implies coamenability of G, when G is compact � this beautiful result was proved
by Tomatsu [86] (and independently by Blanchard, Vaes).

2.2.1 Example: classical locally compact quantum group and its dual

Let us describe here the motivating example of a locally compact quantum group, namely
the quantum group associated with a classical group. Let G be a locally compact (Haus-
dor�) topological group, with Haar measures µL, µR chosen in such a way that µR(E) =
µL(E−1) for Borel E ⊆ G. For the sake of simplicty, assume that G is second countable.
The associated locally compact quantum group G (denoted also by G) is described via
L∞(G), the L∞-space associated with the left Haar measure, comultiplication ∆G given by

∆G(f)(x, y) = f(xy) (f ∈ L∞(G), x, y ∈ G)
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and the Haar integrals

ϕ(f) =

∫
G

f dµL, ψ(f) =

∫
G

f dµR (f ∈ L∞(G)+).

The associated C∗-algebras C0(G),Cu
0(G) are both equal to13 C0(G) and ΛG is the identity

map. Since L∞(G) is commutative, the modular automorphisms of ϕ, ψ are trivial. The
scaling group is also trivial and we have ν = 1. Consequently, P = 1 and the antipode is
equal to the unitary antipode given by

R(f)(x) = f(x−1) (f ∈ L∞(G), x ∈ G).

The modular element δ is equal to the Radon-Nikodym derivative dµR
dµL

, i.e. the inverse of
the usual modular function.
The dual locally compact quantum group Ĝ = Ĝ is more interesting. Its von Neumann
algebra L∞(Ĝ) is equal to the group von Neumann algebra L(G), i.e. the von Neumann
subalgebra of B(L2(G)) generated by the image of the left regular representation. Next,

we have C0(Ĝ) = C∗r(G), the reduced group C∗-algebra and Cu
0(Ĝ) is equal to C∗(G), the

full group C∗-algebra of G. Comultiplication on L(G) and C∗(G) is given by

∆Ĝ(λx) = λx ⊗ λx and ∆u
Ĝ

(ux) = ux ⊗ ux (x ∈ G)

where λx, ux (x ∈ G) are the canonical unitaries in L(G),M(C∗(G)). Both Haar integrals

on Ĝ are equal to the Plancherel weight (see [82, Section VII.3]). It is tracial if and only
if G is unimodular. Indeed, we already know that P = 1, hence ∇ψ̂ = δ−1 � see equation

(2.14). N.b., the dual version of this equation (i.e. after applying hats) implies that Ĝ is

unimodular. However, as P̂ = P = 1 the scaling group (and the scaling constant) of Ĝ are
always trivial. Consequently

Ŝ(λx) = R̂(λx) = λx−1 (x ∈ G).

We will see more examples of locally compact quantum groups in sections 2.3.1 � 2.3.4,
3.6, 3.7 and 5.4.

2.3 Compact/discrete quantum groups

Compact quantum groups were introduced by Woronowicz: in [99] he de�ned his famous
SUq(2) quantum group and later developed the general theory of compact quantum groups
[98, 101]. In this section we will describe the basic theory of compact quantum groups
as well as their duals, i.e. discrete quantum groups [70]. Besides the above mentioned
references we also refer the reader to [85] and a very well written book by Neshveyev and
Tuset [64].

13This means that G = G is coamenable.
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De�nition 2.10. A compact quantum group G is a pair (C(G),∆) consisting of

� a unital C∗-algebra C(G),

� a unital ?-homomorphism ∆: C(G)→ C(G)⊗ C(G) satisfying (∆⊗ id) ◦∆
= (id⊗∆) ◦∆ and

span ∆(C(G))(C(G)⊗ 1) = C(G)⊗ C(G) = span ∆(C(G))(1⊗ C(G)).

The fundamental result concerning a compact quantum group G is the existence of the
Haar integral, i.e. the unique state h ∈ C(G)∗ which is left and right invariant:

(h⊗ id)∆(a) = h(a)1 = (id⊗ h)∆(a) (a ∈ C(G)).

This result was proved by Woronowicz under the separability assumption on C(G) and
in general by Van Daele in [91].
The Haar integral provided by the above result does not need to be faithful. Let L2(G) be
the Hilbert space obtained by the GNS representation associated with h and let Cr(G) be
the image of C(G) in B(L2(G)). Taking the bicommutant of Cr(G) we get a von Neumann
algebra L∞(G). One can show that the comultiplication descends in a canonical way to
Cr(G) and then extends to a normal map ∆r on L∞(G). In the GNS representation, the
Haar integral becomes a vector state which we will denote by14 hr. It turns out that the
quadruple (L∞(G),∆r, hr, hr) is a locally compact quantum group in the sense of De�nition
2.8. In particular, the left and the right Haar integrals are equal hence δr = 1 and νr = 1.

There is also a more intrinsic characterisation of compact quantum groups among lo-
cally compact quantum groups: a locally compact quantum group G is compact if and
only if C0(G) is unital or equivalently one of the Haar integrals is a state [8, Proposition
3.1].

A feature that makes compact quantum groups especially amenable to concrete calcu-
lations is their very tractable and powerful representation theory � we will see in Section
3 that it is the case (to some degree) also for type I quantum groups.
Let G be a compact quantum group. Recall that a unitary representation of G on a Hilbert
space HU is a unitary element U ∈ M(C(G) ⊗ K(HU)) such that (∆ ⊗ id)U = U13U23. A
matrix element of U is an operator of the form (id ⊗ ω)U ∈ C(G) (ω ∈ K(HU)∗). An
intertwiner between two representations U, V is an operator T ∈ B(HU ,HV ) satisfying
(1 ⊗ T )U = V (1 ⊗ T ). The space of intertwiners between U and V will be denoted by
Mor(U, V ), we will also write End(U) = Mor(U,U). We say that U is irreducible if the
only self-intertwiners are proportional to the identity operator 1U ∈ B(HU). Equivalently,
U is not equivalent to a direct sum of two representations. The fundamental results of the
representation theory are as follows:

14In other sections we will be dealing only with compact quantum groups with C(G) = Cu(G) (the
universal form) or C(G) = Cr(G) (the reduced form). In the latter case we will simply write h = hr, etc.
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� irreducible representations ofG are �nite dimensional, i.e. dim(U) = dim(HU) < +∞,

� every unitary representation of G is equivalent to a direct sum of irreducible repre-
sentations,

� the subset Pol(G) ⊆ C(G) formed by the matrix elements of unitary �nite dimen-
sional representations of G is a dense ?-subalgebra.

In fact, more can be said about Pol(G): together with the restricted comultiplication
it is a Hopf ?-algebra. The counit ε and the antipode S act as follows:

(ε⊗ id)U = 1U , (S ⊗ id)U = U−1

for any �nite dimensional unitary representation U . In Section 2.2 we have said that with
any locally compact quantum group G we can associate a C∗-algebra Cu

0(G) which is the
�universal version of the algebra of C0 functions on G�. When G is compact, the de�nition
of Cu

0(G) (denoted then by Cu(G) due to obvious reasons) is much simpler � Cu(G) is
simply the enveloping C∗-algebra of Pol(G) [7, Section 3].
We have seen in Section 2.2 that the modular theory of Haar integrals can be very inter-
esting: it gives rise to modular automorphisms, scaling group and the scaling constant. It
turns out that in the compact case it has its roots in the representation theory. Let U be a
�nite dimensional unitary representation of G. We de�ne the contragradient representation

U c = (S ⊗ jU)U

(recall that jU : B(HU)→ B(HU) is the canonical antimultiplicative isomorphism) and the
conjugate representation

U = (R⊗ jU)U.

One can prove that both these elements are equvalent representations of G on HU and U is
unitary, but U c not necesarilly so. One can perform the contragradient construction once
again and arrive at the representation U cc � it turns out that it is equivalent to U . If U is
irreducible, we de�ne ρU to be the unique positive invertible intertwiner ρU ∈ Mor(U,U cc)
satisfying Tr(ρU) = Tr(ρ−1

U ). For general unitary representation U , one de�nes ρU by
decomposing U into irreducible summands and then taking a direct sum of corresponding
operators (see [64, Proposition 1.4.4]) � it is a positive and invertible operator. The number
Tr(ρU) is called the quantum dimension of U , dimq(U) � in general it is greater or equal
to the usual dimension dim(U).
Let us denote by Irr(G) the set of (equivalence classes15 of) irreducible representations of G.
The family of operators {ρα}α∈Irr(G) is of utmost importance. Using them we can express
the action of the modular and scaling automorphism groups introduced in the previous
section. First, let us de�ne a family {fz}z∈C of functionals on Pol(G) via

(fz ⊗ id)U = ρzU (z ∈ C) (2.18)

15We will follow the common abuse of notation and identify in notation a class of representations
with its representative. For example, we will write ρα to denote the operator associated with a chosen
representation Uα ∈ α ∈ Irr(G).
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for any �nite dimensional unitary representation U . These functionals have a number of
useful properties (see [64, Proposition 1.7.2]), we will only mention here the following16:

τt(a) = f−it ? a ? fit σht (a) = fit ? a ? fit (t ∈ R, a ∈ Pol(G)), (2.19)

where the convolution of functionals φ, φ′ and an element a is de�ned via

φ ? a = (id⊗ φ)∆(a), a ? φ = (φ⊗ id)∆(a), (φ ? a) ? φ′ = φ ? (a ? φ′) = φ ? a ? φ′.

Another very useful result is the fact the using operators {ρα}α∈Irr(G) we can express the
action of h on products of two matrix coe�cients � for α, β ∈ Irr(G), ξ, ξ′ ∈ Hα, η, η

′ ∈ Hβ
we have ([64, Theorem 1.4.3])

h(Uα
ξ,ξ′
∗Uβ

η,η′) =
δα,β〈ξ′ | η′〉〈η | ρ−1

α ξ〉
dimq(α)

, h(Uα
ξ,ξ′U

β
η,η′
∗
) =

δα,β〈ξ | η〉〈η′ | ραξ′〉
dimq(α)

,

where Uα
ξ,ξ′ = (id⊗ωξ,ξ′)Uα ∈ C(G). These equations are called the orthogonality relations.

Let Ĝ be the locally compact quantum group dual toG, as described in Section 2.2. Any
quantum group which arises in this way will be called discrete. Using the representation
theory of G, we can describe in detail some of the structure of Ĝ. First, we have

L∞(Ĝ) =
∏

α∈Irr(G)

B(Hα), Cu
0(Ĝ) = C0(Ĝ) =

⊕
α∈Irr(G)

B(Hα).

which in some sense explains name �discrete� (when Ĝ is a classical discrete group we have
dim(Hα) = 1, here we only know that dim(Hα) < +∞). We will henceforth write

`∞(Ĝ) = L∞(Ĝ), c0(Ĝ) = C0(Ĝ).

We already know that the scaling constant of Ĝ is trivial (because it is for G), but the
modular element need not be trivial. Indeed, the left and the right Haar integrals are given
by

ϕ̂ =
∑

α∈Irr(G)

dimq(α) Trα(ρ−1
α πα(·)), ψ̂ =

∑
α∈Irr(G)

dimq(α) Trα(ραπα(·))

(where πα : `∞(Ĝ) → B(Hα) (α ∈ Irr(G)) are the canonical projections) and the modular
element is equal to

δ̂ =
⊕

α∈Irr(G)

ρ2
α.

Since `∞(Ĝ) and the Haar integrals ϕ̂, ψ̂ are given by such simple formulas, one can easily

show that the GNS Hilbert space L2(Ĝ) ' L2(G) can be identi�ed in a canonical way with

16Note that these formulas make sense also for complex z = t � one can show that elements of Pol(G)
are analytic with respect to (τt)t∈R, (σ

h
t )t∈R

25



⊕
α∈Irr(G) HS(Hα) � we will discuss it further in Section 3. The modular automorphisms of

ϕ̂, ψ̂ are given by

σϕ̂t ((xα)α∈Irr(G)) = (ρ−itα xαρ
it
α)α∈Irr(G), σψ̂t ((xα)α∈Irr(G)) = (ρitαxαρ

−it
α )α∈Irr(G) (2.20)

and the scaling group acts as follows

τ̂t((xα)α∈Irr(G)) = (ρ−itα xαρ
it
α)α∈Irr(G) (2.21)

where t ∈ R and (xα)α∈Irr(G) ∈ `∞(Ĝ). Note that the above equations show τ̂t = σϕ̂t for
all t ∈ R. Indeed, it follows from equations (2.14) that ∇it

ϕ̂ = P it. It is a consequence of
unimodularity of G (see also Proposition 3.32).
We can also identify the Kac-Takesaki operator for G:

W =
∑

α∈Irr(G)

Uα ∈ M(C(G)⊗ c0(Ĝ)) (2.22)

(this series converges in the strict topology).

Let us end this section with a de�nition: one says that a compact quantum group G is
of Kac type if the Haar integral h is a trace. Equivalently: the scaling group of G (or Ĝ)

is trivial, (one of the) Haar integrals on G (or Ĝ) is tracial, Ĝ is unimodular (i.e. ϕ̂ = ψ̂)
or ρU = 1U for all �nite dimensional unitary representations U of G. We will obtain more
conditions in this spirit for type I quantum groups in Section 3.3.

2.3.1 Example: the quantum group SUq(2)

In this section we will describe the quantum version of the group SU(2), introduced by
Woronowicz in [99]. Let q ∈ ]−1, 1[\{0} be a �xed parameter. The C∗-algebra Cu(SUq(2))
is de�ned as the universal unital C∗-algebra generated by elements α, γ such that

α∗α + γ∗γ = 1, αα∗ + q2γ∗γ = 1, γγ∗ = γ∗γ

αγ = qγα, αγ∗ = qγ∗α.

Alternatively, one can impose the condition that the matrix U1/2 =

[
α −qγ∗
γ α∗

]
is unitary.

Comultiplication is de�ned by

∆(α) = α⊗ α− qγ∗ ⊗ γ, ∆(γ) = γ ⊗ α + α∗ ⊗ γ

and its existence follows from the universal property of Cu(SUq(2)).
The representation theory of SUq(2) is quite simple: we have Irr(SUq(2)) ' 1

2
Z+ in such a

way that U0 is the trivial representation, U1/2 is the above two dimensional representation,
Un ' Un (n ∈ 1

2
Z+) and the fusion rules (i.e. rules of tensor product multiplication) are

given by
Un

>OUm ' U |n−m| ⊕ · · · ⊕ Un+m (n,m ∈ 1
2
Z+). (2.23)
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It follows that Pol(SUq(2)) is the unital ?-algebra generated by α, γ. Conesquently Cu(SUq(2))
is indeed universal in the sense of Section 2.3. It turns out that the Haar integral on
Cu(SUq(2)) is faithful � the quantum group SUq(2) is coamenable [7, Theorem 2.12] and
we will henceforth write Cu(SUq(2)) = C(SUq(2)).
SUq(2) is the fundamental example of a compact quantum group which is not of Kac type.
Indeed, the modular and scaling automorphism groups are given by ([64, Section 1.7])

σht (α) = |q|−2itα, σht (γ) = γ, τt(α) = α, τt(γ) = |q|2itγ (t ∈ R).

We can also give an explicit formula for the unitary antipode:

R(α) = α∗, R(γ) = − sgn(q)γ.

We will discuss SUq(2) and its dual in greater detail in sections 3.6, 5.3.

2.3.2 Example: the quantum group O+
F group

The next class of examples we will introduce are the free orthogonal quantum groups O+
F .

They were introduced by Van Daele and Wang [94] (see also [3]). One starts with an
invertible matrix F ∈ Mn(C) (n ≥ 2) satisfying FF ∈ R1, where F is the matrix obtained
from F by taking the complex conjugate of every entry. Then Cu(O+

F ) is de�ned17 as the
universal unital C∗-algebra generated by elements {Ui,j | 1 ≤ i, j ≤ n} satisfying

U is unitary and U = FU cF−1

where U = (Ui,j)
n
i,j=1 and U c = (U∗i,j)

n
i,j=1 are matrices in Mn(Cu(O+

F )).
Comultiplication ∆ on Cu(O+

F ) is obtained by declaring that U is a representation, i.e.

∆(Ui,j) =
n∑
k=1

Ui,k ⊗ Uk,j (1 ≤ i, j ≤ n). (2.24)

The representation theory of O+
F is very similar to that of SUq(2): we have Irr(O+

F ) '
1
2
Z+ where 0 and 1

2
correspond respectively to the trivial representation and U , each ir-

reducible representation is self-conjugate up to equivalence and the fusion rules are the
same as for SUq(2) (i.e. the analog of equation (2.23) holds). In fact, SUq(2) = O+

F for

F =

[
0 1
−q−1 0

]
and every quantum group O+

F with F ∈ M2(C) is isomorphic to one of the

SUq(2) quantum groups [85, Proposition 6.4.8].
We note here the intriguing property that whenever n ≥ 3, the Haar integral on Cu(O+

F )
is not faithful and henceforth quantum group O+

F is not coamenable [4, Corollaire 1] (see
also [94, Proposition 2.2]).
We will obtain some interesting information concerning the von Neumann algebra L∞(O+

F )
in Section 5.

17This C∗-algebra is often denoted also by Ao(F ).
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2.3.3 Example: U+
F group

The next class of examples we wish to discuss in this section are the free unitary quantum
groups U+

F introduced in [94]. Similarly to the case of O+
F , we start with an invertible

matrix F ∈ Mn(C) but this time we do not impose additional conditions on F . Cu(U+
F ) is

de�ned18 as the universal unital C∗-algebra generated by {Ui,j | 1 ≤ i, j ≤ n} such that

U and FU cF−1 are unitary,

where, as previously, U = (Ui,j)
n
i,j=1 and U c = (U∗i,j)

n
i,j=1. The comultiplication is de�ned

in such a way that U is a representation, i.e. by formula (2.24).
Representation theory of U+

F was determined by Banica in [4], let us describe its elements.
Let Z+ ? Z+ be the free product of monoids Z+ with generators α, β and the neutral
element e. There is a unique antimultiplicative involution x 7→ x on Z+ ? Z+ satisfying
e = e, α = β. We can identify Z+ ? Z+ with Irr(U+

F ) in such a way that denoting this
identi�cation by x 7→ Ux, Ue is the trivial representation, Uα = U and Ux ' Ux for all
x ∈ Z+ ? Z+. Furthermore, the fusion rules of U+

F are as follows: for any x, y ∈ Z+ ? Z+

we have
Ux >OUy '

⊕
a,b,c∈Z+?Z+:

x=ac, cb=y

Uab.

Let us end this section with a remark that the quantum group U+
F is not coamenable for

any F ∈ Mn(C) [4] (see also [94, Proposition 2.2]). We will study the von Neumann algebra
L∞(U+

F ) in Section 5.6.

In the case F = 1 it is common to denote the resulting compact quantum groups of
Kac type O+

F , U
+
F by O+

n , U
+
n .

2.3.4 Example: GAut(B,ψ) group

The last class of examples we will discuss here is formed by quantum automorphism groups
GAut(B,ψ). They were introduced by Wang in [96] and studied by many authors, let
us mention here papers of Banica [6, 5] and Brannan [12]. We start with the following
auxiliary de�nition:

De�nition 2.11.

� A unital ?-homomorphism α : A → A⊗C(G) is a right action of a compact quantum
group G on a unital C∗-algebra A if

(α⊗ id) ◦ α = (id⊗∆) ◦ α, span{α(a)(1⊗ x) | a ∈ A, x ∈ C(G)} = A⊗ C(G).

� Functional ϕ ∈ A∗ is preserved by the action of G is

(ϕ⊗ id)α(a) = ϕ(a)1 (a ∈ A).

18Cu(U+
F ) is known also as Au(F ).
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Now we can give the de�nition of the quantum automorphism group GAut(B,ψ).

De�nition 2.12. Let B be a �nite dimensional C∗-algebra with a faithful state ψ ∈ B∗.
The quantum automorphism group of (B,ψ), denoted GAut(B,ψ), is the compact quantum
group with a right action α : B → B ⊗ Cu(GAut(B,ψ)) preserving ψ such that

� Cu(GAut(B,ψ)) is the universal C∗-algebra generated by {(ω ⊗ id)α(b) | b ∈ B,
ω ∈ B∗},

� if β : B → B ⊗ C(H) is a right action of a compact quantum group H on B which
preserves ψ, then there exists a unital ?-homomorphism π : Cu(GAut(B,ψ))→ C(H)
such that β = (id⊗ π) ◦ α.

We will not need this result, let us mention however that a more concrete description of
Cu(GAut(B,ψ)), using the multiplication mapm : B⊗B → B and the unit map ν : C→ B,
is possible. To be more precise, C(GAut(B,ψ)) is the universal C∗-algebra generated by

elements {Ui,j}dim(B)
i,j=1 such that

the matrix U = (Ui,j)
dim(B)
i,j=1 is unitary, m ∈ Mor(U >O2, U), and ν ∈ Mor(1, U)

(we treat U as acting on the Hilbert space B, with inner product de�ned by ψ).
The most studied examples are given by (B,ψ) where ψ is a so-called δ-form:

De�nition 2.13. Let B be a �nite dimensional C∗-algebra, ψ ∈ B∗ a faithful state and
δ > 0 a positive number. Functionals ψ and ψ ⊗ ψ give us a Hilbert space structure on B
and B ⊗ B. We say that ψ is a δ-form if the multiplication map m : B ⊗ B → B satis�es
mm∗ = δ2id, where m∗ is the (Hilbert space) adjoint of m.

Banica was able to describe the representation theory of GAut(B,ψ) (see [12, Theorem
3.8]): we can identify Irr(GAut(B,ψ)) with Z+: every k ∈ Z+ corresponds to a �nite
dimensional unitary representation Uk and {Uk}k∈Z+ have the following properties:

� U0 is the trivial representation, U ' U0 ⊕ U1,

� Uk ' Uk for all k ∈ Z+,

� the fusion rules are given by

Un
>OUk '

2 min(n,k)⊕
m=0

Uk+n−m (n, k ∈ Z+),

i.e. GAut(B,ψ) has the same fusion rules as SO(3).

When dim(B) ≤ 3, GAut(B,ψ) is the �nite permutation group Sdim(B). Furthermore
for dim(B) ≥ 4, GAut(B,ψ) is coamenable only when dim(B) = 4.

We will obtain new information about the von Neumann algebra L∞(GAut(B,ψ)) in
Section 5.
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3 Type I locally compact quantum groups

In Section 2.3 we have seen that compact quantum groups have a very nice representation
theory: one has a family of irreducible representations α which are �building blocks� of
arbitrary representations. With every α comes a positive invertible operator ρα ∈ B(Hα),
and using these operators, we can express objects (modular automorphisms, scaling group,
etc.) related to the compact quantum group or its discrete dual in a very explicit way. Fur-
thermore, matrix elements of �nite dimensional unitary representations form a w∗-dense
subspace in L∞(G) where calculations are more attainable.

These properties make compact quantum groups a class of locally compact quantum
groups especially amenable to precise analysis. In this section we will introduce a class
of type I locally compact quantum groups which is signi�cantly larger then the class of
compact quantum groups, but nevertheless preserve some of the properties mentioned
above. This section for the most part is based on the seminal PhD dissertation of Desmedt
[31], results of Caspers [17, 18] as well as the author's work [50, 49].

3.1 Plancherel measure

Recall [33, De�nition 5.5.1] that a C∗-algebra A is of type I if for every representation
π : A → B(Hπ), the von Neumann algebra π(A)′′ is of type I (see also [33, Theorem 9.1,
9.5.6] for equivalent characterisations). Let us introduce the de�nition of type I locally
compact quantum group.

De�nition 3.1. Let G be a locally compact quantum group. We say that G is type I if
the C∗-algebra Cu

0(Ĝ) is of type I.

This de�nition is a direct generalisation of the classical notion of type I locally compact
group: such a group G is type I if and only if its full C∗-algebra19 C∗(G) is of type I. For
more information and examples of classical type I groups see for example [39, Section 7].
In particular, let us mention [39, Theorem 7.8]: if G is a connected Lie group which is
nilpotent or semi-simple then it is of type I.
The principal reason we are interested in those quantum groups G for which Cu

0(Ĝ) is a
C∗-algebra of type I is the fact that (non-degenerate) representations of type I C∗-algebras
decompose in a unique way into direct integrals over the spectrum Irr(A), which is a
standard Borel space (see [33, Theorem 8.6.6], we have gathered basic results concerning
direct integrals in Appendix 7.1). We will use this fact to deduce existence of the Plancherel
measure, a result due to Desmedt (Theorem 3.3).
We will be working with direct integrals, to avoid unnecessary technical di�culties we will
impose some separability conditions:

19For a locally compact quantum group G, the C∗-algebra Cu0 (Ĝ) plays a role of the full group C∗-algebra,
see Section 2.2.
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Lemma 3.2. Let G be a locally compact quantum group. The following conditions are
equivalent:

1) C0(G) is a separable C∗-algebra,

2) Cu
0(G) is a separable C∗-algebra,

3) L2(G) is a separable Hilbert space

4) L1(Ĝ) is a separable Banach space.

If these conditions hold, we say that G is second countable. Note that since L2(G) '
L2(Ĝ), G is second countable if and only if Ĝ is second countable.

Proof. The GNS Hilbert spaces of ϕ, ϕu can be identi�ed with L2(G), hence we get 1)⇒ 3)

and 2) ⇒ 3) (see [61, Theorem C.2]). Since L∞(Ĝ) is a von Neumann algebra acting on

L2(G), point 3) implies 4). Next, since C0(G) is the norm closure of {(id⊗ω)W |ω ∈ L1(Ĝ)}
we get 3)⇒ 1). Implication 3)⇒ 2) is analogous.

The fundamental result concerning type I, second countable, locally compact quantum
groups is the Plancherel theorem proved by Desmedt (a similar result for possibly non-
unimodular classical groups was derived by Tatsuuma in [84]).

Theorem 3.3. Let G be a second countable, type I locally compact quantum group. There
exists a standard measure µ on Irr(G), a measurable �eld of Hilbert spaces (Hπ)π∈Irr(G), mea-
surable �eld of representations20, measurable �elds of strictly positive self-adjoint operators
(Dπ)π∈Irr(G), (Eπ)π∈Irr(G) and unitary operators QL,QR : L2(G)→

∫ ⊕
Irr(G)

HS(Hπ) dµ(π) such
that:

1a) For all α ∈ L1(G) such that λ(α) ∈ Nϕ̂ and µ-almost every π ∈ Irr(G) the operator
(α⊗ id)(Uπ) ◦D−1

π is bounded and its closure (α⊗ id)(Uπ)D−1
π is Hilbert-Schmidt.

1b) For all α ∈ L1(G) such that λ(α) ∈ Nψ̂ and µ-almost every π ∈ Irr(G) the operator
(α⊗ id)(Uπ) ◦ E−1

π is bounded and its closure (α⊗ id)(Uπ)E−1
π is Hilbert-Schmidt.

2a) The operator QL is the isometric extension of

Λϕ̂(λ(L1(G))∩Nϕ̂) 3 Λϕ̂(λ(α)) 7→
∫ ⊕

Irr(G)

(α⊗id)(Uπ)D−1
π dµ(π) ∈

∫ ⊕
Irr(G)

HS(Hπ) dµ(π).

2b) Similarly, QR is the isometric extension of

Jϕ̂JϕΛψ̂(λ(L1(G)) ∩Nψ̂) 3Jϕ̂JϕΛψ̂(λ(α)) 7→

7→
∫ ⊕

Irr(G)

(α⊗ id)(Uπ)E−1
π dµ(π) ∈

∫ ⊕
Irr(G)

HS(Hπ) dµ(π),

20We will often abuse the notation and write π for a representation as well as its class in Irr(G).
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3a) The operator QL satis�es

QL(ω ⊗ id)W =
(∫ ⊕

Irr(G)

(ω ⊗ id)Uπ ⊗ 1Hπ dµ(π)
)
QL

and

QL(ω ⊗ id)χ(V) =
(∫ ⊕

Irr(G)

1Hπ ⊗ πc((ω ⊗ id)W) dµ(π)
)
QL

for every ω ∈ L1(G).

3b) The operator QR satis�es

QRJϕ̂Jϕ(ω ⊗ id)W =
(∫ ⊕

Irr(G)

(ω ⊗ id)Uπ ⊗ 1Hπ dµ(π)
)
QRJϕ̂Jϕ

and

QRJϕ̂Jϕ(ω ⊗ id)χ(V) =
(∫ ⊕

Irr(G)

1Hπ ⊗ πc((ω ⊗ id)W) dµ(π)
)
QRJϕ̂Jϕ

for every ω ∈ L1(G).

4) Haar integrals on Ĝ are tracial if and only if almost all Dπ are multiples of the
identity and this happens if and only if almost all Eπ are multiples of the identity.

5) Operators QL,QR transform Z(L∞(Ĝ)) onto diagonalisable operators.

6) We can assume that (Hπ)π∈Irr(G) is the canonical measurable �eld of Hilbert spaces.

Remark. If Ĝ is unimodular, we have Eπ = Dπ (π ∈ Irr(G)) and QR = QLJϕJϕ̂.

The above result is based on a result concerning lower semicontinuous, densely de�ned
KMS weights (see Section 2.1) on C∗-algebras of type I [31, Theorem 3.3.5].
If A is a separable C∗-algebra of type I, let (Kσ)σ∈Irr(A) be the canonical measurable �eld
of Hilbert spaces, i.e. Kσ = Cdim(σ) (σ ∈ Irr(A)) [33, Section 8.6.1]. Next, for a GNS
representation πθ associated with a weight θ de�ne a representation ρθ of the opposite
algebra on Hθ via ρθ = Jθπθ(·∗)Jθ.

Theorem 3.4. Let A be a separable C∗-algebra of type I and θ a lower semicontinuous,
densely de�ned, KMS weight on A. There exists a measure µ on Irr(A), a measurable �eld
of representations (πσ)σ∈Irr(A) on (Kσ)σ∈Irr(A) such that πσ ∈ σ for every σ, a measurable
�eld of strictly positive, self-adjoint operators (Dσ)σ∈Irr(A) and a unitary operator P : Hθ →∫ ⊕

Irr(A)
HS(Kσ) dµ(σ) with the following properties:

1) For all x ∈ Nθ and µ-almost all σ ∈ Irr(A) the operator πσ(x) ◦D−1
σ is bounded and

its closure πσ(x)D−1
σ is Hilbert-Schmidt.
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2) The operator P is the isometric extension of

Λθ(Nθ) 3 Λθ(x) 7→
∫ ⊕

Irr(A)

πσ(x)D−1
σ dµ(σ) ∈

∫ ⊕
Irr(A)

HS(Kσ) dµ(σ)

3) Let Jσ be the antilinear map HS(Kσ) 3 T 7→ T ∗ ∈ HS(Kσ) (σ ∈ Irr(A)). The operator
P transforms

� Jθ onto
∫ ⊕

Irr(A)
Jσ dµ(σ),

� πθ onto
∫ ⊕

Irr(A)
πσ ⊗ 1Kσ dµ(σ) and ρθ onto

∫ ⊕
Irr(A)

1Kσ ⊗ πcσ dµ(σ),

� πθ(A)′′ onto
∫ ⊕

Irr(A)
B(Kσ)⊗1Kσ dµ(σ) and πθ(A)′ onto

∫ ⊕
Irr(A)

1Kσ⊗B(Kσ) dµ(σ),

� Z(πθ(A)′′) onto Diag
(∫ ⊕

Irr(A)
HS(Kσ) dµ(σ)

)
.

4) Using the operator P we can write θ as a composition21

A+ πθ−→
(∫ ⊕

Irr(A)

B(Kσ)⊗ 1Kσ dµ(σ)
)+

'
(∫ ⊕

Irr(A)

B(Kσ) dµ(σ)
)+

∫⊕
Irr(A)(Trσ)

D−1
σ

dµ(σ)

−−−−−−−−−−−−→ [0,+∞]

5) θ is tracial if and only if Dσ ∈ R>01Kσ for almost all σ ∈ Irr(A).

This (slightly modi�ed) result of Desmedt is an extension of [33, Theorem 8.8.5] which
is an analogous result for tracial weights. Due to its importance, we present its proof which
is almost entirely taken from [31].

Proof. The proof will be divided into a number of claims.
Let θ̃ be the canonical extension of θ to a n.s.f. weight on πθ(A)′′ (see Section 2.1). Recall
that a measure space (Y,$) is called standard if there exists a $-null set Y0 such that
Y \ Y0 is a Borel space of a separable, completely metrizable topological space [34, Section
I.1].

Claim 1. There exists a standard measure space (X,µ), a measurable �eld of Hilbert
spaces (Kx)x∈X , a measurable �eld of strictly positive, self-adjoint operators (Dx)x∈X and
a unitary operator P : Hθ →

∫ ⊕
X

HS(Kx) dµ(x) such that:

� the operator P transforms πθ(A)′′ onto
∫ ⊕
X

B(Kx) ⊗ 1Kx dµ(x): every y ∈ πθ(A)′′

corresponds to
∫ ⊕
X
yx ⊗ 1Kx dµ(x),

� for all y ∈ Nθ̃ and µ-almost all x ∈ X, the operator yx ◦ D−1
x is closable and its

closure is Hilbert-Schmidt,

21For the de�nition of
∫ ⊕

Irr(A)
(Trσ)D−1

σ
dµ(σ) see Appendix 7.1 and Section 2.1.
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� the operator P acts on Λθ̃(Nθ̃) via Λθ̃(y) 7→
∫ ⊕
X
yxD

−1
x dµ(x),

� the operator P transforms Jθ̃ onto
∫ ⊕
X
Jx dµ(x), where Jx is given by HS(Kx) 3 Tx 7→

T ∗x ∈ HS(Kx) (x ∈ X),

� Z(πθ(A)′′) is transformed via P onto the algebra of diagonalisable operators.

Note that since (Kx)x∈X is measurable, so is (HS(Kx))x∈X (see Section 7.1).

Proof of Claim 1. Since A is of type I, we know that the von Neumann algebra πθ(A)′′ is
also of type I. By the structure result [81, Theorem V.1.27] there exist a family of (possibly
empty) standard measure spaces {(Xn, µn)}n∈N∪{ℵ0} such that

πθ(A)′′ '
∏

n∈N∪{ℵ0}

B(Cn)⊗̄L∞(Xn, µn),

where Cℵ0 = `2(N). Note that there do not appear bigger cardinals in the above decomposi-
tion since we assume thatA is separable. Form a measure space (X,µ) =

⊔
n∈N∪{ℵ0}(Xn, µn)

with the standard measurable �eld of Hilbert spaces (Kx)x∈X given by Kx = Cn for x ∈ Xn.
We have

πθ(A)′′ '
∫ ⊕
X

B(Kx) dµ(x).

Now, let Trx be the (non normalized) trace on B(Kx) (x ∈ X) and η =
∫ ⊕
X

Trx dµ(x) the

direct integral weight on
∫ ⊕
X

B(Kx) dµ(x) (see Appendix 7.1). It is a n.s.f. weight. One can
easily check that the GNS construction of η is given by

Hη =

∫ ⊕
X

HS(Kx) dµ(x),

πη :

∫ ⊕
X

B(Kx) dµ(x) 3
∫ ⊕
X

Tx dµ(x) 7→
∫ ⊕
X

Tx ⊗ 1Kx dµ(x) ∈ B
(∫ ⊕

X

HS(Kx) dµ(x)
)
,

Λη : Nη 3
∫ ⊕
X

Tx dµ(x) 7→
∫ ⊕
X

Tx dµ(x) ∈
∫ ⊕
X

HS(Kx) dµ(x).

The corresponding modular conjugation Jη is given by

Jη =

∫ ⊕
X

Jx dµ(x), where Jx : HS(Kx) 3 Tx 7→ T ∗x ∈ HS(Kx) (x ∈ X).

The weight η is tracial, hence [87, Proposition 5.2] implies an existence of a strictly positive,
self-adjoint operator D a�liated with

∫ ⊕
X

B(Kx) dµ(x) such that θ̃ ' ηD−2 (see also Section
2.1). Since the standard representation of a von Neumann algebra is unique up to a unitary
automorphism, there exists a canonical unitary operator P : Hθ̃ = Hθ → Hη conjugating
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between both representations. To ease the notation we will identify Hθ and Hη. By [58,
Theorem 1.8] the operator D is decomposable as an unbounded operator, i.e. we can write

D =

∫ ⊕
X

Dx ⊗ 1Hx dµ(x).

Let us introduce a subspace

N0
θ̃

= {y ∈ πθ(A)′′ | y ◦D−1 is closable and yD−1 ∈ Nη}.

By construction of ηD−2 , the subspace N0
θ̃
is a core for Λθ̃ ([87, Section 1]). For y ∈ N0

θ̃
we

have

Λθ̃(y) = Λη(yD
−1) =

∫ ⊕
X

(yD−1)x dµ(x). (3.1)

De�ne approximate units

exn = n√
π

∫
R
e−n

2t2Dit
x dt (n ∈ N, x ∈ X)

and

en =

∫ ⊕
X

exn dµ(x) = n√
π

∫
R
e−n

2t2Dit dt (n ∈ N).

The above integrals converge in σ-wot. Let y ∈ Nθ̃. The operator yen belongs to N0
θ̃
for

each n ∈ N. Indeed, since D is a�liated with πθ(A)′′ we have yen ∈ πθ(A)′′ and clearly
(yen) ◦D−1 is closable with closure y(enD

−1). This operator belongs to Nη by [87, Lemma
3.2]. Using the equation (3.1) we can calculate Λθ̃(yen):

Λθ̃(yen) = Λη(y(enD
−1)) =

∫ ⊕
X

yx(e
x
nD
−1
x ) dµ(x).

Let us write Λθ̃(y) =
∫ ⊕
X
wx dµ(x) for certain wx ∈ HS(Kx). By [87, Proposition 2.5] we

have Jθ̃ = Jη. Since en = e∗n is invariant under (σθ̃t )t∈R ([87, Corollary 2.7]), we have

Λθ̃(yen) = Jθ̃πη(en)Jθ̃Λθ̃(y) =

∫ ⊕
X

wxe
x
n dµ(x)

which implies
wxe

x
n = yx(e

x
nD
−1
x )

for all n ∈ N and almost all x ∈ X. Since ‖exn‖ ≤ 1 and exn
sot−−−→
n→∞

1Kx , the above equation

implies that the operator yx ◦D−1
x is closable and yxD

−1
x = wx. This proves

Λθ̃(y) =

∫ ⊕
X

yxD
−1
x dµ(x)
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for all y ∈ Nθ̃. We are left with the last statement: Z(πθ(A)′′) is transformed onto the
algebra of diagonalisable operators. This result is clear since

(∫ ⊕
X

B(Kx)⊗ 1Kx dµ(x)
)′

=

∫ ⊕
X

1Kx ⊗ B(Kx) dµ(x),

this proves Claim 1.

Claim 2. X can be identi�ed with a Borel subset of Irr(A) and we can extend µ by
zero to a measure on the whole Irr(A). There exists a measurable �eld (πσ)σ∈Irr(A) of
representations of A on (Kσ)σ∈Irr(A) such that πσ ∈ σ for almost all σ ∈ Irr(A) and

πθ '
∫ ⊕

Irr(A)

πσ ⊗ 1Kσ dµ(σ).

Proof of Claim 2. We already know that πθ(A)′ ⊇ Z(πθ(A)′′) ' Diag(
∫ ⊕
X

HS(Kx) dµ(x)),
hence by [81, Theorem IV.8.25] there exists a measurable �eld of representations (ζx)x∈X
on (HS(Kx))x∈X such that

πθ =

∫ ⊕
X

ζx dµ(x).

Since πθ(A)′′ =
∫ ⊕
X

B(Kx)⊗1Kx dµ(x), we have ζx = πx⊗1Kx for a measurable �eld of rep-
resentations (πx)x∈X . Furthermore, for µ-almost all x ∈ X we have πx(A)′′ = B(Kx), hence
almost all πx are irreducible. Since the algebra of diagonalizable operators is included in∫ ⊕
X

B(Kx) ⊗ 1Kx dµ(x), [33, Lemma 8.4.1 c)] implies that πx's are pairwise nonequivalent
for x outside a null set. Then [33, Proposition 8.1.8] shows that the almost everywhere
de�ned map f : X 3 x 7→ [πx] ∈ Irr(A) is almost everywhere equal to a Borel mapping
(we will neglect writing classes from now on). Assume that we have cut out from X the
neglibible part of �bad representations�, so that f is everywhere de�ned and Borel. Because
πx are pairwise nonequivalent, f is injective. By [33, Appendix B 21] f(X) is Borel and
f : X → f(X) is a Borel isomorphism. Consequently, we can transport the measure µ and
extend if (by 0) to a standard measure on Irr(A).

Note that in the above proof we have used the property that Irr(A) is standard.

Claim 3. The operator P transforms ρθ onto
∫ ⊕

Irr(A)
1Kσ ⊗ πcσ dµ(σ).

Proof of Claim 3. For y ∈ A we have

Pρθ(y)P∗ = PJθπθ(y)∗JθP∗ =

∫ ⊕
Irr(A)

Jσ(πσ(y)∗ ⊗ 1Kσ)Jσ dµ(σ)

=

∫ ⊕
Irr(A)

1Kσ ⊗ πcσ(y) dµ(σ).
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Claim 4. The weight θ is tracial if and only if Dσ ∈ R>01Kσ for almost all σ ∈ Irr(A).

Proof of Claim 4. By [56, Propositon 1.32] θ is tracial if and only θ̃ is tracial. Indeed,
one direction is trivial, assume that θ is tracial and y ∈ Nθ̃. Then there exists a bounded

net (yi)i∈I in Nθ such that πθ(yi)
sot
∗

−−→
i∈I

y and Λθ(yi) = Λθ̃(πθ(yi)) −−→
i∈I

Λθ̃(y). By closedness

of Λθ̃ and the fact that Jθ̃∇
1
2

θ̃
is an isometry on Λθ(A) we have y∗ ∈ Nθ̃ and θ̃(y

∗y) = θ̃(yy∗).

Now the claim follows from θ̃ ' ηD−2 and [87, Corollary 2.6].

Now we can prove an existence of the Plancherel measure.

Proof of Theorem 3.3. Since G is second countable, type I locally compact quantum
group, A = Cu

0(Ĝ) is a separable, type I C∗-algebra. By [55, Proposition 5.9, De�nition

5.10] the weights ϕ̂u, ψ̂u are lower semicontinuous, densely de�ned and KMS, hence we
can use Theorem 3.4. Let us �rst use this theorem for the left Haar integral ϕ̂u. In this
way we get a measure µ, measurable �eld of representations (πσ)σ∈Irr(G) (on the canonical
measurable �eld of Hilbert spaces), measurable �eld of operators (Dσ)σ∈Irr(G) and a unitary

operator QL : L2(G)→
∫ ⊕

Irr(G)
HS(Hσ) dµ(σ). Recall [55, Proposition 5.2] that ϕ̂u = ϕ̂ ◦ΛĜ

and the GNS construction for ϕ̂u is given by (L2(G),ΛĜ,Λϕ̂◦ΛĜ). Observe that if α ∈ L1(G)
is such that λ(α) ∈ Nϕ̂ then (α⊗ id) W∈ Nϕ̂u and

(α⊗ id)Uπσ = πσ
(
(α⊗ id) W

)
.

This shows point 1a) of Theorem 3.3. Since Λϕ̂(λ(L1(G)) ∩ Nϕ̂) is dense in L2(G) (see
Lemma 7.10), point 2a) is also clear. The second part of 3a) is a consequence of formula
(2.11) and the de�nition of πcσ. The rest of the claim follows from analogous results in
Theorem 3.4.
Now we perform a similar construction for ψ̂u. This way we obtain µR, (πRσ )σ∈Irr(G), (Eσ)σ∈Irr(G)

and Q0
R. We can take µR = µ and πRσ = πσ essentially because the GNS representations

for ϕ̂u, ψ̂u are two standard representations of the von Neumann algebra L∞(Ĝ), hence are
unitarily equivalent [17, Theorem 1.6.3]. De�ne

QR = Q0
R ◦ JϕJϕ̂,

it is straightforward to check that these objects satisfy properties listed in Theorem 3.3.
From now on we will abuse the notation and neglect writing the measurable �eld of repre-
sentations, e.g. we will write π ∈ Irr(G) instead of πσ ∈ σ ∈ Irr(G). This should not cause
any confusion.

One can prove a (type of) uniqueness result for the Plancherel measure.

Proposition 3.5. Let G be a second countable, type I locally compact quantum group and
let µ, (Hπ)π∈Irr(G), (Dπ)π∈Irr(G),QL be the objects given by Theorem 3.3. Assume that we have
objects of the same type µ′, (H′π′)π′∈Irr(G), (D

′
π′)π′∈Irr(G),Q′L (together with a measurable �eld

of representations π′ ∈ Irr(G) such that π′ ∈ [π′] ∈ Irr(G) for µ′-almost all π′ ∈ Irr(G)). If
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1) the operator Q′L satis�es

Q′L(ω ⊗ id)W =
(∫ ⊕

Irr(G)

(ω ⊗ id)Uπ′ ⊗ 1
H
′
π′

dµ′(π′)
)
Q′L (ω ∈ L1(G)),

2) Q′L transforms Z(L∞(Ĝ)) onto diagonalisable operators,

then the measures µ, µ′ are equivalent. If moreover

3) the operator Q′L satis�es

Q′L(ω ⊗ id)χ(V) =
(∫ ⊕

Irr(G)

1H′π ⊗ π
′c((ω ⊗ id)W) dµ′(π′)

)
Q′L (ω ∈ L1(G)),

4) we have the equality

Q′LΛϕ̂(λ(α)) =

∫ ⊕
Irr(G)

(α⊗ id)(Uπ′)D′π′
−1

dµ′(π′)

for all λ(α) ∈ X, where X is a subspace of Nϕ̂ containing an approximate identity
and invariant under (σϕ̂t )t∈R,

then for µ-almost all π ∈ Irr(G) there exists a unitary intertwiner Tπ : Hπ → H′π such that

D′π =
√

dµ′

dµ
(π)TπDπT

−1
π .

Furthermore, objects with prime satisfy all the properties of Theorem 3.3.
An analogous result holds for the objects associated with the right Haar integral ψ̂.

This result is again based on a more general result for C∗-algebras with a chosen weight
(see also a proof of [50, Theorem 3.3, 3.4]).

Lemma 3.6. Let A be a separable C∗-algebra of type I and θ a lower semicontinuous densely
de�ned KMS weight on A with a modular group (σθt )t∈R. Let µ, (πσ)σ∈Irr(A), (Kσ)σ∈Irr(A),
(Dσ)σ∈Irr(A) be given by Theorem 3.4. Assume that µ′ is a standard measure on Irr(A),
(K ′σ)σ∈Irr(A) is a measurable family of Hilbert spaces, (π′σ)σ∈Irr(A) is a measurable family
of representations such that π′σ ∈ σ for µ′-every σ. Assume moreover that there exists a
unitary operator P ′ : Hθ →

∫ ⊕
Irr(A)

K ′σ ⊗K ′σ dµ′(σ). If

1) operator P ′ transforms πθ onto
∫ ⊕

Irr(A)
(π′σ ⊗ 1) dµ′(σ),

2) operator P ′ transforms πθ(A)′′ ∩ πθ(A)′ onto the algebra of diagonalisable operators

then the measures µ, µ′ are equivalent. If moreover there exists a measurable family of
strictly positive self-adjoint operators (D′σ)σ∈Irr(A) and
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3) operator P ′ transforms ρθ onto
∫ ⊕

Irr(A)
(1⊗ π′cσ) dµ(σ),

4) we have the equality

P ′Λθ(x) =

∫ ⊕
Irr(A)

π′σ(x)D′
−1
σ dµ′(σ)

for all x in a subspace X ⊆ Nθ containing a bounded approximate identity such that
σθt (X) = X (t ∈ R),

then for µ-almost all σ ∈ Irr(A) there exists a unitary intertwiner Tσ : Kσ → K ′σ such that

D′σ =
√

dµ′

dµ
(σ)TσDσT

−1
σ .

Proof. Let us de�ne a unitary operator

U = P ′ ◦ P−1 :

∫ ⊕
Irr(A)

Kσ ⊗Kσ dµ(σ)→
∫ ⊕

Irr(A)

K ′σ ⊗K ′σ dµ′(σ).

It transforms diagonalisable operators onto diagonalisable operators. Consider the follow-
ing representations of A:∫ ⊕

Irr(A)

πσ ⊗ 1 dµ(σ),

∫ ⊕
Irr(A)

π′σ ⊗ 1 dµ′(σ).

We would like to use [33, Proposition 8.2.4]. In order to do that, we need to check that U
is a morphism between these representations. Let a ∈ A. Thanks to properties of P ,P ′
we have

U
(∫ ⊕

Irr(A)

πσ ⊗ 1 dµ(σ)
)
(a)U−1 = P ′πθ(a)P ′−1 =

(∫ ⊕
Irr(A)

π′σ ⊗ 1 dµ′(σ)
)
(a).

Now, [33, Proposition 8.2.4] gives us subsets N , N ′ ⊆ Irr(A) which are correspondingly of
µ and µ′-measure 0, Borel isomorphism η : Irr(A) \N → Irr(A) \N ′ which maps µ onto a
measure µ̃′ equivalent to µ′ and a family (V (σ))σ∈Irr(A)\N such that each V (σ) : Kσ⊗Kσ →
K ′η(σ) ⊗K ′η(σ) is a unitary map and a vector �eld (ξσ)σ∈Irr(A)\N is measurable with respect

to (Kσ ⊗ Kσ)σ∈Irr(A)\N if and only if (V (σ)ξσ)η(σ)∈Irr(A)\N ′ is measurable with respect to

(K ′η(σ) ⊗ K ′η(σ))η(σ)∈Irr(A)\N ′ . Such a family is called η-isomorphism [33, A 70]. For σ ∈
Irr(A) \N operator V (σ) is a unitary morphism between πσ ⊗ 1 and π′η(σ) ⊗ 1, moreover

U =
(∫ ⊕

Irr(A)

K ′σ ⊗K ′σ dµ̃′(σ)→
∫ ⊕

Irr(A)

K ′σ ⊗K ′σ dµ′(σ)
)
◦
∫ ⊕

Irr(A)

V (σ) dµ(σ).

Fix ζ ∈ Kσ, ζ
′ ∈ K ′η(σ) and de�ne a bounded operator Sσ

ζ
′
,ζ
∈ B(Kσ, K

′
η(σ)) via equality

〈ξ′ |Sσ
ζ
′
,ζ
ξ〉 = 〈ξ′ ⊗ ζ ′ |V (σ)(ξ ⊗ ζ)〉 (ξ ∈ Kσ, ξ

′ ∈ K ′σ).
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For a ∈ A and arbitrary ξ, ξ′ we have

〈ξ′ |Sσ
ζ
′
,ζ
πσ(a)ξ〉 = 〈ξ′ ⊗ ζ ′ |V (σ)(πσ(a)ξ ⊗ ζ)〉

= 〈π′η(σ)(a
∗)ξ′ ⊗ ζ ′ |V (σ)(ξ ⊗ ζ)〉 = 〈π′η(σ)(a

∗)ξ′ |Sσ
ζ
′
,ζ
ξ〉 = 〈ξ′ |π′η(σ)(a)Sσ

ζ
′
,ζ
ξ〉.

This means that Sσ
ζ
′
,ζ
is a morphism between πσ and π′η(σ). It is clear that there exist ζ, ζ

′

for which Sσ
ζ
′
,ζ
is non-zero. Consequently, as there are no non-trivial morphisms between

nonequivalent irreducible representations, η needs to be identity on Irr(A) \ (N ∪ N ′).
Therefore µ = µ̃′ on this set. This proves the �rst part of the lemma.
Assume now that P ′ transforms ρθ onto

∫ ⊕
Irr(A)

(1 ⊗ π′cσ) dµ(σ), and we have a family

(D′σ)σ∈Irr(A) which meets conditions stated in the lemma. Then V (σ) is also a morphism
between 1⊗ πcσ and 1⊗ π′cσ. Thanks to the Schur's lemma we have

Sσ
ζ
′
,ζ

= q(ζ
′
, ζ)Tσ

for a unitary intertwiner Tσ ∈ B(Kσ, K
′
σ) and a bounded sesquilinear form q. We know

how forms like this looks: there exists an operator T̃σ ∈ B(Kσ, K ′σ) such that

〈ξ′ ⊗ ζ ′ |V (σ)ξ ⊗ ζ〉 = 〈ξ′ |Sσ
ζ
′
,ζ
ξ〉 = 〈ξ′ ⊗ ζ ′ | (Tσ ⊗ T̃σ)(ξ ⊗ ζ)〉.

Operator T̃σ is a morphism between πcσ and π′cσ. Indeed, take a, b ∈ A. Then we have

〈ξ′ ⊗ ζ ′ | (Tσ ⊗ T̃σ)(πσ(a)ξ ⊗ πcσ(b)ζ)〉 = 〈ξ′ ⊗ ζ ′ |V (σ)(πσ(a)ξ ⊗ πcσ(b)ζ)〉
= 〈ξ′ ⊗ ζ ′ | (π′σ(a)⊗ π′cσ(b))V (σ)(ξ ⊗ ζ)〉 = 〈ξ′ ⊗ ζ ′ | (π′σ(a)⊗ π′cσ(b))(Tσ ⊗ T̃σ)(ξ ⊗ ζ)〉.

Taking a to be an approximate identity shows that T̃σ is morphism between πcσ and π′cσ.
The calculation

T>σ π
′c
σ(a)ξ = T>σ π

′
σ(a∗)ξ = T ∗σπ

′
σ(a∗)ξ = πσ(a∗)T ∗σξ = πc(a)T>σ ξ (ξ ∈ K ′σ, a ∈ A)

implies that T>σ is a unitary morphism π′cσ → πcσ. Schur's lemma shows that T̃σ = zσ(T−1
σ )>

for a certain zσ ∈ C. Since

1 = ‖V (σ)‖ = ‖Tσ ⊗ T̃σ‖ = ‖T̃σ‖ = |zσ|,

we know that T̃σ = zσ(T−1
σ )> is a unitary operator. Let us see how V (σ) acts on HS(Kσ) =

Kσ ⊗Kσ. For every ξ ⊗ ζ ∈ Kσ ⊗Kσ we have

V (σ)(|ξ〉〈ζ|) = V (σ)(ξ ⊗ ζ) = (Tσξ)⊗ (zσ(T−1
σ )>ζ) = zσ(Tσξ ⊗ Tσζ)

= zσ|Tσξ〉〈Tσζ| = zσTσ(|ξ〉〈ζ|)T−1
σ

Let us make use of our knowledge about operator P ′. For a in the subspace X ⊆ Nθ we
have ∫ ⊕

Irr(A)

π′σ(a)D′
−1
σ dµ′(σ) = U

∫ ⊕
Irr(A)

πσ(a)D−1
σ dµ(σ)

=

∫ ⊕
Irr(A)

√
dµ
dµ′

(σ)V (σ)(πσ(a)D−1
σ ) dµ′(σ),
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which implies

π′σ(a)D′
−1
σ =

√
dµ
dµ′

(σ)V (σ)(πσ(a)D−1
σ ) = zσ

√
dµ
dµ′

(σ)Tσ(πσ(a)D−1
σ )T−1

σ

for almost all σ ∈ Irr(A). Taking the adjoint of both sides gives us (note that π′σ(a), πσ(a)
are bounded, see [78, Proposition 9.2])

D′−1
σ π′σ(a∗) = zσ

√
dµ
dµ′

(σ)Tσ(D−1
σ πσ(a∗))T−1

σ

and

D−1
σ πσ(a∗) = zσ

√
dµ′

dµ
(σ)T−1

σ (D′−1
σ π′σ(a∗))Tσ. (3.2)

Observe that (3.2) is an equality of bounded operators. Equation (3.2) shows that operators

D−1
σ , zσ

√
dµ′

dµ
(σ)T−1

σ D′−1
σ Tσ are equal on the dense subspace

V = span{πσ(a∗)ξ | a ∈ X, ξ ∈ Kσ} ⊆ Kσ

(in particular V is contained in the domain of D−1
σ and zσ

√
dµ′

dµ
(σ)T−1

σ D′−1
σ Tσ). Take any

η ∈ V \ {0}, then

0 < 〈η |D−1
σ η〉 =

〈
η
∣∣zσ√dµ′

dµ
(σ)T−1

σ D′−1
σ Tση

〉
= zσ

√
dµ′

dµ
(σ)
〈
η
∣∣T−1
σ D′−1

σ Tση
〉
,

hence zσ = 1.
Now we need to use the assumption that θ is a KMS weight. Let (σθt )t∈R be a modular
group for θ. Let us show that

πσ(σθt (a)) = Dit
σπσ(a)D−itσ (a ∈ A, t ∈ R) (3.3)

for almost all σ ∈ Irr(A). De�ne ρ1
t , ρ

2
t : πθ(A)→ πθ(A) via

ρ1
t (πθ(a)) = πθ(σ

θ
t (a)), ρ2

t (πθ(a)) = P−1
(∫ ⊕

Irr(A)

Dit
σπσ(a)D−itσ ⊗ 1Kσ dµ(σ)

)
P

for all t ∈ R, a ∈ A. It is clear that ρ2
t is well de�ned. So is ρ1

t . Indeed, by [53, Theorem
6.20] (see also Section 2.1) we have Λθ(σ

θ
t (a
′)) = ∇it

θ̃
Λθ(a

′) for a′ ∈ Nθ. Using this equation
we can prove

πθ(σ
θ
t (a)) = σθ̃t (πθ(a)) (3.4)

for t ∈ R, a ∈ A. Indeed, for a′ ∈ Nθ

πθ(σ
θ
t (a))Λθ(a

′) = Λθ(σ
θ
t (a)a′) = ∇it

θ̃
Λθ(aσ

θ
−t(a

′))

= ∇it
θ̃
πθ(a)∇−it

θ̃
∇it
θ̃
Λθ(σ

θ
−t(a

′)) = σθ̃t (πθ(a))Λθ(a
′)
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and equation (3.4) follows. Consequently, if a ∈ ker(πθ) then σ
θ
t (a) ∈ ker(πθ). Next,

〈Λθ(b) | ρ2
t (πθ(a))Λθ(b

′)〉 = 〈PΛθ(b) |
∫ ⊕

Irr(A)

Dit
σπσ(a)D−itσ ⊗ 1Kσ dµ(σ)PΛθ(b

′)〉

=
〈∫ ⊕

Irr(A)

πσ(b)D−1
σ dµ(σ)

∣∣ ∫ ⊕
Irr(A)

Dit
σπσ(a)D−itσ ⊗ 1Kσ dµ(σ)

∫ ⊕
Irr(A)

πσ(b′)D−1
σ dµ(σ)

〉
=
〈∫ ⊕

Irr(A)

πσ(b)D−1
σ dµ(σ)

∣∣ ∫ ⊕
Irr(A)

Dit
σπσ(a)D−itσ πσ(b′)D−1

σ dµ(σ)
〉

= 〈Λθ̃(σ
θ̃
−t(πθ(b))) |πθ(a)Λθ̃(σ

θ̃
−t(πθ(b

′)))〉 = θ̃(σθ̃−t(πθ(b
∗))πθ(a)σθ̃−t(πθ(b

′)))

= θ̃(πθ(b
∗)σθ̃t (πθ(a))πθ(b

′)) = θ̃(πθ(b
∗)πθ(σ

θ
t (a))πθ(b

′)) = θ(b∗σθt (a)b)

= 〈Λθ(πθ(b)) | πθ(σθt (a))Λθ(b
′)〉 = 〈Λθ(πθ(b)) | ρ1

t (πθ(a))Λθ(b
′)〉

for b, b′ ∈ Nθ, hence ρ
1
t = ρ2

t . It follows that

πσ(σθt (a)) = Dit
σπθ(a)D−itσ (a ∈ A, t ∈ R) (3.5)

for almost all σ ∈ Irr(A). Consequently V is invariant under (Dit
σ )t∈R, hence [54, Corollary

1.22] implies that V is a core for D−1
σ . It follows that

D−1
σ ⊆

√
dµ′

dµ
(σ)T−1

σ D′−1
σ Tσ,

and as self-adjoint operators do not admit proper self-adjoint extensions ([78, Section 9.2]),
we arrive at

D−1
σ =

√
dµ′

dµ
(σ)T−1

σ D′−1
σ Tσ

for almost all σ ∈ Irr(A).

3.2 Operators related to the modular theory of G and Ĝ
Let assume for the rest of this and the next section that G is a second countable, type I
locally compact quantum group. Theorem 3.3 gives us a Plancherel measure together with
objects QL,QR, (Dπ)π∈Irr(G), (Eπ)π∈Irr(G).

As advertised at the beginning of the Section 3 we will now express various objects
related to the modular theory of G and Ĝ using the direct integral picture and operators
(Dπ)π∈Irr(G), (Eπ)π∈Irr(G). Let us start with a description of Jϕ̂, Jψ̂,L

∞(Ĝ) and L∞(Ĝ)′ on
the level of direct integrals.

Proposition 3.7. De�ne an antiunitary operator Σ =
∫ ⊕

Irr(G)
JHπ dµ(π), where

JHπ : HS(Hπ) 3 ξ 7→ ξ∗ ∈ HS(Hπ) (π ∈ Irr(G)).

We have
ν
i
4Jψ̂ = Jϕ̂ = Q∗LΣQL = Q∗RΣQR.
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Furthermore, the following equalities of von Neumann algebras hold:

QL L∞(Ĝ)Q∗L =

∫ ⊕
Irr(G)

B(Hπ)⊗ 1Hπ dµ(π), QL L∞(Ĝ)′Q∗L =

∫ ⊕
Irr(G)

1Hπ ⊗ B(Hπ) dµ(π)

QR L∞(Ĝ)Q∗R =

∫ ⊕
Irr(G)

1Hπ ⊗ B(Hπ) dµ(π), QR L∞(Ĝ)′Q∗R =

∫ ⊕
Irr(G)

B(Hπ)⊗ 1Hπ dµ(π)

Proof. By Theorem 3.4 and [55, Proposition 5.2, De�nition 5.10] we have the equality
Q∗LΣQL = Jϕ̂u = Jϕ̂.
Similarly, QR,0 transforms Jψ̂ to Σ: Jψ̂ = Q∗R,0ΣQR,0. Operator QR was de�ned as QR =
QR,0JϕJϕ̂. Consequently, we get Jψ̂ = JϕJϕ̂Q∗RΣQRJϕ̂Jϕ. Using the commutation relation

Jϕ̂Jϕ = ν
i
4JϕJϕ̂ (see equation (2.14)) and formula Jψ̂ = ν−

i
4Jϕ̂ (equation (2.3), the scaling

constant of Ĝ is ν̂ = ν−1) we arrive at

Q∗RΣQR = Jϕ̂Jϕ(ν−
i
4Jϕ̂)JϕJϕ̂ = ν−

i
4ν

i
4JϕJϕ̂Jϕ̂JϕJϕ̂ = Jϕ̂.

The �rst two equalities in the claim are direct consequences of Theorem 3.4. The equalities
involving QR can be proven using QR = QR,0JϕJϕ̂ and Jϕ L∞(Ĝ)Jϕ = L∞(Ĝ) (equation
(2.10)).

In the theory of compact quantum groups one often perform calculations on special ele-
ments Uα

i,j (called matrix coe�cients) which form a linearly w∗-dense subset inside L∞(G).
We will now de�ne an analog of these elements for type I, second countable locally compact
quantum group G. Elements of this form were already considered in [17].

De�nition 3.8. For ξ, η ∈
∫ ⊕

Irr(G)
Hπ dµ(π) we de�ne elements of L∞(G):

ML
ξ,η =

∫
Irr(G)

(id⊗ ωξπ ,ηπ)(Uπ∗) dµ(π), MR
ξ,η =

∫
Irr(G)

(id⊗ ωξπ ,ηπ)(Uπ) dµ(π).

The above elements will be referred to as left (resp. right) matrix coe�cients.

Note that the above (weak) integrals converge in σ-wot and we have (ML
ξ,η)
∗ = MR

η,ξ.

We will now recall some results obtained by Caspers and Koelink in [17, 18]. We
remark that one needs to be careful when taking equations from these papers as there
is a di�erence in convention: we prefer to use inner products linear on the right and
functionals ωξ,η de�ned accordingly. That is why we choose to state explicitly used results
with necessary changes.
Let us introduce two positive, self-adjoint operators on

∫ ⊕
Irr(G)

Hπ dµ(π):

D =

∫ ⊕
Irr(G)

Dπ dµ(π), E =

∫ ⊕
Irr(G)

Eπ dµ(π).

(see [58] and Section 7.1 for the meaning of a direct integral of unbounded operators).
First, we can transport a left (resp. right) matrix coe�cient via QL (resp. QR). The
following is a reformulation of [18, Lemma 3.7, Lemma 3.9].
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Lemma 3.9.

1) If ξ, η ∈
∫ ⊕

Irr(G)
Hπ dµ(π), ξ ∈ Dom(D) and the vector �eld (ηπ⊗Dπξπ)π∈Irr(G) is square

integrable, then ML
ξ,η ∈ Nϕ and QLΛϕ(ML

ξ,η) =
∫ ⊕

Irr(G)
ηπ ⊗Dπξπ dµ(π).

2) If ξ, η ∈
∫ ⊕

Irr(G)
Hπ dµ(π), ξ ∈ Dom(E) and the vector �eld (ηπ⊗Eπξπ)π∈Irr(G) is square

integrable, then MR
ξ,η ∈ Nψ and QRΛψ(MR

ξ,η) =
∫ ⊕

Irr(G)
ηπ ⊗ Eπξπ dµ(π).

Using the above result and the fact that QL,QR are unitary, one can easily derive the
following density results:

Lemma 3.10.

1) The set {Λϕ(ML
ξ,η)}, where ξ, η run over vectors in

∫ ⊕
Irr(G)

Hπ dµ(π) such that ξ ∈
Dom(D) and (ηπ ⊗Dπξπ)π∈Irr(G) is square integrable, is lineary dense in L2(G).

2) The set {Λψ(MR
ξ,η)}, where ξ, η run over vectors in

∫ ⊕
Irr(G)

Hπ dµ(π) such that ξ ∈
Dom(E) and (ηπ ⊗ Eπξπ)π∈Irr(G) is square integrable, is lineary dense in L2(G).

Consider an antilinear map22

Λψ(Nψ ∩Nϕ
∗) 3 Λψ(x) 7→ Λϕ(x∗) ∈ L2(G) (3.6)

and de�ne T ′ to be its closure. Let T ′ = J ′∇′
1
2 be the polar decomposition of T ′. It is well

known that J ′ is antiunitary and ∇′
1
2 is strictly positive and self-adjoint. In Corollary 3.19

we will describe these operators, for now let us recall how they look on the level of direct
integrals.

Proposition 3.11. We have QLJ ′Q∗R = Σ and QR∇′
1
2Q∗R =

∫ ⊕
Irr(G)

Dπ ⊗ (E−1
π )> dµ(π).

The above proposition is a combination of [18, Proposition 4.4, Proposition 4.5, The-
orem 4.6]. We also need formulas expressing the action of modular automorphism groups
on the matrix coe�cients.

Proposition 3.12. For each ξ, η ∈
∫ ⊕

Irr(G)
Hπ dµ(π), t ∈ R the following holds:

σψt (MR
ξ,η) = ν

1
2
it2δitMR

E2itξ,D2itη, σϕt (MR
ξ,η) = ν

1
2
it2 MR

E2itξ,D2itη δ
it,

σψt (ML
ξ,η) = ν−

1
2
it2ML

D2itξ,E2itη δ
−it, σϕt (ML

ξ,η) = ν−
1
2
it2δ−itML

D2itξ,E2itη.

The formulas expressing the action of σϕ, σψ on MR
ξ,η are stated in [17, Remark 2.2.11].

The other two follow by taking the adjoints. We note that they can be derived using the
formula for ∇′ (Proposition 3.11) and equation ν

1
2
it2δit = ∇it

ψ∇′
−it (see [82, Equations (29),

22This map appears during a construction of the Radon�Nikodym derivative between ψ and ϕ, see [82].
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(30), page 112] and the proof of [93, Theorem 3.11]).

Our next goal is to describe the polar decomposition of operator T ′ : Λψ(x) 7→ Λϕ(x∗)
using more standard operators on L2(G). This result which is interesting on its own, will
give us an tremendously useful relation between QL and QR. Before we dive into technical
details, let us see through a formal calcualtion what kind of result we should expect:

T ′Λψ(x) = Λϕ(x∗) = Jϕ∇
1
2
ϕΛϕ(x) = Jϕ∇

1
2
ϕJϕσ

ϕ
i/2(δ−

1
2 )∗JϕΛϕ(xδ

1
2 )

= ∇−
1
2

ϕ (ν−
i
4 δ−

1
2 )∗JϕΛψ(x) = (ν

i
8Jϕ)(Jϕν

i
8∇−

1
2

ϕ δ−
1
2Jϕ)Λψ(x).

(3.7)

We need to include the factor ν
i
8 due to the following lemma:

Lemma 3.13. For all s, t ∈ R operators ∇s
ϕ ◦δt, δt ◦∇s

ϕ are closable. We have the equality

ν
ist
2 ∇s

ϕδ
t = ν−

ist
2 δt∇s

ϕ of strictly positive, self-adjoint operators, moreover

(ν
ist
2 ∇s

ϕδ
t)ir = ν−

ist
2
r2∇isr

ϕ δitr = ν
ist
2
r2δitr∇isr

ϕ (r ∈ R).

The above result is a consequence of the commutation relation ∇is
ϕ δ

it = νistδit∇is
ϕ (s, t ∈

R). Indeed, if ν = 1 then ∇s
ϕ and δt strongly commute and the claim is clear. Otherwise

operators ∇s
ϕ, δ

t satisfy the Zakrzewski relation (or the Weyl relation after passing to
logarithms). Then Lemma 3.13 follows from [102, Example 3.1, Theorem 3.1]. The next
lemma describes the action of the unbounded operator δt.

Lemma 3.14.

1) Let t ∈ R, x ∈ Nϕ be such that x ◦ δt is closable and xδt ∈ Nϕ. Then JϕΛϕ(x) ∈
Dom(δt) and ν

it
2 Jϕδ

tJϕΛϕ(x) = Λϕ(xδt).

2) Let t ∈ R, x ∈ Nψ be such that x ◦ δt is closable and xδt ∈ Nψ. Then JϕΛψ(x) ∈
Dom(δt) and ν

it
2 Jϕδ

tJϕΛψ(x) = Λψ(xδt).

Proof. We prove only the �rst assertion, the second one can be derived analogously. Take
x ∈ Nϕ, t ∈ R which satisfy conditions of the lemma and de�ne

xn =
√

n
π

∫
R
e−np

2

xδip dp ∈ L∞(G) (n ∈ N)

(the above weak integral converges in σ-wot). Operator xn ◦ δt is closable and we have

xnδ
t =

√
n
π

∫
R
e−np

2

(xδt)δip dp =
√

n
π

∫
R
e−n(p+it)2xδip dp. (3.8)

Clearly xn, xnδ
t ∈ Nϕ and due to the Hille's theorem

Λϕ(xn) =
√

n
π

∫
R
e−np

2

Λϕ(xδip) dp =
√

n
π
Jϕ

∫
R
e−np

2

ν−
p
2 δ−ipJϕΛϕ(x) dp,
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similarly thanks to the equation (3.8) we have

Λϕ(xnδ
t) =

√
n
π
Jϕ

∫
R
e−np

2

ν−
p
2 δ−ipJϕΛϕ(xδt) dp =

√
n
π
Jϕ

∫
R
e−n(p−it)2ν−

p
2 δ−ipJϕΛϕ(x) dp.

Consequently, Λϕ(xn) −−−→
n→∞

Λϕ(x) and Λϕ(xnδ
t) −−−→

n→∞
Λϕ(xδt). For each r ∈ R we have

δirJϕΛϕ(xn) =
√

n
π

∫
R
e−np

2

ν−
p
2 δ−i(p−r)JϕΛϕ(x) dp = fn(r),

where fn is the entire function

fn : C 3 z 7→
√

n
π

∫
R
e−n(p+z)2ν−

p+z
2 δ−ipJϕΛϕ(x) dp ∈ L2(G).

From the above follows that JϕΛϕ(xn) ∈ Dom(δz) for all z ∈ C and δzJϕΛϕ(xn) =
fn(−iz) [78, Corollary 9.15]. Let us show that the sequence (δtJϕΛϕ(xn))n∈N converges

to ν
it
2 JϕΛϕ(xδt):

δtJϕΛϕ(xn) = fn(−it) =
√

n
π

∫
R
e−n(p−it)2ν−

p−it
2 δ−ipJϕΛϕ(x) dp

= ν
it
2

√
n
π

∫
R
e−n(p−it)2ν−

p
2 δ−ipJϕΛϕ(x) dp = ν

it
2 JϕΛϕ(xnδ

t) −−−→
n→∞

ν
it
2 JϕΛϕ(xδt).

Norm closedness of δt implies JϕΛϕ(x) ∈ Dom(δt) and δtJϕΛϕ(x) = ν
it
2 JϕΛϕ(xδt).

We will now introduce a space D0 of su�ciently nice vectors on which calculation (3.7)
is justi�ed and which forms a core for the operators involved. First, de�ne

δn,z =
√

n
π

∫
R
e−nt

2

νztδit dt ∈ L∞(G) (n ∈ N, z ∈ C).

Note that for each z ∈ C, the sequence (δn,z)n∈N is bounded and converges to 1 in sot.
Next, for x ∈ Nϕ ∩Nϕ

∗ ∩Nψ ∩Nψ
∗, k ∈ N, A = (A1, A2) ∈ C2 de�ne

xk,A = k
π

∫
R

∫
R
e−k(t−A1)2−k(s−A2)2σϕt ◦ σψs (x) dt ds ∈ L∞(G).

Finally, de�ne a subspace D0 via

D0 = span{Λψ(δn,zxk,Aδm,w) |x, x∗ ∈ Nϕ ∩Nψ, n,m, k ∈ N, A ∈ C2, z, w ∈ C}.

Lemma 3.15.

� The subspace D0 is a core for ∇−
1
2

ϕ . Moreover, for ξ ∈ Dom(∇−
1
2

ϕ ) we can �nd a
sequence (ξp)p∈N in

{Λψ(xk,Aδm,w) |x, x∗ ∈ Nϕ ∩Nψ,m, k ∈ N, A ∈ C2, w ∈ C}

such that ξp −−−→
p→∞

ξ and ∇−
1
2

ϕ ξp −−−→
p→∞

∇−
1
2

ϕ ξ
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� Each element of D0 can be written as Λψ(x) for some x ∈ L∞(G) such that x, x∗ ∈
Nϕ ∩ Nψ ∩

⋂
z∈C Dom(σψz ). Moreover, σψz (x) ∈ Nψ and Λψ(x∗),Λψ(σψz (x)) ∈ D0.

Additionally, Λψ(x) ∈
⋂
z∈C Dom(∇z

ψ) and ∇iz
ψΛψ(x) = Λψ(σψz (x)).

� For all z, w ∈ C,Λψ(x) ∈ D0 the operator δz ◦x◦δw is closable and its closure belongs
to Nψ ∩Nϕ.

� We have JϕD0 = D0.

A proof of the above lemma requires only standard reasoning, hence will be skipped.
In the next two lemmas we prove properties of D0 which allow us to derive the polar
decomposition of T ′.

Lemma 3.16. The subspace D0 is a core for ν−
i
4Jϕδ

− 1
2Jϕ. We have

ν−
i
4Jϕδ

− 1
2JϕΛψ(x) = Λϕ(x)

for all x ∈ Nϕ ∩Nψ such that x ◦ δ− 1
2 is closable and xδ−

1
2 ∈ Nψ. Moreover, the operator

(Jϕ∇
1
2
ϕ) ◦ (ν−

i
4Jϕδ

− 1
2Jϕ) = ν

i
4 (∇−

1
2

ϕ ◦ δ−
1
2 )Jϕ

is closable and D0 is a core for its closure ν
i
4∇−

1
2

ϕ δ−
1
2Jϕ.

Proof. It is clear that span
⋃
n∈N δn,0 L2(G) is a core for δ−

1
2 . Take ξ = δn,0η ∈ Dom(δ−

1
2 )

for some n ∈ N and let (ηp)p∈N be a sequence of vectors of the form Λψ(xk,Aδm,w) (see the
�rst point of the Lemma 3.15) converging to η. We have δn,0ηp ∈ D0,

‖ξ − δn,0ηp‖ ≤ ‖η − ηp‖ −−−→
p→∞

0 and ‖δ−
1
2 ξ − δ−

1
2 δn,0ηp‖ ≤ ‖δ−

1
2 δn,0‖‖η − ηp‖ −−−→

p→∞
0,

which shows that D0 is a core for δ−
1
2 . Since D0 is invariant under Jϕ, it is also a core for

ν−
i
4Jϕδ

− 1
2Jϕ.

Take x ∈ Nϕ ∩ Nψ such that x ◦ δ− 1
2 is closable and xδ−

1
2 ∈ Nψ. Lemma 3.14 gives us

JϕΛψ(x) ∈ Dom(δ−
1
2 ) and ν−

i
4Jϕδ

− 1
2JϕΛψ(x) = Λψ(xδ−

1
2 ) = Λϕ(x).

Equality from the claim (Jϕ∇
1
2
ϕ) ◦ (ν−

i
4Jϕδ

− 1
2Jϕ) = ν

i
4 (∇−

1
2

ϕ ◦ δ−
1
2 )Jϕ is a straightforward

consequence of the relation Jϕ∇
1
2
ϕ = ∇−

1
2

ϕ Jϕ.

To deduce the last assertion let us observe that Lemma 3.13 gives us an equality ν
i
8∇−

1
2

ϕ δ−
1
2

= ν−
i
8 δ−

1
2∇−

1
2

ϕ . It follows that the closure of ν−
i
4 δ−

1
2 ◦ ∇−

1
2

ϕ is ∇−
1
2

ϕ δ−
1
2 . Take ξ in

Dom(ν−
i
4 δ−

1
2 ◦ ∇−

1
2

ϕ ). For each n ∈ N we have δn,0ξ ∈ Dom(ν−
i
4 δ−

1
2 ◦ ∇−

1
2

ϕ ),

δn,0ξ −−−→
n→∞

ξ (3.9)

and

ν−
i
4 δ−

1
2 ◦ ∇−

1
2

ϕ (δn,0ξ) = ν−
i
4σϕi/2(δn,0)δ−

1
2 ◦ ∇−

1
2

ϕ (ξ)

= ν−
i
4 δn,−1/2δ

− 1
2 ◦ ∇−

1
2

ϕ (ξ) −−−→
n→∞

ν−
i
4 δ−

1
2 ◦ ∇−

1
2

ϕ (ξ).
(3.10)
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As previously, since D0 is invariant for Jϕ, it is enough to check that D0 is a core for

∇−
1
2

ϕ δ−
1
2 . Take ξ ∈ Dom(∇−

1
2

ϕ δ−
1
2 ). The above reasoning and equations (3.9), (3.10) show

that it is enough to take vector of the form ξ = δn,0η for η ∈ Dom(ν−
i
4 δ−

1
2 ◦ ∇−

1
2

ϕ ) and
some n ∈ N. Let (ηp)p∈N be a sequence of vectors of the form Λψ(xk,A,Bδm,w) such that

ηp −−−→
p→∞

η and ∇−
1
2

ϕ ηp −−−→
p→∞

∇−
1
2

ϕ η. We have δn,0ηp ∈ D0, δn,0ηp −−−→
p→∞

δn,0η = ξ and

‖ν−
i
4 δ−

1
2 ◦ ∇−

1
2

ϕ (δn,0η − δn,0ηp)‖ = ‖δn,−1/2δ
− 1

2 ◦ ∇−
1
2

ϕ (η − ηp)‖

≤ ‖δn,−1/2δ
− 1

2‖‖∇−
1
2

ϕ (η − ηp)‖ −−−→
p→∞

0.

Lemma 3.17. The subspace D0 is a core for T ′.

Proof. Take x ∈ Nψ ∩Nϕ
∗ and de�ne xn as xn = n

π

∫
R

∫
R e
−n(r2+p2)δipxδir dr dp (n ∈ N).

We have xn, x
∗
n ∈ Nϕ∩Nψ. Next, de�ne xn,n = n

π

∫
R

∫
R e
−n(t2+s2)σϕt ◦σψs (xn) ds dt.We have

δn,0xn,nδn,0 ∈ Nψ ∩Nϕ
∗,Λψ(δn,0xn,nδn,0) ∈ D0, Λψ(δn,0xn,nδn,0) −−−→

n→∞
Λψ(x) and

T ′Λψ(δn,0xn,nδn,0) = Λϕ(δn,0x
∗
n,nδn,0) −−−→

n→∞
Λϕ(x∗) = T ′Λϕ(x).

Now we can derive the main results of this section.

Proposition 3.18. We have (Jϕ∇
1
2
ϕ)◦ (ν−

i
4Jϕδ

− 1
2Jϕ) = ν

i
4 (∇−

1
2

ϕ ◦δ−
1
2 )Jϕ and after closure

ν
i
4 ∇−

1
2

ϕ δ−
1
2 Jϕ = T ′.

Proof. The �rst equality is a consequence of the equation Jϕ∇
1
2
ϕ = ∇

1
2
ϕJϕ. Take Λψ(x) ∈ D0.

Lemmas 3.16, 3.15 justify the following calculation:

(Jϕ∇
1
2
ϕ) ◦ (ν−

i
4Jϕδ

− 1
2Jϕ) Λψ(x) = Jϕ∇

1
2
ϕΛϕ(x) = Λϕ(x∗) = T ′Λψ(x).

In lemmas 3.17, 3.16 we have shown that D0 is a core for T
′ and ν

i
4∇−

1
2

ϕ δ−
1
2Jϕ, which shows

T ′ = ν
i
4∇−

1
2

ϕ δ−
1
2Jϕ.

The above result has a number of interesting corollaries.

Corollary 3.19. The polar decomposition of T ′ is T ′ = (ν
i
8Jϕ) (Jϕν

i
8∇−

1
2

ϕ δ−
1
2Jϕ). More-

over, we have

(Jϕν
i
8∇−

1
2

ϕ δ−
1
2Jϕ)it = ν

i
8
t2Jϕ∇

it
2
ϕ δ

it
2 Jϕ (t ∈ R). (3.11)
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Proof. The �rst equality follows directly from Proposition 3.18. Let us justify that it is
indeed the polar decomposition of T ′. First, it is clear that ν

i
8Jϕ is antiunitary. Next,

Lemma 3.13 implies that ν
i
8∇−

1
2

ϕ δ−
1
2 is self-adjoint and strictly positive. Consequently, the

operator Jϕν
i
8∇−

1
2

ϕ δ−
1
2Jϕ has the same properties. Uniqueness of the polar decomposition

gives us the �rst claim. The second formula follows from Lemma 3.13:

(Jϕν
i
8∇−

1
2

ϕ δ−
1
2Jϕ)it = f(ν

i
8∇−

1
2

ϕ δ−
1
2 )it = f((ν

i
8∇−

1
2

ϕ δ−
1
2 )it)

= Jϕ(ν
i
8∇−

1
2

ϕ δ−
1
2 )−itJϕ = Jϕν

− i
8
t2∇

it
2
ϕ δ

it
2 Jϕ,

where f : a 7→ Jϕa
∗Jϕ.

Now we combine our polar decomposition of T ′ with the result of Caspers, Koelink
(Proposition 3.11), Proposition 3.7 and commutation relation Jϕ̂Jϕ = ν

i
4JϕJϕ̂ (equation

(2.14)).

Corollary 3.20. We have QLν
i
8JϕQ∗R = Σ and Q∗RQL = Q∗LQR = ν−

i
8Jϕ̂Jϕ.

FormulaQ∗RQL = ν−
i
8Jϕ̂Jϕ is of great importance and will be used many times throught

the paper.
Now we can prove several results in which we express operators related to G and Ĝ on the
level of direct integrals. The �rst result of this type comes from the polar decomposition
of T ′.

Proposition 3.21. For all t ∈ R we have

∇it
ψδ
−it = Jϕ∇it

ϕδ
itJϕ = ν−

i
2
t2Q∗R

(∫ ⊕
Irr(G)

D2it
π ⊗ (E−2it

π )> dµ(π)
)
QR,

Jϕ∇it
ψδ
−itJϕ = ∇it

ϕδ
it = ν

i
2
t2Q∗L

(∫ ⊕
Irr(G)

E2it
π ⊗ (D−2it

π )> dµ(π)
)
QL,

∇−itϕ δ−it = Jϕ∇−itψ δitJϕ = ν
i
2
t2Q∗R

(∫ ⊕
Irr(G)

E2it
π ⊗ (D−2it

π )> dµ(π)
)
QR,

Jϕ∇−itϕ δ−itJϕ = ∇−itψ δit = ν−
i
2
t2Q∗L

(∫ ⊕
Irr(G)

D2it
π ⊗ (E−2it

π )> dµ(π)
)
QL.

Proof. First, observe that we have ∇it
ψ = Jϕ̂∇−itϕ Jϕ̂ = δit(Jϕδ

itJϕ)∇it
ϕ (see [93, Theorem

5.18] and equation (2.14)). It follows that

∇it
ψδ
−it = ν−it

2

δ−it∇it
ψ = ν−it

2

Jϕδ
it∇it

ϕJϕ = Jϕ∇it
ϕδ

itJϕ,

and the �rst equation in each row easily follows. The formula expressing Jϕ∇it
ϕδ

itJϕ via
direct integral of operators follows from equation (3.11) combined with Proposition 3.11.
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The second equation can be found using already derived relation Q∗LQR = ν−
i
8Jϕ̂Jϕ:

Jϕ∇it
ϕδ

itJϕ = ν−
i
2
t2ν

i
8JϕJϕ̂Q∗L

(∫ ⊕
Irr(G)

D2it
π ⊗ (E−2it

π )> dµ(π)
)
QLν−

i
8Jϕ̂Jϕ

= ν−
i
2
t2JϕQ∗L

(∫ ⊕
Irr(G)

E2it
π ⊗ (D−2it

π )> dµ(π)
)
QLJϕ,

which implies ∇it
ϕδ

it = ν
i
2
t2Q∗L(

∫ ⊕
Irr(G)

E2it
π ⊗ (D−2it

π )> dµ(π))QL. The last two equations
come from applying the operation Jϕ̂ ·Jϕ̂ to both sides of the already derived formulas.

Let us now derive an interesting corollary of these results.

Corollary 3.22. There exists a unique measurable function f : Irr(G)→ R>0 such that

JϕQ∗R
(∫ ⊕

Irr(G)

D2it
π ⊗ 1Hπ dµ(π)

)∗QRJϕ = Q∗R
(∫ ⊕

Irr(G)

f(π)itE2it
π ⊗ 1Hπ dµ(π)

)
QR,

JϕQ∗R
(∫ ⊕

Irr(G)

1Hπ ⊗ (E2it
π )> dµ(π)

)∗QRJϕ = Q∗R
(∫ ⊕

Irr(G)

f(π)it1Hπ ⊗ (D2it
π )> dµ(π)

)
QR,

JϕQ∗L
(∫ ⊕

Irr(G)

1Hπ ⊗ (D2it
π )> dµ(π)

)∗QLJϕ = Q∗L
(∫ ⊕

Irr(G)

f(π)it1Hπ ⊗ (E2it
π )> dµ(π)

)
QL,

JϕQ∗L
(∫ ⊕

Irr(G)

E2it
π ⊗ 1Hπ dµ(π)

)∗QLJϕ = Q∗L
(∫ ⊕

Irr(G)

f(π)itD2it
π ⊗ 1Hπ dµ(π)

)
QL

for all t ∈ R.

We note that the function f might depend on the choice of the measure µ.

Proof. Fix t ∈ R. The �rst and the third row in Proposition 3.21 imply

JϕQ∗R
(∫ ⊕

Irr(G)

D2it
π ⊗ (E−2it

π )> dµ(π)
)
QRJϕ = Q∗R

(∫ ⊕
Irr(G)

E−2it
π ⊗ (D2it

π )> dµ(π)
)
QR.

Since Jϕ L∞(Ĝ)Jϕ = L∞(Ĝ), JϕL∞(Ĝ)
′
Jϕ = L∞(Ĝ)

′
and the center of

∫ ⊕
Irr(G)

1Hπ⊗B(Hπ) dµ(π)

is
∫ ⊕

Irr(G)
C1HS(Hπ) dµ(π), Proposition 3.7 implies that there exists a measurable function

ft : Irr(G)→ T such that

JϕQ∗R
(∫ ⊕

Irr(G)

D2it
π ⊗ 1Hπ dµ(π)

)
QRJϕQ∗R

(∫ ⊕
Irr(G)

E2it
π ⊗ 1Hπ dµ(π)

)
QR

= JϕQ∗R
(∫ ⊕

Irr(G)

1Hπ ⊗ (E2it
π )> dµ(π)

)
QRJϕQ∗R

(∫ ⊕
Irr(G)

1Hπ ⊗ (D2it
π )> dµ(π)

)
QR

=

∫ ⊕
Irr(G)

ft(π)1HS(Hπ) dµ(π).
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The above equations imply

JϕQ∗R
(∫ ⊕

Irr(G)

D2it
π ⊗ 1Hπ dµ(π)

)∗QRJϕ = Q∗R
(∫ ⊕

Irr(G)

ft(π)E2it
π ⊗ 1Hπ dµ(π)

)
QR (3.12)

and

JϕQ∗R
(∫ ⊕

Irr(G)

1Hπ ⊗ (E2it
π )> dµ(π)

)∗QRJϕ = Q∗R
(∫ ⊕

Irr(G)

ft(π)1Hπ ⊗ (D2it
π )> dµ(π)

)
QR.

(3.13)

Equation (3.12) together with relation Q∗LQR = ν−
i
8Jϕ̂Jϕ (Corollary 3.20) gives us

JϕJϕJϕ̂Q∗L
(∫ ⊕

Irr(G)

D2it
π ⊗ 1Hπ dµ(π)

)∗QLJϕ̂JϕJϕ
= JϕJϕ̂Q∗L

(∫ ⊕
Irr(G)

ft(π)E2it
π ⊗ 1Hπ dµ(π)

)
QLJϕ̂Jϕ,

hence also thanks to QLJϕ̂Q∗L = Σ (see Proposition 3.7)

Q∗L
(∫ ⊕

Irr(G)

1Hπ ⊗ (D−2it
π )> dµ(π)

)∗QL = JϕQ∗L
(∫ ⊕

Irr(G)

ft(π)1Hπ ⊗ (E−2it
π )> dµ(π)

)
QLJϕ.

The last equation can be derived from equation (3.13) in a similar manner. Clearly we
have ft(π) = f(π)it for a measurable function f : Irr(G)→ R>0.

In the last part of this section, we will transport operators ∇it
ϕ̂,∇it

ψ̂
, δ̂it (t ∈ R) to∫ ⊕

Irr(G)
HS(Hπ) dµ(π). We start with a formula expressing the action of (τt)t∈R on matrix

coe�cients introduced in De�nition 3.8. Recall that δ̂u is the modular element of Ĝ living
in the universal level, i.e. it is a positive self-adjoint operators a�liated with Cu

0(Ĝ).

Lemma 3.23. For ξ, η ∈
∫ ⊕

Irr(G)
Hπ dµ(π) and t ∈ R we have

τt(M
L
ξ,η) = ν−

1
2
it2δ−it

∫
Irr(G)

(id⊗ ωD2it
π π(δ̂−itu )ξπ ,E2it

π ηπ
)(Uπ∗) dµ(π)

= ν−
1
2
it2
∫

Irr(G)

(id⊗ ωD−2it
π ξπ ,E

−2it
π π(δ̂−itu )ηπ

)(Uπ∗) dµ(π)δit,

τt(M
R
ξ,η) = ν

1
2
it2
∫

Irr(G)

(id⊗ ωE2it
π ξπ ,D2it

π π(δ̂−itu )ηπ
)(Uπ) dµ(π)δit

= ν
1
2
it2δ−it

∫
Irr(G)

(id⊗ ωE−2it
π π(δ̂−itu )ξπ ,D

−2it
π ηπ

)(Uπ) dµ(π).

Later on in Theorem 3.25 we will get simpler expressions for these actions (once we
�nd out what π(δ̂itu ) is).
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Proof. The proof is based on several facts from the theory of locally compact quantum
groups. First of all, we know that δ̂it = P−it∇−itψ (equation (2.14)). Next, [93, Lemma
5.14] gives us

(σϕt ⊗ id)W = (1⊗ P−it)W(1⊗∇−itψ ), (σψt ⊗ id)W = (1⊗∇−itψ )W(1⊗ P−it),

and (τt ⊗ id)W = (id ⊗ τ̂−t)W. We note also that δ̂it ∈ M(C0(Ĝ)), δ̂itu ∈ M(Cu
0(Ĝ)) and

ΛĜ(δ̂itu ) = δ̂it ([55]). Fix t ∈ R, a representation π ∈ Irr(G) which factorises through C0(Ĝ)

(i.e. π = π′◦ΛĜ for a representation π′ : C0(Ĝ)→ B(Hπ)) and arbitrary vectors ξπ, ηπ ∈ Hπ.
We have

τt((id⊗ ωξπ ,ηπ)(Uπ∗)) = (id⊗ ωξπ ,ηπ)(τt ⊗ id)(id⊗ π)( W∗)

= (id⊗ ωξπ ,ηπ ◦ π′)(τt ⊗ id)(W∗) = (id⊗ ωξπ ,ηπ ◦ π′)(id⊗ τ̂−t)(W∗)

= (id⊗ ωξπ ,ηπ ◦ π′)((1⊗ P−it)(W∗)(1⊗ P it)).

Now we write the above expression in two di�erent ways: we have

τt((id⊗ ωξπ ,ηπ)(Uπ∗)) = (id⊗ ωξπ ,ηπ ◦ π′)((1⊗ P−it∇−itψ )(1⊗∇it
ψ)(W∗)(1⊗ P it))

= (id⊗ ωξπ ,ηπ ◦ π′)((1⊗ δ̂it) (σϕt ⊗ id)(W∗)) = σϕt ((id⊗ ωξπ ,ηπ ◦ π)((1⊗ δ̂itu ) ( W∗)))

= σϕt ((id⊗ ωπ(δ̂−itu )ξπ ,ηπ
)(Uπ∗))

(3.14)

and

τt((id⊗ ωξπ ,ηπ)(Uπ∗)) = (id⊗ ωξπ ,ηπ ◦ π′)((1⊗ P−it)(W∗)(1⊗∇−itψ )(1⊗∇it
ψP

it))

= (id⊗ ωξπ ,ηπ ◦ π′)((σ
ψ
−t ⊗ id)(W∗) (1⊗ δ̂−it))

= (id⊗ ωξπ ,ηπ ◦ π)((σψ−t ⊗ id)( W∗) (1⊗ δ̂−itu ))

= (id⊗ ωξπ ,π(δ̂−itu )ηπ
)((σψ−t ⊗ id)(Uπ∗)) = σψ−t((id⊗ ωξπ ,π(δ̂−itu )ηπ

)(Uπ∗)).

(3.15)

Let now ξ, η be vectors in
∫ ⊕

Irr(G)
Hπ dµ(π). Then �elds (π(δ̂−itu )ξπ)π∈Irr(G), (π(δ̂−itu )ηπ)π∈Irr(G)

are also measurable and square integrable. Using equations (3.14), (3.15) and Proposition
3.12 we arrive at

τt(M
L
ξ,η) = τt(

∫
Irr(G)

(id⊗ ωξπ ,ηπ)(Uπ∗) dµ(π)) =

∫
Irr(G)

τt((id⊗ ωξπ ,ηπ)(Uπ∗)) dµ(π)

=

∫
Irr(G)

σϕt ((id⊗ ωπ(δ̂−itu )ξπ ,ηπ
)(Uπ∗)) dµ(π) = σϕt (

∫
Irr(G)

(id⊗ ωπ(δ̂−itu )ξπ ,ηπ
)(Uπ∗) dµ(π))

= ν−
1
2
it2δ−it

∫
Irr(G)

(id⊗ ωD2it
π π(δ̂−itu )ξπ ,E2it

π ηπ
)(Uπ∗) dµ(π)
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and

τt(M
L
ξ,η) = τt(

∫
Irr(G)

(id⊗ ωξπ ,ηπ)(Uπ∗) dµ(π)) =

∫
Irr(G)

τt((id⊗ ωξπ ,ηπ)(Uπ∗)) dµ(π)

=

∫
Irr(G)

σψ−t((id⊗ ωξπ ,π(δ̂−itu )ηπ
)(Uπ∗)) dµ(π) = σψ−t(

∫
Irr(G)

(id⊗ ωξπ ,π(δ̂−itu )ηπ
)(Uπ∗) dµ(π))

= ν−
1
2
it2
∫

Irr(G)

(id⊗ ωD−2it
π ξπ ,E

−2it
π π(δ̂−itu )ηπ

)(Uπ∗) dµ(π)δit.

The second pair of equations follow by applying the adjoint.

Now we are ready to obtain the main results of this section. Even though we will
prove them together, they are of di�erent nature, hence we prefer to state them separately.
First, we have a couple of equations expressing important operators on the level of direct
integrals.

Theorem 3.24. For every t ∈ R we have

∇−it
ψ̂

= δitP it = Q∗L
(∫ ⊕

Irr(G)

E2it
π ⊗ (E−2it

π )> dµ(π)
)
QL

= Q∗R
(∫ ⊕

Irr(G)

D−2it
π ⊗ (D2it

π )> dµ(π)
)
QR,

∇it
ϕ̂ = Jϕδ

itP itJϕ = Q∗L
(∫ ⊕

Irr(G)

D−2it
π ⊗ (D2it

π )> dµ(π)
)
QL

= Q∗R
(∫ ⊕

Irr(G)

E2it
π ⊗ (E−2it

π )> dµ(π)
)
QR.

Next, we show that the modular element for Ĝ can be expressed using operators
(Dπ)π∈Irr(G), (Eπ)π∈Irr(G).

Theorem 3.25. For all t ∈ R we have

δ̂it = ν−
i
2
t2Q∗L

(∫ ⊕
Irr(G)

D2it
π E−2it

π ⊗ 1Hπ dµ(π)
)
QL

= ν−
i
2
t2Q∗R

(∫ ⊕
Irr(G)

1Hπ ⊗ (D−2it
π E2it

π )> dµ(π)
)
QR.

Moreover, π(δ̂itu ) = ν
it2

2 E−2it
π D2it

π and νistD2is
π E2it

π = E2it
π D2is

π for all s, t ∈ R and almost all
π ∈ Irr(G). We also get better expressions for the action of (τt)t∈R on matrix coe�cients:

τt(M
L
ξ,η) = δ−itML

E2itξ,E2itη = ML
D−2itξ,D−2itηδ

it,

τt(M
R
ξ,η) = MR

E2itξ,E2itη δ
it = δ−itMR

D−2itξ,D−2itη

for all t ∈ R and ξ, η ∈
∫ ⊕

Irr(G)
Hπ dµ(π).
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Proof. Let ξ, η be vector �elds satisfying conditions from the �rst point of Lemma 3.9.
Note that vector �elds (D−2it

π ξπ)π∈Irr(G), (E
−2it
π π(δ̂−itu )ηπ)π∈Irr(G) also satisfy conditions of

this lemma. Using the second equation from Lemma 3.23 we get:

QLP itΛϕ(ML
ξ,η) = ν

t
2QLΛϕ(τt(M

L
ξ,η))

= ν
t−it2

2 QLΛϕ(

∫
Irr(G)

(id⊗ ωD−2it
π ξπ ,E

−2it
π π(δ̂−itu )ηπ

)(Uπ∗) dµ(π) δit)

= ν
t−it2

2 QLJϕσϕi/2(δit)∗JϕΛϕ(

∫
Irr(G)

(id⊗ ωD−2it
π ξπ ,E

−2it
π π(δ̂−itu )ηπ

)(Uπ∗) dµ(π))

= ν
−it2
2 QLJϕδ−itJϕQ∗L

∫ ⊕
Irr(G)

E−2it
π π(δ̂−itu )ηπ ⊗DπD−2it

π ξπ dµ(π)

= ν
−it2
2 QLJϕδ−itJϕQ∗L

(∫ ⊕
Irr(G)

E−2it
π π(δ̂−itu )⊗ (D2it

π )> dµ(π)
)
QLΛϕ(ML

ξ,η).

Since the set of Λϕ(ML
ξ,η) with ξ, η as above is lineary dense in L2(G) (Lemma 3.10), we

get

Jϕδ
itJϕP

it = Q∗L
(∫ ⊕

Irr(G)

(ν−
it2

2 E−2it
π π(δ̂−itu ))⊗ (D2it

π )> dµ(π)
)
QL. (3.16)

Since (Jϕδ
itJϕP

it)t∈R, ((D2it
π )>)t∈R are strongly continuous groups (see equation (3.7)), the

same is true for (ν−
it2

2 E−2it
π π(δ̂−itu ))t∈R. Using relations gathered in equation (3.7) one

easily checks that Jϕ̂ commutes with Jϕδ
itJϕP

it. Since Jϕ̂ = Q∗LΣQL, Lemma 7.8 implies

ν−
it2

2 E−2it
π π(δ̂−itu ) = D−2it

π ⇒ π(δ̂itu ) = ν
it2

2 E−2it
π D2it

π (π ∈ Irr(G), t ∈ R) (3.17)

Let us choose s, t ∈ R and use the fact that (π(δ̂ipu ))p∈R is a group: we have

ν
i(t+s)2

2 E−2i(t+s)
π D2i(t+s)

π = π(δ̂i(t+s)u ) = π(δ̂itu )π(δ̂isu ) = ν
it2

2 E−2it
π D2it

π ν
is2

2 E−2is
π D2is

π ,

and formula νistE−2is
π D2it

π = D2it
π E−2is

π easily follows. Equations expressing the action of

(τt)t∈R on matrix coe�cients follows from the equation π(δ̂itu ) = ν
i
2
t2E−2it

π D2it
π , commutation

relation between Eit
π and Dis

π and Lemma 3.23. Let us now plug in the above results to
equation (3.16):

Jϕδ
itJϕP

it = ν−
it2

2 Q∗L
(∫ ⊕

Irr(G)

E−2it
π π(δ̂−itu )⊗ (D2it

π )> dµ(π)
)
QL

= ν−
it2

2 Q∗L
(∫ ⊕

Irr(G)

E−2it
π ν

it2

2 E2it
π D−2it

π ⊗ (D2it
π )> dµ(π)

)
QL

= Q∗L
(∫ ⊕

Irr(G)

D−2it
π ⊗ (D2it

π )> dµ(π)
)
QL,

(3.18)

which is the third equation of Theorem 3.24. If we use formula Q∗RQL = ν−
i
8Jϕ̂Jϕ, we

readily get the second equation. Now we can derive the �rst pair of equations of Theorem
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3.25. Since for all t ∈ R we have ∇it
ψ = δ̂−itP−it and Jϕδ̂

it = δ̂itJϕ, it follows that

δ̂it = Jϕδ̂
itJϕ = (JϕP

−itδ−itJϕ)(Jϕδ
it∇−itψ Jϕ), which we can express using equation (3.18)

and Proposition 3.21:

QLδ̂itQ∗L =
(∫ ⊕

Irr(G)

D2it
π ⊗ (D−2it

π )> dµ(π)
)
ν−

i
2
t2
(∫ ⊕

Irr(G)

E−2it
π ⊗ (D2it

π )> dµ(π)
)

= ν−
i
2
t2
∫ ⊕

Irr(G)

D2it
π E−2it

π ⊗ 1Hπ dµ(π).

On the other hand, we also have δ̂it = (∇−itψ δit)(δ−itP−it), hence

QRδ̂itQ∗R = ν−
i
2
t2
(∫ ⊕

Irr(G)

D−2it
π ⊗ (E2it

π )> dµ(π)
)(∫ ⊕

Irr(G)

D2it
π ⊗ (D−2it

π )> dµ(π)
)
,

which implies the second equation for δ̂it and ends the proof of Theorem 3.25. In order
to �nish the proof of Theorem 3.24 we have to derive a lemma concerning the function f
introduced in Corollary 3.22.

Lemma 3.26. For all t ∈ R we have

JϕQ∗L
(∫ ⊕

Irr(G)

f(π)it 1HS(Hπ) dµ(π)
)∗QLJϕ = Q∗L

(∫ ⊕
Irr(G)

f(π)−it 1HS(Hπ) dµ(π)
)
QL,

JϕQ∗R
(∫ ⊕

Irr(G)

f(π)it 1HS(Hπ) dµ(π)
)∗QRJϕ = Q∗R

(∫ ⊕
Irr(G)

f(π)−it 1HS(Hπ) dµ(π)
)
QR.

Proof of Lemma 3.26. Recall that Jϕδ̂
itJϕ = δ̂it, hence

ν
i
2
t2JϕQ∗L

(∫ ⊕
Irr(G)

D2it
π E−2it

π ⊗1Hπ dµ(π)
)
QLJϕ = ν−

i
2
t2Q∗L

(∫ ⊕
Irr(G)

D2it
π E−2it

π ⊗1Hπ dµ(π)
)
QL.

Using the above relation, the fourth equation of Corollary 3.22 and the commutation
relation νistD2is

π E2it
π = E2it

π D2is
π we get

JϕQ∗L
(∫ ⊕

Irr(G)

D2it
π ⊗ 1Hπ dµ(π)

)∗QLJϕ
= JϕQ∗L

(∫ ⊕
Irr(G)

D−2it
π E2it

π ⊗ 1Hπ dµ(π)
)
QLJϕ JϕQ∗L

(∫ ⊕
Irr(G)

E2it
π ⊗ 1Hπ dµ(π)

)∗QLJϕ
= ν−it

2Q∗L
(∫ ⊕

Irr(G)

D−2it
π E2it

π ⊗ 1Hπ dµ(π)
)
QLQ∗L

(∫ ⊕
Irr(G)

f(π)itD2it
π ⊗ 1Hπ dµ(π)

)
QL

= Q∗L
(∫ ⊕

Irr(G)

f(π)itE2it
π ⊗ 1Hπ dµ(π)

)
QL,
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consequently

Q∗L
(∫ ⊕

Irr(G)

E2it
π ⊗ 1Hπ dµ(π)

)
QL = Jϕ

(
JϕQ∗L

(∫ ⊕
Irr(G)

E2it
π ⊗ 1Hπ dµ(π)

)∗QLJϕ)∗Jϕ
= JϕQ∗L

(∫ ⊕
Irr(G)

f(π)itD2it
π ⊗ 1Hπ dµ(π)

)∗QLJϕ
= Q∗L

(∫ ⊕
Irr(G)

f(π)itE2it
π ⊗ 1Hπ dµ(π)

)
QLJϕQ∗L

(∫ ⊕
Irr(G)

f(π)it1HS(Hπ) dµ(π)
)∗QLJϕ

and

JϕQ∗L
(∫ ⊕

Irr(G)

f(π)it1HS(Hπ) dµ(π)
)∗QLJϕ = Q∗L

(∫ ⊕
Irr(G)

f(π)−it1HS(Hπ) dµ(π)
)
QL.

The second equation can be proved analogously or using equation Q∗RQL = ν−
i
8Jϕ̂Jϕ.

Using the above lemma and Corollary 3.22 we can derive the �rst equation of Theorem
3.24 from the third one:

δitP it = JϕJϕδ
itP itJϕJϕ = JϕQ∗L

(∫ ⊕
Irr(G)

D−2it
π ⊗ (D2it

π )> dµ(π)
)
QLJϕ

= JϕQ∗L
(∫ ⊕

Irr(G)

f(π)it1HS(Hπ) dµ(π)
)
QLJϕJϕQ∗L

(∫ ⊕
Irr(G)

f(π)−itD−2it
π ⊗(D2it

π )>dµ(π)
)
QLJϕ

= Q∗L
(∫ ⊕

Irr(G)

f(π)it1HS(Hπ) dµ(π)
)
QLQ∗L

(∫ ⊕
Irr(G)

f(π)−itE2it
π ⊗ (E−2it

π )> dµ(π)
)
QL

= Q∗L
(∫ ⊕

Irr(G)

E2it
π ⊗ (E−2it

π )> dµ(π)
)
QL.

Now, the last equation of Theorem 3.24 follows as usual from the formula relating QL and
QR (Corollary 3.20). This concludes the proof of Theorem 3.24 and Theorem 3.25.

The commutation relation νistD2is
π E2it

π = E2it
π D2is

π (t, s ∈ R) derived in the previous
proposition has the following consequence.

Corollary 3.27. If ν 6= 1 then for almost all π ∈ Irr(G), operators Dπ, Eπ have empty
point spectrum. In particular, if ν 6= 1 then the set of �nite dimensional irreducible
representations is of measure zero.

3.3 Special classes of type I locally compact quantum groups

When G is a compact quantum group, then a number of conditions related to the modular
theory of G, Ĝ turn out to be equivalent. For example, Ĝ is unimodular if and only if the
Haar integrals on Ĝ are tracial, which happens if and only if the Haar integral on G is
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tracial [64]. In fact, these properties are governed by the family of operators (ρα)α∈Irr(G)

(see Section 2.3). In the main result of this section (Theorem 3.34) we will obtain similar,
though more complicated, characterisation for type I, second countable locally compact
quantum groups.
We start with presenting some results concerning modular theory of a general locally
compact quantum group G and its dual. These results are probably well known to the
experts.

Lemma 3.28. The following conditions are equivalent:

1) P it ∈ L∞(G)′ for all t ∈ R,

2) the scaling group of G is trivial,

3) P it = 1 for all t ∈ R.

Proof. Implications 1) ⇔ 2) ⇐ 3) follow from the equation τt(x) = P itxP−it (x ∈ L∞(G),
t ∈ R). For all x ∈ Nϕ and t ∈ R we have P itΛϕ(x) = ν

t
2 Λϕ(τt(x)), hence 2) implies

P it = ν
t
21. Taking the norm of both sides gives us 1 = ν

t
2 hence ν = 1.

Lemma 3.29.

1) The Haar integrals on G are tracial if, and only if P = δ̂ = 1.

2) Ĝ is unimodular if, and only if ∇it
ϕ = ∇−itψ (t ∈ R).

Proof. We will use formulas gathered in equation (2.14). Equality ∇it
ψ = δ̂−itP−it (t ∈ R)

shows that P = δ̂ = 1 implies ∇it
ψ = 1 and the traciality of ψ. Then ϕ is tracial because

∇it
ϕ = Jϕ̂∇−itψ Jϕ̂. Let us prove the converse implication. If∇it

ψ = 1 then P it = δ̂−it ∈ L∞(Ĝ)

for all t ∈ R. Since P it commutes with Jϕ̂, we have P it = Jϕ̂P
itJϕ̂ ∈ L∞(Ĝ)′ and by the

previous lemma P it = 1 = δ̂−it.
If Ĝ is unimodular, then we have Jϕ̂∇−itϕ Jϕ̂ = ∇it

ψ = P−it for all t ∈ R. Since P−it

commutes with Jϕ̂, it follows that ∇it
ψ = ∇−itϕ . On the other hand, if ∇it

ψ = ∇−itϕ for all
t ∈ R, then

δ̂−itP−it = ∇it
ψ = ∇−itϕ = Jϕ̂∇it

ψJϕ̂ = Jϕ̂δ̂
−itP−itJϕ̂ = Jϕ̂δ̂

−itJϕ̂P
−it

and we get δ̂it = Jϕ̂δ̂
itJϕ̂. This in particular means that δ̂it ∈ Z(L∞(Ĝ)) and [82, Proposi-

tion 1.23] implies δ̂it = Jϕ̂δ̂
−itJϕ̂, unimodularity of Ĝ follows.

Lemma 3.30. For all t, s ∈ R, if σϕt = σψs then ∇it
ϕ = ∇is

ψ . If (s, t) 6= (0, 0) then also
ν = 1.

Proof. For all x ∈ Nϕ we have ∇−isψ ∇it
ϕΛϕ(x) = ν

1
2
sΛϕ(σψ−s(σ

ϕ
t (x))) = ν

1
2
sΛϕ(x) (see [93,

Remark 5.2 ii)]), hence ∇−isψ ∇it
ϕ = ν

1
2
s1. Taking the norm of both sides implies ν

1
2
s = 1

and proves the �rst claim. If s 6= 0 then we get ν = 1, if s = 0 and (s, t) 6= (0, 0) then
t 6= 0 and we get ∇it

ϕ = 1. Formula ∇it
ϕΛψ(y) = ν

t
2 Λψ(σϕt (y)) = ν

t
2 Λψ(y) (y ∈ Nψ) implies

ν = 1.
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Lemma 3.31. For all t ∈ R, δit ∈ Z(L∞(G)) if and only of σϕt = σψt . If these conditions
hold, then νit = 1.

Proof. The �rst part of the result is a consequence of the formula σψt (x) = δitσϕt (x)δ−it

(x ∈ L∞(G)) � see equation (2.4). For the second part, observe that when δit ∈ Z(L∞(G)),
we have δit = σϕs (δit) = νistδit (s ∈ R) by equation (2.9). It follows that νist = 1 for all
s ∈ R, hence νit = 1.

For unimodular quantum groups we obtain another useful piece of information (cf. equa-
tions (2.20), (2.21)):

Proposition 3.32. If G is unimodular, then

σϕ̂t (x) = τ̂t(x) = δ̂−
it
2 xδ̂

it
2 , σψ̂t (x) = δ̂

it
2 xδ̂−

it
2

and
∆Ĝ(σϕ̂t (x)) = (σϕ̂t ⊗ σ

ϕ̂
t )∆Ĝ(x), ∆Ĝ(σψ̂t (x)) = (σψ̂t ⊗ σ

ψ̂
t )∆Ĝ(x)

for all t ∈ R, x ∈ L∞(Ĝ).

Proof. This proposition is a straightforward consequence of P−2it= δit(Jϕδ
itJϕ)δ̂it(Jϕ̂δ̂

itJϕ̂),

∇it
ϕ̂ = Jϕδ

itP itJϕ (equation (2.14)) and ∆Ĝ(δ̂it) = δ̂it ⊗ δ̂it (Section 2.2).

Proposition 3.33. The Haar integrals on G and Ĝ are tracial if, and only if G and Ĝ
are unimodular.

We remark that in [49] this result was stated as a corollary of Theorem 3.34 hence only
for type I, second countable locally compact quantum groups. However, we have realised
that this assumption is super�uous.

Proof. Implication �⇒� is an easy corollary of Lemma 3.29. Assume that G and Ĝ are
unimodular. Using formulas from equation (2.14) we arrive at

P−it = ∇it
ψ = Jϕ̂∇−itϕ Jϕ̂ = Jϕ̂∇−itψ Jϕ̂ = Jϕ̂P

itJϕ̂ = P it,

hence P = δ = δ̂ = 1 and Lemma 3.29 gives us the claim.

The next theorem is the main result of this section. It presents a web of connections
between various properties of a type I, second countable locally compact quantum group
(and its dual).

Theorem 3.34. Let G be a second countable, type I locally compact quantum group. Con-
sider the following conditions:

1) Dit
π ∈ C1Hπ for all t ∈ R and almost all π ∈ Irr(G),

2) Eit
π ∈ C1Hπ for all t ∈ R and almost all π ∈ Irr(G),
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3) the Haar integrals on Ĝ are tracial ( left ⇔ right ⇔ both),

4) δ̂it ∈ Z(L∞(Ĝ)) for all t ∈ R,

5) G is unimodular,

6) Eit
πD

−it
π ∈ C1Hπ for all t ∈ R and almost all π,

7) Eit
π = Dit

π for all t ∈ R and almost all π ∈ Irr(G),

8) Ĝ is unimodular,

9) Eit
πD

it
π ∈ C1Hπ for all t ∈ R and almost all π ∈ Irr(G),

Then the following implications hold:

1) 2) 3)

5) 9) 7) 8)

6) 4)

Moreover, each of the above conditions implies ν = 1.

Proof. First, let us note that ϕ is tracial if and only ψ is tracial: it is a consequence of
the equation ∇it

ψ = Jϕ̂∇−itϕ Jϕ̂ (t ∈ R). An analogous result holds for ϕ̂ and ψ̂. Equivalence
1)⇔ 2)⇔ 3) is a part of the Desmedt's theorem, one can also deduce this from formulas
for ∇ϕ̂,∇ψ̂ � see Theorem 3.24. Equivalence 6) ⇔ 4) follows from the formula for δ̂it in

Theorem 3.25 and QL L∞(Ĝ)Q∗L =
∫ ⊕

Irr(G)
B(Hπ)⊗ 1Hπ dµ(π) (see Proposition 3.7). Equiv-

alence 7)⇔ 8) is a straightforward consequence of Theorem 3.25.
Assume 5), i.e. that G is unimodular and let us derive 9). Fix t ∈ R. Theorem 3.24 gives
us

P it = Q∗L
(∫ ⊕

Irr(G)

E2it
π ⊗ (E−2it

π )> dµ(π)
)
QL = Q∗L

(∫ ⊕
Irr(G)

D−2it
π ⊗ (D2it

π )> dµ(π)
)
QL,

which implies E2it
π ⊗ (E−2it

π )> = D−2it
π ⊗ (D2it

π )> (π ∈ Irr(G)). Consequently, D2it
π E2it

π S =
SD2it

π E2it
π for all S ∈ HS(Hπ). This means that D2it

π E2it
π = λt1Hπ for some λt ∈ C and we

arrive at the point 9). On the other hand, point 9) implies that there exists λt,π ∈ T such
that Eit

π = λt,πD
−it
π . It follows that ν = 1 and λ−t,π = λt,π

−1, moreover the �rst and the
third row of Theorem 3.24 imply δit = Jϕδ

itJϕ. This in particular means that δit belongs to
the center of L∞(G) � we have δit = Jϕ(δit)∗Jϕ [82, Proposition 1.23]. These two equations
together imply δ = 1.
The remaining implications are trivial. Let us now argue why all of the above conditions
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imply ν = 1. Clearly we only need to justify this for 6) and 5). If Eit
πD

−it
π ∈ C1Hπ then

νistD2is
π E2it

π = E2it
π D2is

π forces ν = 1. If δit ∈ Z(L∞(G)) then νit
2
δit = σϕt (δit) = δit for all

t ∈ R ([82, Proposition 1.23]), hence also in this case ν = 1.

Let us now show how certain classes of quantum groups �t into the above diagram.

Proposition 3.35. Let G be a type I, second countable locally compact quantum group.

� If G is classical and non-unimodular, then it satis�es 8) and does not satisfy 5).

� If Ĝ is classical and non-unimodular, then G satis�es 3) and does not satisfy 8).

� If G is compact and not of Kac type, then it satis�es 5) and does not satisfy 4).

� If G is discrete and non-unimodular, then it satis�es 8) and does not satisfy 5).

The numbering in the above proposition corresponds to the numbering introduced in
Theorem 3.34. Clearly each of the above classes is non-empty: examples are given by the
classical ax+ b group, its dual, the SUq(2) group and its dual (see Example 3.6).

In the next four sections we will describe some examples of type I locally compact
quantum groups. This description is taken (with minor changes) from [50] and [49].

3.4 Example: compact quantum groups

Let G be a compact quantum group with countably many classes of irreducible representa-
tions (recall that we have introduced compact and discrete quantum groups as well as their
basic properties in Section 2.3). We equip Irr(G) with the discrete measurable structure
and declare all vector �elds on Irr(G) to be measurable.
De�ne positive invertible operators Dα, Eα ∈ B(Hα) and a measure µ on Irr(G) via

Dα = ρα
1
2 , Eα = ρα

− 1
2 , µ({α}) = dimq(α) (α ∈ Irr(G)).

Next, de�ne operators QL,QR via

QL : L2(G) 3 Λϕ̂

(
(Tα)α∈Irr(G)

)
7→
∫ ⊕

Irr(G)

Tα ρα
− 1

2 dµ(α) ∈
∫ ⊕

Irr(G)

HS(Hα) dµ(α),

QR : L2(G) 3 Jϕ̂JhΛψ̂

(
(Tα)α∈Irr(G)

)
7→
∫ ⊕

Irr(G)

Tα ρα
1
2 dµ(α) ∈

∫ ⊕
Irr(G)

HS(Hα) dµ(α),

where (Tα)α∈Irr(G) belongs respectively: to Nϕ̂ in the case of QL and Nψ̂ in the case of QR.

Proposition 3.36. The objects

QL, QR, µ, (Dα)α∈Irr(G), (Eα)α∈Irr(G)

satisfy all the conditions of Theorem 3.3.
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In order to prove this result, we will use Proposition 3.5. First, let us check that QL is
a well de�ned isometry:∥∥∫ ⊕

Irr(G)

Tαρα
− 1

2 dµ(α)
∥∥2

=

∫
Irr(G)

∥∥Tαρα− 1
2

∥∥2

HS
dµ(α)

=
∑

α∈Irr(G)

dimq(α) Tr(ρα
−1Tα

∗Tα) = ‖Λϕ̂((Tα)α∈Irr(G))‖2.

It is clear that the image ofQL is dense, henceQL is a unitary operator. An analogous argu-
ment shows that QR also is unitary. For ω ∈ L1(G) such that λ(ω) =

(
(ω⊗ id)Uα)α∈Irr(G) ∈

Nϕ̂ (see equation (2.22)) we have

QLΛϕ̂(λ(ω)) =

∫ ⊕
Irr(G)

(ω ⊗ id)(Uα)ρα
− 1

2 dµ(α).

Similarly, for ω ∈ L1(G) such that λ(ω) ∈ Nψ̂ we have

QRJϕ̂JhΛψ̂(λ(ω)) =

∫ ⊕
Irr(G)

(ω ⊗ id)(Uα) ρ
1
2
α dµ(α),

which proves point 4) of Proposition 3.5 (note that X = {λ(ω) |ω ∈ L1(G)} ∩Nψ̂ satis�es
assumptions of Proposition 3.5, see [93, Lemma 5.14]). Take x = (xα)α∈Irr(G) ∈ Nϕ̂ and
ω ∈ L1(G). We have

QL((ω ⊗ id)W)Λϕ̂(x) = QLΛϕ̂(((ω ⊗ id)W)x) =

∫ ⊕
Irr(G)

(ω ⊗ id)(Uα)xαρα
− 1

2 dµ(α),

on the other hand (∫ ⊕
Irr(G)

(ω ⊗ id)(Uα)⊗ 1Hα dµ(α)
)
QLΛϕ̂(x)

=

∫ ⊕
Irr(G)

((ω ⊗ id)(Uα)⊗ 1Hα)xαρα
− 1

2 dµ(α)

=

∫ ⊕
Irr(G)

(ω ⊗ id)(Uα)xαρα
− 1

2 dµ(α).

The last equality follows from the isomorphism HS(Hα) = Hα⊗Hα. The above calculation
proves the commutation rule

QL(ω ⊗ id)W =
(∫ ⊕

Irr(G)

(ω ⊗ id)(Uα)⊗ 1Hα dµ(α)
)
QL (ω ∈ L1(G)).

Let us introduce a dense *-subalgebra in c0(Ĝ):

c00(Ĝ) =

alg⊕
α∈Irr(G)

B(Hα).

In order to show the second commutation rule, we need the following lemma:
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Lemma 3.37. The subspace c00(Ĝ) is a σ-sot× ‖ · ‖ core for Λϕ̂.

Above (and everywhere else) we treat `∞(Ĝ) as a subalgebra of B(L2(G)), not as a
subalgebra of B(

⊕
α∈Irr(G) Hα).

Proof. Let T = (Tα)α∈Irr(G) ∈ Nϕ̂, that is

ϕ̂(T ∗T ) =
∑

α∈Irr(G)

dimq(α) Tr(T ∗αTαρ
−1
α ) < +∞. (3.19)

Let {Xn |n ∈ N} be any increasing family of �nite subsets of Irr(G) such that
⋃
n∈NXn =

Irr(G). Let (T n)n∈N be a sequence of elements of c00(Ĝ) given by T nα = 1Xn(α)Tα. It is clear
that T n ∈ Nϕ̂ for each n ∈ N. An easy calculation using (3.19) shows Λϕ̂(T n) −−−→

n→∞
Λϕ̂(T ).

Furthermore, we have T n
σ-sot−−−→
n→∞

T . Indeed: as the sequence (T n)n∈N is bounded, it is

enough to check convergence in sot and on vectors from a dense subspace {Λϕ̂(S) |S ∈
Nϕ̂ ∩Dom(σϕ̂i/2)}. For such a S ∈ Nϕ̂ ∩Dom(σϕ̂i/2) we have

‖TΛϕ̂(S)− T nΛϕ̂(S)‖ = ‖Λϕ̂((T − T n)S)‖ = ‖Jϕ̂σϕ̂i/2(S)∗Jϕ̂Λϕ̂(T − T n)‖

≤ ‖σϕ̂i/2(S)‖‖Λϕ̂(T − T n)‖ −−−→
n→∞

0,

which proves the claim.

Let us now check the second commutation rule, i.e.

QL(ω ⊗ id)χ(V) =
(∫ ⊕

Irr(G)

1Hα ⊗ αc((ω ⊗ id)W) dµ(α)
)
QL (ω ∈ L1(G)).

Take any T = (Tα)α∈Irr(G) ∈ c00(Ĝ) and ω ∈ L1(G) such that λ(ω) ∈ c00(Ĝ). Let us

note that the unbounded operators δ̂a =
⊕

α∈Irr(G) ρ
2a
α and ∇a

ϕ̂ (a ∈ R) have the subspace

Λϕ̂(c00(Ĝ)) in their domain, and moreover this subspace is preserved by them. Indeed, it is

clear for δ̂a, and we know that ∇a
ϕ̂Λϕ̂(eαi,j) = Λϕ̂(σϕ̂−ia(e

α
i,j)) =

(ρα)aj
(ρα)ai

Λϕ̂(eαi,j). Recall equation

(2.11)
χ(V) = (Jϕ̂ ⊗ Jϕ̂)W∗(Jϕ̂ ⊗ Jϕ̂),

hence using equation (2.12) we arrive at

(ω ⊗ id)χ(V) = Jϕ̂((ω ◦R⊗ id)W)∗Jϕ̂ = Jϕ̂R̂((ω ⊗ id)W)∗Jϕ̂ (3.20)

and

QL(ω ⊗ id)χ(V)Λϕ̂(T ) = QLJϕ̂R̂((ω ⊗ id)W)∗Jϕ̂Λϕ̂(T ).
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On the other hand(∫ ⊕
Irr(G)

1Hα ⊗ αc((ω ⊗ id)W) dµ(α)
)
QLΛϕ̂(T )

=

∫ ⊕
Irr(G)

(
1Hα ⊗ αc((ω ⊗ id)W)

)(dim(α)∑
j=1

|ζαj 〉〈(Tαρ
− 1

2
α )∗ζαj | dµ(α)

=

∫ ⊕
Irr(G)

dim(α)∑
j=1

ζαj ⊗ α ◦ R̂((ω ⊗ id)W)∗ (Tαρ
− 1

2
α )∗ζαj dµ(α)

=

∫ ⊕
Irr(G)

Tαρ
− 1

2
α α ◦ R̂((ω ⊗ id)W) dµ(α)

= QLΛϕ̂((Tαρ
− 1

2
α α ◦ R̂((ω ⊗ id)W)ρ

1
2
α)α∈Irr(G))

= QLJϕ̂∇
1
2

ϕ̂(ρ
− 1

2
α α ◦ R̂((ω ⊗ id)W)ρ

1
2
α)∗α∈Irr(G)Jϕ̂∇

1
2

ϕ̂Λϕ̂(T )

= QLJϕ̂∇
1
2

ϕ̂(ρ
1
2
αα ◦ R̂((ω ⊗ id)W)∗ρ

− 1
2

α )α∈Irr(G)∇
− 1

2

ϕ̂ Jϕ̂Λϕ̂(T ),

where {ζαj | j ∈ {1, . . . , dim(α)}} is any orthonormal basis in Hα. Notice that by Lemma

3.13 the operator∇2a
ϕ̂ ◦δ̂a is closable for all a ∈ R. Furthermore, on Λϕ̂(c00(Ĝ)) it commutes

with operators from `∞(Ĝ). Indeed23, by equation (2.14) and Lemma 3.29 we have

∇−itϕ̂ = ∇it
ψ̂

= δ−itP−it = P−it, P−2it = δit(Jhδ
itJh)δ̂

it(Jϕ̂δ̂
itJϕ̂) = δ̂it(Jϕ̂δ̂

itJϕ̂)

hence
∇2it
ϕ̂ δ̂

it = P 2itδ̂it = δ̂−it(Jϕ̂δ̂
−itJϕ̂)δ̂it = Jϕ̂δ̂

−itJϕ̂ ∈ `∞(Ĝ)′

for all t ∈ R and ∇2a
ϕ̂ δ̂

a is a�liated with `∞(Ĝ)′ ([78, Exercise E.9.25]). Consequently

QLJϕ̂∇
1
2

ϕ̂(ρ
1
2
αα ◦ R̂((ω ⊗ id)W)∗ρ

− 1
2

α )α∈Irr(G)∇
− 1

2

ϕ̂ Jϕ̂Λϕ̂(T )

= QLJϕ̂(α ◦ R̂((ω ⊗ id)W)∗)α∈Irr(G)(∇
1
2

ϕ̂ δ̂
1
4 )(δ̂−

1
4∇−

1
2

ϕ̂ )Jϕ̂Λϕ̂(T )

= QLJϕ̂(α ◦ R̂((ω ⊗ id)W)∗)α∈Irr(G)Jϕ̂Λϕ̂(T ),

and the second commutation relation holds.
Assume that x = (xα)α∈Irr(G) is an element of `∞(Ĝ) ∩ `∞(Ĝ)′. Triviality of the center
of B(Hα) impliess that xα ∈ C1α for each α ∈ Irr(G). Operator x is mapped via QL to∫ ⊕

Irr(G)
xα dµ(α), which is a diagonalisable operator. On the other hand, any diagonalisable

operator
∫ ⊕

Irr(G)
yα dµ(α) (yα ∈ C1HS(Hα)) is an image of (yα)α∈Irr(G) ∈ `∞(Ĝ)∩`∞(Ĝ)′. This

proves that we have identi�ed objects that are given by the left version of Theorem 3.3.
Let us now check that QR and Eα = ρα

− 1
2 satisfy conditions from Proposition 3.5: we

23A more direct proof is also possible, see [50].
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only need to check the commutation rules, since the rest is clear. Now we need to use the

formula ∇a
ψ̂
Λψ̂(eαi,j) =

(ρα)ai
(ρα)aj

Λψ̂(eαi,j). Take ω ∈ L1(G) and T ∈ Nψ̂ as before. We have

QRJϕ̂Jh(ω ⊗ id)WΛψ̂(T ) = QRJϕ̂JhΛψ̂(((ω ⊗ id)W)T )

=

∫ ⊕
Irr(G)

(ω ⊗ id)UαTαρ
1
2
α dµ(α) =

(∫ ⊕
Irr(G)

(ω ⊗ id)Uα ⊗ 1Hα dµ(α)
)
QRJϕ̂JhΛψ̂(T ),

which shows the �rst commutation rule. Let us now prove the second one using this time
the result that ∇−2a

ψ̂
δ̂a is a�liated with `∞(Ĝ)′ (recall also that ν̂ = 1, hence Jϕ̂ = Jψ̂):

(∫ ⊕
Irr(G)

1Hα ⊗ αc((ω ⊗ id)W) dµ(α)
)
QRJϕ̂JhΛψ̂(T )

=

∫ ⊕
Irr(G)

Tαρ
1
2
α α ◦ R̂((ω ⊗ id)W) dµ(α)

= QRJϕ̂JhΛψ̂

(
(Tαρ

1
2
α α ◦ R̂((ω ⊗ id)W)ρ

− 1
2

α )α∈Irr(G)

)
= QRJϕ̂JhJϕ̂∇

1
2

ψ̂

(
ρ

1
2
α α ◦ R̂((ω ⊗ id)W)ρ

− 1
2

α

)∗
α∈Irr(G)

Jϕ̂∇
1
2

ψ̂
Λψ̂(T )

= QRJϕ̂JhJϕ̂R̂((ω ⊗ id)W)∗Jϕ̂Λψ̂(T ) = QRJϕ̂Jh(ω ⊗ id)χ(V)Λψ̂(T ),

which concludes the proof of Proposition 3.36.

Remark. Note that one gets a general Plancherel measure by taking any positive measure
on Irr(G) with full support. Indeed, let c : Irr(G)→ R>0 be an arbitrary function. De�ne
measure µc : {α} 7→ c(α). It is equivalent to the above measure µ = µdimq and we have

dµc

dµ
=

c

dimq

.

With this choice of a Plancherel measure we can relate the following Du�o-Moore operators:

Dα =

√
dµc

dµ
(α)ρα

1
2 = c(α)

1
2 dimq(α)−

1
2ρα

1
2 ,

Eα =

√
dµc

dµ
(α)ρα

− 1
2 = c(α)

1
2 dimq(α)−

1
2ρα

− 1
2 .

3.5 Example: quantum groups dual to classical

Assume now that Ĝ is a classical locally compact group which is second countable (for

preliminary results see Section 2.2.1). We have equality of C∗-algebras Cu
0(Ĝ) = C0(Ĝ), its

spectrum can be identi�ed with Irr(G) = Ĝ as a topological space, and every point ζ ∈ Ĝ
corresponds to the one dimensional representation of C0(Ĝ) given by evaluation at ζ. We
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will abuse the notation and identify (as sets) Hζ and B(Hζ) with C for each ζ ∈ Ĝ.

Take any p ∈ R. De�ne a measure µp = δ̂pµL = δ̂p−1µR, the structure of measurable

�eld of Hilbert spaces (C)ζ∈Ĝ given by measurable functions on Ĝ, positive operators

Dζ = δ̂(ζ)
p
2 , Eζ = δ̂(ζ)

p−1
2 (ζ ∈ Ĝ) and operators QL,QR given by

QL : L2(G) 3 Λϕ̂(f) 7→
∫ ⊕
Ĝ
f(ζ)δ̂(ζ)−

p
2 dµp(ζ) ∈

∫ ⊕
Ĝ

HS(Hζ) dµp(ζ),

QR : L2(G) 3 Jϕ̂JϕΛψ̂(f) 7→
∫ ⊕
Ĝ
f(ζ)δ̂(ζ)−

p−1
2 dµp(ζ) ∈

∫ ⊕
Ĝ

HS(Hζ) dµp(ζ).

Operators QL,QR are at �rst only densely de�ned: f belongs respectively to Nϕ̂ and
Nψ̂.

Proposition 3.38. For each p ∈ R the objects

QL, QR, µp, (Dζ)ζ∈Ĝ, (Eζ)ζ∈Ĝ

satisfy all the conditions of Theorem 3.3.

From this proposition follows that a general Plancherel measure is given by gµL for
a strictly positive function g. We restrict our attention to the case g = δ̂p because this
choice simpli�es our calculations. Furthermore, this family of measures includes a measure
invariant under conjugation (when p = 1

2
, see [50, Section 13.2]) and the natural choices of

left and right invariant Haar measures µL, µR.

First, let us check that the densely de�ned operators QL,QR are isometric:∥∥∫ ⊕
Ĝ
f(ζ)δ̂(ζ)−

p
2 dµp(ζ)

∥∥2
=

∫
Ĝ
|f(ζ)|2δ̂(ζ)−pδ̂(ζ)p dµL(ζ) = ‖Λϕ̂(f)‖2,

∥∥∫ ⊕
Ĝ
f(ζ)δ̂(ζ)−

p−1
2 dµp(ζ)

∥∥2
=

∫
Ĝ
|f(ζ)|2δ̂(ζ)−p+1δ̂(ζ)p−1 dµR(ζ) = ‖Λψ̂(f)‖2.

It follows that they extend to the whole L2(G). It is clear that they have dense image,
therefore are unitary. As before, to prove Proposition 3.38 we will use Proposition 3.5. We
have

QL(Λϕ̂(λ(α))) =

∫ ⊕
Ĝ

((α⊗ id)W)(ζ)δ̂(ζ)−
p
2 dµp(ζ)

=

∫ ⊕
Ĝ

(α⊗ id)(U ζ)D−1
ζ dµp(ζ)

for α ∈ L1(G) such that λ(α) ∈ Nϕ̂. Similarly,

QRJϕ̂Jϕ(Λψ̂(λ(α))) =

∫ ⊕
Ĝ

((α⊗ id)W)(ζ)δ̂(ζ)−
p−1
2 dµp(ζ)

=

∫ ⊕
Ĝ

(α⊗ id)(U ζ)E−1
ζ dµp(ζ)
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for α ∈ L1(G) such that λ(α) ∈ Nψ̂. Consequently, point 4) holds. Now, for f ∈ Nϕ̂ and

ω ∈ L1(G) we have

QL(ω ⊗ id)WΛϕ̂(f)

=QLΛϕ̂((ω ⊗ id)(W)f)

=

∫ ⊕
Ĝ

((ω ⊗ id)W)(ζ)f(ζ)δ̂(ζ)−
p
2 dµp(ζ)

=
(∫ ⊕

Ĝ
((ω ⊗ id)W)(ζ)⊗ 1Hζ dµp(ζ)

)
QLΛϕ̂(f)

=
(∫ ⊕

Ĝ
(ω ⊗ id)(U ζ)⊗ 1Hζ dµp(ζ)

)
QLΛϕ̂(f),

which gives us the �rst commutation relation. The Haar integrals on Ĝ are tracial, hence
the operator Jϕ̂ acts as follows: Jϕ̂Λϕ̂(f) = Λϕ̂(f ∗) (f ∈ Nϕ̂). Consequently for each

x ∈ L∞(Ĝ), f, g ∈ Nϕ̂ the following holds

〈Λϕ̂(g) | Jϕ̂x∗Jϕ̂Λϕ̂(f)〉 = 〈Λϕ̂(g) |Λϕ̂(fx)〉 = ϕ̂(g∗fx) = ϕ̂(g∗xf) = 〈Λϕ̂(g) |xΛϕ̂(f)〉.

It follows that Jϕ̂x
∗Jϕ̂ = x (x ∈ L∞(Ĝ)) and

(ω ⊗ id)χ(V) = RĜ((ω ⊗ id)W) (ω ∈ L1(G)).

Clearly we have RĜ(x)(ζ) = x(ζ−1) (x ∈ L∞(Ĝ), ζ ∈ Ĝ), therefore

QL(ω ⊗ id)χ(V)Λϕ̂(f)

=

∫ ⊕
Ĝ

((ω ⊗ id)χ(V)f)(ζ)δ̂(ζ)−
p
2 dµp(ζ)

=

∫ ⊕
Ĝ

(ω ⊗ id)W(ζ−1)f(ζ)δ̂(ζ)−
p
2 dµp(ζ)

and on the other hand(∫ ⊕
Irr(G)

1Hζ ⊗ ζc((ω ⊗ id)W) dµp(ζ)
)
QLΛϕ̂(f)

=
(∫ ⊕

Ĝ
1Hζ ⊗ ((ω ⊗ id)W)(ζ−1)> dµp(ζ)

)
QLΛϕ̂(f)

=

∫ ⊕
Ĝ

(
1Hπ ⊗ ((ω ⊗ id)W)(ζ−1)>

)
(f(ζ)δ̂(ζ)−

p
2 ) dµp(ζ)

=

∫ ⊕
Ĝ

((ω ⊗ id)W)(ζ−1)f(ζ)δ̂(ζ)−
p
2 dµp(ζ)

for ω ∈ L1(G), f ∈ Nϕ̂, which ends the proof of commutation relations for QL.
We have L∞(Ĝ) ∩ L∞(Ĝ)′ = L∞(Ĝ) and it is clear that operator QL maps a function
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x ∈ L∞(Ĝ) to the operator
∫ ⊕
Ĝ x(ζ) dµp(ζ). Note that for each x ∈ L∞(Ĝ) and f ∈ Nψ̂ we

have

QRxQ∗R
∫ ⊕
Ĝ
f(ζ)δ̂(ζ)−

p−1
2 dµp(ζ) = QRxJϕ̂JϕΛψ̂(f)

= QRJϕ̂JϕJϕx∗JϕΛψ̂(f) = QRJϕ̂JϕRĜ(x)Λψ̂(f) = QRJϕ̂JϕΛψ̂(RĜ(x)f)

=

∫ ⊕
Irr(G)

RĜ(x)(ζ)f(ζ)δ̂(ζ)−
p−1
2 dµp(ζ),

therefore QRxQ∗R =
∫ ⊕
Ĝ RĜ(x)(ζ) dµp(ζ). Consequently, QL,QR transform Z(L∞(Ĝ)) onto

the algebra of diagonalisable operators. We are left to show the commutation relations for
QR. Take any ω ∈ L1(G) and f ∈ Nψ̂. We have

QRJϕ̂Jϕ(ω ⊗ id)WΛψ̂(f) =

∫ ⊕
Ĝ

((ω ⊗ id)W)(ζ)f(ζ)δ̂(ζ)−
p−1
2 dµp(ζ)

=

∫ ⊕
Ĝ

(ω ⊗ id)(U ζ)f(ζ)δ̂(ζ)−
p−1
2 dµp(ζ) =

(∫ ⊕
Ĝ

(ω ⊗ id)(U ζ)⊗ 1Hζ dµp(ζ)
)
QRJϕ̂JϕΛψ̂(f)

and

QRJϕ̂Jϕ(ω ⊗ id)χ(V)Λψ̂(f) = QRJϕ̂JϕRĜ((ω ⊗ id)W)Λψ̂(f)

=

∫ ⊕
Ĝ
RĜ((ω ⊗ id)W)(ζ)f(ζ)δ̂(ζ)−

p−1
2 dµp(ζ)

=
(∫ ⊕

Ĝ
1Hζ ⊗ ζc((ω ⊗ id)W) dµp(ζ)

)
QRJϕ̂JϕΛψ̂(f).

This concludes the proof of Proposition 3.38.

3.6 Example: ŜUq(2)

Fix a real number q ∈ ]−1, 1[ \ {0}. Let G be the quantum group SUq(2) (see Section

2.3.1) and let
L
be the dual discrete quantum group

L
= ŜUq(2). To avoid confusion, in

this section we will decorate objects related to SUq(2) (resp. ŜUq(2)) with G (resp.
L
). We

have already said that G is coamenable, consequently C(SUq(2)) = Cu(SUq(2)). This C∗-
algebra is separable and type I (see [99, Theorem A2.3]) hence

L
is an interesting example

of a second countable, type I discrete quantum group24. We will describe the Plancherel
measure for this group and show how various operators related to

L
act on the level of

direct integrals. Let us start with describing the measurable space Irr(
L

) (i.e. the spectrum
of C(SUq(2))). The following result is a reformulation of [90, Theorem 3.2] (see also [44,
Section 3.2]):

24In this section
L
is the "main" group and G is the "dual" one.
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Proposition 3.39. Measurable space Irr(
L

) can be identi�ed with the disjoint union of two
circles T t T = {ψ1,ρ | ρ ∈ T} ∪ {ψ2,λ |λ ∈ T}. Representations ψ1,ρ are one dimensional
and given by

ψ1,ρ(α) = ρ, ψ1,ρ(α∗) = ρ, ψ2,ρ(γ) = 0, ψ2,ρ(γ∗) = 0 (ρ ∈ T).

Representations ψ2,λ act on a separable Hilbert space Hλ = `2(Z+) with an orthonormal
basis {φk | k ∈ Z+} via

ψ2,λ(α)φk =
√

1− q2kφk−1, ψ2,λ(α∗)φk =
√

1− q2(k+1)φk+1,

ψ2,λ(γ)φk = λqkφk, ψ2,λ(γ∗)φk = λqkφk, (λ ∈ T, k ∈ Z+),

with the convention φ−n = 0 (n ∈ N).

In what follows, ϕ, ψ are the Haar integrals on
L

= ŜUq(2) and h is the Haar integral
on G = SUq(2).
In the next proposition we calculate the Plancherel measure of

L
, the unitary operator QL

and operators (Dπ)π∈Irr(
L

). Then, as G is unimodular, we have Eπ = Dπ, (π ∈ Irr(
L

)) and
QR = QLJϕJh (see Remark 3.1).

Proposition 3.40. The Plancherel measure of
L
equals 0 on {ψ1,ρ | ρ ∈ T} and the normal-

ized Lebesgue measure on the second circle {ψ2,λ |λ ∈ T}. Consequently, we will identify
Irr(

L
) with T. Operators {Dλ |λ ∈ T} are given by

Dλ = (1− q2)−
1
2 Diag(1, |q|−1, |q|−2, . . . ) (λ ∈ T)

with respect to the basis {φk | k ∈ Z+}. Operator QL is given by

QL : L2(G) 3 Λh(a) 7→
∫ ⊕

Irr(
L

)

ψ2,λ(a)D−1
λ dµ(λ) ∈

∫ ⊕
Irr(

L
)

HS(Hλ) dµ(λ) (a ∈ C(SUq(2))).

Proof. De�ne µ to be the normalized Lebesgue measure on the second circle of Irr(
L

) =
TtT and let QL be the operator given by the above formula. In order to show that these
objects are the ones given by Desmedt's theorem, we will use Proposition 3.5. Let us start
with showing that QL is well de�ned and unitary. First, it is clear that for a ∈ C(SUq(2))
the �eld of operators (ψ2,λ(a)D−1

λ )λ∈T is measurable and square integrable. Consequently,

we can introduce a densely de�ned linear map QL : Λh(a) 7→
∫ ⊕

Irr(
L

)
ψ2,λ(a)D−1

λ dµ(λ). Since

‖QLΛh(a)‖ ≤ ‖a‖ (a ∈ C(SUq(2))), the linear map QL ◦ Λh is bounded. Let us now show
that QL is isometry, i.e. 〈QLΛh(a

′) | QLΛh(a)〉 = 〈Λh(a
′) |Λh(a)〉 for all a, a′ ∈ C(SUq(2)).

Since

〈QLΛh(a
′) | QLΛh(a)〉 =

〈∫ ⊕
Irr(

L
)

ψ2,λ(a′)D−1
λ dµ(λ)

∣∣ ∫ ⊕
Irr(

L
)

ψ2,λ(a)D−1
λ dµ(λ)

〉
=
〈∫ ⊕

Irr(
L

)

ψ2,λ(1)D−1
λ dµ(λ)

∣∣ ∫ ⊕
Irr(

L
)

ψ2,λ(a′∗a)D−1
λ dµ(λ)

〉
= 〈QLΛh(1) | QLΛh(a

′∗a)〉
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and 〈Λh(a
′) |Λh(a)〉 = 〈Λh(1) |Λh(a

′∗a)〉, it is enough to consider the case a′ = 1. Next,
as maps QL ◦ Λh,Λh are bounded and linear, it is enough to consider a in a basis of
Pol(SUq(2)), {αlγnγ∗m, α∗l′γnγ∗m | l, n,m ∈ Z+, l

′ ∈ N} (see [99, Theorem 1.2]).
In order to calculate 〈Λh(1) |Λh(a)〉 we need to introduce a faithful representation
π0 : C(SUq(2))→ B(`2(Z+ × Z)) de�ned in [99]. One can express the Haar integral h as

h(a) = (1− q2)
∞∑
k=0

q2k〈φk,0 | π0(a)φk,0〉 (a ∈ C(SUq(2))),

where {φk,p | (k, p) ∈ Z+ × Z} is the standard basis of `2(Z+ × Z). Now, for l, n,m ∈ Z+

we have

〈Λh(1) |Λh(α
lγnγ∗m)〉 = h(αlγnγ∗m) = δl,0(1− q2)

∞∑
k=0

q2kδn,mq
(n+m)k = δl,0δn,m

1−q2
1−q2(1+n)

and similarly 〈Λh(1) |Λh(α
∗lγnγ∗m)〉 = δl,0δn,m

1−q2
1−q2(1+n) . On the other hand

〈QLΛh(1) | QLΛh(α
lγnγ∗m)〉 =

〈∫ ⊕
Irr(

L
)

D−1
λ dµ(λ)

∣∣ ∫ ⊕
Irr(

L
)

ψ2,λ(αlγnγ∗m)D−1
λ dµ(λ)

〉
= δl,0(1− q2)

∫
Irr(

L
)

∞∑
k=0

〈φk |λn−mq(n+m)kq2kφk〉 dµ(λ)

= δl,0δn,m(1− q2)
∞∑
k=0

q(n+m)kq2k = δl,0δn,m
1−q2

1−q2(1+n) .

In an analogous manner we check 〈QLΛh(1) | QLΛh(α
∗lγnγ∗m)〉 = δl,0δn,m

1−q2
1−q2(1+n) . This

shows that QL is isometry and consequently extends to the whole of L2(G). Let us now
argue that QL is surjective. Fix λ ∈ T, k, l ∈ Z+. We have ψ2,λ(γγ∗)φk = q2kφk, hence
ψ2,λ(1{q2l}(γγ

∗))φk = δk,lφk (note that operator 1{q2l}(γγ
∗) belongs to C(SUq(2)) because

q2l is an isolated point in the spectrum of γγ∗). Next, for n ∈ Z+ the following holds

ψ2,λ(αn1q2l(γγ
∗))φk = δk,l(

n−1∏
a=0

(1− q2(k−a))
1
2 )φk−n = δk,l(

n−1∏
a=0

(1− q2(k−a))
1
2 )φl−n

which (together with a similar reasoning for α∗) implies that for all l, n ∈ Z+ there exists
an operator En,l ∈ C(SUq(2)) such that ψ2,λ(En,l)φk = δl,kφn (k ∈ Z+, λ ∈ T). Next, for
m ∈ Z+ we have

ψ2,λ(q−lmEn,lγ
m)φk = δl,kλ

mφn, ψ2,λ(q−lmEn,lγ
∗m)φk = δl,kλ

−mφn (k ∈ Z+, λ ∈ T)

and consequently for any polynomial function P in λ, λ and n, l ∈ Z+ an operator∫ ⊕
Irr(

L
)
P (λ)ψ2,λ(En,l) dµ(λ) belongs to the image of QL. From the density of such polyno-

mials in L2(T) it follows that for all f ∈ L2(T)∫ ⊕
Irr(

L
)

f(λ)ψ2,λ(En,l) dµ(λ) ∈ QL(L2(G)). (3.21)
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We have an isomorphism (given by choice of bases)
∫ ⊕

Irr(
L

)
HS(Hλ) dµ(λ) ' L2(T)⊗HS(`2(Z+)),

hence it is clear that operators as in (3.21) span a dense subspace in
∫ ⊕

Irr(
L

)
HS(Hλ) dµ(λ),

and consequently QL is unitary. Let us now check the �rst commutation relation of Propo-
sition 3.5. We have

QLλ
L
(ω)Q∗L(QLΛh(a)) = QLΛh(λ

L
(ω)a) =

∫ ⊕
Irr(

L
)

ψ2,λ(λ
L
(ω)a)D−1

λ dµ(λ)

=

∫ ⊕
Irr(

L
)

ψ2,λ(λ
L
(ω))ψ2,λ(a)D−1

λ dµ(λ) =
(∫ ⊕

Irr(
L

)

ψ2,λ(λ
L
(ω))⊗ 1Hλ dµ(λ)

)
QLΛh(a),

for all ω ∈ `1(
L

), a ∈ C(SUq(2)) where λ
L
(ω) = (ω ⊗ id)W

L
, hence

QLλ
L
(ω)Q∗L =

∫ ⊕
Irr(

L
)

ψ2,λ(λ
L
(ω))⊗ 1Hλ dµ(λ) (ω ∈ `1(

L
)). (3.22)

In order to show the second commutation relation, let us show that QL transports Jh to
the direct integral of adjoints. For a ∈ Pol(SUq(2)) we have

QLJhΛh(a) = QLΛh(σ
h
−i/2(a∗)) =

∫ ⊕
Irr(

L
)

ψ2,λ(σh−i/2(a∗))D−1
λ dµ(λ).

Next, observe that ψ2,λ(σht (a)) = D−2it
λ ψ2,λ(a)D2it

λ for all λ ∈ T, t ∈ R, a ∈ Pol(SUq(2)).
Indeed, we have σht (α) = |q|−2itα, σht (γ) = γ (t ∈ R) and consequently

ψ2,λ(σht (γ)) = ψ2,λ(γ) = D−2it
λ ψ2,λ(γ)D2it

λ (t ∈ R)

and similarly for all k ∈ Z+, t ∈ R

D−2it
λ ψ2,λ(α)D2it

λ φk = (1− q2k)
1
2 |q|−2ikt|q|2i(k−1)tφk−1 = |q|−2itψ2,λ(α)φk = ψ2,λ(σht (α))φk.

It follows that for all a ∈ Pol(SUq(2))

QLJhΛh(a) =

∫ ⊕
Irr(

L
)

D−1
λ ψ2,λ(a∗)DλD

−1
λ dµ(λ) =

∫ ⊕
Irr(

L
)

(ψ2,λ(a)D−1
λ )∗ dµ(λ),

hence QLJhQ∗L equals Σ =
∫ ⊕

Irr(
L

)
JHλ dµ(λ). Now we can show the second commutation

relation. Recall that formula χ(V
L
) = (Jh⊗Jh)(W

L
)∗(Jh⊗Jh) implies that for all ω ∈ `1(

L
)

we have (ω ⊗ id)χ(V
L
) = JhR

G((ω ⊗ id)W
L
)∗Jh (equation (3.20)) and consequently

QL(ω ⊗ id)χ(V
L
)Q∗L = QLJhQ∗L

(∫ ⊕
Irr(

L
)

(ψ2,λ ◦RG)(λ
L
(ω))⊗ 1Hλ dµ(λ)

)∗QLJhQ∗L
=

∫ ⊕
Irr(

L
)

1Hλ ⊗ (ψ2,λ ◦RG)(λ
L
(ω))T dµ(λ) =

∫ ⊕
Irr(

L
)

1Hλ ⊗ (ψ2,λ)c(λ
L
(ω)) dµ(λ),
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which is the second commutation relation. We are left to show

QL(L∞(G) ∩ L∞(G)′)Q∗L = Diag(

∫ ⊕
Irr(

L
)

HS(Hλ) dµ(λ)),

let us �rst argue that

QL L∞(G)Q∗L =

∫ ⊕
Irr(

L
)

B(Hλ)⊗ 1Hλ dµ(λ)). (3.23)

Inclusion ⊆ follows from the commutation relation (3.22). On the other hand, equation
(3.22) and a reasoning similar to the one showing that QL is unitary, implies that for any
polynomial P in λ, λ and n, l ∈ Z+ we have∫ ⊕

Irr(
L

)

P (λ)ψ2,λ(En,l)⊗ 1Hλ dµ(λ) ∈ QL L∞(G)Q∗L.

The σ-wot density of polynomials in L∞(T) and the isomorphism
∫ ⊕

Irr(
L

)
B(Hλ)⊗1Hλ dµ(λ) '

L∞(T)⊗̄B(`2(Z+)) gives us (3.23). Consequently

QL(L∞(G) ∩ L∞(G)′)Q∗L =
(∫ ⊕

Irr(
L

)

B(Hλ)⊗ 1Hλ dµ(λ)
)
∩
(∫ ⊕

Irr(
L

)

1Hλ ⊗ B(Hλ) dµ(λ)
)

= Diag(

∫ ⊕
Irr(

L
)

HS(Hλ) dµ(λ)).

In the next proposition we �nd the action of the operator P it on the level of direct
integrals.

Proposition 3.41. For each t ∈ R, operator QLP itQ∗L acts on
∫ ⊕

Irr(
L

)
HS(Hλ) dµ(λ) as

follows:

QLP itQ∗L :

∫ ⊕
Irr(

L
)

Tλ dµ(λ) 7→
∫ ⊕

Irr(
L

)

Tλ |q|2it dµ(λ).

Note that the above result implies that QLP itQ∗L is not decomposable.

Proof. Let P̃ it be the operator in the claim, i.e. P̃ it :
∫ ⊕

Irr(
L

)
Tλ dµ(λ) 7→

∫ ⊕
Irr(

L
)
Tλ|q|2it dµ(λ).

Clearly it is well de�ned and bounded. Recall that the scaling group of G = SUq(2) acts
as follows

τGt (α) = α, τGt (α∗) = α∗, τGt (γ) = |q|2itγ, τGt (γ∗) = |q|−2itγ∗ (t ∈ R).
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and P it satis�es P itΛh(a) = Λh(τ
G
t (a)) for all t ∈ R, a ∈ C(G). Fix l, k, n,m ∈ Z+, λ ∈ T

and the corresponding operator αlγnγ∗m in the basis of Pol(G). We have

ψ2,λ(αlγnγ∗m)φk = (
l−1∏
a=0

(1− q2(k−a))
1
2 )λn−mqk(n+m)φk−l

= |q|−2it(n−m)(
l−1∏
a=0

(1− q2(k−a))
1
2 )(λ |q|2it)n−mqk(n+m)φk−l

= |q|−2it(n−m)ψ2,λ|q|2it(αlγnγ∗m)φk,

(recall that we use the convention φ−p = 0 for p ∈ N) and consequently

QLP itΛh(α
lγnγ∗m) = |q|2it(n−m)QLΛh(α

lγnγ∗m)

=

∫ ⊕
Irr(

L
)

ψ2,λ|q|2it(αlγnγ∗m)D−1
λ dµ(λ) = P̃ itQLΛh(α

lγnγ∗m).

In a similar manner we checkQLP itΛh(α
∗lγnγ∗m) = P̃ itQLΛh(α

∗lγnγ∗m). The claim follows
because Λh(Pol(G)) is dense in L2(G).

The last result of this section describes the action of an operator QLJϕQ∗L.

Proposition 3.42. Operator QLJϕQ∗L acts on
∫ ⊕

Irr(
L

)
HS(Hλ) dµ(λ) as follows:

QLJϕQ∗L :

∫ ⊕
Irr(

L
)

Tλ dµ(λ) 7→
∫ ⊕

Irr(
L

)

jλT− sgn(q)λjλ dµ(λ),

where jλ is the antilinear operator on Hλ = `(Z+) given by jλφk = φk (λ ∈ T, k ∈ Z+).

Note that this result implies that operator QLJϕQ∗L is not decomposable if q > 0.

Proof. Using the formula RG = SGτGi/2 and [99, Equation 1.14] one easily checks that

RG(α) = α∗, RG(α∗) = α, RG(γ) = − sgn(q)γ, RG(γ∗) = − sgn(q)γ∗.

On the other hand we have RG(a) = Jϕa
∗Jϕ for all a ∈ C(SUq(2)), hence

Jϕα = αJϕ, Jϕα
∗ = α∗Jϕ, Jϕγ = − sgn(q)γ∗Jϕ, Jϕγ

∗ = − sgn(q)γJϕ.

Denote by J̃ϕ the operator from the claim and �x λ ∈ T, k, n,m, l ∈ Z+. We have

ψ2,λ(αlγmγ∗n)φk = λm−nq(m+n)k(
l−1∏
a=0

(1− q2(k−a))
1
2 )φk−l

= (− sgn(q))m+n(− sgn(q)λ)m−nq(m+n)k(
l−1∏
a=0

(1− q2(k−a))
1
2 )φk−l

= (− sgn(q))m+njλψ
2,− sgn(q)λ(αlγnγ∗m)jλφk,
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consequently

QLJϕΛh(α
lγnγ∗m) = QLαl(− sgn(q))nγ∗n(− sgn(q))mγmJϕΛh(1)

= (− sgn(q))n+m

∫ ⊕
Irr(

L
)

ψ2,λ(αlγmγ∗n)D−1
λ dµ(λ)

=

∫ ⊕
Irr(

L
)

jλψ
2,− sgn(q)λ(αlγnγ∗m)jλD

−1
λ dµ(λ)

= J̃ϕ

∫ ⊕
Irr(

L
)

ψ2,λ(αlγnγ∗m)D−1
λ dµ(λ) = J̃ϕQLΛh(α

lγnγ∗m).

Equation QLJϕΛh(α
∗lγnγ∗m) = J̃ϕQLΛh(α

∗lγnγ∗m) can be checked similarly.

Remark. In propositions 3.41, 3.42 we have expressed operators P it (t ∈ R) and Jϕ on∫ ⊕
Irr(

L
)
HS(Hλ) dµ(λ). Theorem 3.24 and Proposition 3.21 allow us to do the same for

δitL ,∇it
ϕ,∇it

ψ (t ∈ R) � operators obtained in this way are not decomposable.

3.7 Example: quantum az + b group

In this section we will describe some aspects of the theory of the quantum az + b group.
We begin by introducing a complex number q and an abelian group Γq ⊆ C×. We will
consider three cases:

1) q = e
2πi
N for a natural number N ∈ 2N \ {2} and Γq = {qkr | k ∈ Z, r ∈ R>0},

2) q is a real number in ]0, 1[ and Γq = {qiθ+k | θ ∈ R, k ∈ Z},

3) q = e
1
ρ , where Re(ρ) < 0, Im(ρ) = N

2π
and N ∈ 2Z \ {0}. In this case

Γq = {e
k+it
ρ | k ∈ Z, t ∈ R}.

It will be more convenient for us to work in the dual picure25: let Ĝ be the quantum
az+ b group associated with the parameter q. We refer the reader to papers [103, 73, 104]
for construction of these groups, here we will recall only necessary properties.
We treat all three cases simultaneously. The group Γq has closure given by Γq = Γq ∪ {0}
and is selfdual. This duality is implemented by a certain bicharacter χ : Γq × Γq → T.
We choose a Haar measure on Γq in such a way that the Fourier transform F(f)(γ) =∫

Γq
χ(γ, γ′)f(γ′) dµ(γ′) is a unitary operator on L2(Γq). Next, the group Γq acts on C0(Γq)

by translations: σγ(f)(γ′) = f(γγ′) (f ∈ C0(Γq), γ ∈ Γq, γ
′ ∈ Γq). Let C0(Γq) oσ Γq ⊆

B(L2(Γq)) be the associated crossed product C∗-algebra (note that since Γq is abelian,

the reduced crossed product is universal). The C∗-algebra C0(Ĝ) is isomorphic to the

crossed product C0(Γq) oσ Γq. Furthermore, it is known that Ĝ is coamenable. Indeed,

25In fact, G is isomorphic to the quantum group opposite to quantum az + b.
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it was pointed in [73, 74]. It follows from an easy observation that the universal prop-
erty of C0(Γq) oσ Γq together with the trivial representation of Γq and the character

C0(Γq) 3 f 7→ f(0) ∈ C give rise to a character of C0(Γq) oσ Γq ' C0(Ĝ). Then [8,

Theorem 3.1] implies that Ĝ is coamenable.

One easily checks that the quotient space Γq/Γq consists of two points and is not an-
tidiscrete. Consequently, [97, Proposition 7.30] implies that G is second countable and

type I. Using [97, Theorem 8.39] one can describe the spectrum of C0(Ĝ) ' C0(Γq) oσ Γq:

there is a family of one dimensional representations indexed by Γ̂q and one faithful irre-
ducible in�nite dimensional representation given by the inclusion into B(L2(Γq)). Denote
this representation by π.

Proposition 3.43. The Plancherel measure of G equals the Dirac measure at π, a repre-
sentation corresponding to the inclusion π : C0(Ĝ)

'−→ C0(Γq) oσ Γq ↪→ B(L2(Γq)). Conse-
quently we have QL,QR : L2(G)→ HS(L2(Γq)).

Proof. It is observed in [104] that we have ψ̂ ◦ τ Ĝt = |q−4it|ψ̂ for all t ∈ R, hence the
scaling constant of G equals ν = ν̂−1 = |q−4i|. In the �rst and the third case q is not real
and it follows that ν is non-trivial. Corollary 3.27 implies that the set of one dimensional
representations is of measure zero, and the claim follows26. Let us now consider the second
case, i.e. q ∈ ]0, 1[. It is argued in [92, Section 5, Proposition A.3] that the von Neumann

algebra L∞(Ĝ) is isomorphic to the von Neumann algebra M associated with a pair (a, b) of
admissible normal operators (see [92, De�nition 5.1]). Moreover, up to an isomorphism M
does not depend on the choice of (a, b), in particular we can take a pair (a, b) introduced in
[92, Proposition 5.2]. In this case one easily sees that the resulting von Neumann algebra
equals the whole B(`2(Z)). In particular it is a factor, hence Proposition 3.7 implies that
the Plancherel measure of G must be the Dirac measure at π.

Now we turn to the problem of identifying operators Dπ, Eπ. To simplify the nota-
tion, we will call these operators respectively D and E. Let us start with introducing two
normal (unbounded) operators on L2(Γq): a and b. Operator b acts by multiplication:
(bf)(γ) = γf(γ) (f ∈ Dom(b), γ ∈ Γq) and has the obvious domain. The second operator
a can be de�ned as a = FbF∗.
Note that there exists an isomorphism of von Neumann algebras ΦR : L∞(Ĝ)→ B(L2(Γq))

induced by QRJϕ̂Jϕ, such that ΦR(x) = π(x) for x ∈ C0(Ĝ) (see Theorem 3.3 and Proposi-

tion 3.7). Under this isomorphism, the right Haar integral ψ̂ is transformed to Tr(E−1·E−1)
� it follows from the construction of the Plancherel measure in Theorem 3.4. On the other
hand, we have ψ̂(x) = Tr(|b|π(x)|b|) for all x ∈ C0(Ĝ)+ ([104, Theorem 3.1]). This means

that the weights Tr(E−1 · E−1), Tr(|b| · |b|) are equal on ΦR(C0(Ĝ)). Let θ be the restric-

tion of these weights to ΦR(C0(Ĝ)). The modular automorphism group of Tr(E−1 ·E−1) is

26We remark that it was already observed in [92] that in the �rst case, L∞(Ĝ) is isomorphic to the
algebra of bounded operators on a separable Hilbert space.
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given by σ
TrE−1

t (A) = E−2itAE2it, similarly σ
Tr|b|
t (A) = |b|2itA|b|−2it (A ∈ B(L2(Γq)), t ∈ R).

Next, the weight θ satis�es the KMS condition for both groups (σ
TrE−1

t |ΦR(C0(Ĝ)))t∈R and

(σ
Tr|b|
t |ΦR(C0(Ĝ)))t∈R and as this weight is faithful, [53, Corollary 6.35] implies E−2itAE2it =

|b|2itA|b|−2it for all A ∈ ΦR(C0(Ĝ)), t ∈ R. By the σ-wot density of ΦR(C0(Ĝ)) in
B(L2(Γq)) we get E = c|b|−1 for some c > 0. Equality Tr(E−1 · E−1) = Tr(|b| · |b|) on

ΦR(C0(Ĝ)) forces c = 1 and consequently E = |b|−1.
The next step is to identify the operator D. Observe that Lemma 3.26 implies f(π) = 1,
where f is the function from Corollary 3.22. Recall ([73, Section 6.2], [103, Equation
3.18]) that operator a−1 ◦ b is closable and its closure a−1b is normal. Moreover, we have

RĜ(π−1(b)) = π−1(−qa−1b). If we combine this information together with Corollary 3.22
and the equality E = |b|−1 we arrive at

Q∗L(D2it ⊗ 1
L2(Γq)

)QL = RĜ(Q∗L(E2it ⊗ 1
L2(Γq)

)QL) = RĜ(Q∗L(|b|−2it ⊗ 1
L2(Γq)

)QL)

= Q∗L(| − qa−1b|−2it ⊗ 1
L2(Γq)

)QL = Q∗L(|qa−1b|−2it ⊗ 1
L2(Γq)

)QL,

which implies D = |qa−1b|−1.

Proposition 3.44. We have D = |qa−1b|−1 and E = |b|−1.
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4 The quantum disc

Choose 0 ≤ q < 1 and let Tq be the universal unital C∗-algebra generated by an element
sq satisfying

s∗qsq − qsqs∗q = (1− q)1. (4.1)

This C∗-algebra was considered (under the name C0,q(U)) in [48]. Let us recall an argument
([48, Proposition IV.1]) which shows that such an C∗-algebra exists.

Lemma 4.1. Let H be a Hilbert space and t ∈ B(H) an operator satisfying t∗t − qtt∗ =
(1− q)1. Then ‖t‖ = 1.

Proof. We have
t∗t = qtt∗ + (1− q)1,

hence
‖t‖2 = ‖t∗t‖ = ‖qtt∗ + (1− q)1‖ = q‖tt∗‖+ (1− q) = q‖t‖2 + (1− q)

and as q 6= 1, the claim follows.

The above lemma shows that sq is a contraction in Tq. If we formally set q = 1 in (4.1),
the resulting T1 would have to be a universal C∗-algebra generated by a normal (bounded)
operator � such an algebra does not exists. However, we can de�ne such an algebra if we
put an additional condition (super�uous in the case 0 ≤ q < 1) that the generator is a
contraction. Due to the spectral theorem, such obtained C∗-algebra is isomorphic to the
C∗-algebra of continuous functions on the closed unit disc, C(D). Consequently, we can
think of algebras Tq as the algebras of continuous functions on quantum discs.

Our next aim is to realise Tq as algebras of operators on `2(Z+). To this end, let us
introduce a weighted shift

Sq : en 7→
√

1− qn+1en+1 (n ∈ Z+),

where {en}n∈Z+ is the standard basis of `2(Z+). In particular, S = S0 ∈ B(`2(Z+)) is the
unilateral shift. One easily checks that

S∗q : en 7→
√

1− qnen−1 (n ∈ N), S∗q : e0 7→ 0

and
S∗qSq − qSqS∗q = (1− q)1.

It follows that there exists a ?-epimorphism ρq : Tq → C∗(Sq) de�ned by ρq(sq) = Sq.

Proposition 4.2. Each ρq is an ?-isomorphism and we have C∗(Sq) = C∗(S).
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Proof. ρ0 is a ?-isomorphism by Coburn's theorem (see e.g. [27, Theorem V 2.2]). Assume
therefore that q > 0. Let us �rst prove the second claim. Since 1 − SS∗ ∈ C∗(S) is the
projection onto Ce0, one easily checks that the C∗-algebra of compact operators is contained
in C∗(S). Next, consider compact operator q ∈ B(`2(Z+)) given by qen = qnen (n ∈ Z+).
Clearly Sq =

√
1− qS, hence Sq ∈ C∗(S) and C∗(Sq) ⊆ C∗(S). To prove the converse

inclusion observe that S∗qSq = 1− qq ∈ C∗(Sq), hence q ∈ C∗(Sq) and

S = (1− q)−
1
2Sq = Sq(1− qq)−

1
2 ∈ C∗(Sq). (4.2)

Let us now prove that ρq is a ?-isomorphism. To this end we will �nd the inverse map
C∗(S) = C∗(Sq)→ Tq using the universal property of C∗(S). The idea is to construct a �s
operator� instide Tq using formula (4.2). Let us �rst show that

Sp(sqs
∗
q) ⊆ {0, 1− q, 1− q2, . . . } ∪ {1}. (4.3)

Recall s∗qsq − qsqs∗q = (1− q)1, hence

Sp(sqs
∗
q) \ {0} = Sp(s∗qsq) \ {0}

= Sp(qsqs
∗
q + (1− q)1) \ {0} = (q Sp(sqs

∗
q) + (1− q)) \ {0}.

(4.4)

Assume by contradiction that we have a number λ = λ1 ∈ Sp(sqs
∗
q)\({0, 1−q, 1−q2, . . . }∪

{1}), then using (4.4) we can de�ne

λ2 = q−1(λ1 − (1− q)) = q−1λ1 + (1− q−1) ∈ Sp(sqs
∗
q) \ ({0, 1− q, 1− q2, . . . } ∪ {1}).

Indeed, clearly λ2 6= 0 and if λ2 = 1, then

q = λ1 − (1− q) ⇒ λ1 = 1,

a contradiction. Similarly, if λ2 = 1− qn for some n ∈ N then

1− qn = q−1(λ1 − (1− q))

and

λ1 = (1− q) + q(1− qn) = (1− q)(1 + q(1 + q + · · ·+ qn−1))

= (1− q)(1 + q + · · ·+ qn) = 1− qn+1,

which again gives us a contradiciton. Consequently, we can inductively de�ne numbers
λk ∈ Sp(sqs

∗
q) (k ∈ N) such that

λk+1 = q−1λk + (1− q−1) (k ∈ N).

It follows that

λk = q−k+1λ1 + (1− q−1)
k−2∑
n=0

q−n = q−k+1λ1 + (1− q−1)1−q−k+1

1−q−1 = 1 + (λ1 − 1)q−k+1
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for k ≥ 2. As 0 < q < 1 and λ1 6= 1, the sequence (λk)k∈N diverges to +∞ and we arrive
at a contradiction. We have showed equation (4.3). It follows that also

Sp(s∗qsq) ⊆ {0, 1− q, 1− q2, . . . } ∪ {1}.

However, if 0 ∈ Sp(s∗qsq) = q Sp(sqs
∗
q)+(1−q) then −q−1(1−q) ∈ Sp(sqs

∗
q), a contradiction.

This shows that in fact

Sp(s∗qsq) ⊆ {1− q, 1− q2, . . . } ∪ {1}.

Recall that S∗qSq = 1− qq, hence q−1(1− s∗qsq) plays the role of q inside Tq. Consequently,
let us de�ne s = sq(s

∗
qsq)

− 1
2 ∈ Tq. One easily sees that s is an isometry, hence by the

universal property of C∗(S) there exists a ?-homomorphism

C∗(Sq) = C∗(S) 3 S 7→ s ∈ Tq.

Clearly this map is the inverse to ρq.

The above proposition tells us that all the quantum discs underlying Tq (0 ≤ q < 1)
are homeomorphic. Due to this reason, henceforth we will only consider T = T0 which is
usually called the Toeplitz algebra. To ease the notation we will write C∗(S) = T .

The main question we will answer in this section is whether there exists a compact
quantum group structure on T , or in other words, whether the quantum disc is a quantum
group. This question was posed by Piotr M. Soªtan in his paper [75]. Let us �rst note that
in the classical setting an analogous question has negative answer: there is no compact
group structure on the unit disc D = {z ∈ C | |z| = 1}. To see this observe that D is
not homogenous � e.g. there is no homeomorphism of D taking 0 to 1 � which shows that
a structure of a topological group on D cannot exist27. The same result holds for the
quantum disc:

Theorem 4.3. There is no compact quantum group G with C(G) ' T .

Note that we do not assume that C(G) is universal or reduced.

We've obtained this result together with Piotr M. Soªtan, which resulted in a pub-
lication [51]. The proof underwent some modi�cations. During the revision process an
anonymous referee suggested us some changes which made the argument shorter but also
more relying on the structure of T and less on the theory of type I quantum groups. This is
why we will present here its former version. Let us mention also that afterwards, together
with Alexandru Chirvasitu, we were able to generalise this result to C∗-algebras with dis-
crete CCR ideal (see [21] for the de�nition of a discrete CCR ideal and a precise result).

27Let us mention that a similar question for spheres Sn (n ∈ N) is much more subtle, see [1].
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The rest of this section will be devoted to the proof of Theorem 4.3. Assume by
contradiction that there exists a compact quantum group G with C(G) isomorphic to T .
Let us denote the dual discrete quantum group by

L
= Ĝ. It will be more convenient for

us to work with the concrete C∗-algebra of operators C∗(S) ⊆ B(`2(Z+)) generated by the
unilateral shift. Let

π• : C(G)→ T = C∗(S) ⊆ B(H•)

be the coresponding isomorphism, where H• = `2(Z+).
To proceed we need to recall some properties of the Toeplitz algebra. First, by the universal
property of T , there exists a ?-epimorphism ρ : T → C(T) (called the symbol map) given by
S 7→ z, where z ∈ C(T) is the identity function on T. The kernel of ρ equals K ⊆ B(`2(Z+)),
the algebra of compact operators, hence we have a short exact sequence (see e.g. [27,
Theorem V.I.5] or [10, Example II.8.3.2 (v)])

0→ K → T ρ−→ C(T)→ 0. (4.5)

Furthermore, K is an essential ideal in T [22, Theorem 1]. It follows that T is postliminal,
hence of type I ([33, Theorem 9.1]). The spectrum of T , Irr(

L
) = Irr(T ) is equal to

{•} ∪ T, where • corresponds to the representation π• and each λ ∈ T is associated with
the character

ρλ : T ρ−→ C(T)
evλ−−→ C,

where evλ is the evaluation at λ ∈ T. It is not di�cult to check that the (Mackey Borel)
measurable structure on Irr(

L
) is the �obvious one�: {•} is measurable and the measurable

structure on T is the Borel measurable structure corresponding to the standard topology
(see [33, Section 3.8.1]). Then because T is of type I, by [33, Proposition 4.6.1] this mea-
surable structure equals the measurable structure induced by topology.

After recalling these results about the Toeplitz algebra, we can prove some preliminary
results concerning G.

Claim 1. The Haar integral on G is faithful, i.e. C(G) = Cr(G).
Proof. Denote the Haar integral by h. Its kernel ker(h) = {a ∈ C(G) |h(a∗a) = 0} is
an ideal ([98, Page 656], see also [59, Proposition 7.9]), hence if it is non-trivial, we have
K ⊆ ker(h). But then the reduced C∗-algebra of continuous functions on G, Cr(G), which
is the quotient Cr(G) = C(G)/ ker(h) (see [7, Section 2]) would be commutative. However,
the quotient map is injective on Pol(G) ⊆ C(G) which forces ker(h) = {0}.

Claim 2. G is coamenable, in particular C(G) = Cu(G).
Proof. This claim follows from [7, Corollary 2.9] � a compact quantum group H is coa-
menable if and only if there exists a character on the reduced C∗-algebra of continuous
functions on H. Since C(G) ' T , there exists a character on C(G).

Claim 3. G is not of Kac type.
Proof. If G were of Kac type, then its Haar integral h would give a faithful tracial state
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on T . However, the operator 1 − SS∗ ∈ T is non-zero, positive and it is annihilated by
any tracial state.

In the remainder of the proof we will use theory of non-Kac type quantum groups
together with theory of type I quantum groups to arrive at a contradiction.
Let us denote by G̃ the group of characters on C(G), with the group operation given by
the convolution G̃× G̃ 3 (φ, φ′) 7→ φ ? φ′ = (φ⊗ φ′) ◦∆ ∈ G̃. G̃ is equipped with the w∗-
topology of C(G)∗ � this makes G̃ into a compact Hausdor� group ([7, Theorem 3.5]). Since
C(G) ' T , we have G̃ = {ρλ ◦ π• |λ ∈ T}. Recall that in Section 2.3 we have introduced
a family of functionals {fz}z∈C on Pol(G). As {fit}t∈R are ?-preserving ([64, Proposition
1.7.2 (ii)]), they extend to characters on C(G) ([7, Theorem 3.3]). Let us denote by FW the
set {fit}t∈R. It is easy to see that FW is a subgroup of G̃ (see [64, Proposition 1.7.2 (iii)]),
furthermore the map R 3 t 7→ fit ∈ G̃ is continuous. As R is connected it follows that FW
is a non-trivial connected subgroup of G̃ which is homeomorphic to a circle � consequently
we have FW = G̃:

Lemma 4.4. The group of characters on C(G) equals {ρλ ◦ π• |λ ∈ T} = {fit | t ∈ R}.

For each α ∈ Irr(G) let us choose a basis in Hα which diagonalises operator ρα. Denote
the corresponding eigenvalues by ρα,i (i ∈ {1, . . . , dim(α)}). Equation (2.18) implies

fit(U
α
i,j) = δi,jρ

it
α,i (α ∈ Irr(G), i, j ∈ {1, . . . , dim(α)}).

In next two propositions which are based on Lemma 4.4 we connect properties coming
from two pictures � quantum group C(G) and operator algebra T ⊆ B(`2(Z+)).

Proposition 4.5. An operator A ∈ T is compact if and only if fit(π−1
• (A)) = 0 for all

t ∈ R.

Proof. The short exact sequence (4.5) implies that A is compact if and only if ρλ(A) = 0
for all λ ∈ T. As {ρλ |λ ∈ T} = {fit ◦ π−1

• | t ∈ R} we get the claim.

Proposition 4.6. For any α ∈ Irr(G) and i, j ∈ {1, . . . , dim(α)} the operator π•(Uα
i,j) is

compact if and only if i 6= j. Moreover, π•(Uα
i,i) is a Fredholm operator.

Proof. The �rst part of the proposition follows immediately from Proposition 4.5. For the
second part note that from the unitarity of Uα:

nα∑
j=1

Uα
i,jU

α
i,j
∗ = 1

and from the fact that π•(U
α
i,j) are compact for i 6= j it follows that ρ

(
π•(U

α
i,i)
)
is unitary,

so the operator π•(U
α
i,i) is Fredholm.
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The observation that π•(U
α
i,i) is Fredholm, will be a crucial ingredient in our proof.

The next step in our reasoning is to treat
L

= Ĝ as a second countable (discrete) type I
quantum group. Theorem 3.3 gives us a measure µ on Irr(

L
) = {•} ∪ T, unitary operator

QL and a measurable �eld of strictly positive, self-adjoint operators D•, Dλ(λ ∈ T). Since
L∞(G) is non-commutative, Proposition 3.7 implies that subset {•} has positive measure
(recall that representations coresponding to T are one dimensional), hence after rescalling
we may assume that µ({•}) = 1. Consequently we will write

QL(L2(G)) = HS(H•)⊕
∫ ⊕
T

HS(Hλ) dµ(λ)

QL L∞(G)Q∗L = (B(H•)⊗ 1H•)⊕
∫ ⊕
T

B(Hλ)⊗ 1Hλ dµ(λ)

(4.6)

and work with the above decomposition. It will be useful to introduce the following no-
tation: write M for QL L∞(G)Q∗L and M1,M2 for the two summands in the above decom-
position, so that M = M1⊕M2. Next, let us denote by 1i ∈ Mi (i ∈ {1, 2}) the units, so
that 11 + 12 = 1 ∈ M. The next lemma holds for general type I, second countable locally
compact quantum groups.

Lemma 4.7. Let H be a type I, second countable locally compact quantum group with
Plancherel measure µH, corresponding unitary operator QH

L and measurable �eld of repre-
sentations (πx)x∈Irr(H). Then for any a ∈ Cu

0(Ĥ) we have

QH
LΛĤ(a)QH∗

L =

∫ ⊕
Irr(H)

(πx(a)⊗ 1Hx) dµH(x), (4.7)

where ΛĤ : Cu
0(Ĥ)→ C0(Ĥ) is the reducing morphism.

Proof. Given a ∈ Cu
0(Ĥ), element QH

LΛĤ(a)QH∗
L can be written as

QH
LΛĤ(a)QH∗

L =

∫ ⊕
Irr(H)

(ax ⊗ 1Hx) dµH(x).

for some measurable �eld (ax)x∈Irr(H). By Desmedt's result (Theorem 3.3) for any ω ∈ L1(H)
we have

QH
L((ω ⊗ id)(W))QH∗

L =

∫ ⊕
Irr(H)

(ω ⊗ id)(Uπx)⊗ 1Hx dµH(x),

where Uπx is the unitary representation of H corresponding to πx. Thus

QH
LΛĤ(λu(ω))QH∗

L =

∫ ⊕
Irr(H)

πx(λ
u(ω))⊗ 1Hx dµH(x).

Both sides of the above equation are continuous with respect to λu(ω) (for the right hand

side we can use [34, Section 2.3, Proposition 4] because the range of λu is dense in Cu
0(Ĥ))

and (4.7) follows.
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Lemma 4.8. Let β be an automorphism of M . Then β preserves the decomposition M =
M1 ⊕M2. In particular β(11) = 11 and β(12) = 12.

Proof. Let E1 and E2 be the projections of M onto the two summands M1 and M2 (so
that Ei(x) = 1ix for any x ∈ M). The map M1 3 y 7→ E2

(
β(y)

)
∈ M2 is a normal

∗-homomorphism M1 → M2 which must be zero because M1 is a factor and M2 is com-
mutative. It follows that β(M1) ⊆ M1 and since this is also true for the automorphism
β−1, we have β−1(M1) ⊆ M1 and acting with β on both sides gives M1 ⊆ β(M1). It
follows that β restricts to an automorphisms ofM1, so it must preserve 11. Clearly if there
were z ∈ M2 such that E1

(
β(z)

)
6= 0 then z = β−1(β(z)) = β−1

(
E1(β(z)) + E2(β(z))

)
=

β−1
(
E1(β(z))

)
+ β−1

(
E2(β(z))

)
which is a contradiction because β−1 is injective and pre-

serves M1, so β
−1
(
E1(β(z))

)
= 0 and hence E1(β(z)) = 0. It follows that β preserves M2

and consequently β(12) = 12.

One way to use Lemma 4.8 is to apply it to the scaling automorphisms of L∞(G)
transferred to M via the unitary QL:

βt(a) = QLτt
(
Q∗LaQL

)
Q∗L, (a ∈ M, t ∈ R).

It follows that the one-parameter group (βt)t∈R restricts to a one-parameter group of au-
tomorphisms of M1. Thus we obtain a one-parameter group of automorphisms (αt)t∈R of
B(H•) de�ned by

αt(x)⊗ 1H• = QLτt(Q∗L(x⊗ 1H•)QL)Q∗L (x ∈ B(H•), t ∈ R)

and thus by [46, Theorem 4.13] (see also [47]) there exists a strongly continuous one-
parameter group of unitary operators (At)t∈R on H• such that

αt(x)⊗ 1H• = AtxA−t ⊗ 1H• , (x ∈ B(H•), t ∈ R).

The one-parameter group (P it)t∈R also induces automorphisms of L∞(G)′ ⊆ B(L2(G))
which can be transferred to automorphisms of M ′ by the unitary QL. Clearly M ′ =
M1
′ ⊕M2

′ and by a process analogous to the one presented for M we obtain a σ-weakly
continuous one-parameter group of automorphisms of M1

′ = 1H• ⊗ B(H•) which yields a
group (α′t)t∈R of automorphisms of B(H•):

1H• ⊗ α′t(y) = QLP it
(
Q∗L(1H• ⊗ y)QL

)
P−itQ∗L (y ∈ B(H•), t ∈ R).

It follows that there is a strongly continuous one-parameter group of unitary operators
(Bt)t∈R on H• such that

1H• ⊗ α′t(y) = 1H• ⊗B>t yB>−t, (y ∈ B(H•), t ∈ R)

(for future notational convenience we choose to consider the group (Bt)t∈R on H• and work
with the transposed operators on H•).
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Clearly the group (βt)t∈R is implemented by the unitary operators (QLP itQ∗L)t∈R and
since the group preserves the projections 11 and 12, these operators are block-diagonal in
the decomposition (4.6). It follows that for any x ∈ B(H•) and y ∈ B(H•) we have

(11QLP itQ∗L)(x⊗ y)(11QLP−itQ∗L) = αt(x)⊗ α′t(y) = (At ⊗B>t )(x⊗ y)(A−t ⊗B>−t)

for all t ∈ R. This implies

11QLP itQ∗L = λt(At ⊗B>t ), t ∈ R

for some complex numbers (λt)t∈R of absolute value 1 depending continuously on t. More-
over, since the two one-parameter groups (QLP itQ∗L)t∈R and (At ⊗B>t )t∈R obviously com-

mute, t 7→ λt is also a homomorphism, so de�ning Ãt = λtAt we obtain a strongly contin-
uous one-parameter group of unitaries such that

11QLP itQ∗L = Ãt ⊗B>t (t ∈ R).

Proposition 4.9. With the notation introduced above we have Ãt = B−t for all t ∈ R .

Proof. We will use the fact that for all t we have P itJG = JGP
it (equation (2.14)). More-

over, by Proposition 3.7 the operator

QLJGQ∗L : HS(H•)⊕
∫ ⊕
T

HS(Hλ) dµ(λ)→ HS(H•)⊕
∫ ⊕
T

HS(Hλ) dµ(λ)

acts as

(ξ ⊗ η)⊕
∫ ⊕
T

(ξλ ⊗ ηλ) dµ(λ) 7→ (η ⊗ ξ)⊕
∫ ⊕
T

(ηλ ⊗ ξλ) dµ(λ).

In particular QLJGQ∗L is block-diagonal and

11QLJGQ∗L : HS(H•) 3 (ξ ⊗ η) 7→ (η ⊗ ξ) ∈ HS(H•).

Therefore

11QLJGQ∗L11(Ãt ⊗B>t ) = 11QLJGP itQ∗L11

= 11QLP itJGQ∗L11 = (Ãt ⊗B>t )11QLJGQ∗L11

for all t ∈ R. The claim follows from Lemma 7.8.

Corollary 4.10. For each t ∈ R the restriction ofQLP itQ∗L to HS(H•) is equal to B−t⊗B>t .

In what follows we let B be the unique strictly positive, self-adjoint operator on H•
satisfying Bt = Bit for all t.

Recall that using operators D•, (Dλ)λ∈T we can express the Haar integral on
L̂

= G
(see Theorem 3.3): in particular we have

1 = h(1) = Tr(D−2
• ) +

∫
T

Tr(D−2
λ ) dµ(λ).
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This shows that D−1
• is a Hilbert-Schmidt operator, in particular it is compact hence

D−1
• ∈ T ⊆ B(H•). The eigenvalues of D

−1
• are of �nite multiplicity, they form a countable

subset of ]0,+∞[ and we have the norm convergent series

D−1
• =

∑
q∈Sp(D−1

• )

q1{q}(D
−1
• ).

Proposition 4.11. The operators B and D• strongly commute.

Proof. From the properties of the Plancherel measure we get

QLΛh(1) = D−1
• ⊕

∫ ⊕
T
D−1
λ dµ(λ) ∈ HS(H•)⊕

∫ ⊕
T

HS(Hλ) dµ(λ).

Now we �x t ∈ R and note that since τt(1) = 1, we have

D−1
• ⊕

∫ ⊕
T
D−1
λ dµ(λ) = QLΛh(1) = QLΛh(τt(1))

= QLP itΛh(1) = B−tD
−1
• Bt ⊕

(
12(QLP itQ∗L)

)(∫ ⊕
T
D−1
λ dµ(λ)

)
,

which implies that BtD
−1
• = D−1

• Bt.

Corollary 4.12. The operator B preserves the decomposition of H• into eigenspaces of
D−1
• :

H• =
⊕

q∈Sp(D−1
• )

1{q}(D
−1
• )H•

so that
B =

⊕
q∈Sp(D−1

• )

1{q}(D
−1
• )B 1{q}(D

−1
• ).

Now we will prove three lemmas relating the structure of the compact quantum group
G to the decomposition of H• into eigenspaces of D−1

• .

Lemma 4.13. For a ∈ T and t ∈ R we have

π•
(
σht (π−1

• (a))
)

= D−2it
• aD2it

• ,

π•
(
τt(π

−1
• (a))

)
= B−taBt.

Proof. By Theorem 3.24 the modular operator for h transported via the unitary QL acts
as follows:

QL∇it
hQ∗L =

(
D−2it
• ⊗ (D2it

• )>
)
⊕
∫ ⊕
T

(
D−2it
λ ⊗ (D2it

λ )>
)

dµ(λ).
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Take a ∈ C(G). Denoting πλ = ρλ ◦ π• we conclude using Lemma 4.7 that

QLaQ∗L =
(
π•(a)⊗ 1H•

)
⊕
∫ ⊕
T

(
πλ(a)⊗ 1Hλ

)
dµ(λ),

so (
π•
(
σht (a)

)
⊗ 1H•

)
⊕
∫ ⊕
T

(
πλ
(
σht (a)

)
⊗ 1Hλ

)
dµ(λ)

= QLσht (a)Q∗L = QL∇it
ha∇−ith Q

∗
L

=
(
D−2it
• π•(a)D2it

• ⊗ 1H•
)
⊕
∫ ⊕
T

(
πλ(a)⊗ 1Hλ

)
dµ(λ)

(representations {πλ}λ∈T are one-dimensional) and consequently

π•
(
σht (π−1

• (a))
)

= D−2it
• aD2it

• (a ∈ T , t ∈ R).

The second part of the lemma is proved analogously using Corollary 4.12.

Lemma 4.14. For any α ∈ Irr(G), i ∈ {1, . . . , dim(α)} and q ∈ Sp(D−1
• ) the operator

π•(U
α
i,i) shifts the eigenspaces of D−1

• as follows:

π•(U
α
i,i)1{q}(D

−1
• )H• ⊆ 1{qρα,i}(D

−1
• )H•.

Proof. For t ∈ R and ξ ∈ 1{q}(D
−1
• )H•, by Lemma 4.13 we have

Dit
• π•(U

α
i,i)ξ = Dit

• π•(U
α
i,i)D

−it
• Dit

• ξ = π•
(
σh−t/2(Uα

i,i)
)
q−itξ = q−itρ−itα,i π•(U

α
i,i)ξ

(cf. Section 2.3) which means that π•(U
α
i,i)ξ ∈ 1{qρα,i}(D

−1
• )H•.

Clearly for any q ∈ Sp(D−1
• ) the operator 1{q}(D

−1
• )B 1{q}(D

−1
• ) acting on 1{q}(D

−1
• )H•

is bounded and positive. We let ∆q denote its spectrum:

∆q = Sp
(
1{q}(D

−1
• )B 1{q}(D

−1
• )
)
.

Lemma 4.15. For any α ∈ Irr(G), i ∈ {1, . . . , dim(α)}, q ∈ Sp(D−1
• ) and c ∈ ∆q we have

π•(U
α
i,i)1{c}

(
1{q}(D

−1
• )B 1{q}(D

−1
• )
)
H• ⊆ 1{c}

(
1{qρα,i}(D

−1
• )B 1{qρα,i}(D

−1
• )
)
H•. (4.8)

Proof. Fix t ∈ R. Since Uα
i,i is invariant under the scaling group (Section 2.3), from Lemma

4.13 we know that Btπ•(U
α
i,i)B−t = π•

(
τ−t(U

α
i,i)
)

= π•(U
α
i,i). Therefore if

ξ ∈ 1{c}
(
1{q}(D

−1
• )B 1{q}(D

−1
• )
)
H•

then
Bπ•(U

α
i,i)ξ = Bπ•(U

α
i,i)B

−1Bξ = cπ•(U
α
i,i)ξ

and (4.8) follows (note that there are no domain issues because we are restricting to �nite-
dimensional eigenspaces of D−1

• for the eigenvalues q and qρα,i).
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Theorem 4.16. The set ⋃
q∈Sp(D−1

• )

∆q (4.9)

is �nite.

Proof. First let us choose α ∈ Irr(G) and i ∈ {1, . . . , dim(α)} such that ρα,i > 1 (this is
possible because G is not of Kac type and Tr(ρα) = Tr(ρ−1

α )).
We have the decomposition of H• into eigenspaces of the positive compact operator

D−1
• :

H• =
⊕

q∈Sp(D−1
• )

1{q}(D
−1
• )H•.

Consider η ∈ kerπ•(U
α
i,i) with decomposition

η =
∑

q∈Sp(D−1
• )

ηq,

where ηq ∈ 1{q}(D
−1
• )H•. Now

0 = π•(U
α
i,i)η =

∑
q∈Sp(D−1

• )

π•(U
α
i,i)ηq

and by Lemma 4.14 each summand is orthogonal to the remaining ones. It follows that
π•(U

α
i,i)ηq = 0 for all q and consequently

kerπ•(U
α
i,i) =

⊕
q∈Sp(D−1

• )

kerπ•(U
α
i,i) ∩ 1{q}(D

−1
• )H•. (4.10)

As π•(U
α
i,i) is a Fredholm operator, its kernel is �nite-dimensional. In particular (since

the summands on the right hand side of (4.10) are pairwise orthogonal) there exists q0 in
Sp(D−1

• ) such that π•(U
α
i,i) is injective on 1{q}(D

−1
• )H• for all q ∈ Sp(D−1

• ) such that q < q0.
Clearly, since there are only �nitely many eigenvalues of D−1

• greater than q0 and each
is of �nite multiplicity, the set ⋃

q∈Sp(D−1
• )

q≥q0

∆q (4.11)

is �nite. Therefore, if (4.9) is in�nite, there exists c̃ > 0 such that

c̃ ∈ ∆q̃ = Sp
(
1{q̃}(D

−1
• )B 1{q̃}(D

−1
• )
)

for some q̃ < q0 and c̃ does not belong to (4.11).
Consider now a unit vector ξ ∈ 1{c̃}(1q̃(D

−1
• )B 1{q̃}(D

−1
• ))H•. For k ∈ Z+ we have

π•(U
α
i,i)

kξ ∈ 1{c̃}
(
1{q̃ρkα,i}(D

−1
• )B 1{q̃ρkα,i}(D

−1
• )
)
H•.
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As k increases q̃ρkα,i tends to in�nity, so we let k̃ = max
{
k ∈ Z+

∣∣ q̃ρkα,i < q0

}
.

We have

π•(U
α
i,i)
(
π•(U

α
i,i)

k̃ξ
)

= π•(U
α
i,i)

k̃+1ξ

∈ 1{c̃}
(
1
{q̃ρ(k̃+1)

α,i }
(D−1
• )B 1

{q̃ρ(k̃+1)
α,i }

(D−1
• )
)
H•.

But the latter subspace is {0} because q̃ρ(k̃+1)
α,i ≥ q0 and c̃ is not in the spectrum of

1{q}(D
−1
• )B 1{q}(D

−1
• ) for q ≥ q0. This contradicts injectivity of π•(U

α
i,i) on

1{q̃ρk̃α,i}
(D−1
• )H•, since

π•(U
α
i,i)

k̃ξ ∈ 1{c̃}
(
1{q̃ρk̃α,i}

(D−1
• )B 1{q̃ρk̃α,i}

(D−1
• )
)
H• ⊆ 1{q̃ρk̃α,i}

(D−1
• )H•

because B preserves the decomposition of H• into eigenspaces of D
−1
• (Corollary 4.12).

Corollary 4.17. The quantum group G is of Kac type.

Proof. Recall from Corollary 4.12 that

B =
⊕

q∈Sp(D−1
• )

1{q}(D
−1
• )B 1{q}(D

−1
• )

=
⊕

q∈Sp(D−1
• )

⊕
c∈∆q

c 1{c}
(
1{q}(D

−1
• )B 1{q}(D

−1
• )
)
.

Therefore Theorem 4.16 implies that B and B−1 are bounded with

‖B‖ = sup
q∈Sp(D−1

• )

sup
c∈∆q

c < +∞ and ‖B−1‖ = sup
q∈Sp(D−1

• )

sup
c∈∆q

c−1 < +∞.

By Lemma 4.13 for any a ∈ C(G)

π•(τt(a)) = B−tπ•(a)Bt = B−itπ•(a)Bit (t ∈ R),

so for a ∈ Pol(G) the holomorphic continuation of the function R 3 t 7→ π•(τt(a)) to t = −i
is given by π•(τ−i(a)) = B−1π•(a)B and hence∥∥π•(τ−i(a))

∥∥ ≤ ‖B−1‖‖a‖‖B‖.
Thus for any α ∈ Irr(G) and i, j ∈ {1, . . . , dim(α)}

ρα,iρ
−1
α,j‖Uα

i,j‖ = ‖ρα,iρ−1
α,jU

α
i,j‖ =

∥∥τ−i(Uα
i,j)
∥∥ ≤ ‖B−1‖‖Uα

i,j‖‖B‖,
so that

ρα,iρ
−1
α,j ≤ ‖B−1‖‖B‖

which implies that G is a compact quantum of Kac type (cf. [64, Remarks after Example
1.7.10]).

As we already mentioned in the introduction, the assumption that there is a compact
quantum group G such that the C∗-algebra C(G) is isomorphic to the C∗-algebra of contin-
uous functions on the quantum disc, T , leads to the contradiction between the relatively
easy conclusion that G cannot be of Kac type (Claim 3) and the conclusion of Corollary
4.17 that G is of Kac type. It follows that no such compact quantum group exists.
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5 The von Neumann algebra of class functions

In this section we will study a certain structural property of the algebra of L∞ functions
on a compact quantum group (mostly not of Kac type). These results were obtained
together with Mateusz Wasilewski and resulted in a preprint [52]. Let us �rst start with a
motivation.
Let Fn be the free group with n ≥ 2 generators g1, . . . , gn and let L(Fn) = λ(Fn)′′ be
the corresponding group von Neumann algebra. Inside L(Fn) one �nds the so called radial
subalgebra R, the von Neumann algebra generated by the operator (λg1 +λ∗g1)+· · ·+(λgn+
λ∗gn). Its name stems from the property that if we (informally) write x =

∑
w∈Fn f(w)λw ∈

L(Fn) then x ∈ R if and only if f is a radial function on Fn, i.e. f(w) depends only on the
length |w| of w. The radial algebra was intensively studied � the result most important
for is [71] where Pytlik proved that R is maximal abelian (MASA) in L(Fn). Later R was
proved to be singular [72] and even maximal injective [16].
One may look at the element (λg1 + λ∗g1) + · · · + (λgn + λ∗gn) from a di�erent perspetive.

It is the character of a fundamental representation of the compact quantum group F̂n,
dual to Fn. Consequently, the radial algebra R is the von Neumann algebra generated by
this character. It is therefore natural to wonder whether similar properties holds for other
discrete (or by duality, compact) quantum groups. This question was studied in particular
in the case of the (Kac type) free orthogonal quantum group O+

N (see Example 2.3.2). In
[42] Freslon and Vergnioux showed that CO+

N
, the von Neumann algebra generated by the

character of the fundamental representation, is a singular MASA in L∞(O+
N). Observe

that now CO+
N
has also a di�erent description � it coincides with the von Neumann algebra

generated by all characters of irreducible representations. Let us take this description as a
general de�nition of CG for a compact quantum group G28.

De�nition 5.1. For a compact quantum group G we de�ne the von Neumann algebra of
class functions CG = {χα |α ∈ Irr(G)}′′ .

We choose to call CG �the von Neumann algebra of class functions� because the two
coincide for classical compact groups.

Lemma 5.2. Let G be a compact group. Then {χα |α ∈ Irr(G)}′′ equals the von Neu-
mann algebra of bounded measurable class functions, i.e. the set of f ∈ L∞(G) satisfying
f(hgh−1) = f(g) (g, h ∈ G).

Proof. Since every character χα is a class function, one of the inclusions is clear. Let µG
be the Haar measure on G and E : f 7→

∫
G
f(h · h−1) dµG(h) (f ∈ L∞(G)) the normal con-

ditional expectation onto the von Neumann algebra of bounded measurable class fuctions.
As matrix coe�cients of irreducible representations span a w∗-dense subspace in L∞(G),
by Lemma 7.8 it is enough to show that E(uαξ,η) = 0 for all α ∈ Irr(G) and orthogonal

28Note however that for G = F̂n we do not have equality of R and CG. In fact, CG = L∞(G) holds for
all abelian compact quantum groups.
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vectors ξ, η ∈ Hα. It is a consequence of the orthogonality relations:∫
G

|E(uαξ,η)|2 dµG =

∫
G

∫
G

(∫
G

〈ξ |α(hgh−1)η〉〈ξ |α(h′gh′−1)η〉 dµG(g)
)

dµG(h) dµG(h′)

= 1
dim(α)

∫
G

∫
G

〈α(h−1)ξ |α(h′−1)ξ〉〈α(h−1)η |α(h′−1)η〉 dµG(h) dµG(h′)

= 1
dim(α)2

∫
G

〈α(h−1)ξ |α(h−1)η〉〈ξ | η〉 dµG(h) = 0.

Let us mention that in [2, Theorem 3.7] Alaghmandan and Crann obtained an analo-
gous result for compact quantum groups: CG = {x ∈ L∞(G) |∆(x) = ∆op(x)}.

The question that motivated our work was whether CO+
F
is MASA in L∞(O+

F ) for non-

Kac type quantum groups O+
F . The main tool that was used in solving this riddle was the

notion of quasi-split inclusions of von Neumann algebras.

5.1 Quasi-split inclusions

In this subsection we assume that B ⊆ M are von Neumann algebras with the same unit,
separable preduals and ϕ is a normal faithful state on M.

De�nition 5.3.

1) The inclusion B ⊆ M is split, if there is a type I factor F such that B ⊆ F ⊆ M.

2) The inclusion B ⊆ M is quasi-split, if the map

B⊗alg Mop 3 b⊗ yop 7→ bJϕy
∗Jϕ ∈ B(Hϕ)

extends to a normal ?-homomorphism B ⊗̄Mop → B∨M′ ⊆ B(Hϕ).

(Quasi)-split inclusions of von Neumann algebras were extensively studied: let us men-
tion papers [15, 25, 35] and later works [9, 37]. We will present here results which are
mainly taken from [9].

Let us start with a remark that if B ⊆ M is quasi-split and B,M are factors or one of
them is a type III algebra then the inclusion is in fact split [25, Corollary 1].

We are interested in this condition mainly because it is, in some sense, opposite to
being an inclusion of a MASA. We will present here two results in this spirit, the �rst one
assumes that the �big algebra� is of type III.

Proposition 5.4 ([9, Corollary 3.11]). If B ⊆ M is a quasi-split inclusion and M is a type
III von Neumann algebra then B′ ∩M is also of type III. In particular, B is not a MASA
in M.
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Proof. By assumption, the map B⊗alg Mop 3 b⊗yop 7→ bJϕy
∗Jϕ ∈ B∨M′ extends to a nor-

mal ?-epimorphism, hence there exists a central projection 0 6= p ∈ Z(B ⊗̄Mop) such that
p(B ⊗̄Mop) ' B∨M′. As M is of type III, so is B ⊗̄Mop and p(B⊗̄Mop) (see [81, Theorem
V.2.30] and [78, Exercise E.4.18]). It follows that the isomorphism p(B ⊗̄Mop) ' B∨M′

is spatial ([78, Corollary 8.13]), hence the respective commutants are also isomorphic. It
follows by [81, Corollary 2.24] that B′ ∩M is a von Neumann algebra of type III.

The next proposition gives us a structural result on M under the assumption that B is
a MASA in M and B ⊆ M is quasi-split. The bene�t of this result is that we do not need
to assume anything on M.

Proposition 5.5 ([9, Remark 3.10 (2)]). If B ⊆ M is a quasi-split inclusion and B is a
MASA in M, then M is isomorphic to a direct product of type I factors.

Proof. Let us �rst argue that the abelian von Neumann algebra Z(M) is purely atomic.
Using the ?-homomorphism provided by the quasi-split inclusion B ⊆ M, we deduce that
Z(M) ⊆ M is quasi-split with associated ?-homomorphism η : Z(M)⊗̄Mop → Z(M) ∨M′.
If we compress η�Z(M)⊗̄Z(M) with the Jones projection eZ(M) associated to Z(M), we get
a ?-epimorphism Z(M)⊗̄Z(M) → Z(M) ⊆ B(eZ(M)Hϕ), i.e. Z(M) ⊆ Z(M) is also quasi-
split. It follows that Z(M) is purely atomic. Indeed, otherwise there is a von Neumann
subalgebra in Z(M) isomorphic to L∞([0, 1]). After further restriction of η we see that
the multiplication map extends to a normal ?-homomorphism L∞([0, 1])⊗̄L∞([0, 1]) →
L∞([0, 1]). One can easily see that it has to act via F 7→ F ◦ δ, where δ(x) = (x, x) (x ∈
[0, 1]), at least for continuous functions F ∈ C([0, 1] × [0, 1]). However, it is not di�cult
to �nd a sequence of functions (Fn)n∈N in C([0, 1]× [0, 1]) which converge to 1 in w∗, but
are zero on the diagonal: Fn(x, x) = 0 (n ∈ N, x ∈ [0, 1]) � this gives us a contradiction.
Consequently M is a direct product of factors.
Take now a non-zero central projection p0 ∈ Z(M). It is easy to see that the inclusion
p0 B ⊆ p0 M is also quasi-split, hence by the previous discussion it is enough to deduce that
M is of type I assuming it is a factor.
Since B is a MASA in M, B∨M′ = (B′ ∩M)′ = B′ is of type I (see [81, Corollary V.2.24]).
Reasoning from the proof of Proposition 5.4 gives us a central projection p ∈ Z(M) such
that p(B ⊗̄Mop) ' B∨M′. But M is a factor, hence p = 1 and B ⊗̄Mop (and consequently
M) is of type I.

We would like to present now a useful criterion for proving that a given inclusion is
quasi-split, which is a variant of Proposition 2.3 from [15]. Observe �rst, that if a von
Neumann algebra M with a faithful normal state ϕ is represented on a Hilbert space Hϕ

then we have an inclusion Φ2 : M→ Hϕ given by x 7→ ∇
1
4
ϕΛϕ(x).

We will also need the notion of a nuclear map between two Banach spaces X and Y .
A map T : X → Y is called nuclear if there are sequences (yn)n∈N ⊆ Y and (x∗n)n∈N ⊆ X∗

such that T (x) =
∑

n∈N x
∗
n(x)yn (x ∈ X) and

∑
n∈N ‖x∗n‖‖yn‖ <∞.

Proposition 5.6 ([9, Proposition 3.7]). If the map Φ2�B : B → Hϕ is nuclear then the
inclusion B ⊆ M is quasi-split.
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Let G be a second countable compact quantum group. Using the above criterion we will
derive a useful condition (Theorem 5.9) which says the the inclusion CG ⊆ L∞(G) is quasi-
split provided G is �su�ciently non-Kac�. Before doing that we need some preparation
regarding the action of the modular group on characters of unitary representations.

Our aim is to show that the map Φ2�CG
: CG → L2(G) given by x 7→ ∇

1
4
hΛh(x) is

nuclear. Note that CG is the closed linear span of the characters of (�nite dimensional)
unitary representations and these characters are analytic elements for the modular group.

Therefore ∇
1
4
hΛh(χ) = Λh(σ

h
− i

4

(χ)) holds for every character χ; we �rst have to understand

the action of the modular group on the characters.
Recall that (see [64, Page 30] or Section 2.3) for any (unitary, �nite dimensional)

representation U on HU and z ∈ C we have (σhz ⊗ 1U)(U) = (ρizU ⊗ 1U)U(ρizU ⊗ 1U). If
we choose an orthonormal basis of HU in which ρU is diagonal then we can write more
concretely that σhz (Uk,l) = ρizU,kρ

iz
U,lUk,l. Therefore for the character χU =

∑dim(U)
k=1 Uk,k we

have σhz (χU) =
∑dim(U)

k=1 ρ2iz
U,kUk,k. We will now compute the L2-norm of this element.

Lemma 5.7. We have ‖σha+ib(χU)‖2
2 =

Tr(ρ−4b−1
U )

Tr(ρU )
for all a, b ∈ R.

Proof. Recall that by de�nition ‖x‖2
2 = h(x∗x), so in our case we get

‖σha+ib(χU)‖2
2 =

dim(U)∑
k,l=1

ρ−2ia−2b
U,k ρ2ia−2b

U,l h(U∗k,kUl,l).

Using the orthogonality relations (see [64, Theorem 1.4.3] or Section 3.4) we get h(U∗k,kUl,l) =

δk,l
ρ−1
U,k

dimq(U)
. Therefore we obtain

‖σha+ib(χU)‖2
2 =

dim(U)∑
k=1

ρ−4b
U,k

ρ−1
U,k

dimq(U)
=

Tr(ρ−4b−1
U )

dimq(U)
.

To �nish the proof we just have to recall that dimq(U) = Tr(ρU).

Corollary 5.8. We have ‖χU‖2 = 1 and ‖σh− i
4

(χU)‖2
2 = dim(U)

dimq(U)
.

Relation between the quantum and the usual dimension will be crucial for proving that
the inclusion of the algebra of class functions is quasi-split.

Theorem 5.9. Let G be a compact quantum group. Suppose that
∑

α∈Irr(G)(
dim(α)
dimq(α)

)
1
2 <∞.

Then the inclusion CG ⊆ L∞(G) is quasi-split.

Proof. We want to show that the map Φ2�CG
: CG → L2(G) is nuclear. Note that it is a

composition of two maps: the inclusion Λh : CG → Λh(CG) and ∇
1
4
h : Λh(CG)→ L2(G).

We will �rst show that ∇
1
4
h extends to a contraction from L2(CG) = Λh(CG) to L2(G).

Note that the (images of) characters of irreducible representations are linearly dense in
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L2(CG) and they form an orthonormal set. Let x =
∑

α∈Irr(G) cαχα be a �nite sum of

characters of irreducible representations. Note that ‖Λh(x
∗)‖2 = ‖

∑
α∈Irr(G) cαΛh(χα)‖2 =∑

α∈Irr(G) |cα|2 = ‖Λh(x)‖2. It follows that

‖∇
1
4
hΛh(x)‖2 = 〈Λh(x) | ∇

1
2
hΛh(x)〉 = 〈Jh∇

1
2
hΛh(x) | JhΛh(x)〉

= 〈Λh(x
∗) | JhΛh(x)〉 ≤ ‖Λh(x

∗)‖ ‖Λh(x)‖ = ‖Λh(x)‖2,

so ∇
1
4
h extends to a contraction from L2(CG) to L2(G).

We will now show that Φ2�CG
: CG → L2(G) is a nuclear map. Take x ∈ CG. As Λh(x) ∈

L2(CG), we can write Λh(x) =
∑

α∈Irr(G)〈Λh(χα) |Λh(x)〉Λh(χα). Since∇
1
4
h �L2(CG) : L2(CG)→

L2(G) is bounded, we have

Φ2(x) =
∑

α∈Irr(G)

〈Λh(χα) |Λh(x)〉∇
1
4
hΛh(χα).

If we de�ne functionals ωα : CG 3 y 7→ 〈Λh(χα) |Λh(y)〉 ∈ C then it su�ces to check that∑
α∈Irr(G)

‖ωα‖ ‖∇
1
4
hΛh(χα)‖ <∞.

We already know that ‖∇
1
4
hΛh(χα)‖ = ( dim(α)

dimq(α)
)
1
2 and it is clear that ‖ωα‖ 6 ‖χα‖2 = 1,

hence ∑
α∈Irr(G)

‖ωα‖ ‖∇
1
4
hΛh(χα)‖ ≤

∑
α∈Irr(G)

( dim(α)
dimq(α)

) 1
2 <∞.

By Proposition 5.6 the inclusion CG ⊆ L∞(G) is quasi-split.

This result is already enough to prove that in many cases the radial subalgebra in
L∞(O+

F ) is not a MASA; it follows from [89, Theorem 7.1] that L∞(O+
F ) is often a type

III factor and we can use Proposition 5.4. We will be able to generalize this result (see
Corollary 5.22).

5.2 Relative commutant of CG and inner scaling automorphisms

We will be interested in the relative commutant C ′G ∩ L∞(G). If CG is commutative,
as is the case for example for the free orthogonal quantum groups, then the condition
C ′G ∩ L∞(G) ⊆ CG precisely means that CG is a MASA in L∞(G).
Our strategy for proving that CG cannot be a MASA in many cases will be the following.
We will show that if CG were a MASA then L∞(G) would have to be a factor. Moreover,
if the inclusion CG ⊆ L∞(G) were quasi-split then it would have to be a type I factor. We
will then use properties of the scaling automorphisms to exclude this case. Let us now
move on to more precise statements.
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Proposition 5.10. Let G be a compact quantum group such that C ′G∩L∞(G) ⊆ CG. Then

Z(L∞(G)) ⊆ spanw
∗{χα |α ∈ Irr(G) : ρα = 1α} = CG ∩ L∞(G)σ.

In particular, if ρα 6= 1α for all non-trivial irreducible representation of G then L∞(G) is
a factor.

Proof. We �rst argue that spanw
∗{χα |α ∈ Irr(G) : ρα = 1α} = CG ∩ L∞(G)σ. Clearly

the left-hand side (denoted from now on by A) is contained in the right-hand side. If
x ∈ CG ∩ L∞(G)σ then we can write Λh(x) =

∑
α∈Irr(G) cαΛh(χα). As x belongs to the

centralizer of the Haar integral, we have Λh(x) = Λh(σ
h
t (x)) =

∑
α∈Irr(G) cαΛh(σ

h
t (χα)). It

follows from the orthogonality relations that the elements σt(χ
h
α) and χβ are orthogonal

unless α = β. It follows that σht (χα) = χα or cα = 0. The condition σht (χα) = χα implies
that ρα = 1α, so we proved that any element x ∈ CG ∩ L∞(G)σ satis�es Λh(x) ∈ Λh(A).
Since A is contained in the centralizer, there exists a normal, state-preserving conditional
expectation onto it ([82, Theorem 4.2]), and it is easy to conclude that it implies x ∈ A.
Alternatively one can invoke Lemma 5.18 because the Haar integral on the algebra A is
tracial.

To �nish the proof, note that the condition C ′G∩L∞(G) ⊆ CG implies that Z(L∞(G)) ⊆
CG. Moreover the center is always contained in the centralizer ([78, Corollary 2.10.13]), so
we obtain Z(L∞(G)) ⊆ CG ∩ L∞(G)σ.

The next technical ingredient, featuring the scaling group, is the following proposition.

Proposition 5.11. Let G be a compact quantum group and let t ∈ R. Suppose that
C ′G∩L∞(G) ⊆ CG, the scaling automorphism τt is inner and is implemented by v ∈ L∞(G).
Then v ∈ spanw

∗{χα |α ∈ Irr(G) : ρα = 1α}.

Proof. The scaling group acts trivially on characters, so we have χα = τt(χα) = vχαv
∗

for any α ∈ Irr(G). Therefore v ∈ C ′G ∩ L∞(G) ⊆ CG. Because of that we can write
Λh(v) =

∑
α∈Irr(G) cαΛh(χα).

We will now use the fact that the scaling group and the modular group commute, so
for any x ∈ L∞(G), s ∈ R we have

vxv∗ = τt(x) = σhs τt(σ
h
−s(x)) = σhs (vσh−s(x)v∗) = σhs (v)xσhs (v∗).

It follows that σhs (v∗)vx = xσhs (v∗)v, hence σhs (v∗)v ∈ Z(L∞(G)). We can write σhs (v) =
vws for some ws ∈ Z(L∞(G)). As Z(L∞(G)) ⊆ CG, we have vws ∈ CG, so Λh(vws) =∑

α∈Irr(G) ds,αΛh(χα). On the other hand Λh(v) =
∑

α cαΛh(χα), so

Λh(σ
h
s (v)) =

∑
α∈Irr(G)

cαΛh(σ
h
s (χα)).

By orthogonality relations this implies that cασ
h
s (χα) = ds,αχα. If ρα 6= 1α we can once

again infer that cα = 0, hence Λh(v) =
∑

α:ρα=1α
cαΛh(χα) and exactly as in the proof of

the previous proposition we conclude that v ∈ spanw
∗{χα |α ∈ Irr(G) : ρα = 1α}.
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Now we can prove our main result of this section.

Theorem 5.12. Suppose that G is a non-trivial second countable compact quantum group
such that the inclusion CG ⊆ L∞(G) is quasi-split and ρα 6= 1α for any non-trivial α ∈
Irr(G). Then CG is not a MASA in L∞(G).

Proof. Suppose that CG is a MASA in L∞(G). It follows from Proposition 5.5 that L∞(G)
is a direct sum of type I factors. Moreover, it follows from Proposition 5.10 that L∞(G) is
a factor, so L∞(G) ' B(`2).

By our assumptions there exists an irreducible representation α with ρα 6= 1α, thus G
is not of Kac type � there exists a non-trivial scaling automorphism τt. All automorphisms
of B(`2) are inner, hence there exists v ∈ L∞(G) implementing it. By Proposition 5.11 v ∈
spanw

∗{χα |α ∈ Irr(G) : ρα = 1α} = C1. But that means that τt is a trivial automorphism
and this leads us to the desired contradiction.

We will provide examples to which this result can be applied in Subsection 5.5 (see
Corollary 5.22).

5.3 Properties of SUq(2)

Fix q ∈ ]−1, 1[ \ {0}. In this subsection we establish a number of properties of CSUq(2):
we show that it is not a MASA in L∞(SUq(2)) (Proposition 5.14), however it is a MASA
in L∞(SUq(2))τ , the �xed point subalgebra of the scaling group (Proposition 5.15). This
property will be used in the next subsection, where we construct new compact quantum
group out of SUq(2) and Q, using a bicrossed product construction.

Recall that we have de�ned the quantum group SUq(2) in Section 2.3.1 and given
its description from the dual perspective in Section 3.6. In particular, we can identify

Irr(ŜUq(2)) with the circle T and the Plancherel measure µ with the normalised Lebesgue
measure, consequently the unitary operator QL gives us a unitary isomorphism

L∞(SUq(2)) '
∫ ⊕
T

B(Hλ)⊗ 1Hλ dµ(λ). (5.1)

Each λ ∈ T corresponds to an irreducible representation ψ2,λ of C(SUq(2)) (see Propo-
sition 3.39). To ease the notation we will write ψλ = ψ2,λ (λ ∈ T).

The next lemma says that the von Neumann algebra generated by the real part of a
weighted shift is MASA in B(`2(Z+)).

Lemma 5.13. Let S ∈ B(`2(Z+)) be the shift operator given by Sφk = φk−1 (k ∈ Z+), and
let Mf ∈ B(`2(Z+)) be the multiplication operator associated with a function f ∈ `∞(Z+). If
f(N) ⊆ R>0 then the von Neumann algebra B generated by T = SMf + Mf S

∗ is maximal
abelian in B(`2(Z+)).
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Proof. According to [68, Theorem 4.7.7], the claim follows once we show that there exists
a cyclic vector for B = {T}′′. We claim that φ0 is such a vector. Indeed, it is clear that
φ0 belongs to V = Bφ0. Next, assume that φ0, . . . , φn ∈ V for some n ∈ Z+. Then
φn+1 = 1

f(n+1)
Tφn − f(n)

f(n+1)
φn−1 belongs to V and consequently V = B(`2(Z+)).

One easily sees that CSUq(2) is abelian and CSUq(2) = {α + α∗}′′. Indeed, α + α∗ is
the character of the fundamental representation and the fusion rules of SUq(2) (equation
(2.23)) imply that χ(Un) ∈ {α + α∗}′′ for all Un ∈ Irr(SUq(2)). Consequently,

QLCSUq(2)Q∗L =
{∫ ⊕

T
T ⊗ 1Hλ dµ(λ) |T ∈ ψ1(CSUq(2))

}
' ψ1(CSUq(2))⊗ 1L∞(T) (5.2)

(observe that ψλ(α+ α∗) = ψ1(α+ α∗) for all λ ∈ T). Since L∞(SUq(2)) is not a factor29,
Proposition 5.10 implies that CSUq(2) is not a MASA in L∞(SUq(2)). The next result
describes its relative commutant.

Proposition 5.14. The relative commutant of CSUq(2) is given by

QL(C ′SUq(2) ∩ L∞(SUq(2)))Q∗L =
{∫ ⊕

T
Tλ ⊗ 1Hλ dµ(λ) | ∀λ∈T Tλ ∈ ψ1(CSUq(2))

}
' ψ1(CSUq(2))⊗̄L∞(T).

Proof. Inclusion ⊇ clearly follows from equation (5.2), assume that T belongs to the sub-
algebra QL(C ′SUq(2) ∩L∞(SUq(2)))Q∗L. Using (5.1) we can write T =

∫ ⊕
T Tλ⊗1Hλ dµ(λ) for

some Tλ ∈ B(Hλ). Our assumption forces Tλ ∈ ψ1(CSUq(2))
′ for almost all λ ∈ T. From the

de�nition of ψ1 we see that ψ1(α) is a weighted shift and Lemma 5.13 applies � ψ1(CSUq(2))
is a MASA in B(`2(Z+)), hence Tλ ∈ ψ1(CSUq(2)) and the claim follows.

Despite the above negative result, we can nonetheless prove that CSUq(2) is MASA in
the smaller von Neumann algebra of �xed points for the scaling group. We denote this
algebra by L∞(SUq(2))τ .

Proposition 5.15. The algebra of class functions CSUq(2) is MASA in L∞(SUq(2))τ , i.e.

C ′SUq(2) ∩ L∞(SUq(2))τ = CSUq(2).

Proof. Observe �rst that since CSUq(2) is generated by characters, we have CSUq(2) ⊆
L∞(SUq(2))τ . Take T =

∫ ⊕
T Tλ ⊗ 1Hλ dµ(λ) in QL(C ′SUq(2) ∩ L∞(SUq(2))τ )Q∗L. Proposi-

tion 5.14 implies that Tλ ∈ ψ1(CSUq(2)) for almost all λ ∈ T. Recall that P is the operator
implementing the scaling group for SUq(2) and its dual (see Section 2.2). We know how

29From (5.1) we see that L∞(SUq(2)) ' B(`2(Z+))⊗̄L∞(T), hence the center of L∞(SUq(2)) is isomor-
phic to L∞(T).
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to express this operator on the level of direct integrals (Proposition 3.41): for all t ∈ R we
have

QLP itQ∗L :

∫ ⊕
T

HS(Hλ) dµ(λ) 3
∫ ⊕
T
ξλ dµ(λ) 7→

∫ ⊕
T
ξλ|q|2it dµ(λ) ∈

∫ ⊕
T

HS(Hλ) dµ(λ),

(5.3)
and since T is invariant under the (transported) scaling group we have∫ ⊕

T
Tλ ⊗ 1Hλ dµ(λ) = T = (QLP itQ∗L)T (QLP−itQ∗L) =

∫ ⊕
T
Tλ|q|2it ⊗ 1Hλ dµ(λ). (5.4)

It follows that T 3 λ 7→ Tλ ∈ B(`2(Z+)) is constant almost everywhere. Indeed, for
κ ∈ T denote by fκ ∈ B(`2(Z+))⊗̄L∞(T) the function λ 7→ Tλκ. Equation (5.4) implies
f1 = fκ (κ ∈ T). For all θ ∈ L1(T), ω ∈ B(`2(Z+))∗ we get

30

(ω ⊗ θ)f1 = (ω ⊗ θ)
(∫

T
fκ dµ(κ)

)
=

∫
T
(ω ⊗ θ)(fκ) dµ(κ)

=

∫
T

∫
T
θ(λ)ω(fκ(λ)) dµ(λ) dµ(κ) =

∫
T
θ(λ)

∫
T
ω(Tλκ) dµ(κ) dµ(λ)

=
(∫

T
θ(λ) dµ(λ)

) ∫
T
ω(Tκ) dµ(κ) = (ω ⊗ θ)

(∫
T
Tκ dµ(κ)⊗ 1L∞(T)

)
,

hence f1 =
∫
T Tκ dµ(κ) ⊗ 1L∞(T). Consequently, T belongs to QLCSUq(2)Q∗L (see equation

(5.2)).

5.4 Certain bicrossed product construction

In this subsection we present a construction of a class of compact quantum groups H given
by a bicrossed product of a compact quantum group G and the additive group of rational
numbers Q (in this subsection we equip Q with the discrete topology), where Q acts on
L∞(G) using the scaling grup of G. Our construction is a slight variation of a construction
presented in [26, Section 4.1] � the main di�erence is that we replace R with a discrete
group Q in order to get a compact quantum group as the bicrossed product. The principal
reason why we are interested in this family of quantum groups is the fact that they admit
non-trivial inner scaling automorphisms � a property that appeared in Proposition 5.11 (see
Lemma 5.16. Observe also that equation (5.3) implies that non-trivial scaling automor-
phisms of SUq(2) are never inner). Another reason is that these bicrossed products provide
examples of compact quantum groups H with L∞(H) being the injective factor of type II∞.

Later on we will specify to G = SUq(2), for now let G be an arbitrary compact quantum
group. Fix a non-zero number ν ∈ R \ {0} and denote by ρ the normal ?-homomorphism
`∞(Q)⊗̄L∞(G)→ `∞(Q)⊗̄L∞(G) given by

ρ(F )(γ) = τGνγ(F (γ)) (γ ∈ Q, F ∈ `∞(Q)⊗̄L∞(G))

30Integrals of B(`2(Z+)) or L∞(T)⊗̄B(`2(Z+))�valued functions are understood in the sense of Pettis,
where the von Neumann algebras are equipped with the w∗�topology.
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(we identify `∞(Q)⊗̄L∞(G) with `∞(Q,L∞(G))). Now, a pair (Q,G) together with ρ
forms a matched pair with trivial cocycles ([88, De�nition 2.1]) let H = Q ./ G be the
resulting bicrossed product quantum group. For the details of this construction and its
properties we refer the reader to [88, 95] (see also [38]), here we will recall only some of its
aspects. Using the notation of [88], α : L∞(G) 3 x 7→ ρ(1⊗ x) ∈ `∞(Q)⊗̄L∞(G) is given
by α(x)(γ) = τGνγ(x) and β : `∞(Q) 3 f 7→ ρ(f ⊗ 1) ∈ `∞(Q)⊗̄L∞(G) is the trivial action
β(f) = f ⊗ 1. Furthermore, we have

L∞(H) = Qnα L∞(G) = {α(x), uγ |x ∈ L∞(G), γ ∈ Q}′′

(where Q 3 γ 7→ λγ ∈ B(`2(Q)) is the left regular representation, uγ = λγ ⊗ 1) and

`∞(Ĥ) = `∞(Q)⊗̄`∞(Ĝ).

These von Neumann algebras are represented on the Hilbert space

L2(H) = `2(Q)⊗ L2(G).

The Haar integral on H is a state, hence H is compact (see [88, De�nition 2.7]). In fact,
the GNS map for hH is given by

ΛhH(uγα(x)) = ΛhQ̂
(λγ)⊗ ΛhG(x) (x ∈ L∞(G), γ ∈ Q). (5.5)

We can also identify the (left) Haar integral on Ĥ � it is equal to ϕQ ⊗ ϕĜ (where ϕQ, ϕĜ
are the left Haar integrals on Q and Ĝ), hence

∇ϕĤ
= 1⊗∇ϕĜ

(it is a combination of Proposition 2.9, Theorem 2.13 and Proposition 2.16 in [88]). Since
the equality∇it

ϕĜ
= P it

G holds for any unimodular locally compact quantum group (equation

(2.14)), we arrive at

P it
H = ∇it

ϕĤ
= 1⊗∇it

ϕĜ
= 1⊗ P it

G (t ∈ R). (5.6)

It is a well known property of crossed products that automorphisms with which Q acts
on L∞(G) become inner after the inclusion of L∞(G) into Qnα L∞(G):

α(τGνγ(x)) = uγα(x)u∗γ (x ∈ L∞(G), γ ∈ Q). (5.7)

Let us now record a simple result concerning the scaling group of H.

Lemma 5.16.

� We have τHt (α(x)) = α(τGt (x)) and τHt (uγ) = uγ for all t ∈ R, x ∈ L∞(G), γ ∈ Q.

� For every t ∈ R, the scaling automorphism τHt is trivial if and only if τGt is trivial. If
γ ∈ Q, then τHνγ is inner.

97



Proof. The �rst part is a direct consequence of equations (5.5), (5.6):

ΛhH(τHt (α(x))) = (1⊗ P it
G )(ΛhQ̂

(1)⊗ ΛhG(x)) = ΛhQ̂
(1)⊗ ΛhG(τGt (x)) = ΛhH(α(τGt (x)))

and

ΛhH(τHt (uγ)) = (1⊗ P it
G )(ΛhQ̂

(λγ)⊗ ΛhG(1)) = ΛhQ̂
(λγ)⊗ ΛhG(1) = ΛhH(uγ).

Since hH is faithful on L∞(H) we get the �rst claim. As α is a monomorphism, τHt is trivial
if and only so is τGt . The last claim follows from equation (5.7).

Let us end these general considerations with an observation that

uγ ∈ CH (γ ∈ Q) and α(CG) ⊆ CH.

Indeed, it is a consequence of [95, Theorem 3.7].

Fix q ∈ ]−1, 1[\{0}. From now on we consider the special caseG = SUq(2) � accordingly
H is given by H = Q ./ SUq(2). Note that this quantum group depends on two parameters:
q and ν and is not of Kac type. Using Proposition 5.15 (CSUq(2) is MASA in L∞(SUq(2))τ )
we are able to deduce the following interesting property of H:

Proposition 5.17. Let H = Q ./ SUq(2). The von Neumann algebra CH is MASA in
L∞(H).

Proof. First, it is clear that CH is commutative. Indeed, since CSUq(2) is commutative, com-
mutativity of CH follows from [95, Theorem 3.7]. Take now T ∈ C ′H ∩ L∞(H) � we want to
show T ∈ CH. Let E : L∞(H) = Qnα L∞(SUq(2))→ L∞(SUq(2)) be the canonical faithful
normal conditional expectation satisfying E(uγα(x)) = δγ,0x for γ ∈ Q, x ∈ L∞(SUq(2)).
De�ne operators

Tγ = E(u∗γT ) ∈ L∞(SUq(2)) (γ ∈ Q).

Clearly we have

〈ξ |Tγη〉 = 〈ξ |E(u∗γT )η〉 = 〈δ0 ⊗ ξ | (u∗γT )(δ0 ⊗ η)〉

for all ξ, η ∈ L2(SUq(2)). Fix γ ∈ Q. Using the fact that T ∈ C ′H ∩ L∞(H) we will now
show Tγ ∈ C ′SUq(2). Since for any y ∈ CSUq(2) operator α(y) belongs to CH, we get

〈ξ |Tγyη〉 = 〈δγ ⊗ ξ |T (δ0 ⊗ yη)〉 = 〈δγ ⊗ ξ |Tα(y)(δ0 ⊗ η)〉
= 〈α(y∗)(δγ ⊗ ξ) |T (δ0 ⊗ η)〉 = 〈δ0 ⊗ y∗ξ | (u∗γT )(δ0 ⊗ η)〉 = 〈y∗ξ |Tγη〉 = 〈ξ | yTγη〉

for all vectors ξ, η ∈ L2(SUq(2)) and consequently Tγ ∈ C ′SUq(2).

Take γ′ ∈ Q. Observe that Lemma 5.16 together with equation (5.7) implies that τHνγ′ is
implemeneted by uγ′ ∈ CH. Using equation (5.6) we calculate

〈ξ | τSUq(2)
νγ′ (Tγ)η〉 = 〈δ0 ⊗ P−iνγ

′

SUq(2)ξ | (u
∗
γT )(δ0 ⊗ P−iνγ

′

SUq(2)η)〉

= 〈δγ ⊗ ξ |P iνγ′

H TP−iνγ
′

H (δ0 ⊗ η)〉 = 〈δγ ⊗ ξ | τHνγ′(T )(δ0 ⊗ η)〉
= 〈δγ ⊗ ξ |uγ′Tu∗γ′(δ0 ⊗ η)〉 = 〈δγ ⊗ ξ |T (δ0 ⊗ η)〉 = 〈ξ |Tγη〉
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and as before we arrive at τ
SUq(2)
νγ′ (Tγ) = Tγ. Density of νQ in R implies Tγ ∈ L∞(SUq(2))τ .

These two properties of Tγ imply that Tγ ∈ CSUq(2) (Proposition 5.15) and consequently
α(Tγ) ∈ CH.

Formally we have T =
∑

γ∈Q uγα(Tγ). However, this series does not need to converge

in the w∗-topology (see [62]), which is why we will argue on the L2-level. Let us �rst prove
that

ΛhH(T ) =
∑
γ∈Q

ΛhH(uγα(Tγ)) =
∑
γ∈Q

ΛhQ̂
(λγ)⊗ ΛhSUq(2)

(Tγ). (5.8)

Since {δγ}γ∈Q forms an orthonormal basis in `2(Q), we can write ΛhH(T ) =
∑

γ∈Q δγ⊗T̃γ
for some T̃γ ∈ L2(SUq(2)). Then

〈ξ | T̃γ〉 = 〈δγ ⊗ ξ |
∑
γ′∈Q

δγ′ ⊗ T̃γ′〉 = 〈δγ ⊗ ξ |ΛhH(T )〉

= 〈δγ ⊗ ξ |T (δ0 ⊗ ΛhSUq(2)
(1)〉 = 〈ξ |ΛhSUq(2)

(Tγ)〉

for all γ ∈ Q, ξ ∈ L2(SUq(2)) which proves (5.8). Recall that hH is tracial on CH, hence
the claim follows from equation (5.8) and the following lemma.

Lemma 5.18. Let M be a von Neumann algebra with a �xed faithful normal state ω.
Assume that N ⊆ M is a von Neumann subalgebra such that ω�N is tracial. If x ∈ M and
Λω(x) ∈ Λω(N) then x ∈ N.

This lemma is well-known to experts but we were not able to locate a precise reference,
so we decided to add a proof for completeness.

Proof. We will show that x commutes with every y ∈ N′. Take a, b ∈ M that are analytic
with respect to (σωt )t∈R and �x a net (Λω(xi))i∈I (xi ∈ N) which converges to Λω(x).

Observe that since ω�N is tracial, Jω∇
1
2
ω is an isometry on Λω(N). As Jω∇

1
2
ω is closed,

it follows that limi∈I Λω(x∗i ) = Λω(x∗). Consequently

〈Λω(a) | yxΛω(b)〉 = 〈Λω(a) | yJωσωi/2(b)∗JωΛω(x)〉 = lim
i∈I
〈Λω(a) | yJωσωi/2(b)∗JωΛω(xi)〉

= lim
i∈I
〈Λω(a) | yxiΛω(b)〉 = lim

i∈I
〈Jωσωi/2(a)∗JωΛω(x∗i ) | yΛω(b)〉

= 〈Jωσωi/2(a)∗JωΛω(x∗) | yΛω(b)〉 = 〈x∗Λω(a) | yΛω(b)〉 = 〈Λω(a) |xyΛω(b)〉.

A standard density argument implies x ∈ N′′ = N.

Remark. In the proof of Proposition 5.17, we argued on the L2-level that α(Tγ) ∈ CH (γ ∈
Q) implies that T ∈ CH. Alternatively, we could use a Fejér-type theorem for crossed
products and arrive at the same conclusion (see e.g. [24, Theorem 4.10] for a general
result).
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In the penultimate result we prove about H = Q ./ SUq(2) we study its von Neumann
algebra of bounded functions. In particular, we show that for some values of ν, q, it is a
factor of type II∞ � we are not aware of another example of a compact quantum group in
the literature with this property.

Proposition 5.19.

� Z(L∞(H)) is equal to {uγ | γ ∈Q∩ π
ν log(|q|) Z}

′′. In particular, it is trivial if ν log(|q|) /∈
πQ and isomorphic to L∞(T) otherwise.

� Let t ∈ R. The scaling automorphism τHt is trivial if and only if t ∈ π
log(|q|)Z. It is

inner if and only if t ∈ νQ + π
log(|q|)Z.

� H is coamenable and consequently L∞(H) is injective.

� If ν log(|q|) /∈ πQ then L∞(H) is a factor of type II∞.

Proof. Observe �rst that for all t ∈ R, the scaling automorphism τHt is trivial if and only

τ
SUq(2)
t is trivial (Lemma 5.16) which happens if and only if t ∈ π

log(|q|)Z (equation (5.3)).

Take x ∈ Z(L∞(H)). Since CH is MASA in L∞(H), we know that

x ∈ span{χβ | β ∈ Irr(H) : ρβ = 1β}
sot

= span{uγ | γ ∈ Q}
sot

(Proposition 5.10). Write

x = sot− lim
i∈I

∑
γ∈Q

Ci
γuγ, ΛhH(x) =

∑
γ∈Q

CγΛhH(uγ)

for some Cγ, C
i
γ ∈ C, where

∑
γ∈QC

i
γuγ belongs to span{uγ | γ ∈ Q} for each i ∈ I. Take

now y ∈ L∞(SUq(2)). Since x ∈ Z(L∞(H)), we have∑
γ∈Q

Cγδγ ⊗ ΛhSUq(2)
(τSUq(2)
νγ (y)) = α(y)

(∑
γ∈Q

CγΛhH(uγ)
)

= ΛhH(α(y)x) = ΛhH(xα(y))

= x(δ0 ⊗ ΛhSUq(2)
(y)) = lim

i∈I

∑
γ∈Q

Ci
γ(δγ ⊗ ΛhSUq(2)

(y)),

which implies
Cγτ

SUq(2)
νγ (y) = lim

i∈I
Ci
γ y (γ ∈ Q).

As this equation holds for every y ∈ L∞(SUq(2)), we must have Cγ = 0 whenever τ
SUq(2)
νγ

is non-trivial, i.e. for νγ /∈ π
log(|q|)Z. Lemma 5.18 gives us

Z(L∞(H)) ⊆ {uγ | γ ∈ Q ∩ π
ν log(|q|)Z}

′′.

The inclusion ⊇ is clear, hence we have identi�ed the center of L∞(H). If ν log(|q|) /∈ πQ
then clearly Q ∩ π

ν log(|q|)Z = {0} and L∞(H) is a factor. Otherwise Q ∩ π
ν log(|q|)Z is a
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subgroup of Q isomorphic to Z and {uγ | γ ∈ Q ∩ π
ν log(|q|)Z}

′′ is therefore isomorphic to

L(Z) ' L∞(T) [45, Theorem A]. This proves the �rst point31.

Take now t ∈ R. If t = νγ + π
log(|q|)s ∈ νQ + π

log(|q|)Z then τHt = τHνγτ
H
πs/ log(|q|) = τHνγ

is inner by Lemma 5.16. Assume that t /∈ νQ + π
log |q|Z and τHt = Adv for some unitary

v ∈ L∞(H). Proposition 5.11 implies that v ∈ {uγ | γ ∈ Q}′′, hence we can write

ΛhH(v) =
∑
γ∈Q

DγΛhH(uγ) =
∑
γ∈Q

Dγ(δγ ⊗ ΛhSUq(2)
(1)) (5.9)

for some Dγ ∈ C. Since v is unitary, we have
∑

γ∈Q |Dγ|2 = 1. Let f ∈ L∞(T) be the char-

acteristic function of the arc {eiθ | θ ∈ [0, π]} ⊆ T and F = Q∗L(
∫ ⊕
T f(λ)1HS(Hλ) dµ(λ))QL ∈

L∞(SUq(2)). Equation (5.9) together with Lemma 5.16 gives us∑
γ∈Q

Dγ(δγ ⊗ ΛhSUq(2)
(τSUq(2)
νγ (F ))) = α(F )

(∑
γ∈Q

Dγ(δγ ⊗ ΛhSUq(2)
(1))

)
= ΛhH(α(F )v)

= vΛhH(τH−t(α(F ))) = v
(
δ0 ⊗ ΛhSUq(2)

(τ
SUq(2)
−t (F ))

)
.

Since v ∈ {λγ ⊗ 1 | γ ∈ Q}′′, the last vector belongs to span{δγ ⊗ ΛhSUq(2)
(τ

SUq(2)
−t (F )) | γ ∈

Q}. It follows that there exists γ ∈ Q such that

τSUq(2)
νγ (F ) = cτ

SUq(2)
−t (F )

for some c ∈ C. Each scaling automorphism acts by a rotation (equation (5.3)), hence

c = 1 and τ
SUq(2)
t+νγ (F ) = F . However, τ

SUq(2)
t+νγ is a non-trivial rotation. Indeed, otherwise

t + νγ ∈ π
log(|q|)Z and we assumed that it is not the case. It follows that f is equal to its

proper rotation, a contradiction. This ends the proof of the second bullet point.

The compact quantum group H = Q ./ SUq(2) is coamenable because Q is amenable
and SUq(2) is coamenable [32, Theorem 15]. It follows that L∞(H) is injective [8, Theorem
3.3] (see also Section 6). Alternatively, to obtain injectivity of L∞(H) one can also use
the fact that a crossed product of an injective von Neumann algebra by an action of an
amenable group is injective [83, Theorem 3.16].

Assume ν log(|q|) /∈ πQ. We already know that L∞(H) = Qnα L∞(SUq(2)) is a factor.
Since the n.s.f. tracial weight on L∞(SUq(2)) ' B(`2(Z+))⊗̄L∞(T) given by Tr⊗hT is
invariant under the action of Q, it gives rise to a n.s.f. tracial weight on L∞(H) ([82,
Theorem 1.17]) and consequently L∞(H) is not of type III. It follows from the proof of
[101, Theorem 1.3] that if there were a faithful normal tracial state on L∞(H), then H
would be of Kac type. As this is not the case, L∞(H) cannot be of type II1; we are left
with two cases, I∞ and II∞. Clearly |νQ+ π

log(|q|)Z| = ℵ0 < |R| hence there exists a scaling

31We could also argue that L∞(H) is a factor if ν log(|q|) /∈ πQ using [69, Theorem 7.11.11].
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automorphism τHt which is not inner. It is well known that all automorphisms of B(`2(Z+))
are inner ([10, II.5.5.14]), hence L∞(H) has to be of type II∞.
Let us also give an alternative proof of the result that L∞(H) is not of type I∞. Let

E : L∞(H) = Qnα L∞(SUq(2))→ L∞(SUq(2))

be the canonical faithful normal conditional expectation. Assume by contradiction that
L∞(H) is of type I∞. Then it is purely atomic and it follows that L∞(SUq(2))
' B(`2(Z+))⊗̄L∞(T) is purely atomic as well ([10, Theorem IV.2.2.4]), which gives us a
contradiction.

As a corollary, we can show that our family of bicrossed products contains uncountably
many di�erent isomorphism classes of quantum groups. To formulate this result, let us
denote by Hν,q the bicrossed product Q ./ SUq(2) constructed using the parameter ν.

Corollary 5.20. Let ν, ν ′ ∈ R \ {0}, q, q′ ∈ ]−1, 1[ \ {0}. If Hν,q and Hν′,q′ are isomorphic,
then |q| = |q′| and νQ+ π

log(|q|)Z = ν ′Q+ π
log(|q|)Z. In particular, for each q ∈ ]−1, 1[\{0} the

family {Hν,q | ν ∈ R \ {0}} consists of c isomorphism classes of compact quantum groups.

Proof. Let φ : C(Hν,q)→ C(Hν′,q′) be a Hopf ?-isomorphism implementing the isomorphism
between Hν,q and Hν′,q′ (recall that Hν,q is coamenable). Since φ intertwines scaling groups

([63, Proposition 3.15]) it follows that for each t ∈ R, τHν,qt is trivial if and only if τ
Hν′,q′
t

is trivial and consequently Proposition 5.19 implies π
log(|q|)Z = π

log(|q′|)Z ⇒ |q| = |q
′|. Next,

since inner scaling automorphisms ofHν,q are implemented by elements of C(Hν,q) (similarly
for Hν′,q′) it follows from the same proposition that νQ + π

log(|q|)Z = ν ′Q + π
log(|q|)Z. The

last claim is a consequence of dimQ(R/(Q π
log(|q|))) = c.

Remark. We have constructed a compact quantum group H such that L∞(H) is the
injective type II∞ factor (with separable predual). Clearly there exists a compact quantum
group with L∞(H) being the type II1 factor (with separable predual) � one simply has to

take an amenable ICC group Γ, e.g. S∞ and de�ne H = Γ̂. It is not di�cult to observe
that L∞(H) can be isomorphic to Mn (n ∈ N) only for n = 1. Indeed, one line of reasoning
would be as follows: since dim(Mn) < +∞, H would have to be coamenable. But then
C(H) ' Mn is universal and has a character, which forces n = 1. It is an interesting
question, which is to our knowledge open, whether there exists a compact quantum group
H with L∞(H) isomorphic to B(`2) or a type IIIλ (λ ∈ [0, 1]) injective factor.

5.5 Examples with commutative CG

In this subsection we will prove that the condition
∑

α∈Irr(G)

√
dim(α)
dimq(α)

< +∞ from Theo-

rem 5.9 holds for a fairly general class of non-Kac type compact quantum groups. More
precisely, in this subsection we consider any compact quantum group G with the following
properties:
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1) there exists an irreducible fundamental representation U with dimq(U) > dim(U)
and U ' U ,

2) irreducible representations of G are labeled by Z+, so that Irr(G) = {Un}n∈Z+ , where
U1 = U and U0 is the trivial representation,

3) the fusion rules are given by U1 >OUn '
⊕n+1

k=0 C(k, n)Uk, with C(n + 1, n) ≥ 1 and
supn∈Z+

C(n+ 1, n) < +∞.

Let us mention two classes of compact quantum groups that �t into the above descrip-
tion:

� Non-Kac type free orthogonal quantum group G = O+
F satis�es the above conditions

with U being the standard fundamental representation (see Section 2.3.2).

� Let (B,ψ) be a �nite dimensional C∗-algebra with a non-tracial δ-form. The non-Kac
type quantum automorphism groupGAut(B,ψ) also satis�es the above conditions (see
Section 2.3.4).

To keep the notation lighter, let us write dim(n) = dim(Un) and dimq(n) = dimq(U
n)

for all n ∈ Z+. Using our assumptions on the representation theory of G we can show that
( dim(n)

dimq(n)
)n∈Z+ decays at an exponential rate.

Lemma 5.21.

� We have Un ' Un and Un >OUm ' Um >OUn for all n,m ∈ Z+.

� There exists d > 0, c > 1 such that dim(n)
dimq(n)

≤ d
cn

for all n ∈ Z+.

Proof. Observe that we have (U1) >On '
⊕n

k=0 c
′
k,nU

k (n ∈ N) for some c′k,n ∈ Z+. As U1 '
U1, it follows inductively that Un ' Un for all n ∈ Z+. Equivalence U

n >OUm ' Um >OUn

can now be justi�ed with the following calculations

Un
>OUm ' Un >OUm ' Um >OUn ' Um

>OUn.

To prove the second bullet point, let us introduce positive numbers An ≥ 1 via dimq(n) =
An dim(n) (n ∈ Z+). Clearly A0 = 1 and we assume that A1 > 1. The fusion rule
U1 >OUn '

⊕n+1
k=0 C(k, n)Uk implies

A1An dim(1) dim(n) = dimq(U
1
>OUn) = dimq

(n+1⊕
k=0

C(k, n)Uk
)

=
n+1∑
k=0

C(k, n)Ak dim(k)

and

dim(1) dim(n) = dim(U1
>OUn) = dim

(n+1⊕
k=0

C(k, n)Uk
)

=
n+1∑
k=0

C(k, n) dim(k).
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Combining these equations gives us

A1An dim(1) dim(n) ≤ ( max
k∈{0,...,n}

Ak)
n∑
k=0

C(k, n) dim(k) + C(n+ 1, n)An+1 dim(n+ 1)

= ( max
k∈{0,...,n}

Ak)
(
dim(1) dim(n)− C(n+ 1, n) dim(n+ 1)

)
+ C(n+ 1, n)An+1 dim(n+ 1),

hence

An+1 ≥ max
k∈{0,...,n}

Ak +
(
A1An − max

k∈{0,...,n}
Ak
) dim(1) dim(n)
C(n+1,n) dim(n+1)

.

The above inequality implies An+1 = maxp∈{0,...,n+1}Ap. Consequently, we can further
write

An+1 ≥ An + An
A1−1

supm∈Z+ C(m+1,m)
dim(1) dim(n)

dim(n+1)
.

Since Un+1 is a subrepresentation of U1 >OUn, we have dim(1) dim(n) ≥ dim(n+ 1) and

An+1 ≥ An
(
1 + A1−1

supm∈Z+ C(m+1,m)

)
.

Write c = 1 + A1−1
supm∈Z+ C(m+1,m)

> 1. We have shown An+1 ≥ cAn. Using dimq(n) =

An dim(n) we arrive at

dimq(n) = An dim(n) ≥ cn−1A1 dim(n) (n ∈ N).

In particular, the above lemma implies that CG is an abelian von Neumann algebra.
Theorems 5.9 and 5.12 give us the following corollary (it follows from the fusion rules that
the assumptions are satis�ed).

Corollary 5.22. We have
∑∞

n=0

√
dim(n)
dimq(n)

< +∞, hence the inclusion CG ⊆ L∞(G) is

quasi-split. Furthermore, CG is not a MASA.

5.6 Quantum unitary group U+
F

Let F be an invertible matrix with complex entries and U+
F the associated compact quantum

group (see Section 2.3.3). In this subsection we show that the sum condition∑
γ∈Irr(U+

F )

( dim(γ)
dimq(γ)

) 1
2 < +∞ (5.10)

is satis�ed provided U+
F is �su�ciently non-Kac� (see Proposition 5.25 for the precise

statement). Consequently, in this case we obtain information about the inclusion CU+
F
⊆

L∞(U+
F ).
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The representation theory of U+
F was described by Banica in [4, Théorème 1]. Recall

that Irr(U+
F ) can be identi�ed with Z+ ? Z+ in such a way that the neutral element e

corresponds to the trivial representation, the �rst generator α to the fundamental repre-
sentation and the second one β to its contragradient (see Section 2.3.3). The fusion rule is
given by

x >Oy '
⊕

a,b,c∈Z+?Z+:

x=ac, y=cb

ab (x, y ∈ Z+ ? Z+). (5.11)

In order to e�ciently calculate the sum (5.10), we need to single out a family of irreducible
representations out of which all of Irr(U+

F ) is built. Observe that each non-trivial word
γ ∈ Irr(U+

F )\{e} has a well de�ned beginning and an end s(γ), t(γ) ∈ {α, β}. Let us de�ne
sets

Iα,α = {α(βα)n |n ∈ Z+}, Iα,β = {(αβ)n |n ∈ N},
Iβ,α = {(βα)n |n ∈ N}, Iβ,β = {(βα)nβ |n ∈ Z+}.

The following observation was already made e.g. in [60]:

Lemma 5.23. Every non-trivial word γ ∈ Irr(U+
F ) \ {e} can be uniquely written as

γ = x1 · · ·xp = x1 >O · · · >Oxp

for some p ∈ N, δ1, . . . , δp−1 ∈ {α, β} and x1 ∈ Is(γ),δ1 , x2 ∈ Iδ1,δ2 , . . . , xp ∈ Iδp−1,t(γ).

The above result follows easily from the observation that if δαnδ′ for some δ, δ′ ∈ Irr(U+
F )

and n ≥ 2 then (5.11) implies
δαnδ′ = δα >Oαn−1δ′

(and similarly for δβnδ′). It follows that in order to calculate the sum (5.10) we need to
�nd the (quantum) dimension of representations from the sets Iδ,δ′ .

Lemma 5.24. Let d be the classical or the quantum dimension function. If d(α) = 2, then

d((αβ)n) = d((βα)n) = 2n+ 1,

d((αβ)nα) = d((βα)nβ) = 2n+ 2

for n ∈ Z+. If d(α) > 2, then

d((αβ)n) = d((βα)n) = (d(α)+d′)2n+1−(d(α)−d′)2n+1

22n+1d′
,

d((αβ)nα) = d((βα)nβ) = (d(α)+d′)2n+2−(d(α)−d′)2n+2

22n+2d′

for n ∈ Z+, where d′ =
√
d(α)2 − 4.
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Proof. Fix n ∈ Z+. As
(αβ)nα >Oβ = (αβ)n+1 ⊕ (αβ)n,

we have
d(α)d((αβ)nα) = d((αβ)n+1) + d((αβ)n). (5.12)

Similarly,
(αβ)nαβ >Oα = (αβ)n+1α⊕ (αβ)nα

and
d(α)d((αβ)n+1) = d((αβ)n+1α) + d((αβ)nα). (5.13)

Equations (5.12), (5.13) imply[
d((αβ)n+1)
d((αβ)n+1α)

]
=

[
−1 d(α)
−d(α) d(α)2 − 1

] [
d((αβ)n)
d((αβ)nα)

]
,

hence iterating the above equation gives us[
d((αβ)n)
d((αβ)nα)

]
=

[
−1 d(α)
−d(α) d(α)2 − 1

]n [
1

d(α)

]
(n ∈ Z+).

Assume �rst that d(α) = 2. One easily checks that[
−1 d(α)
−d(α) d(α)2 − 1

]n
=

[
−1 2
−2 3

]n
=

[
−2n+ 1 2n
−2n 2n+ 1

]
,

hence [
d((αβ)n)
d((αβ)nα)

]
=

[
−2n+ 1 2n
−2n 2n+ 1

] [
1
2

]
=

[
2n+ 1
2n+ 2

]
.

Observe that
α >Oβα(βα)n = α(βα)n+1 ⊕ α(βα)n,

hence

d((βα)n+1) = 1
d(α)

(
d(α(βα)n+1) + d(α(βα)n

)
= 1

2
(2n+ 4 + 2n+ 2) = 2n+ 3 = d((αβ)n+1).

The last equation can be checked as follows

d((βα)nβ) = d((αβ)nα) = d((αβ)nα). (5.14)

Let us now consider the case d(α) > 2. This time d′ =
√
d(α)2 − 4 > 0, the matrix[

−1 d(α)
−d(α) d(α)2 − 1

]n
equals

[
(d(α)−d′)2n(d′+d(α))+(d(α)+d′)2n(d′−d(α))

22n+1d′
(d(α)+d′)2n−(d(α)−d′)2n

22nd′

− (d(α)+d′)2n−(d(α)−d′)2n
22nd′

(d(α)−d′)2n(d′−d(α))+(d(α)+d′)2n(d′+d(α))
22n+1d′

]
,
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hence

[
d((αβ)n)
d((αβ)nα)

]
equals

[
(d(α)−d′)2n(d′+d(α))+(d(α)+d′)2n(d′−d(α))

22n+1d′
(d(α)+d′)2n−(d(α)−d′)2n

22nd′

− (d(α)+d′)2n−(d(α)−d′)2n
22nd′

(d(α)−d′)2n(d′−d(α))+(d(α)+d′)2n(d′+d(α))
22n+1d′

] [
1

d(α)

]

=

[
(d(α)+d′)2n(d′+d(α))+(d(α)−d′)2n(d′−d(α))

22n+1d′
(d(α)−d′)2n(d(α)d′−d(α)2+2)+(d(α)+d′)2n(d(α)d′+d(α)2−2)

22n+1d′

]
=

[
(d′+d(α))2n+1+(d′−d(α))2n+1

22n+1d′
(d′+d(α))2n+2−(d′−d(α))2n+2

22n+2d′

]

for all n ∈ Z+. Next, as before we get

d((βα)n+1) = 1
d(α)

(
d(α(βα)n+1) + d(α(βα)n

)
= 1

d(α)

( (d′+d(α))2n+4−(d′−d(α))2n+4

22n+4d′
+ (d′+d(α))2n+2−(d′−d(α))2n+2

22n+2d′

)
= (d′+d(α))2n+2((d′+d(α))2+4)−(d′−d(α))2n+2((d′−d(α))2+4)

22n+4d(α)d′

= (d′+d(α))2n+2(2d(α)2+2d(α)d′)−(d′−d(α))2n+2(2d(α)2−2d(α)d′)
22n+4d(α)d′

= (d′+d(α))2n+3+(d′−d(α))2n+3

22n+3d′
= d((αβ)n+1)

and (5.14) gives d((βα)nβ) = d((αβ)nα) for all n ∈ Z+.

Using the above result we can show that for �su�ciently non-Kac� quantum unitary
groups, the sum condition (5.10) is satis�ed.

Proposition 5.25. If dim(α)
dimq(α)

≤ 1
15

then
∑

γ∈Irr(U+
F )

√
dim(γ)
dimq(γ)

< +∞.

Proof. Lemma 5.23 shows that∑
γ∈Irr(U+

F )

( dim(γ)
dimq(γ)

) 1
2 = 1 +

∑
p∈N

∑
δ0,...,δp∈{α,β}

∑
γ1∈Iδ0,δ1

· · ·
∑

γp∈Iδp−1,δp

( dim(γ1 >O ··· >Oγp)

dimq(γ1 >O ··· >Oγp)

) 1
2

= 1 +
∑
p∈N

∑
δ0,...,δp∈{α,β}

( ∑
γ1∈Iδ0,δ1

( dim(γ1)
dimq(γ1)

) 1
2
)
· · ·
( ∑
γp∈Iδp−1,δp

( dim(γp)

dimq(γp)

) 1
2
)
.

(5.15)

Let us de�ne Sδ,δ′ =
∑

γ∈Iδ,δ′

( dim(γ)
dimq(γ)

) 1
2 for δ, δ′ ∈ {α, β}. Lemma 5.24 implies that

Sα,β = Sβ,α, Sα,α = Sβ,β.

We will now show that our assumption dim(α)
dimq(α)

≤ 1
15

forces max(Sα,α, Sα,β) < 1
2
.

More generally, let us �x 2 < x < y such that x
y
≤ 1

15
and show

S1(x, y) =
∞∑
n=0

( (
(x+
√
x2−4)2n+2−(x−

√
x2−4)2n+2

)√
y2−4(

(y+
√
y2−4)2n+2−(y−

√
y2−4)2n+2

)√
x2−4

) 1
2

≤ 0.499 (5.16)
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and

S2(x, y) =
∞∑
n=1

( (
(x+
√
x2−4)2n+1−(x−

√
x2−4)2n+1

)√
y2−4(

(y+
√
y2−4)2n+1−(y−

√
y2−4)2n+1

)√
x2−4

) 1
2

≤ 0.499. (5.17)

Clearly for 2 < x = dim(α), y = dimq(α), inequalities (5.16), (5.17) imply max(Sα,α, Sα,β) <
1
2
.

Observe that the mean value theorem applied to the function ]0,+∞[ 3 s 7→ sp ∈
(0,+∞) gives us

(x+
√
x2 − 4)p − (x−

√
x2 − 4)p ≤ 2p(x+

√
x2 − 4)p−1

√
x2 − 4 (x > 2, p ∈ N).

Consequently,

S1(x, y) ≤
∞∑
n=0

( 2(2n+2)(x+
√
x2−4)2n+1

√
y2−4

(y+
√
y2−4)2n+2−(y−

√
y2−4)2n+2

) 1
2

= 2(y2 − 4)
1
4

∞∑
n=0

√
n+ 1 (x+

√
x2−4)

1
2

y+
√
y2−4

(
x+
√
x2−4

y+
√
y2−4

)n 1(
1−
(y−√y2−4

y+
√
y2−4

)2n+2) 1
2

≤ 2(y2 − 4)
1
4

∞∑
n=0

(n+ 3
2
)
1
2

(x+
√
x2−4)

1
2

y+
√
y2−4

( x+
√
x2−4

y+
√
y2−4

)n 1(
1−(

y−
√
y2−4

y+
√
y2−4

)2n+2
) 1

2

= ?,

(5.18)

where we replaced n+1 by n+ 3
2
to match the corresponding bound for S2(x, y). Similarly,

S2(x, y) ≤
∞∑
n=1

( 2(2n+1)(x+
√
x2−4)2n

√
y2−4

(y+
√
y2−4)2n+1−(y−

√
y2−4)2n+1

) 1
2

= 2(y2 − 4)
1
4

∞∑
n=1

(n+ 1
2
)
1
2

(x+
√
x2−4)

1
2

y+
√
y2−4

(
x+
√
x2−4

y+
√
y2−4

)n− 1
2 1(

1−(
y−
√
y2−4

y+
√
y2−4

)2n+1
) 1

2

= 2(y2 − 4)
1
4

∞∑
n=0

(n+ 3
2
)
1
2

(x+
√
x2−4)

1
2

y+
√
y2−4

(
x+
√
x2−4

y+
√
y2−4

)n+ 1
2 1(

1−(
y−
√
y2−4

y+
√
y2−4

)2n+3
) 1

2

≤ 2(y2 − 4)
1
4

∞∑
n=0

(n+ 3
2
)
1
2

(x+
√
x2−4)

1
2

y+
√
y2−4

( x+
√
x2−4

y+
√
y2−4

)n 1(
1−(

y−
√
y2−4

y+
√
y2−4

)2n+2
) 1

2

= ?.

Thus, it is enough to bound the expression ?. Note that the expression
(
1−(

y−
√
y2−4

y+
√
y2−4

)2n+2
)

is the smallest when n = 0, and we will use this to obtain a crude upper bound for ?. We
also have

(y +
√
y2 − 4)

(
1− (

y−
√
y2−4

y+
√
y2−4

)2

) 1
2

= 2
√
y(y2 − 4)

1
4 ,
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so we obtain the following bound for ? (using an elementary estimate
√
n+ 3

2
6
√

5
2
n for

n > 1):

? ≤ 2(y2 − 4)
1
4

(x+
√
x2−4)

1
2

2
√
y(y2−4)

1
4

(√
3
2

+
√

5
2

∞∑
n=1

n
(
x+
√
x2−4

y+
√
y2−4

)n)
= (x+

√
x2−4)

1
2

√
y

(√
3
2

+
√

5
2

x+
√
x2−4

y+
√
y2−4

(1− x+
√
x2−4

y+
√
y2−4

)2

)
.

Now, let us introduce the variable t := x
y
∈
]
0, 1

15

]
. Recall that 2 < x = ty < y, hence√

1− 4y−2 ≥
√

1− t2. Using this observation and the fact that the function f(z) = z
(1−z)2

is increasing on ]0, 1[, we get

? ≤
√

2t
(√

3
2

+
√

5
2

2t
1+
√

1−t2

(1− 2t
1+
√

1−t2 )2

)
.

Let us argue that the condition t ≤ 1
15

implies that the expression above is bounded by
0.499. As the function h(z) = 2z

1+
√

1−z2 de�ned on ]0, 1[ is increasing, we have h(t) ≤
h( 1

15
) ≤ 0.067. It follows that f(h(t)) ≤ f(0.067) ≤ 0.077. Putting this information

together we arrive at

? ≤
√

2t
(√

3
2

+
√

5
2
f(h(t))

)
≤ 0.4917 ≤ 0.499.

Consequently, we have shown (5.16), (5.17) and max(Sα,α, Sα,β) < 1
2
in the case dim(α) ≥ 3.

Let us now turn to the case dim(α) = 2. Using expressions from Lemma 5.24 we see

Sα,α =
∑
γ∈Iα,α

( dim(γ)
dimq(γ)

) 1
2 =

∞∑
n=0

( (2n+2)22n+2
√

dimq(α)2−4

(dimq(α)+
√

dimq(α)2−4)2n+2−(dimq(α)−
√

dimq(α)2−4)2n+2

) 1
2 (5.19)

and

Sα,β =
∑
γ∈Iα,β

( dim(γ)
dimq(γ)

) 1
2 =

∞∑
n=0

( (2n+1)22n+1
√

dimq(α)2−4

(dimq(α)+
√

dimq(α)2−4)2n+1−(dimq(α)−
√

dimq(α)2−4)2n+1

) 1
2 . (5.20)

Observe that
lim
x→2+

(x+
√
x2−4)p−(x−

√
x2−4)p

2p
√
x2−4

= p

for all p ∈ N, hence Fatou's lemma and inequality (5.16) imply

Sα,α =
∞∑
n=0

lim
x→2+

( (
(x+
√
x2−4)2n+2−(x−

√
x2−4)2n+2

)√
dimq(α)2−4(

(dimq(α)+
√

dimq(α)2−4)2n+2−(dimq(α)−
√

dimq(α)2−4)2n+2
)√

x2−4

) 1
2

≤ lim inf
x→2+

∞∑
n=0

( (
(x+
√
x2−4)2n+2−(x−

√
x2−4)2n+2

)√
dimq(α)2−4(

(dimq(α)+
√

dimq(α)2−4)2n+2−(dimq(α)−
√

dimq(α)2−4)2n+2
)√

x2−4

) 1
2 ≤ 0.499.
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Similarly, we get Sα,β ≤ 0.499 using (5.20) and (5.17).
We have shown max(Sα,α, Sα,β) < 1

2
. Consequently, (5.15) gives us∑

γ∈Irr(U+
F )

( dim(γ)
dimq(γ)

) 1
2 ≤ 1 +

∑
p∈N

∑
δ0,...,δp∈{α,β}

max(Sα,α, Sα,β)p

= 1 +
∞∑
p=1

2p+1 max(Sα,α, Sα,β)p < +∞.

Remark. Calculations in the proof of Proposition 5.25 are far from optimal, however it is

clear that there are non-Kac type quantum unitary groups U+
F with

∑
γ∈Irr(U+

F )

( dim(γ)
dimq(γ)

) 1
2 =

+∞. Indeed, assume that min( dim(α)
dimq(α)

, dim(αβ)
dimq(αβ)

) ≥ 1
4
. Then

Sα,α = Sβ,β ≥ 1
2
, Sα,β = Sβ,α ≥ 1

2

and consequently

∑
γ∈Irr(U+

F )

( dim(γ)
dimq(γ)

) 1
2 ≥ 1 +

∞∑
p=1

2p+1 min(Sα,α, Sα,β)p = +∞.

It follows from the rule (5.11) and Lemma 5.24 that non-trivial irreducible representa-
tions γ of U+

F have ργ 6= 1γ. Using Theorems 5.9 and 5.12 we get the following corollary.

Corollary 5.26. Assume that dim(α)
dimq(α)

≤ 1
15
. Then the inclusion CU+

F
⊆ L∞(U+

F ) is quasi-

split and the relative commutant C ′
U+
F

∩ L∞(U+
F ) is not contained in CU+

F
.

Proof. By [30, Theorem 33] L∞(U+
F ) is a type III factor. Therefore Proposition 5.4 applies

and we know that C ′
U+
F

∩ L∞(U+
F ) is a type III algebra, hence cannot be contained in CU+

F
,

which is a �nite von Neumann algebra.
An alternative argument can go as follows. By [4, Théorème 1 (iii)] the character of

the fundamental representation of U+
F has the same disribution (with respect to the Haar

integral) as a circular variable32, so we can conclude that CU+
F
is isomorphic to the free

group factor L(F2), in particular it is a factor. If the relative commutant C ′
U+
F

∩L∞(U+
F ) were

contained in CU+
F
then the center of L∞(U+

F ) would be contained in CU+
F
, so L∞(U+

F ) has to

be a factor. Moreover, if C ′
U+
F

∩L∞(U+
F ) ⊆ CU+

F
then C ′

U+
F

∩L∞(U+
F ) = CU+

F
∩C ′

U+
F

∩L∞(U+
F ) =

C1, i.e. the inclusion is irreducible. By [25, Corollary 1] a quasi-split inclusion of factors is
actually split and it is easy to check that a proper split inclusion cannot be irreducible.

32Recall that x is circular if x = s1 + is2, where s1 and s2 are freely independent semicircular variables.
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6 Approximation properties of quantum groups and op-

erator algebras

In this section we will look at approximation properties of a (mostly discrete) quantum

group G and the associated operator algebras C0(Ĝ),L∞(Ĝ), and see how these two
are related. We will focus on amenability (on the quantum group side) and nuclear-
ity/injectivity (on the operator algebraic side), however similar problems can be studied
also for weaker properties: Haagerup property [28, 11, 12, 13, 30, 67] or weak amenabil-
ity/CBAP [13, 40, 41].

Amenability of a quantum group is de�ned via the existence of an invariant mean.

De�nition 6.1. A locally compact quantum group G is amenable if there exists a state
m ∈ L∞(G)∗ (called a mean) such that

m((ω ⊗ id)∆(x)) = m((id⊗ ω)∆(x)) = m(x)ω(1) (x ∈ L∞(G), ω ∈ L1(G)).

On the operator algebraic side we have nucleatity as the appropriate property of a
C∗-algebra. Rather then nuclearity per se, we will use an equivalent property � completely
positive approximation property (CPAP).

De�nition 6.2. A C∗-algebra A has a CPAP if there exists a net (Φι)ι∈I of �nite rank CP
maps Φι : A→ A such that Φι(x) −−→

ι∈I
x for all x ∈ A.

For von Neumann algebras we will consider injectivity:

De�nition 6.3. A von Neumann algebra M ⊆ B(H) is injective if there exists a conditional
expectation B(H)→ M, i.e. a UCP map E : B(H)→ M such that33 E(x) = x and E(xTy) =
xE(T )y for all x, y ∈ M, T ∈ B(H).

By a fundamental result of Connes [23, Theorem 6] injectivity is equivalent to the weak∗

completely positive approximation property (w∗-CPAP).

De�nition 6.4. A von Neumann algebra M has a w∗-CPAP if there exists a net (Φι)ι∈I

of �nite rank normal UCP maps Φι : M→ M such that Φι(x)
w∗−−→
ι∈I

x for all x ∈ M.

We refer the reader to the sources [13, 8] and [14] (as well as references therein) for an
introduction to these notions and equivalent properties.

Amenability of G and CPAP of C0(Ĝ) (injectivity of L∞(Ĝ)) are closely related, in some
cases even equivalent. As a rule of thumb, it is typically easier to derive the implication
(quantum group approximation property)⇒ (operator algebraic approximation property),
hence this is where we will start.

33By a famous result of Tomiyama ([14, Theorem 1.5.10]), linear map E : B(H) → M is a conditional
expectation if and only if it is a contraction and satis�es E(x) = x for all x ∈ M.
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Theorem 6.5 ([8, Theorem 3.3]). If G is an amenable locally compact quantum group,
then the C∗-algebra C0(Ĝ) is nuclear and the von Neumann algebra L∞(Ĝ) is injective.

Sketch of a partial proof. Let V ∈ L∞(Ĝ)′⊗̄L∞(G) be the unitary operator implementing
comultiplication via

∆G(x) = V(x⊗ 1)V∗ (x ∈ L∞(G))

(see equation (2.5)). Next, de�ne a linear map E : B(L2(G))→ B(L2(G)) by

ω(E(T )) = m((ω ⊗ id)(V(T ⊗ 1)V∗)) (T ∈ B(L2(G)), ω ∈ B(L2(G))∗),

where m is a �xed mean on L∞(Ĝ). Clearly this map is well de�ned and has norm ≤ 1. It

is not di�cult to see that E(B(L2(G))) ⊆ L∞(Ĝ) and E(x) = x for x ∈ L∞(Ĝ) (see [8] or
[13] for details).

It is natural to wonder, whether the converse of Theorem 6.5 holds, i.e. whether injec-
tivity of L∞(Ĝ) implies amenability of G. Such an implication is not true, even for classical
locally compact groups.

Proposition 6.6 ([23, Corollary 7], [14, Remark 2.6.10]). If G is a connected, separable
locally compact group then C∗r(G) = C0(Ĝ) is nuclear and L(G) = L∞(Ĝ) is injective.
However, such a group G need not be amenable. An example is given by SL(n,R) for
n ≥ 2.

The above result tells us that if we want to obtain some sort of a converse to Theorem
6.5, we need to restrict our attention to a smaller class of quantum groups or impose more
conditions on the operator algebraic assumption.

First we will take the former approach and assume that G is a unimodular discrete
quantum group (equivalently Ĝ is compact and of Kac type).

Theorem 6.7 ([13, Theorem 6.6]). If G is a unimodular discrete quantum group and C(Ĝ)

is nuclear or L∞(Ĝ) is injective then G is amenable.

Sketch of a proof. Since L∞(Ĝ) is injective it has w∗-CPAP and there exists a net (Φι)ι∈I of

normal UCP maps L∞(Ĝ)→ L∞(Ĝ) of �nite rank such that Φι(x)
w∗−−→
ι∈I

x for all x ∈ L∞(Ĝ).

Next, there exists a normal UCP map ([13, Section 7.1])

∆]

Ĝ
: L∞(Ĝ)⊗̄L∞(Ĝ) 3 Uα

i,j ⊗ U
β
k,l 7→

δα,βδj,k
dimq(α)

Uα
i,l ∈ L∞(Ĝ).

Using these maps we de�ne

Ψι : L∞(Ĝ) 3 x 7→ ∆]

Ĝ
(Φι ⊗ id)∆Ĝ(x) ∈ L∞(Ĝ) (ι ∈ I).

These maps are still normal, UCP and converge to the identity map in the point-w∗ topol-
ogy, but they also take into account the structure of subspaces Vα = span{Uα

i,j | i, j ∈
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{1, . . . , dim(α)}}, i.e. Ψι(Vα) ⊆ Vα (α ∈ Irr(G)). One way to proceed from here is as
follows: a direct calculation shows that

(Ψι ⊗ id)WĜ = (1⊗ aι)WĜ (ι ∈ I),

where aι ∈ `∞(G) is given by

aι = (h⊗ id)((Φι ⊗ id)(WĜ)WĜ∗) (ι ∈ I).

One can check that aι belong to the Fourier algebra A(G) = λĜ(L∞(Ĝ)) and form a
bounded approximate identity. This implies amenability of G. The C∗-algebraic version of
this result can be proved analogously (for details see [13]).

Remark. One is tempted to try proving an extension of Theorem 6.7 to discrete quantum
groups which are possibly non-unimodular. One immediate problem that appears (when
using a similar strategy as presented above) stems from the fact that if (Φι)ι∈I converges
to the identity, then (Ψι)ι∈I will converge to ∆]

Ĝ
◦∆Ĝ which acts via

∆]

Ĝ
◦∆Ĝ : L∞(Ĝ) 3 Uα

i,j 7→
dim(α)
dimq(α)

Uα
i,j ∈ L∞(Ĝ) (α ∈ Irr(G), i, j ∈ {1, . . . , dim(α)}),

hence it does not converge to the identity [13, Section 7.1]. One could try remedy this
situation by composing with an inverse to ∆]

Ĝ
◦ ∆Ĝ as follows. First, using the fact that

injectivity of L∞(Ĝ) implies an existence of normal UCP maps (Φι)ι∈I as above which

factors through matrix algebras, we can assume that the image of Φι is contained in Pol(Ĝ)

(use [14, Proposition 1.5.12] and w∗-density of Pol(Ĝ) in L∞(Ĝ)). Next, de�ne �corrected�
maps

Ψ̃ι : L∞(Ĝ) 3 x 7→ ∆]

Ĝ
((∆]

Ĝ
◦∆Ĝ)−1Φι ⊗ id)∆Ĝ(x) ∈ L∞(Ĝ) (ι ∈ I).

These maps are well de�ned: even though (∆]

Ĝ
◦∆Ĝ)−1 is an unbounded map, the above

composition makes sense because the image of Φι is a �nite dimensional subspace in Pol(Ĝ).

(Ψι)ι∈I will converge to the identity (on elements of Pol(Ĝ)) in the point-w∗ topology.
However, now it is not clear why Ψ̃ι would be CP or even uniformly bounded in the CB
norm.

As far as we know, it is an open question whether nuclearity of C(Ĝ) or injectivity of

L∞(Ĝ) implies amenability of G for a discrete quantum group G.

We can obtain a partial converse to Theorem 6.5 by imposing stronger assumptions on
the operator algebraic side. One result of this kind was obtained by Soªtan and Viselter in
[76].

Theorem 6.8 ([76, Theorem 3]). Let G be a locally compact quantum group. The following
conditions are equivalent:

1) G is amenable,
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2) there is a conditional expectation of B(L2(G)) onto L∞(Ĝ) that maps L∞(G) to C1,

3) there is a conditional expectation of B(L2(G)) onto L∞(Ĝ) that maps L∞(G) to
Z(L∞(Ĝ)).

Conditions 2. and 3. from the above result are strenghtening of the injectivity of L∞(Ĝ),
which also take into consideration algebra L∞(G). We will now present a result of similar

kind: we will show that amenability is equivalent to a strenghtening of w∗-CPAP of L∞(Ĝ)
for discrete quantum groups G. First we need to introduce two de�nitions.

Recall the following easy observation: if M is a von Neumann algebra with a faithful
normal weight ϕ, and Φ is a UCP map M→ M such that ϕ◦Φ ≤ ϕ, then there exists a L2-
implementation of Φ, i.e. a bounded map TΦ ∈ B(Hϕ) satisfying TΦΛϕ(x) = Λϕ(Φ(x)) (x ∈
Nϕ).

De�nition 6.9. Let M be a von Neumann algebra with a n.s.f weight ϕ. We say that (M, ϕ)
has a w∗-CPAP relative to (a von Neumann algebra) N ⊆ B(Hϕ) if there exists a net (Φι)ι∈I

of �nite rank, normal, UCP maps M→ M such that ϕ ◦Φι ≤ ϕ, Φι(x)
w∗−−→
ι∈I

x (x ∈ M) and

the L2-implementations of Φι belong to N.

Whenever it is clear from the context which weight on M we consider, we will simply
say that M has a w∗-CPAP relative to N. Observe that M has a w∗-CPAP relative to
B(Hϕ) if and only if M has a w∗-CPAP.

A discrete quantum group G is amenable if, and only if there exists a bounded left
approximate identity (aι)ι∈I = (λ̂(ωι))ι∈I of the Fourier algebra A(G) in cc(G) consisting

of completely positive de�nite functions, i.e. the maps L∞(Ĝ) → L∞(Ĝ) associated with
aι are completely positive34,

sup
ι∈I
‖aι‖A(G) = sup

ι∈I
‖ωι‖ < +∞ and lim

ι∈I
aιa = a (a ∈ A(G)).

Looking at amenability from this point of view, it is natural to introduce a central
version of amenability35:

De�nition 6.10 ([13, De�nition 7.1], [41]). A discrete quantum group G is centrally
amenable if there exists a bounded approximate identity (aι)ι∈I = (λ̂(ωι))ι∈I of A(G) in
cc(G) such that ωι ≥ 0 and aι ∈ Z`∞(G) for all ι ∈ I.

34Equivalently ωι ≥ 0 � see [29, Theorem 15]. Furthermore, it is not di�cult to see that here the
condition aι ∈ cc(G) is super�uous.

35Equivalence of amenability and the existence of a bounded left approximate identity in A(G) consisting

of completely positive de�nite functions uses the coamenability of Ĝ ([8, Theorem 3.1]). Arguably, it would
therefore be more natural to introduce this condition as central coamenability � we will stick to the central
amenability because amenability of G is equivalent to coamenability of Ĝ for discrete quantum groups by
a famous result of Tomatsu [86].
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Now we can state the advertised result which asserts the equivalence of a (central)

amenability of G and a strenghtening of w∗-CPAP of L∞(Ĝ).

Theorem 6.11. Let G be a discrete quantum group and h the Haar integral on Ĝ. Consider
the following conditions

1a) G is centrally amenable,

1b) (L∞(Ĝ), h) has a w∗-CPAP relative to Z`∞(G),

2a) G is amenable,

2b) (L∞(Ĝ), h) has a w∗-CPAP relative to `∞(G),

2c) (L∞(Ĝ), h) has a w∗-CPAP relative to `∞(G)′.

We have 1a)⇔ 1b)⇒ 2a)⇔ 2b)⇔ 2c).

Remark. Let us note that there are discrete quantum groups which are amenable but not

centrally amenable, e.g. ŜUq(2) for q ∈ ]−1, 1[ \ {0} [41]. In fact, we do not know any
example of a non-unimodular, centrally amenable discrete quantum group.

It will be useful to prove �rst an auxiliary result, which we believe to be interesting on
its own.

Proposition 6.12. Let G be a locally compact quantum group with the left Haar integral
ϕ and Φ: L∞(Ĝ) → L∞(Ĝ) a normal UCP map satisfying Φ ◦ ϕ ≤ ϕ. Let Φ∗ : L1(Ĝ) →
L1(Ĝ) be the predual of Φ and T : L2(G)→ L2(G) the L2 implementation of Φ. We have

1) T ∈ L∞(G) if and only if Φ∗(ω ? ν) = Φ∗(ω) ? ν for all ω, ν ∈ L1(Ĝ),

2) T ∈ L∞(G)′ if and only if Φ∗(ω ? ν) = ω ? Φ∗(ν) for all ω, ν ∈ L1(Ĝ),

3) T ∈ Z(L∞(G)) if and only if Φ∗(ω ? ν) = Φ∗(ω) ? ν = ω ?Φ∗(ν) for all ω, ν ∈ L1(Ĝ).

Proof. Using the biduality G =
̂̂G and [93, De�nition 4.6] (see also Section 2.2), we deduce

that the subspace

N = {λ̂(ω) |ω ∈ L1(Ĝ) : ∃ξ∈L2(G)∀x∈Nϕ̂〈Λϕ̂(x) | ξ〉 = ω(x∗)}

is a core for Λϕ and for λ̂(ω) ∈ N we have Λϕ(λ̂(ω)) = ξ. Now, let us argue that

T ∗Λϕ(λ̂(ω)) = Λϕ(λ̂(Φ∗(ω))) (λ̂(ω) ∈ N ). (6.1)

For x ∈ Nϕ̂ we have

〈Λϕ̂(x) |T ∗Λϕ(λ̂(ω))〉 = 〈TΛϕ̂(x) |Λϕ(λ̂(ω))〉 = 〈Λϕ̂(Φ(x)) |Λϕ(λ̂(ω))〉
= ω(Φ(x)∗) = ω(Φ(x∗)) = Φ∗(ω)(x∗) = 〈Λϕ̂(x) |Λϕ(λ̂(Φ∗(ω)))〉,
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which proves equation (6.1).

If T ∈ L∞(G) then (6.1) implies T ∗λ̂(ω) = λ̂(Φ∗(ω)) for all ω ∈ L1(Ĝ) such that

λ̂(ω) ∈ N and by density of such ω (Lemma 7.10) this equation holds for all ω ∈ L1(Ĝ).
Consequently

λ̂(Φ∗(ω ? ν)) = T ∗λ̂(ω ? ν) = T ∗λ̂(ω)λ̂(ν) = λ̂(Φ∗(ω))λ̂(ν) = λ̂(Φ∗(ω) ? ν)

and Φ∗(ω ? ν) = Φ∗(ω) ? ν for all ω, ν ∈ L1(Ĝ).

Using WĜ = χ(WG)∗ we get

σϕt (λ̂(ω)) = (ω ⊗ id)((id⊗ σϕt )WĜ) = (id⊗ ω)((σϕt ⊗ id)(WG))∗

= (id⊗ ω)((τt ⊗ id)(WG)(1⊗ δ̂it))∗ = (id⊗ ω)((id⊗ τ̂−t)(WG)(1⊗ δ̂it))∗

= (id⊗ ω)((1⊗ δ̂−it)(id⊗ τ̂−t)(WG)∗) = (ω ⊗ id)((δ̂−it ⊗ 1)(τ̂−t ⊗ id)(WĜ))

= λ̂((ωδ̂−it) ◦ τ̂−t)

for ω ∈ L1(Ĝ), t ∈ R (see also equation (2.14), [93, Theorem 3.10, Proposition 5.15] and

their proofs). If Φ∗(ω ? ν) = Φ∗(ω) ? ν holds for all ω, ν ∈ L1(Ĝ) then

〈Λϕ̂(x) |T ∗Jϕλ̂(ω)∗JϕΛϕ(λ̂(ν))〉 = 〈Λϕ̂(x) |T ∗Λϕ(λ̂(ν)σϕ−i/2(λ̂(ω)))〉

= 〈TΛϕ̂(x) |Λϕ(λ̂(ν ? ρ))〉 = (ν ? ρ)(Φ(x)∗) = Φ∗(ν ? ρ)(x∗) = (Φ∗(ν) ? ρ)(x∗)

= 〈Λϕ̂(x) |Λϕ(λ̂(Φ∗(ν) ? ρ))〉 = 〈Λϕ̂(x) |Λϕ(λ̂(Φ∗(ν))σϕ−i/2(λ̂(ω)))〉

= 〈Λϕ̂(x) | Jϕλ̂(ω)∗JϕT
∗Λϕ(λ̂(ν))〉

for x ∈ Nϕ̂, λ̂(ν) ∈ N and ω ∈ L1(Ĝ) such that λ̂(ω) ∈ N and the map R 3 t 7→
(ωδ̂−it) ◦ τ̂t ∈ L1(Ĝ) extends to an entire map C → L1(Ĝ). We denote by ρ ∈ L1(Ĝ)
the value of the analitical continuation to t = −i/2. Density of appropriate vectors and
operators (Lemma 7.10) gives us T ∗ ∈ L∞(G)′′ = L∞(G) and proves the �rst point. An
alternative proof can be given using [13, Proposition 4.5].

Assume now that T ∈ L∞(G)′. By equation (6.1) we have

Λϕ(λ̂(Φ∗(ω ? ν))) = T ∗Λϕ(λ̂(ω ? ν)) = λ̂(ω)T ∗Λϕ(λ̂(ν)) = Λϕ(λ̂(ω ? Φ∗(ν))),

hence Φ∗(ω ? ν) = ω ? Φ∗(ν) for all functionals ω, ν such that λ̂(ω), λ̂(ν) belongs to N .
Lemma 7.10 gives us the claim.

On the other hand, if Φ∗(ω ? ν) = ω ? Φ∗(ν) for all ω, ν ∈ L1(Ĝ) then

λ̂(ω)T ∗Λϕ(λ̂(ν)) = Λϕ(λ̂(ω ? Φ∗(ν))) = Λϕ(λ̂(Φ∗(ω ? ν))) = T ∗λ̂(ω)Λϕ(λ̂(ν))

for all λ̂(ω), λ̂(ν) ∈ N and consequently T ∈ L∞(G)′.
The last point follows from a combination of 1) and 2).
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Proof of Theorem 6.11. First, assume that G is amenable and we have a bounded left
approximate identity (aι)ι∈I = (λ̂(ωι))ι∈I of A(G) in cc(G) with ωι ≥ 0 (ι ∈ I). De�ne

Φι
∗ : L1(Ĝ) 3 ω 7→ ωι ? ω ∈ L1(Ĝ) (ι ∈ I)

and correspondingly Φι = (Φι
∗)
∗. Clearly Φι,δ are normal, CP and Proposition 6.12 implies

that the L2-implementation of Φι are in `∞(Ĝ) for all ι ∈ I. As aι ∈ cc(G), the image of
Φι is of �nite rank. We need to make sure that our functions map 1 to 1. To do that,
de�ne

Φ̃ι = Φι

‖Φι‖ = Φι

ωι(1)
(ι ∈ I).

It is clear that (Φ̃ι)ι∈I converge in the point-w∗ topology to the identity, hence we have
proved the implication 2a)⇒ 2b).

If G is centrally amenable, we know additionally that aι ∈ Z(`∞(G)), i.e. ωι(U
α
i,j) =

δi,jωι(U
α
1,1) for all ι ∈ I, α ∈ Irr(Ĝ), i, j ∈ {1, . . . , dim(α)}. Then

(ωι ? ω)(Uα
i,j) =

dim(α)∑
k=1

ωι(U
α
i,k)ω(Uα

k,j) = ωι(U
α
i,i)ω(Uα

i,j) = ω(Uα
i,j)ωι(U

α
j,j) = (ω ? ωι)(U

α
i,j)

and consequently Proposition 6.12 implies that the L2-implementation of Φι belongs to
Z(`∞(G)). This proves 1a)⇒ 1b).

Assume that 2b) holds with maps (Φι)ι∈I . Set aι = T ∗ι ∈ `∞(G), where Tι is the

L2-implementation of Φι. In the proof of Proposition 6.12 we have showed that aιλ̂(ω) =

λ̂(Φι
∗(ω)) for ω ∈ L1(Ĝ). As Φι is of �nite rank and Tι ∈ `∞(G), we have aι ∈ cc(G) ⊆ A(G).

Indeed, Proposition 6.12 implies Φι
∗(ω ? ν) = Φι

∗(ω) ? ν for all ω, ν ∈ L1(Ĝ) which gives us
(Φι ⊗ id) ◦∆Ĝ = ∆Ĝ ◦ Φι. This equation forces

Φι(span{Uα
i,j | i, j ∈ {1, . . . , dim(α)}}) ⊆ span{Uα

i,j | i, j ∈ {1, . . . , dim(α)}}

for all α ∈ Irr(Ĝ). Consequently each Φι annihilates all but a �nite number of subspaces
span{Uα

i,j | i, j ∈ {1, . . . , dim(α)}}. We have ‖aι‖A(G) = ‖Φι(1)‖ = 1. Clearly aι is com-
pletely de�nite positive (since Φι is CP), and (aι)ι∈I form a bounded left approximate
identity of A(G) consisting of elements in cc(G). This shows 2a).

If L∞(Ĝ) has a w∗-CPAP relative to Z(`∞(G)) then we additionally know that aι ∈
Z(`∞(G)), i.e. G is centrally amenable.

We are left to show the equivalence of 2b) and 2c). Let (Φι)ι∈I be a net given by w∗-

CPAP of L∞(Ĝ) relative to `∞(G), i.e. 2b). De�ne Ψι = RĜ◦Φι◦RĜ : L∞(Ĝ)→ L∞(Ĝ). It
is not di�cult to see that these maps are also normal, UCP, of �nite rank and converge to id
in the point-w∗ topology (to see that Ψι is CP, one can use the Stinespring representation).

Furthermore, the L2-implementation of Ψι is in `∞(Ĝ). Indeed, take ω, ν ∈ L1(Ĝ) and
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x ∈ L∞(Ĝ). Then using Proposition 6.12 and equation (2.8)

〈Ψι
∗(ω ? ν), x〉 = 〈ω ⊗ ν,∆Ĝ(Ψι(x))〉 = 〈ω ⊗ ν,∆Ĝ ◦R

Ĝ ◦ Φι(RĜ(x))〉

= 〈ν ⊗ ω, (RĜ ⊗RĜ) ◦∆Ĝ ◦ Φι(RĜ(x))〉 = 〈Φι
∗((ν ◦RĜ) ? (ω ◦RĜ)), RĜ(x)〉

= 〈Φι
∗(ν ◦RĜ) ? (ω ◦RĜ), RĜ(x)〉 = 〈(ν ◦RĜ)⊗ (ω ◦RĜ), (Φι ⊗ id)∆Ĝ(RĜ(x))〉

= 〈ω ⊗ ν, (id⊗Ψι)∆Ĝ(x)〉 = 〈ω ? Φι
∗(ν), x〉

which thanks to Proposition 6.12 proves that the L2-implementation of Ψι belongs to
`∞(Ĝ)′. Implication 2c)⇒ 2b) can be showed analogously.

Remark. Roughly speaking, if one replaces the conditions of being �nite rank (or in A(G)∩
cc(G)) in the de�nitions w∗-CPAP (or amenability) by having compact L2 implementations

(or belonging to c0(Ĝ)), one obtains the Haagerup property (see [13, Section 5.1] and
[28, 19]). One can de�ne the relative Haagerup property of a von Neumann algebra in a
similar spirit to De�nition 6.9 and prove an analog of Theorem 6.11 using pretty much the
same reasoning.

Let us end this section with another result of the type (operator algebraic approximation
property + additional condition) ⇒ (quantum group approximation property). This time
we work in the C∗-algebraic setting.

Theorem 6.13. Let G be a discrete quantum group such that the reduced C∗-algebra C(Ĝ)
is nuclear and admits a tracial state. Then G is amenable.

We are not aware of this implication being recorded in a literature before. However, let
us mention here a couple of results in a similar spirit.

� First, Caspers and Skalski [20, Proposition 2.5] proved that a discrete quantum group

G is amenable provided there exists a �nite dimensional representation of C(Ĝ).

� In a classical setting, Ng proved ([65, Theorem 8]) a similar result for locally compact
groups.

� For a locally compact quantum groups G, it is known that nuclearity of C0(Ĝ) and

existence of a tracial state in C0(Ĝ)∗ implies amenability of G, provided the scaling
group is trivial [66, Theorem 3.2].

Proof. Our proof will use the notion of Kac quotient ĜKAC introduced by Soªtan in [74].
De�ne an ideal

J = {a ∈ C(Ĝ) | τ(a∗a) = 0 ∀ tracial state τ ∈ C(Ĝ)∗}.

Clearly J 6= C(Ĝ), hence A = C(Ĝ)/J is a non-zero unital C∗-algebra. A is nuclear, as

quotients of nuclear C∗-algebras are nuclear ([14, Theorem 10.1.4]). Let π : C(Ĝ)→ A be
the quotient mapping. De�ne

C(ĜKAC) = A, ∆ĜKAC (π(x)) = (π ⊗ π)∆Ĝ(x) (x ∈ C(Ĝ)).
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Then ĜKAC = (C(ĜKAC),∆ĜKAC ) is a compact quantum group of Kac type, see [74,
Proposition 5.1].

Since C(ĜKAC) is nuclear and ĜKAC is of Kac type, ĜKAC is coamenable (see Theorem

6.7 and [86]) � consequently C(ĜKAC) is universal and admits a character ε ∈ C(ĜKAC)∗

[8, Theorem 3.1]. It follows that ε ◦ π is a character on C(Ĝ) and consequently Ĝ is
coamenable [7, Theorem 2.8].

Remark. Even though, generally speaking, nuclear C∗-algebras are �well behaved�, there
exist nuclear C∗-algebras without tracial states. Examples are given by the Cuntz algebras
On (n ≥ 2) ([10, IV.3.5.3]).
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7 Appendix

7.1 Direct integrals

This subsection is devoted to a brief introduction to the technical tool of direct integrals.
We advise the reader to think of them as a continuous (or rather measurable) version of
direct sums. For more details see e.g. [34, 33, 39].

Throughout this subsection, (Ω,M) is a measurable space, i.e. a set Ω together with a
choice of a σ-algebra of subsets M ⊆ P(Ω). Sometimes we will additionally assume that
(Ω,M) is standard which means that there is a Polish topology on Ω (i.e. a topology which
is separable and completely metrizable) such that M is the corresponding family of Borel
sets. Measure µ on (Ω,M) is standard if there exists a µ-null set N ⊆ Ω such that Ω \N
(with the corresponding σ-algebra) is a standard measurable space.

To begin with, we will introduce a measurable �eld of Hilbert spaces (Kx)x∈Ω and
the associated Hilbert space

∫ ⊕
Ω
Kx dµ(x). Roughly speaking, this space should be the

set of (classes of) vector �elds (ξx)x∈Ω which are measurable and satisfy the integrability
condition

∫
Ω
‖ξx‖2 dµ(x) < +∞. However, because there is no way to compare ξx with ξx′

for di�erent x, x′ ∈ Ω, it is not clear what �measurable� means here. One way to resolve
this mistery, is to choose a family of vector �elds ei : Ω 3 x 7→ eix ∈ Kx (i ∈ N) which will
play a role of exemplary measurable �elds, relative to which we de�ne measurability of an
arbitrary �eld36 (ξx)x∈Ω.

To avoid unnecessary technical di�culties, we will often make some separability as-
sumptions.

De�nition 7.1. A measurable �eld of Hilbert spaces is a family of separable Hilbert spaces
(Kx)x∈Ω together with a countable family of vector �elds {ei}i∈N such that

� for all i, j ∈ N, the function Ω 3 x 7→ 〈eix | ejx〉 ∈ C is measurable,

� for each x ∈ Ω, the set {eix | i ∈ N} is linearly dense in Kx.

Vector �elds {ei}i∈N are called fundamental.

It is straightforward to check that if (Kx)x∈Ω, (Lx)x∈Ω are measurable �elds of Hilbert
spaces with fundamental vector �elds {ei}i∈N, {f j}j∈N, then (Kx)x∈Ω and (Kx⊗Lx)x∈Ω also

are measurable when equipped with fundamental vector �elds {ei}i∈N and {ei⊗f j}(i,j)∈N×N

(ei and ei ⊗ f j are to be understood in the obvious manner).
Now we can say what it means for a vector �eld (ξx)x∈Ω to be measurable:

De�nition 7.2. Let (Kx)x∈Ω be a measurable �eld of Hilbert spaces with fundamental
vector �elds {ei}i∈N. We say that a vector �eld (ξx)x∈Ω is measurable if the function
Ω 3 x 7→ 〈eix | ξx〉 ∈ C is measurable for all i ∈ N.

36Whenever we say that (ξx)x∈Ω is a vector �eld, we mean that ξx ∈ Kx for all x ∈ Ω. A similar note
applies also to di�erent �elds, e.g. the �eld of operators, etc.
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If it is clear from the context, we will often follow the usual convention of not mentioning
fundamental vector �elds and saying simply that (Kx)x∈Ω is a measurable �eld of Hilbert
spaces � though one should keep in mind that it is necessary to choose them, as for example
di�erent choice of fundamental �elds can give a di�erent family of measurable vector �elds!

It is easy to check that if (ξx)x∈Ω, (ηx)x∈Ω are measurable vector �elds, then the function
Ω 3 x 7→ 〈ξx | ηx〉 ∈ C is also measurable. Using this observation we can �nally de�ne the
direct integral Hilbert space

∫ ⊕
Ω
Kx dµ(x):

De�nition 7.3. Let (Kx)x∈Ω be a measurable �eld of Hilbert spaces, assume moreover
that we have a measure µ on Ω. Let

∫ ⊕
Ω
Kx dµ(x) be the set of (classes of37) measurable

vector �elds (ξx)x∈Ω satisfying
∫

Ω
‖ξx‖2 dµ(x) < +∞. It becomes a Hilbert space with the

inner product given by

〈(ξx)x∈Ω | (ηx)x∈Ω〉 =

∫
Ω

〈ξx | ηx〉 dµ(x) ((ξx)x∈Ω, (ηx)x∈Ω ∈
∫ ⊕

Ω

Kx dµ(x)).

If the measure µ is standard, then
∫ ⊕

Ω
Kx dµ(x) is separable [33, Appendix A73]. Let

us mention here a couple of examples:

� if µ is the counting measure on Ω, then
∫ ⊕

Ω
Kx dµ(x) is the direct sum

⊕
x∈Ω Kx,

� if Kx = C for all x ∈ Ω, then
∫ ⊕

Ω
Kx dµ(x) = L2(Ω, µ),

� if A is a separable C∗-algebra of type I, then its spectrum Irr(A) is a standard
measurable space when equipped with the Borel σ-algebra (which is equal to the
Mackey Borel structure) [33, Proposition 4.6.1]. There exists a measurable �eld of
Hilbert spaces (Kx)x∈Irr(A), called the canonical measurable �eld of Hilbert spaces,
such that Kx = Cdim(x) for all x ∈ Irr(A) [33, Section 8.6.1].

Now we will introduce two classes of operators on
∫ ⊕

Ω
Kx dµ(x) which respect the struc-

ture of direct integral.

De�nition 7.4. Let (Kx)x∈Ω be a measurable �eld of Hilbert spaces and (Tx)x∈Ω a �eld of
operators, i.e. for each x ∈ Ω we have Tx ∈ B(Kx).

� We say that (Tx)x∈Ω is measurable if for all measurable vector �elds (ξx)x∈Ω, the
vector �eld (Txξx)x∈Ω is measurable.

� A measurable �eld of operators (Tx)x∈Ω is essentially bounded if supx∈Ω ‖Tx‖ < +∞.
In such case we can de�ne a bounded operator∫ ⊕

Ω

Tx dµ(x) :

∫ ⊕
Ω

Kx dµ(x) 3
∫ ⊕

Ω

ξx dµ(x) 7→
∫ ⊕

Ω

Txξx dµ(x) ∈
∫ ⊕

Ω

Kx dµ(x).

Operators of this form are called decomposable. The set of decomposable operators
is denoted by Dec(

∫ ⊕
Ω
Kx dµ(x)).

37We identify two measurable vector �elds (ξx)x∈Ω and (ηx)x∈Ω if ξx = ηx for almost all x ∈ Ω.
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� A decomposable operator
∫ ⊕

Ω
Tx dµ(x) is diagonalisable if Tx ∈ C1Hx for almost all

x ∈ Ω. The set of diagonalisable operators is denoted by Diag(
∫ ⊕

Ω
Kx dµ(x)).

It is easy to check that Dec(
∫ ⊕

Ω
Kx dµ(x)) and Diag(

∫ ⊕
Ω
Kx dµ(x)) are von Neumann sub-

algebras of B(
∫ ⊕

Ω
Kx dµ(x)). Furthermore, we have Diag(

∫ ⊕
Ω
Kx dµ(x))′=Dec(

∫ ⊕
Ω
Kx dµ(x)).

In fact, these two are special cases of direct integrals of von Neumann algebras:

De�nition 7.5. Let (Kx)x∈Ω be a measurable �eld of Hilbert spaces and (Mx)x∈Ω a �eld
of von Neumann algebras, i.e. for each x ∈ Ω, Mx is a von Neumann subalgebra of B(Kx).

� We say that the �eld (Mx)x∈Ω is measurable if there exists a countable collection
{(T ix)x∈Ω}i∈N of measurable �elds of operators, such that for almost all x ∈ Ω, Mx is
the von Neumann algebra generated by {T ix | i ∈ N}.

� Assume that (Mx)x∈Ω is measurable. We de�ne
∫ ⊕

Ω
Mx dµ(x) as the set of decom-

posable operators
∫ ⊕

Ω
Tx dµ(x) such that Tx ∈ Mx for almost all x ∈ Ω. It is a von

Neumann algebra � von Neumann algebras arising from this construction are called
decomposable.

Examples of decomposable von Neumann algebras are given by Diag(
∫ ⊕

Ω
Kx dµ(x)) and

Dec(
∫ ⊕

Ω
Kx dµ(x)) � in the �rst case we have Mx = C1Kx (x ∈ Ω) and in the second

Mx = B(Kx) (x ∈ Ω). In general, whenever (Mx)x∈Ω is a measurable �eld of von Neumann
algebras we have

Diag(

∫ ⊕
Ω

Kx dµ(x)) ⊆
∫ ⊕

Ω

Mx dµ(x) ⊆ Dec(

∫ ⊕
Ω

Kx dµ(x)).

Furthermore, if the measure µ is standard, then the �eld (M′x)x∈Ω is also measurable and(∫ ⊕
Ω

Mx dµ(x)
)′

=

∫ ⊕
Ω

M′x dµ(x).

The above properties and de�nitions are taken mainly from [34, Part II]. We end this part
of the appendix with two notions: the direct integral of unbounded operators [58] and the
direct integral of weights [79].

De�nition 7.6. Let (Kx)x∈Ω be a measurable �eld of Hilbert spaces and (Tx)x∈Ω a �eld of
closed, densely de�ned (unbounded) operators. We say that (Tx)x∈Ω is measurable if

� for any measurable vector �eld (ξx)x∈Ω such that ξx ∈ Dom(Tx) (x ∈ Ω), vector �eld
(Txξx)x∈Ω is also measurable,

� there is a countable collection {ξi}i∈N of measurable vector �elds such that for all
x ∈ Ω we have ξix ∈ Dom(Tx) (i ∈ N) and

{(ξix, Txξix) | i ∈ N}

is total in Graph(Tx).
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If (Tx)x∈Ω is measurable and µ is a measure on Ω, then we de�ne an (unbounded)
operator

∫ ⊕
Ω
Tx dµ(x) on

∫ ⊕
Ω
Kx dµ(x) with domain Dom(

∫ ⊕
Ω
Tx dµ(x)) consisting of those∫ ⊕

Ω
ξx dµ(x) ∈

∫ ⊕
Ω
Kx dµ(x) for which ξx ∈ Dom(Tx) for almost all x ∈ Ω and the integral∫

Ω
‖Txξx‖2 dµ(x) is �nite. For such

∫ ⊕
Ω
ξx dµ(x) we de�ne∫ ⊕

Ω

Tx dµ(x) :

∫ ⊕
Ω

ξx dµ(x) 7→
∫ ⊕

Ω

Txξx dµ(x).

As previously, operators of this form will be called decomposable. Such de�ned operator∫ ⊕
Ω
Tx dµ(x) is densely de�ned, closed and we have

(∫ ⊕
Ω

Tx dµ(x)
)∗

=

∫ ⊕
Ω

T ∗x dµ(x). (7.1)

If almost all Tx (x ∈ Ω) are self-adjoint and f : R→ C is measurable, then

f(

∫ ⊕
Ω

Tx dµ(x)) =

∫ ⊕
Ω

f(Tx) dµ(x) (7.2)

(in particular, the direct integrals on the right hand side in equations (7.1), (7.2) are well
de�ned).

We also have the following useful result: a closed, densely de�ned operator T on∫ ⊕
Ω
Kx dµ(x) is decomposable if and only if it is a�liated with Dec(

∫ ⊕
Ω
Kx dµ(x)).

De�nition 7.7. Let (Kx)x∈Ω be a measurable �eld of Hilbert spaces, (Mx)x∈Ω measurable
�eld of von Neumann algebras and for each x ∈ Ω, let ϕx be a weight on Mx. Assume
furthermore that each Mx (x ∈ Ω) has a separable predual. We say that the �eld of weights
(ϕx)x∈Ω is weakly measurable if:

� there exists a sequence {ai}i∈N of measurable �elds of operators such that for all
x ∈ Ω we have aix ∈ Nϕx (i ∈ N) and {aix | i ∈ N} is w∗-dense in Nϕx ,

� whenever (ax)x∈Ω is a measurable �eld of operators with ax ∈ M+
x for almost all

x ∈ Ω, then Ω 3 x 7→ ϕx(ax) ∈ R≥0 ∪ {+∞} is also measurable.

Whenever we have a weakly measurable �eld of weights (ϕx)x∈Ω, we can de�ne its direct
integral weight via∫ ⊕

Ω

ϕx dµ(x) :
(∫ ⊕

Ω

Mx dµ(x)
)+ 3

∫ ⊕
Ω

ax dµ(x) 7→
∫

Ω

ϕx(ax) dµ(x) ∈ R≥0 ∪ {+∞}.

If for all x ∈ Ω, ϕx is a n.s.f. weight on Mx, then
∫ ⊕

Ω
ϕx dµ(x) is also n.s.f.
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7.2 Lemmas

Lemma 7.8. Let H be a Hilbert space and let

J : H⊗ H 3 ξ ⊗ η 7→ η ⊗ ξ ∈ H⊗ H.

Let (at)t∈R and (bt)t∈R be strongly continuous one-parameter groups of unitary operators on
H and assume that J(at ⊗ b>t ) = (at ⊗ b>t )J for all t ∈ R. Then for all t we have at = b−t.

Proof. On one hand we have
J(at ⊗ b>t )J = at ⊗ b>t , (7.3)

so for any r, s ∈ R and any x ∈ B(H)

(as ⊗ b>s )J(at ⊗ b>t )J(x⊗ 1H)J(a−t ⊗ b>−t)J(a−s ⊗ b>−s)
= (as ⊗ b>s )(at ⊗ b>t )(x⊗ 1H)(a−t ⊗ b>−t)(a−s ⊗ b>−s)
= (at ⊗ b>t )(as ⊗ b>s )(x⊗ 1H)(a−s ⊗ b>−s)(a−t ⊗ b>−t)
= J(at ⊗ b>t )J(as ⊗ b>s )(x⊗ 1H)(a−s ⊗ b>−s)J(a−t ⊗ b>−t)J.

(7.4)

On the other hand
J(at ⊗ b>t )J = b−t ⊗ a>−t (t ∈ R), (7.5)

so (7.4) reads

(as ⊗ b>s )(b−t ⊗ a>−t)(x⊗ 1H)(bt ⊗ a>t )(a−s ⊗ b>−s)
= (b−t ⊗ a>−t)(as ⊗ b>s )(x⊗ 1H)(a−s ⊗ b>−s)(bt ⊗ a>t ).

Thus for any x and all s, t we have asb−txbta−s = b−tasxa−sbt, i.e. a−sbtasb−t commutes
with all x ∈ B(H).

Therefore there exists a continuous family {λt,s}t,s∈R of complex numbers of absolute
value 1 such that

a−sbtasb−t = λt,s1H (t, s ∈ R). (7.6)

Note now that in view of the canonical isomorphism B(H⊗ H) ∼= B(HS(H)) given by

B(H⊗ H) 3 x⊗ y> 7−→
(
S 7→ xSy

)
∈ B

(
HS(H)

)
equations (7.3) and (7.4) mean that

atSbt = b−tSa−t (t ∈ R, S ∈ HS(H))

which by strong density of HS(H) in B(H) gives

atbt = b−ta−t (t ∈ R).

In particular for each t the operator atbt is self-adjoint, and taking adjoints of this for −t
instead of t we see that also btat is self-adjoint for all t.

Therefore inserting s = −t in (7.6) gives atbt = λt,−tbtat and since atbt and btat are
self-adjoint, t 7→ λt,−t is continuous and λ0,0 = 1, we obtain λt,−t = 1 for all t.

Consequently atbt = btat = (btat)
∗ = a−tb−t, so that b2t = a−2t for all t ∈ R.

124



Lemma 7.9. Let U be a unitary, �nite dimensional representation of a compact quantum
group G on a Hilbert space HU and let χU be its character. We have

span{Uξ,η | ξ, η ∈ HU} = (CχU)⊕ span{Uξ,η | ξ, η ∈ HU : ξ ⊥ ρ−1
U η}, (7.7)

where the above orthogonal direct sum corresponds to the scalar product induced by the
Haar integral.

Proof. Using orthogonality relations [64, Theorem 1.4.3] we have

h(χ∗UUξ,η) =

dim(U)∑
i=1

h(U∗ξi,ξiUξ,η) =

dim(U)∑
i=1

〈ξ | ρ−1
U ξi〉〈ξi | η〉

dimq(U)
=
〈ξ | ρ−1

U η〉
dimq(U)

= 0

for all ξ, η ∈ HU such that ξ ⊥ ρ−1
U η, hence we indeed have an orthogonal direct sum on

the right hand side of equation (7.7). Consequently, it is enough to show that

dim(span{Uξ,η | ξ, η ∈ HU : ξ ⊥ ρ−1
U η}) = dim(U)2 − 1. (7.8)

Let us show that
(C1U)⊥ = span{|ξ〉〈η| | ξ, η ∈ HU : ξ ⊥ η} (7.9)

in HS(HU). The inclusion ⊇ is clear, therefore we need to argue that

(C1U) + span{|ξ〉〈η| | ξ, η ∈ HU : ξ ⊥ η} = HS(HU) = HU ⊗ HU . (7.10)

Let {ξi}dim(U)
i=1 be an orthonormal basis in HU . Clearly for i 6= j, the operator |ξi〉〈ξj|

belongs to the left hand side of (7.10). Furthermore,

|ξi〉〈ξi| = 1
dim(U)

dim(U)∑
j=1

(
|ξi − ξj〉〈ξi + ξj| − |ξi〉〈ξj|+ |ξj〉〈ξi|+ |ξj〉〈ξj|

)
= 1

dim(U)
1U + 1

dim(U)

dim(U)∑
i=1
i 6=j

(
|ξi − ξj〉〈ξi + ξj| − |ξi〉〈ξj|+ |ξj〉〈ξi|

)
which also belongs to the right hand side of (7.10). This shows equation (7.10) and
consequently (7.9). Consider now the linear map

T : HS(HU) = HU ⊗ HU 3 η ⊗ ξ 7→ Uξ,ρUη ∈ VU ,

where VU is the �nite dimensional Hilbert space

VU = span{Uξ,η | ξ, η ∈ HU}.

As
Uξi,ξj = T (ρ−1

U ξj ⊗ ξi)
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for all i, j ∈ {1, . . . , dim(U)}, T is a surjection. It is easy to see using the orthogonality
relations that T has trivial kernel, hence it is a vector space isomorphism (it is not, however,
an isometry). Using T we can show (7.8):

dim(span{Uξ,η | ξ, η ∈ HU : ξ ⊥ ρ−1
U η}) = dimT (span{η ⊗ ξ | ξ, η ∈ HU : ξ ⊥ η})

= dim(C1U)⊥ = dim(U)2 − 1,

which ends the proof.

Let G be a locally compact quantum group with the left Haar integral ϕ. Recall that
while de�ning the left Haar integral ϕ̂ on Ĝ, one introduces

N̂ = {λ(ω) |ω ∈ L1(G) : ∃ξ∈L2(G)∀x∈Nϕ〈Λϕ(x) | ξ〉 = ω(x∗)}.

Then N̂ is a (σ-sot×norm) core for Λϕ̂ and Λϕ̂(λ(ω)) = ξ (see Section 2.2, [93, De�nition
4.6] and [57, Proposition 2.6]). In Section 6 we needed a re�nment of this density result: it
was desirable to work with functionals having nice analytical properties. The next lemma
asserts density of such functionals.

Lemma 7.10. Let us introduce a subspace

I = {ω ∈ L1(G) |λ(ω) ∈ N̂ ,
R 3 t 7→ (ωδ−it) ◦ τ−t ∈ L1(G) extends to an entire map C→ L1(G)}

Then I is dense in L1(G), λ(I ) is σ-sot∗-dense in L∞(Ĝ) and Λϕ̂(λ(I )) is dense in
L2(G).

Proof. Since we already know that I = {ω ∈ L1(G) |λ(ω) ∈ N̂} is dense in L1(G),

λ(I) = N̂ is σ-sot∗-dense in L∞(Ĝ) and Λϕ̂(N̂ ) is dense in L2(G) (see e.g. [93, Lemma
4.7]), it is enough to show that for each ω ∈ I, we can �nd a sequence (ωn)n∈N in I such
that

ωn −−−→
n→∞

ω, λ(ωn)
σ-sot∗−−−−→
n→∞

λ(ω), Λϕ̂(λ(ωn)) −−−→
n→∞

Λϕ̂(λ(ω))

and for each n ∈ N, the map R 3 t 7→ (ωnδ
−it) ◦ τ−t ∈ L1(G) extends to an entire map

C→ L1(G).
Fix ω ∈ I and de�ne

ωn =
√

n
π

∫
R
e−ns

2

(ωδis) ◦ τs ds ∈ L1(G) (n ∈ N)

(the above integral converges in the weak topology). First, let us show that ωn ∈ I: take
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x ∈ Nϕ. We have

ωn(x∗) =
√

n
π

∫
R
e−ns

2〈ω, δisτs(x∗)〉 ds =
√

n
π

∫
R
e−ns

2〈ω, (τs(x)δ−is)∗〉 ds

=
√

n
π

∫
R
e−ns

2〈Λϕ(τs(x)δ−is) |Λϕ̂(λ(ω))〉 ds

=
√

n
π

∫
R
e−ns

2〈Jϕσϕi/2(δ−is)∗Jϕν
− s

2P isΛϕ(x) |Λϕ̂(λ(ω))〉 ds

=
√

n
π

∫
R
e−ns

2〈JϕδisJϕP isΛϕ(x) |Λϕ̂(λ(ω))〉 ds

=
〈
Λϕ(x)

∣∣√n
π

∫
R
e−ns

2

P−isJϕδ
−isJϕΛϕ̂(λ(ω)) ds

〉
hence ωn ∈ I and Λϕ̂(λ(ωn)) =

√
n
π

∫
R e
−ns2P−isJϕδ

−isJϕΛϕ̂(λ(ω)) ds (this integral con-

verges in the weak topology). Using the fact that L∞(G) ⊆ B(L2(G)) is represented in the

standard way, it is not di�cult to show ωn −−−→
n→∞

ω and consequently λ(ωn)
σ-sot∗−−−−→
n→∞

λ(ω).

Equation Λϕ̂(λ(ωn)) =
√

n
π

∫
R e
−ns2P−isJϕδ

−isJϕΛϕ̂(λ(ω)) ds implies that Λϕ̂(λ(ωn)) −−−→
n→∞

Λϕ̂(λ(ω)). Furthermore we have

(ωnδ
−it) ◦ τ−t(x) = ωn(δ−itτ−t(x)) =

√
n
π

∫
R
e−ns

2〈ω, ν−istδi(s−t)τs−t(x)〉 ds

=
〈√

n
π

∫
R
e−n(s+t)2ν−i(s+t)t(ωδis) ◦ τs ds, x

〉
,

hence R 3 t 7→ (ωnδ
−it) ◦ τ−t ∈ L1(G) extends to the entire map

C 3 z 7→
√

n
π

∫
R
e−n(s+z)2ν−i(s+z)z(ωδis) ◦ τs ds ∈ L1(G).
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