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On the representations of differentials

in functional rings and their applications

1. Take the ring K := R{{x, t}}, (x, t) ∈ R2, of convergent germs of real-valued
smooth functions from C(∞)(R2; R) and construct the associated differential poly-
nomial ring K{u} := K[Θu] with respect to a functional variable u, where Θ
denotes the standard monoid of all operators generated by commuting differenti-
ations ∂/∂x := Dx and ∂/∂t. The ideal I{u} ⊂ K{u} is called differential if the
condition I{u} = ΘI{u} holds.

Consider now the additional differentiation

(1) Dt : K{u} → K{u},

depending on the functional variable u, which satisfies the Lie-algebraic commuta-
tor condition

(2) [Dx, Dt] = (Dxu)Dx,

for all (x, t) ∈ R2. As a simple consequence of (2) the following general (suitably
normalized) representation of the differentiation (1)

(3) Dt = ∂/∂t + u∂/∂x

in the differential ring K{u} holds. Impose now on the differentiation (1) a new
algebraic constraint

(4) DN−1
t u = z̄, Dtz̄ = 0,

defining for all natural N ∈ N some smooth functional set (or “manifold”) M(N) of
functions u ∈ R{{x, t}}, and which allows to reduce naturally the initial ring K{u}
to the basic ring K{u}|M(N)

⊆ R{{x, t}}. In this case the following natural problem
of constructing the corresponding representation of differentiation (1) arises: to

find an equivalent linear representation of the reduced differentiation Dt|M(N)
:

R
p(N){{x, t}} → R

p(N){{x, t}} in the functional vector space R
p(N){{x, t}} for

some specially chosen integer dimension p(N) ∈ Z+.
In particular, for an arbitrary N ∈ Z+ the following exact matrix expres-

sions

lN [u; λ] =

















λuN−1,x uN,x 0 . . . 0

0 λuN−1,x 2uN,x

. . . . . .

. . .
. . .

. . .
. . . 0

0 . . . 0 λuN−1,x (N − 1)uN,x

−NλN −λN−1Nu1,x . . . −λ2NuN−2,x λ(1 − N)uN−1,x

















,
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qN (λ) =

















0 0 0 0 0

−λ 0 0 0 0

0 −λ
. . . . . . 0

0 0
. . . 0 0

0 0 0 −λ 0

















,(5)

polynomial in λ ∈ C, were presented [5, 4, 6] in exact form. Moreover, the same
problem is also solvable for the more complicated constraints

(6) DN−1
t u = (Dxz̄)s, Dtz̄ = 0,

for arbitrary s, N ∈ N, equivalent to a generalized Riemann type hydrodynamic
flows, and

(7) Dtu − D3
xu = 0, DxDtu − u = 0,

equivalent to the Lax type integrable nonlinear Korteweg-de Vries and Ostrovsky-
Vakhnenko dynamical systems.

2. In the present report we will demonstrate that for s = 2, N = 3 the problem
(6) is completely analytically solvable by means of the differential-algebraic tools,
devised in [6]. For the Riemann type hydrodynamical system (6) at s = 2 and
N = 2 it is well known [7] to be a smooth Lax type integrable bi-Hamiltonian flow
on the 2π-periodic functional manifold M̄2, whose Lax type representation is given
by the following compatible linear system of equations:

(8) Dxf =

(

z̄x 0
−λ(u + ux/(2z̄x) −z̄xx/(2z̄x)

)

f, Dtf =

(

0 0
−λz̄x ux)

)

f,

where f ∈ C(∞)(R2; R2) and λ ∈ R is an arbitrary spectral parameter.

Based on the symplectic gradient-holonomic and differential algebraic tools,
we will prove the following main proposition.

Proposition 1. The Riemann type hydrodynamic flow (6) at s = 2 and N = 3
is a bi-Hamiltonian dynamical system on the functional manifold M 3 with respect

to two compatible Poissonian structures ϑ, η : T ∗(M3) → T (M3)
(9)

ϑ :=





0 1 0
−1 0 0
0 0 2z1/2Dxz1/2



 , η :=





∂−1 ux∂−1 0
∂−1ux vx∂−1 + ∂−1vx ∂−1zx − 2z

0 zx∂−1 + 2z 0



 ,

possessing an infinite hierarchy of commuting to each other conservation laws and

a non-autonomous Lax type representation in the form

Dxf =





0 0 0
−λ 0 0
0 −λzx ux



 f,(10)
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Dtf =







λ2u
√

z λv
√

z z
−λ3tu

√
z −λ2tv

√
z −λtz

λ4(tuv − u2) −
− λ2ux/

√
z

−λvx/
√

z +
+ λ3(tv2 − uv)

λ2
√

z(u − tv) −
− zx/2z






f,

where λ ∈ R is an arbitrary spectral parameter and f ∈ C (∞)(R2; R3).
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