Anatoliy K. Prykarpatsky
AGH University of Science and Technology, Kraków and the Ivan Franko State Pedagogical University, Drohobych, Lviv region, Ukraine

On the representations of differentials in functional rings and their applications

1. Take the ring $\mathcal{K}:=\mathbb{R}\{\{x, t\}\},(x, t) \in \mathbb{R}^{2}$, of convergent germs of real-valued smooth functions from $C^{(\infty)}\left(\mathbb{R}^{2} ; \mathbb{R}\right)$ and construct the associated differential polynomial ring $\mathcal{K}\{u\}:=\mathcal{K}[\Theta u]$ with respect to a functional variable u, where Θ denotes the standard monoid of all operators generated by commuting differentiations $\partial / \partial x:=D_{x}$ and $\partial / \partial t$. The ideal $I\{u\} \subset \mathcal{K}\{u\}$ is called differential if the condition $I\{u\}=\Theta I\{u\}$ holds.

Consider now the additional differentiation

$$
\begin{equation*}
D_{t}: \mathcal{K}\{u\} \rightarrow \mathcal{K}\{u\}, \tag{1}
\end{equation*}
$$

depending on the functional variable u, which satisfies the Lie-algebraic commutator condition

$$
\begin{equation*}
\left[D_{x}, D_{t}\right]=\left(D_{x} u\right) D_{x}, \tag{2}
\end{equation*}
$$

for all $(x, t) \in \mathbb{R}^{2}$. As a simple consequence of (2) the following general (suitably normalized) representation of the differentiation (1)

$$
\begin{equation*}
D_{t}=\partial / \partial t+u \partial / \partial x \tag{3}
\end{equation*}
$$

in the differential ring $\mathcal{K}\{u\}$ holds. Impose now on the differentiation (1) a new algebraic constraint

$$
\begin{equation*}
D_{t}^{N-1} u=\bar{z}, \quad D_{t} \bar{z}=0, \tag{4}
\end{equation*}
$$

defining for all natural $N \in \mathbb{N}$ some smooth functional set (or "manifold") $\mathcal{M}^{(N)}$ of functions $u \in \mathbb{R}\{\{x, t\}\}$, and which allows to reduce naturally the initial ring $\mathcal{K}\{u\}$ to the basic ring $\left.\mathcal{K}\{u\}\right|_{\mathcal{M}_{(N)}} \subseteq \mathbb{R}\{\{x, t\}\}$. In this case the following natural problem of constructing the corresponding representation of differentiation (1) arises: to find an equivalent linear representation of the reduced differentiation $\left.D_{t}\right|_{\mathcal{M}_{(N)}}$: $\mathbb{R}^{p(N)}\{\{x, t\}\} \rightarrow \mathbb{R}^{p(N)}\{\{x, t\}\}$ in the functional vector space $\mathbb{R}^{p(N)}\{\{x, t\}\}$ for some specially chosen integer dimension $p(N) \in \mathbb{Z}_{+}$.

In particular, for an arbitrary $N \in \mathbb{Z}_{+}$the following exact matrix expressions

$$
l_{N}[u ; \lambda]=\left(\begin{array}{ccccc}
\lambda u_{N-1, x} & u_{N, x} & 0 & \cdots & 0 \\
0 & \lambda u_{N-1, x} & 2 u_{N, x} & \ddots & \ldots \\
\ldots & \ddots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & \lambda u_{N-1, x} & (N-1) u_{N, x} \\
-N \lambda^{N} & -\lambda^{N-1} N u_{1, x} & \cdots & -\lambda^{2} N u_{N-2, x} & \lambda(1-N) u_{N-1, x}
\end{array}\right),
$$

$$
q_{N}(\lambda)=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \tag{5}\\
-\lambda & 0 & 0 & 0 & 0 \\
0 & -\lambda & \ddots & \ldots & 0 \\
0 & 0 & \ddots & 0 & 0 \\
0 & 0 & 0 & -\lambda & 0
\end{array}\right)
$$

polynomial in $\lambda \in \mathbb{C}$, were presented [5, 4, 6] in exact form. Moreover, the same problem is also solvable for the more complicated constraints

$$
\begin{equation*}
D_{t}^{N-1} u=\left(D_{x} \bar{z}\right)^{s}, \quad D_{t} \bar{z}=0 \tag{6}
\end{equation*}
$$

for arbitrary $s, N \in \mathbb{N}$, equivalent to a generalized Riemann type hydrodynamic flows, and

$$
\begin{equation*}
D_{t} u-D_{x}^{3} u=0, \quad D_{x} D_{t} u-u=0 \tag{7}
\end{equation*}
$$

equivalent to the Lax type integrable nonlinear Korteweg-de Vries and OstrovskyVakhnenko dynamical systems.
2. In the present report we will demonstrate that for $s=2, N=3$ the problem (6) is completely analytically solvable by means of the differential-algebraic tools, devised in [6]. For the Riemann type hydrodynamical system (6) at $s=2$ and $N=2$ it is well known [7] to be a smooth Lax type integrable bi-Hamiltonian flow on the 2π-periodic functional manifold \bar{M}^{2}, whose Lax type representation is given by the following compatible linear system of equations:

$$
D_{x} f=\left(\begin{array}{cc}
\bar{z}_{x} & 0 \tag{8}\\
-\lambda\left(u+u_{x} /\left(2 \bar{z}_{x}\right)\right. & -\bar{z}_{x x} /\left(2 \bar{z}_{x}\right)
\end{array}\right) f, \quad D_{t} f=\left(\begin{array}{cc}
0 & 0 \\
-\lambda \bar{z}_{x} & \left.u_{x}\right)
\end{array}\right) f
$$

where $f \in C^{(\infty)}\left(\mathbb{R}^{2} ; \mathbb{R}^{2}\right)$ and $\lambda \in \mathbb{R}$ is an arbitrary spectral parameter.
Based on the symplectic gradient-holonomic and differential algebraic tools, we will prove the following main proposition.

Proposition 1. The Riemann type hydrodynamic flow (6) at $s=2$ and $N=3$ is a bi-Hamiltonian dynamical system on the functional manifold M^{3} with respect to two compatible Poissonian structures $\vartheta, \eta: T^{*}\left(M^{3}\right) \rightarrow T\left(M^{3}\right)$

$$
\vartheta:=\left(\begin{array}{ccc}
0 & 1 & 0 \tag{9}\\
-1 & 0 & 0 \\
0 & 0 & 2 z^{1 / 2} D_{x} z^{1 / 2}
\end{array}\right), \eta:=\left(\begin{array}{ccc}
\partial^{-1} & u_{x} \partial^{-1} & 0 \\
\partial^{-1} u_{x} & v_{x} \partial^{-1}+\partial^{-1} v_{x} & \partial^{-1} z_{x}-2 z \\
0 & z_{x} \partial^{-1}+2 z & 0
\end{array}\right)
$$

possessing an infinite hierarchy of commuting to each other conservation laws and a non-autonomous Lax type representation in the form
(10) $D_{x} f=\left(\begin{array}{ccc}0 & 0 & 0 \\ -\lambda & 0 & 0 \\ 0 & -\lambda z_{x} & u_{x}\end{array}\right) f$,

$$
D_{t} f=\left(\begin{array}{ccc}
\lambda^{2} u \sqrt{z} & \lambda v \sqrt{z} & z \\
-\lambda^{3} t u \sqrt{z} & -\lambda^{2} t v \sqrt{z} & -\lambda t z \\
\lambda^{4}\left(t u v-u^{2}\right)- & -\lambda v_{x} / \sqrt{z}+ & \lambda^{2} \sqrt{z}(u-t v)- \\
-\lambda^{2} u_{x} / \sqrt{z} & +\lambda^{3}\left(t v^{2}-u v\right) & -z_{x} / 2 z
\end{array}\right) f,
$$

where $\lambda \in \mathbb{R}$ is an arbitrary spectral parameter and $f \in C^{(\infty)}\left(\mathbb{R}^{2} ; \mathbb{R}^{3}\right)$.

References

[1] I. Kaplanski, Introduction to Differential Algebra, NY, 1957.
[2] J. F. Ritt, Differential Algebra, AMS-Colloquium Publications, vol. XXXIII, New York, NY, Dover Publ., 1966.
[3] E. R. Kolchin, Differential Algebra and Algebraic Groups, Academic Press, 1973.
[4] Z. Popowicz, A. K. Prykarpatsky, The non-polynomial conservation laws and integrability analysis of generalized Riemann type hydrodynamical equations, Nonlinearity 23 (2010), 2517-2537.
[5] Z. Popowicz, The matrix Lax representation of the generalized Riemann equations and its conservation laws, Physics Letters A 375 (2011), 3268-3272; arXiv:1106.1274v2 [nlin.SI] 4 Jul 2011.
[6] A. K. Prykarpatsky, O. D. Artemovych, Z. Popowicz, M. V. Pavlov, Differential-algebraic integrability analysis of the generalized Riemann type and Korteweg-de Vries hydrodynamical equations, J. Phys. A: Math. Theor. 43 (2010), 295205 (13 pp.).
[7] D. Blackmore, A. K. Prykarpatsky, V. Hr. Samoylenko, Nonlinear Dynamical Systems of Mathematical Physics: Spectral and Differential-Geometrical Integrability Analysis, World Scientific Publ., NJ, USA, 2011.
[8] O. Hentosh, M. Prytula, A. Prykarpatsky, Differential-Geometric and Lie-Algebraic Foundations of Investigating Nonlinear Dynamical Systems on Functional Manifolds, second edition, Lviv University Publ., Lviv, Ukraine 2006 (in Ukrainian).

