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Abstract

We introduce some Π1–expressible combinatorial principles which may be treated
as axioms for some bounded arithmetic theories. The principles, denoted
Sk(Σb

n, length logk) and Sk(Σb
n, depth logk) (where ‘Sk’ stands for ‘Skolem’), are

related to the consistency of Σb
n–induction: for instance, they provide models for

Σb
n–induction. However, the consistency is expressed indirectly, via the existence

of evaluations for sequences of terms. The evaluations do not have to satisfy Σb
n–

induction, but must determine the truth value of Σb
n statements.

Our principles have the property that Sk(Σb
n, depth logk) proves

Sk(Σb
n+1, length logk). Additionally, Sk(Σb

n, length logk−2) proves
Sk(Σb

n+1, length logk). Thus, some provability is involved where conservativ-
ity is known in the case of Σb

n induction on an initial segment and induction for
higher Σb

m classes on smaller segments.

1 Introduction

Bounded arithmetic theories are normally axiomatized using induction prin-
ciples for various classes of bounded formulae, such as Buss’ Σb

n classes (see
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e.g. [HP]). Some of these these principles are additionally restricted to proper
initial segments of models. For example, Buss’ theory Sn

2 is IΣb
n|log, induc-

tion for Σb
n formulae which is restricted to the logarithmic part of a model.

In general, it is not known whether induction principles restricted in this way
can be derived from full induction for slightly smaller classes of formulae. In
particular, the question of whether IΣb

n+1|log can be derived from IΣb
n is an

outstanding open problem.

On the other hand, what is known about these induction principles is that
there are interesting conservativity relationships. The most famous result here
is that IΣb

n+1|log is ∀Σb
n+1 conservative over IΣb

n. This has been generalized
by A. Beckmann ([B]) and C. Pollett ([P]) to the case of IΣb

n+1|logk+1 in place
of IΣb

n+1|log and IΣb
n|logk in place of IΣb

n (where logk is the k–th iteration
of logarithm). Some changes in the assumptions were needed to obtain the
generalization: in particular, fuctions of slightly higher growth rate than the
standard ω1 had to be allowed, and standard Σb

n classes had to be replaced by
their prenex versions.

In the present paper, we propose and discuss a different class of principles.
Our theories will contain only some fixed small amount of induction; their
most important component will be a certain combinatorial principle, denoted
Sk. Sk(Σb

n, depth log
k) will stand for the version of Sk restricted to Σb

n for-
mulae and sequences of terms of depth in the logk part of a model, and
Sk(Σb

n, length logk) for the version of Sk restricted to Σb
n formulae and se-

quences of terms whose length is in the logk part of a model (see section 3 and
the beginning of section 4 for precise definitions).

After introducing some basic definitions and constructions, we try to ex-
plain the link between the Sk principles and bounded induction (sec-
tion 4). We then go on to prove our main result, which states that
the Sk principles are, in a sense, better–behaved than induction prin-
ciples: Sk(Σb

n, depth logk) suffices to prove Sk(Σb
n+1, length logk), and

furthermore, also Sk(Σb
n, length logk−2) proves Sk(Σb

n+1, length logk).
Sk(Σb

n, length logk−2) and Sk(Σb
n+1, length logk) are related to IΣb

n|logk−2

and IΣb
n+1|logk respectively (theorem 4.3 below). Via this relationship it fol-

lows that a counterpart of less induction restricted to a larger cut, expressed
by Sk(Σb

n, length log
k−2), implies a counterpart of more induction restricted to

a smaller cut, expressed by Sk(Σb
n+1, length log

k). For the theories IΣb
n|logk−2

and IΣb
n+1|logk themselves this is an open question — see the diagram fol-

lowing corollary 5.2. As in the case of the Beckmann–Pollett results, we need
to restrict ourselves to prenex Σb

n classes, and to allow some functions which
grow slighly faster than ω1 (more specifically, we have to allow ωK for some
K which depends on k.)

Our main notion is the notion of a Σb
n evaluation. Given a sequence of closed
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terms Λ, an evaluation on Λ is a function which assigns logical values to some
atomic sentences with terms from Λ. An evaluation is Σb

n if the information it
provides makes it possible to decide which Σb

n sentences with terms in Λ are
to be considered true and which false.

2 Preliminaries

Some notational conventions:

The symbol log stands for the discrete–valued binary logarithm function;
exp(m) is 2m. A superscript over a function symbol (say, logk) denotes it-
eration. For a model M, logk(M) consists of those elements of M for which
expk exists. A “bar” always denotes a tuple, and if t̄ is 〈t1, . . . , tl〉, then h̄t̄ is
〈ht1 , . . . htl〉. If Λ is a sequence of terms, t̄ ∈ Λ means all of t1, . . . , tl appear in
Λ.

We adopt the coding of sets and sequences in bounded arithmetic developed
in [HP]. Also the notion of length lh(Λ) of a sequence Λ is the one defined in
[HP] for bounded arithmetic. If lh(Λ) is in log(M) for a model M of bounded
arithmetic, then functions from Λ into {0, 1} can be coded in M as subsets of
size lh(Λ) of Λ× {0, 1} (see [S]). Here we shall use a different coding of such
functions. If Λ = 〈t1, . . . , tl〉, then a function f from Λ into {0, 1} is given by
the pair 〈Λ, p〉, where p is a function from {1, . . . , l} into {0, 1} (an object of
size 2l), with p(i) intended to code f(ti). Whenever Λ is fixed, we may simply
identify f with p.

Our base language, LK (for some natural number K), contains 0, 1, +, <,
×, | · | (the length function symbol), and, for i ≤ K, the symbols #i for
the smash functions 2 . We assume that some appropriate Gödel numbering of
LK formulae has been fixed; we shall identify the formulae with their Gödel
numbers.

To this language we add function symbols sϕ for all LK formulae ϕ in prenex
normal form which begin with an existential quantifier. The symbol sϕ is
intended to stand for a Skolem function for the first existential quantifier in
ϕ. That is, given an LK formula ϕ(x̄) in normal form, if ϕ(x̄) is ∃yψ(x̄, y),
then sϕ is a function symbol of arity 1 + lh(x̄), and sϕ(t̄) is intended to be
some y which satisfies ϕ′(t̄, y), if such a y exists.

2 The length |x| of x is dlog(x + 1)e. The smash functions are defined by: x#2y =
exp(|x| · |y|); x#m+1y = exp(|x|#m|y|). A related family of functions is defined by:
ω1(x) = x|x|; ωm+1(x) = exp(ωm(|x|)). Note that ωm(x) is roughly x#m+1x.
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We include the symbols of LK among the sϕ’s: for example, t1 + t2 may be
treated as s∃z(z=x+y)(t1, t2).

Whenever we speak of a formula ϕ(t̄), it is assumed that ϕ(x̄) itself is an LK

formula, although the terms t̄ do not have to be terms of LK .

We have to encode our extended language in arithmetic. We use even numbers
to enumerate terms of the form sϕ(t̄), and odd numbers for a special enumer-
ation of numerals. More precisely, we let the number 2〈ϕ(x̄), t̄〉 correspond to
sϕ(t̄) (it is assumed that some Gödel numbering of the formulae of LK has
already been fixed), and we let 2k + 1 correspond to a numeral for k (2k + 1
will be referred to as k). From now on, we identify terms with their numbers.

We fix a standard natural number N , which will play the role of a parameter.
Many of our definitions depend on N , and often we will consider only formulae
< N (more precisely, formulae of the form ϕ(t̄), where t̄ is a tuple of terms
and (the Gödel number of) ϕ(x̄) is smaller than N). 3 We also fix the numbers
k ≥ 1 (this will determine which iteration of the logarithm function we work
with), K (in order to fix LK), and n (in order to fix Σb

n). Our definition of
Σb

n differs slightly from the one most commonly used. For one thing, we allow
quantifiers bounded by any terms of the language LK , and thus also by #i,
even if i is not equal to 2. For another, we work with prenex Σb

n classes, instead
of Σb

n in the more usual, broader sense (see [HP]). In the standard model, every
Σb

n formula in the broader sense is equivalent to a prenex Σb
n formula, but some

theories we consider might not be able to prove this equivalence.

A term is Σb
n if it is sϕ(t̄) for ϕ ∈ Σb

n. Numerals are considered Σb
n terms for

any n. The depth of a term is defined in the natural inductive way, with the
exception that all numerals are considered to have depth 0.

Some of our constructions and definitions require a limited amount of induc-
tion. Therefore, we assume that all models we deal with satisfy IΣb

n0
for some

appropriate fixed small number n0. We write T0 to denote the theory IΣb
n0

in
the language LK . Thus, whenever we speak of a model M, it is assumed that
M |= T0 — and that M is nonstandard. The universe of M will be denoted
by M .

The results of sections 4 and 5 which involve the parameter n hold for n
“sufficiently large with respect to n0”.

We shall consider various sequences of closed terms. About such a sequence

3 We make this restriction for the sake of technical simplicity. We could work with-
out it, and use appropriate universal formulae for Σb

n where necessary. The restric-
tion is related to the fact that we may axiomatize IΣb

n by instances of induction
referring to formulae < N — we make use of this fact in theorem 4.3.
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Λ we shall always assume that if a term of the form sϕ(t̄) appears in Λ, then
all terms in t̄ also do, and moreover, that they have smaller indices in Λ than
sϕ(t̄). Given a Λ, we denote by top(Λ) the largest number h such that the
numeral h is in Λ.

¿From now on, whenever we deal with a sequence of terms Λ and a model M
of bounded arithmetic, we shall assume that lh(Λ) is in log(M).

Given a tuple of variables 〈x1, . . . , xm〉, the collection of simple atomic formu-
lae over 〈x1, . . . , xm〉 consists of xi = xj, xi < xj, xi = 0, xi + xj = xl, xi = |xj|
etc. for other symbols of LK (1 ≤ i, j, l ≤ m; basically, simple atomic for-
mulae are those which would still be considered atomic if the vocabulary was
relational). Any open formula over 〈x1, . . . , xm〉 which does not contain nested
terms (such as (xi +xj)×xl) is a boolean combination of simple atomic formu-
lae. For a sequence of closed terms Λ, let the collection E(Λ) of simple atomic
sentences over Λ consist of all sentences obtained by substituting terms from
Λ for the xi’s in simple atomic formulae. Note that lh(E(Λ)) is polynomial in
lh(Λ).

3 Evaluations

Suppose a sequence of closed terms Λ is given. For ϕ(x̄) in normal form, t̄ ∈ Λ,
we define the notion that Λ is good enough (g.e.) for 〈ϕ, t̄〉 by induction on
ϕ. Λ is always g.e. for 〈ϕ, t̄〉 if ϕ is simple atomic. If ϕ(x̄) is f1(x̄) = f2(x̄)
where f1 and/or f2 are nested terms, then Λ is g.e. for 〈ϕ, t̄〉 if Λ contains
s∃y(y=fi(x̄))(t̄) for the appropriate i’s (similarly for ‘<’ in place of ‘=’). If ϕ is
∃yϕ′(x̄, y), then Λ is g.e. for 〈ϕ, t̄〉 if sϕ(t̄) ∈ Λ and Λ is g.e. for 〈ϕ′, t̄_sϕ(t̄)〉.
Finally, if ϕ is ∀yϕ̃(x̄, y), then Λ is g.e. for 〈ϕ, t̄〉 if s∃y¬ϕ̃(x̄,y)(t̄) ∈ Λ (where
∃y¬ϕ̃ is the normal form of ¬ϕ) and Λ is g.e. for 〈ϕ̃, t̄_s∃y¬ϕ̃(x̄,y)(t̄)〉.

The idea is that Λ is g.e. for 〈ϕ, t̄〉 if it contains enough appropriate Skolem
terms so that assigning a logical value to ϕ(t̄) based on an evaluation on Λ
(defined below) makes sense.

Definition 3.1 4

Let p : E(Λ) −→ {0, 1} map every axiom of equality in E(Λ) to 1. We think of
p as assigning a logical value to sentences in E(Λ).

Let t̄ ∈ Λ. We define the relation p |= ϕ(t̄) for ϕ(x̄) in normal form by
induction:

4 See also [A1], [A2], [A3], [AZ1], [AZ2], [S].
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(i) p |= ϕ(t̄) iff p(ϕ(t̄)) = 1 for ϕ(t̄) ∈ E(Λ), and the relation p |= ϕ behaves in
the natural way with respect to boolean combinations of formulae in E(Λ);

(ii) if ϕ(t̄) is atomic but contains nested terms, then p |= ϕ(t̄) iff: Λ is g.e. for
〈ϕ, t̄〉, and if ψ(t̄, s̄(t̄)) is the formula obtained by substituting the Skolem
terms for the nested terms in ϕ(t̄), then p |= ψ(t̄, s̄(t̄)),

(iii) if ϕ is ∃yϕ′(x̄, y), then p |= ϕ(t̄) iff Λ is g.e. for 〈ϕ, t̄〉 and p |= ϕ′(t̄, sϕ(t̄)),
(iv) if ϕ is ∀yϕ̃(x̄, y), then p |= ϕ(t̄) iff for all t ∈ Λ such that Λ is g.e. for

〈ϕ̃, t̄_t〉, p |= ϕ̃(t̄, t).

Definition 3.2 Let Λ be given. A function p : E(Λ) −→ {0, 1} is called a Σb
n

evaluation on Λ if the following holds:

(1) For every Σb
n formula ϕ(x̄), ϕ < N , and every t̄ ∈ Λ of the appropriate

length, if Λ is g.e. for 〈ϕ, t̄〉, then

p |= ϕ(t̄) or p |= ¬ϕ(t̄);

(2) if ϕ(t̄), ϕ < N , t̄ ∈ Λ, is an instance of an axiom of T0 or if t̄ are numerals
and ϕ(t̄) is a true Σb

n0
or Πb

n0
sentence, then assuming Λ is g.e. for 〈ϕ, t̄〉,

p |= ϕ(t̄).

An “evaluation on Λ” is simply a Σb
n evaluation on Λ for some n ≥ n0.

Definition 3.3 Let p, p′ be evaluations on Λ, Λ′ respectively. We say that p′

extends p if Λ ⊆ Λ′ and p ⊆ p′.

Proposition 3.4 If p, p′ are Σb
n evaluations on on Λ, Λ′ respectively and p′

extends p, then and for any ϕ ∈ Σb
n, ϕ < N , t̄ ∈ Λ, if Λ is good enough for

〈ϕ, t̄〉 then

p |= ϕ(t̄) iff p′ |= ϕ(t̄).

Proof. A simple inductive argument. 2

Let M be a model and let a sequence of closed terms Λ be given. Denote
by TERM(Λ) the set of all terms of those terms of standard depth whose
subterms of depth 0 (i.e. numerals) are in Λ. Assume that TERM(Λ) ⊆ Λ.
In that case, every Σb

n evaluation p on Λ determines a structure M(p) which
“agrees” with p about which Σb

n formulae smaller than N are satisfied.

M(p) is constructed as follows. Let the relation ∼ on TERM(Λ) be defined
by t ∼ t′ ⇐⇒ p |= (t = t′). Since p is an evaluation, ∼ is an equivalence
relation and a congruence with respect to the arithmetical operations. Thus,
we can define the universe of M(p) as TERM(Λ)/ ∼; the operations of M(p)
are defined in the obvious way. It now follows from the definition of evaluation
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that for any Σb
n ∪ Πb

n formula ϕ < N and any tuple t̄ = 〈t0, . . . , tm〉 ∈ Λ,

M(p) |= ϕ([t0], . . . , [tm]) iff p |= ϕ(t̄),

where [ti] denotes the ∼–equivalence class of ti.

A convenient way to obtain evaluations on a sequence Λ is to use Skolem
hulls. A hull on Λ is a sequence H = 〈ht : t ∈ Λ〉 of elements of M , where
the element ht is thought of as an interpretation of the term t. It is assumed
that for every numeral k ∈ Λ, hk = k. The satisfaction relation H |= ϕ(t̄) is
defined similarly to p |= ϕ(t̄). We take

H |= ϕ(t̄) iff M |= ϕ(h̄t)

for ϕ(t̄) ∈ E(Λ), and later proceed inductively just as in definition 3.1. A
Skolem Σb

n hull is then defined analogously to a Σb
n evaluation.

Observe that if H is a Skolem Σb
n hull on Λ, then the function pH defined for

ϕ(t̄) ∈ E(Λ) by the clause

pH(ϕ(t̄)) = 1 iff H |= ϕ(t̄)

is a Σb
n evaluation on Λ. We say that pH is isomorphic with H.

A true Skolem Σb
n hull on Λ is a Skolem Σb

n hull H on Λ which additionally
satisfies the following: for every formula ϕ(x̄) < N which is at most Πb

n and
starts with a universal quantifier, and every t̄ ∈ Λ, if H |= ϕ(t̄), then ϕ(h̄t̄) is
true (in M).

4 The Sk principles

In this section, we introduce the Sk principles and the theories they axioma-
tize.

Definition 4.1 Let Λ be a sequence of closed terms. We say that Λ is of depth
i if all terms in Λ have depth ≤ i.

Let Sk(Σb
n, depth logk) be the theory axiomatized by T0 and the following

sentence:

“For every i ∈ logk and every Λ of depth at most i there exists a Σb
n

evaluation on Λ.”
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Also let Sk(Σb
n, length logk) be the theory axiomatized by T0 and the

following sentence:

“For every i ∈ logk and every Λ of length at most i and depth at
most log(i) there exists a Σb

n evaluation on Λ.”

Observe that both Sk(Σb
n, length logk) and Sk(Σb

n, depth logk) are Π1–
axiomatizable theories. It is clear that T0 is Π1–axiomatizable, but perhaps
less obvious that the additional principles can also be formulated as Π1 state-
ments. Let us argue the case of the depth principle (the other is quite similar).
We may express this principle by a formula which begins with universal quan-
tifiers for y = expk(i), for Λ, and for z = 2π(lh(Λ)) where π is some standard
polynomial to be specified below. We claim that the rest of the formula may
then be bounded. Being of depth i is certainly definable by a bounded formula,
so the main question is whether the existential quantifier for evaluations can
be bounded. Any evaluation p on Λ is a pair 〈E(Λ), p′〉, where p′ is a function
from {1, . . . , lh(E(Λ))} into {0, 1}. Since lh(E(Λ)) is polynomial in lh(Λ), we
may take π to be a polynomial such that E(Λ) and p′ are both bounded by
2π(lh(Λ)). As 〈a, b〉 ≤ 2(a+ b)2, the claim now follows.

Actually, we may assume that both Sk(Σb
n, length logk) and

Sk(Σb
n, depth logk) are even ∀Σb

n0+1–axiomatizable. To see this, we only
need to check that our principles are ∀Σb

n0+1. An examination of definition
3.1 reveals that the relation “p |= ϕ” is definable by a fixed bounded formula,
so we may assume that it is Σb

n0
–definable. It follows that the property

of being a Σb
n evaluation is also definable by a bounded formula of fixed

(i.e. independent of n) complexity. Here we are not allowed to assume that
this is a Σb

n0
property, as part (2) of the definition of a Σb

n evaluation (def.
3.2) contains some implications with Σb

n0
antecedents. However, there are

no obstacles to assuming that being a Σb
n evaluation is Σb

n0+1. Hence, the
statement that a Σb

n evaluation exists on every appropriate Λ is, as required,
∀Σb

n0+1.

The next two theorems show that there is some connection between
Sk(Σb

n, length log
k) and induction.

Theorem 4.2 Assume T0 and IΣb
n|logk. Let Λ of length i ∈ logk consist of

Σb
n terms. Then there exists a true Σb

n−1 hull on Λ.

Proof. Let Λ = 〈t0, . . . , tl〉. We want to apply IΣb
n|logk to the formula “there

exists a true Σb
n−1 hull on 〈t0, . . . , tm〉” for m ≤ l. The inductive step is quite

straightforward, the only difficulty is to check that our formula is indeed Σb
n.

The initial existential quantifier can be bounded, since, by our restriction to
formulae < N , elements of the required hulls can be bounded by f(top(Λ))
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for some fixed LK–term f . So, it suffices to verify that being a true Skolem
Σb

n hull is, for sufficiently large n, a Πb
n property.

Being a Skolem Σb
n hull is, just as being a Σb

n evaluation (see above), Σb
n0+1–

definable. To say that H is a true Skolem Σb
n hull, we need to state that H is

a Skolem Σb
n hull and additionally that it satisfies

∀t̄ ∈ Λ ((H |= ϕ(t̄))⇒ ϕ(h̄t̄)),

for a fixed finite number of Πb
n formulae. 2

Thus, T0 + IΣb
n|logk implies Sk(Σb

n−1, length log
k) (and hence, if n ≥ n0 + k,

IΣb
n|logk itself implies Sk(Σb

n−1, length log
k)).

Since Sk(Σb
n−1, length log

k) is ∀Σb
n0+1, we may additionally infer

IΣb
n−k ` Sk(Σb

n−1, length log
k)

provided n ≥ n0 + max (k, 2) in the case when K > k (cf [P]).

The relation in the other direction is somewhat more difficult to express. In
general terms, we may say that Sk(Σb

n, length log
k) allows us to build a model

for IΣb
n|logk with an appropriately large k–th logarithm.

In the following theorem, we assume that N is so large that induction axioms
for Σb

n formulae smaller than N axiomatize IΣb
n. Note that this is always

possible, as IΣb
n is finitely axiomatizable for n ≥ 1.

Theorem 4.3 Let M |= Sk(Σb
n, length log

k).

Let l0, l1 ∈ logk(M) satisfy ωN
K−1(exp

k(l0)) < expk(l1).

Let Λ ∈ M be such that: Λ is of length i for some i ∈ logk, TERM(Λ) ⊆ Λ,
and TERM(Λ) contains numerals for: 0, . . . , l1, exp

k(j) for any j ≤ l1, and
all standard iterations of the smash functions #i (i ≤ K) applied to expk(j)
for j ≤ l1.

Let p be a Σb
n evaluation on Λ given by Sk(Σb

n, length log
k). Then there exists

an initial segment M of M(p) satisfying IΣb
n|logk and such that l0 ∈ logk(M).

Proof. We first show that M(p) satisfies IΣb
n|l1. Consider a Σb

n formula ϕ < N
(we may restrict ourselves to ϕ < N without loss of generality). Assume that
M(p) |= ϕ(0) and M(p) |= ϕ(l) ⇒ ϕ(l + 1) for all l < l1. We thus have
M |= (p |= ϕ(0)) and

M |= (p |= ϕ(l)⇒ p |= ϕ(l + 1))
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for l < l1. By Σb
n0

induction in M, it follows that M |= (p |= ϕ(l1)), whence
M(p) |= ϕ(l1).

We may now take M to be the initial segment ω−N
K−1(exp

k(l1)) of M (i.e. M

consists of those elements l ∈ M(p) which satisfy ωn
K−1(l) < expk(l1) for all

n ∈ N). Clearly, the operations of LK are well–defined in M, and l0 ∈ logk(M)
by the assumption that ωN

K−1(exp
k(l0)) < expk(l1). Moreover, since logk(M)

is contained in the segment [0, l1), we also have M |= IΣb
n|logk. 2

5 The main theorem

Our next aim is the proof of our main theorem. All the results of this section
require k to be at least 3, since sequences of terms whose length is in logk−2

are involved. Recall that our base language LK contains the symbols #i for
i ≤ K.

Theorem 5.1 Assume K > k + 1. Then Sk(Σb
n, depth logk) `

Sk(Σb
n+1, length log

k).

In the proof, we make the notational convention that whenever ∃yψ(x̄, y) is
a formula in normal form, then this ψ is denoted by ϕ′.

Proof. 5

Assume Sk(Σb
n, depth log

k).

Let i0 ∈ logk+1, l0 = exp(i0) and let Λ̂ be of length at most l0 and contain
terms of depth ≤ i0. We may assume that Λ̂ has length exactly l0 (so that
Λ̂ = 〈t0, . . . , tl0−1〉) and consists of Σb

n+1 terms. Present Λ̂ as Λ̂0 ∪ . . . ∪ Λ̂i0 ,

where Λ̂m consists of those terms in Λ̂ which have depth m.

Let j = (l0)
i0 . Observe that i0 ≤ |l0|, so j ≤ ω1(l0). Since K > k + 1, ωk+1 is

a total function, so logk is closed under ω1. Hence, j ∈ logk.

Let Λ contain Λ̂0, consist of Σb
n terms of depth ≤ j, and be such that for any

Σb
n formula ϕ ≤ N and any t̄ ∈ Λ of depth i < j and appropriate length,

it holds that sϕ(t̄) ∈ Λ. We additionally assume that 0 ∈ Λ. Let p be a Σb
n

evaluation on Λ given by Sk(Σb
n, depth log

k).

5 The proof has some ideas in common with [BR], in particular the use of the pigeon
hole principle.
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Let u1, . . . , ul be an enumeration of all pairs 〈ϕ, t̄〉, ul′ = 〈ϕl′ , t̄l′〉, where t̄ is a
tuple of terms from Λ̂0 of length at most (N−1) and ϕ < N is a Σb

n+1 formula

such that sϕ(t̄) ∈ Λ̂1. Note that there are at most l0 − 1 such pairs.

We define by induction a function f1 : {u1, . . . , ul} −→ [0, j) (along with a
sequence 〈s1(ul′) : l′ ≤ l〉 of terms) as follows:

If ϕl′ is a Σb
n formula, then f1(ul′) = 1 and s1(ul′) = sϕl′ (t̄l′).

Otherwise, f1(ul′) is: either the least 1 ≤ i < j for which there is a Σb
n term

s ∈ Λ of depth ≤ i such that p |= ϕ′l′(t̄l′ , s) (in that case, s1(ul′) is some such
s); or, if no such i exists, f1(ul′) = 0 and s1(ul′) = 0.

In more detail:

If ϕ1 is a Σb
n formula, then f1(u1) = 1 and s1(u1) = sϕ1(t̄1) (note that in

this case f1(u1) is the depth of s1(u1)). Otherwise, f1(u1) is: either the least
1 ≤ i < j for which there is a Σb

n term s ∈ Λ of depth ≤ i such that
p |= ϕ′1(t̄1, s) (in that case, s1(u1) is some such s); or, if no such i exists,
f1(u1) = 0 and s1(u1) = 0 (it then holds that p |= ¬ϕ1(t̄1)).

Similarly, if ϕ2 is a Σb
n formula, then f1(u2) = 1 and s1(u2) = sϕ2(t̄2). Other-

wise, f1(u2) is: either the least 1 ≤ i < j for which there is a Σb
n term s ∈ Λ of

depth ≤ i such that p |= ϕ′2(t̄2, s) (in that case, s1(u1) is some such s); or, if
no such i exists, f1(u2) = 0 and s1(u2) = 0 (it then holds that p |= ¬ϕ2(t̄2)).
Etc.

Note that all the notions required in the definition of f1, in particular the
relation “p |= ϕ′(t̄, s)”, are definable by bounded (possibly with an extra
parameter) formulae of fixed complexity. By choosing a large enough n0 we
may assume that this complexity is suitably less than Σb

n0
. Also, f1 can be

coded as described in the preliminaries, i.e. a tuple t̄ such that 〈ϕ, t̄〉 is in the
domain of f1 can be identified with the tuple of indices of the terms t̄ in the
enumeration of Λ̂0. Thus, T0 will suffice to prove the existence of a code for a
function f1 with the required properties.

We have

[0, j) = [0, (l0)
i0−1) ∪ [(l0)

i0−1, 2(l0)
i0−1) ∪ . . . ∪ [(l0 − 1)(l0)

i0−1, l0(l0)
i0−1).

As l0 is quite small (it is certainly in log), we may apply the pigeon hole
principle to find r < l0 such that the interval [r(l0)

i0−1, (r + 1)(l0)
i0−1) does

not contain any value of the function f1. This is because if all l0 of the above
intervals contained a value of f1, we could use the code of f1 to obtain a coded

11



function f from l0 − 1 onto l0. But the pigeon hole principle of the form

∀f, x (f is not a function from x− 1 onto x)

is provable in (a finite fragment of) I∆0 — hence we may assume that it is
provable in T0.

So, let r < l0 be such that the interval [r(l0)
i0−1, (r + 1)(l0)

i0−1) does not
contain any value of the function f1.

Let r1 = r(l0)
i0−1, r′1 = (r+ 1)(l0)

i0−1. Let Λ1 be Λ̂0∪{s1(ul′) : l′ ≤ l, f1(ul′) <
r1}. Also define g̃1 : Λ̂1 −→ Λ1 by:

g̃1(s
ϕ(t̄)) =

 s1(t̄, ϕ) if f1(t̄, ϕ) < r1

0 otherwise

and g1 : Λ̂0 ∪ Λ̂1 −→ Λ1 as g̃1 ∪ id|Λ̂0.

Note that for ϕ ∈ Σb
n, g1(s

ϕ(t̄)) = sϕ(t̄). For in this case, f1(t̄, ϕ) = 1, whence
f1(t̄, ϕ) ∈ [0, (l0)

i0−1) and consequently, f1(t̄, ϕ) < r1.

Now let u1, . . . , ul be an enumeration of all pairs 〈ϕ, g1(t̄)〉, ul′ = 〈ϕl′ , g1(t̄l′)〉,
where t̄ is a tuple of terms from Λ̂0 ∪ Λ̂1 of length at most (N − 1) and ϕ < N
is a Σb

n+1 formula such that sϕ(t̄) ∈ Λ̂2. Again, there are at most l0 − 1 such
pairs.

Let f2 : {u1, . . . , ul} −→ [0, j) and 〈s2(ul′) : l′ ≤ l〉 be defined by:

If ϕl′ is a Σb
n formula, then f2(ul′) is the depth of sϕl′ (g1(t̄l′)) and s2(ul′) =

sϕl′ (g1(t̄l′)). Note that the depth of g1(t̄l′) is < r1 < j, whence sϕl′ (t̄l′) ∈ Λ, by
our assumption on Λ. Otherwise, f2(ul′) is: either the least 2 ≤ i < j for which
there is a Σb

n term s ∈ Λ of depth ≤ i such that p |= ϕ′l′(g1(t̄l′), s) (in that
case, s2(ul′) is some such s); or, if no such i exists, f2(ul′) = 0 and s2(ul′) = 0.

We now have

[r1, r
′
1) = [r1, r1 + (l0)

i0−2) ∪ [r1 + (l0)
i0−2, r1 + 2(l0)

i0−2)

∪ . . . ∪ [r1 + (l0 − 1)(l0)
i0−2, r1 + l0(l0)

i0−2).

Let r < l0 be such that the interval [r1 + r(l0)
i0−2, r1 + (r + 1)(l0)

i0−2) does
not contain any value of the function f2.
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Let r2 = r1 + r(l0)
i0−2, r′2 = r1 + (r + 1)(l0)

i0−2. Let Λ2 be Λ1 ∪ {s2(ul′) : l′ ≤
l, f2(ul′) < r2}. Define g̃2 : Λ̂2 −→ Λ2 by:

g̃2(s
ϕ(t̄)) =

 s2(g1(t̄), ϕ) if f2(g1(t̄), ϕ) < r2

0 otherwise

and g2 : Λ̂0 ∪ Λ̂1 ∪ Λ̂2 −→ Λ2 as g̃2 ∪ g1.

Again for ϕ ∈ Σb
n, g2(s

ϕ(t̄)) = sϕ(g1(t̄)). For in this case, f2(g1(t̄), ϕ) is the
depth of g1(t̄) plus 1, whence f2(g1(t̄), ϕ) ≤ r1 < r2

For 2 < m ≤ i0, we construct fm, rm, r
′
m,Λm, gm, in a similar way. Finally, we

take g : Λ̂ −→ Λ to be
⋃

m≤i0 gm and let p̂ be the evaluation on Λ̂ defined by:

(∗) p̂(ϕ(t̄)) = p(ϕ(g(t̄)))

(for t̄ ∈ Λ̂ and ϕ simple atomic). It remains to show that p̂ is a Σb
n+1 evaluation

on Λ̂.

Note that for any Σb
n formula ϕ < N , if sϕ(t̄) ∈ Λ̂, then sϕ(g(t̄)) ∈ Λ, and

moreover, g(sϕ(t̄)) = sϕ(g(t̄)). This makes it possible to prove by induction on
formula complexity that (∗) holds also if ϕ < N is a Σb

n formula and Λ̂ is g.e.
for 〈ϕ, t̄〉 (use the fact that p is a Σb

n evaluation in the step for the universal
quantifier).

It follows that p̂ satisfies part (2) of the definition of a Σb
n+1 evaluation (since

p is a Σb
n evaluation). As for (1), the most interesting case is when ϕ ∈ Σb

n+1 \
(Σb

n∪Πb
n). So let ϕ < N be such a formula and assume that Λ̂ is g.e. for 〈ϕ, t̄〉.

We thus know that in, say, the m–th step of the construction 〈ϕ, gm−1(t̄)〉
appeared as some ul′ .

If there was at that point no term s ∈ Λ for which p |= ϕ′(gm−1(t̄), s), then no
such term could have appeared later on in the construction, so for any s ∈ Λ,
p |= ¬ϕ′(g(t̄), s). Then by (∗) and definition 3.1, p̂ |= ¬ϕ.

Otherwise, either fm(ul′) < rm or the contrary. In the former case, clearly
p |= ϕ′(g(t̄), g(sϕ(t̄))) and hence p̂ |= ϕ(t̄). In the latter case, since no term
s ∈ Λ of depth < fm(ul′) satisfies p |= ϕ′(g(t̄), s), and no term of depth
≥ fm(ul′) is in the range of g, we have p̂ |= ¬ϕ(t̄). This completes the proof
of the theorem. 2

Note that the assumptionK > k+1 was only needed to assure that the number
j = (l0)

i0 appearing in the proof is an element of logk. It is quite possible that
this assumption is not optimal; we have not made a serious effort to improve
it.
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¿From the proof of theorem 5.1 we obtain the following corollary:

Corollary 5.2 Assume K > k + 1. Then Sk(Σb
n, length logk−2) `

Sk(Σb
n+1, length log

k).

Proof. The corollary follows immediately from the following observation.

Let Λ̂, l0, j be as in the proof of theorem 5.1. Then there is a Λ with the
properties required in the proof of theorem 5.1 such that lh(Λ) ∈ logk−2.

Let us prove this observation.

For i ≤ j, let Li denote the number of terms of depth at most i which have
to be included in Λ. Then L0 ≤ l0 + 1 and Li+1 ≤ Li + LN−1

i · N ≤ LN+1
i .

Hence Lj ≤ (l0 +1)(N+1)j
. Since j ∈ logk, (N+1)j ∈ logk−1 and Lj ∈ logk−2. 2

There is no direct connection between Sk(Σb
n, depth logk) and

Sk(Σb
n, length log

k−2).

Based on the above results, we may summarize the known relationships be-
tween the theories IΣb

n|logk and Sk(Σb
n, length log

k), for various n and k, in
the following diagram:

Sk(Σb
n, length log

k) ⇐= IΣb
n+1|logk ←− Sk(Σb

n+1, length log
k)

⇓ (∗)

⇑ IΣb
n|logk−1 ⇑

⇑

Sk(Σb
n−1, length log

k−2) ⇐= IΣb
n|logk−2 ←− Sk(Σb

n, length log
k−2)

It is assumed in the diagram that k ≥ 3 and that n ≥ n0 + k, K > k + 1 (the
dependence of n on k is to have T0 implied by all the theories in question).
Thick arrows denote provability, thin arrows denote inducing a model in the
sense of theorem 4.3. The arrow marked with an asterisk is the one whose
reversibility is a famous open problem.
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