dr inż. Zenon Zbąszyniak Politechnika Poznańska, Instytut Matematyki

On some properties for dual spaces of Musielak-Orlicz function spaces

For every Musielak-Orlicz function Φ we define a convex modular I_{Φ} by

$$I_{\Phi}(x) = \int_{T} \Phi(t, x(t)) \, d\mu$$

for every $x \in L^0$. Then the *Musielak-Orlicz* function space L_{Φ} and its subspace E_{Φ} are defined as follows:

$$L_{\Phi} = \{ x \in L^0 : I_{\Phi}(\lambda x) < +\infty \text{ for some } \lambda > 0 \},\$$

$$E_{\Phi} = \{ x \in L^0 : I_{\Phi}(\lambda x) < +\infty \text{ for any } \lambda > 0 \}.$$

For any $x \in L_{\Phi}$ the Luxemburg norm is defined by

$$||x|| = \inf\{k > 0 : I_{\Phi}(x/k) \le 1\},\$$

and the Orlicz norm is defined by

$$||x||^o = \sup \left\{ \int_T x(t)y(t) \, d\mu : I_{\Phi}(y) \le 1 \right\}.$$

Let us note that the Orlicz norm on L_{Φ} can be also defined by the very useful Amemiya formula:

$$||x||^o = \inf_{k>0} \frac{1}{k} (1 + I_{\Phi}(kx)).$$

It is known that any functional $f \in (L_{\Phi})^*$, where L_{Φ} is a Musielak-Orlicz space, is of the form $f = v + \varphi$ ($v \in L_{\Phi^*}, \varphi \in F$), where $\varphi \in F$ means that $\langle x, \varphi \rangle = 0$ for any $x \in E_{\Phi}$ and Φ^* is the Musielak-Orlicz function conjugate to Φ in the sense of Young, as well as that if L_{Φ} is equipped with the Luxemburg norm, then

$$||f||^{o} = ||v||_{\Phi^{*}}^{o} + ||\varphi||^{o},$$

and if L_{Φ} is equipped with the Orlicz norm, then

$$||f|| = \inf\left\{\lambda > 0 : \rho^*\left(\frac{f}{\lambda}\right) \le 1\right\},$$

where $\rho^*(f) = I_{\Phi^*}(v) + \|\varphi\|$ for any $f \in (L_{\Phi})^*$. We will present relationships between the modular ρ^* and the norm $\|\cdot\|$ in the dual spaces $(L_{\Phi})^*$ in the case when L_{Φ} is equipped with the Orlicz norm.