
An Application of a Reflection Principle

Zofia Adamowicz
Leszek Aleksander Ko lodziejczyk

Pawe lZbierski

June 13, 2006

Abstract

We define a recursive theory which axomatizes a class of models of
I∆0 + Ω3 +¬exp all of which share two features: firstly, the set of ∆0

definable elements of the model is majorized by the set of elements
definable by ∆0 formulae of fixed complexity; secondly, Σ1 truth about
the model is recursively reducible to the set of true Σ1 formulae of fixed
complexity.

In the present paper, we define a consistent recursive theory T , implying
I∆0 and inconsistent with I∆0 +exp, which has the following two properties:

1) in every model M |= T elements definable by ∆0 formulae of fixed
quantifier complexity are cofinal among all ∆0 definable elements;

2) for every model M |= T , the set of Σ1 sentences true in M is recur-
sively reducible to the set of true Σ1 sentences whose ∆0 part has fixed
quantifier complexity.

Thus, T axiomatizes to some extent the phenomenon of the cofinality
of elements definable by ∆0 formulae with fixed complexity among all ∆0

definable elements, and of the reducibility of the set of true Σ1 sentences to
the set of true Σ1 sentences whose complexity is fixed.

¿From the logical point of view, the idea behind the construction of T
seems to be interesting in itself. The axioms of T reduce the validity of
a Π1 sentence ψ to the validity a sentence expressing (roughly) a form of
“consistency” of ψ. To show the consistency of T , we have to be able to
build a model in which all “consistent” Π1 sentences are true.

We construct such a model by iterating the following procedure: given a
model M satisfying the “consistency” of the Π1 sentence ψ0, we build another
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model M0 satisfying ψ0, and still satisfying the “consistency” of ψ0. We then
move on to the next Π1 sentence, ψ1. To carry on the construction, we now
must — if M0 satisfies the “consistency” of ψ1 — be able to construct another
model M1 satisfying ψ1, but still satisfying ψ0 and the “consistency” of ψ0

and ψ1. Etc.
Thus, we need our models have the property that “what is true is con-

sistent”. Moreover, this property has to be preserved under the iteration.
Therefore, what we need is in fact the “ “consistency” of the set of true
Π1 and Σ1 sentences together with the “consistency” of the set of true Π1

and Σ1 sentences together with the “consistency” of the set of true Π1 and
Σ1 sentences...”. To make this formal, we have to define a kind of “self–
reproducing consistency statement”. This is subtle since we are very close to
contradicting Gödel’s second incompleteness theorem.

The paper is organized as follows. Section 1 is preliminary. Section 2
discusses our basic technical tool: evaluations on sequences of terms. In
section 3, we define our “self–reproducing consistency statement”, and we
argue that it is a kind of reflection principle. Finally, in section 4 we introduce
the theory T and prove our main results.

1 Preliminaries

Some notational conventions:
The symbol log stands for the discrete–valued binary logarithm function;

exp(x) is 2x. Whenever f denotes a function, f (k) denotes f iterated k
times. For a model M, log(k)(M) (the k-th logarithm of M) consists of
those elements of M for which exp(k) exists. The variable i, possibly with
indices, always ranges over elements of log(3), and the variable j, possibly
with indices, ranges over elements of log(4). A “bar” (as in, say, “x̄”) always
denotes a tuple — depending on the context, it may happen that tuples of
nonstandard length are also allowed.

We adopt the coding of sets and sequences in bounded arithmetic devel-
oped in [HP]. Also the notion of length lh(Λ) of a sequence Λ is the one
defined in [HP] for bounded arithmetic. If Λ = 〈t1, . . . , tl〉 is a sequence
of length l ∈ log(M), then functions from Λ into {0, 1} may be coded as
subsets of size lh(Λ) of Λ × {0, 1} (see [S]). We use a somewhat different
coding, letting f : Λ −→ {0, 1} be represented by the pair 〈Λ, p〉, where p is
a function from {1, . . . , l} into {0, 1} — thus, an object of size exp(l) — with
p(i) intended to code f(ti). Whenever Λ is fixed, we may simply identify f
with p.

Our base language L contains the individual constants 0, 1, and the
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relational symbols +, ≤, ×, | · |, #2, #3, and #4.
The intuitive meaning of |x| = y is that y is the length of the binary

representation of x (equal to dlog(x + 1)e). The #i’s are to stand for the
graphs of the first three smash functions: x#2y = exp(|x| · |y|), x#n+1y =
exp(|x|#n|y|) for n ≥ 2. A hierarchy of functions related to the smash
functions is defined by: ω1(x) = x|x|;ωn+1(x) = exp(ωn(|x|)). Note that for
any n ≥ 1, ωn(x) is roughly x#n+1x.

We assume that some appropriate Gödel numbering of L–formulae has
been fixed; we shall identify the formulae with their Gödel numbers.

An L–formula ϕ is in negation normal form if no quantifiers in ϕ occur
in the scope of a negation. ϕ is ∆0 if all the quantifiers in ϕ are bounded,
i.e. of the form ∃x ≤ y. Σ1 and Π1 formulae are defined in the natural way.

For any natural number r, the class Er consists of ∆0 formulae in prenex
normal form which contain (r− 1) alternations of quantifier blocks, starting
with an existential block, and not counting sharply bounded quantifiers1.
The class Ur is defined dually. The class ∃r consists of Σ1 formulae of the
form ∃xψ where ψ is Ur−1. The class ∀r is defined dually.

We take I∆0 + Ω3 to be the theory which consists of: a finite number
of basic axioms relating the interpretations of the L–symbols to each other;
the induction scheme for all ∆0 formulae; and an axiom stating that #4 is a
total function (note that this is equivalent to the totality of ω3). I∆0 + Ωn,
for i = 1, 2, is defined analogously. I∆0 states only the totality of + and
×. I∆0 + exp, on the other hand, additionally states the totality of the exp
function.

I∆∗
0 is an auxiliary system which contains the basic axioms and the ∆0

induction scheme, but no axioms stating the totality of +,× etc. Thus, a
model of I∆∗

0 may have a greatest element. Note that (under a reasonable
choice of the basic axioms), all axioms of I∆∗

0 are Π1.
One benefit of working with a relational language is that definining the

relativization of a formula poses no difficulties. Namely, if ϕ is an L–formula,
then ϕx is defined inductively, with only the quantifier step non–trivial:
(∃yψ)x := ∃y ≤ x ψx.

The language LT is an extension of L obtained by adding function sym-
bols sϕ for all L–formulae ϕ in negation normal form which begin with an
existential quantifier. The intention is that the symbol sϕ stands for a Skolem
function for the first existential quantifier in ϕ. That is, given an L–formula
ϕ(x̄) = ∃yψ(x̄, y) in negation normal form, sϕ is a function symbol of arity

1The notion of sharply bounded quantifier is an obvious variant of the one known from
functional languages for bounded arithmetic, e.g. in ∀x∀y ≤ x∃z ≤ x((y = |x| ⇒ z =
y) ∧ . . .) the quantifier ∀z is sharply bounded.
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1 + lh(x̄), and sϕ(t̄) is intended to be some y which satisfies ψ(t̄, y), if such
a y exists.

Whenever we speak of a formula ϕ(t̄), it is assumed that ϕ(x̄) itself is an
L–formula, although the terms t̄ do not have to be terms of L.

We have to encode the language LT in arithmetic. We use numbers
divisible by 3 to enumerate terms of the form sϕ(t̄), numbers congruent to
1 (mod 3) for a special enumeration of numerals, and numbers congruent to
2 (mod 3) to enumerate some additional terms. In more detail: we let the
number 3〈ϕ(x̄), t̄〉 correspond to sϕ(t̄); we let 3k+1 correspond to a numeral
for k (3k + 1 will be referred to as k); finally, we let 3k + 2 correspond to a
special term sk (the role of the sk’s is explained by clause (v) of definition
2.3). We also code ϕ(t̄) by the ordered pair 〈ϕ(x̄), t̄〉.

¿From now on, we identify the terms of LT with their numbers.
The models M we work with are — unless explicitly stated or obvious

from the context that this is not the case — assumed to be nonstandard
countable models of I∆0 + Ω3.

We shall consider various sequences of closed terms. About such a se-
quence Λ we shall always assume that if a term of the form sϕ(t̄) appears in
Λ, then all terms in t̄ also do, and moreover, that they have smaller indices
in Λ than sϕ(t̄). Also, whenever dealing with a sequence Λ and a model M,
we shall assume that lh(Λ) is in log(M).

Given a sequence of terms Λ, let the collection A(Λ) of atomic sentences
over Λ consist of all sentences obtained by substituting terms from Λ for vari-
ables in atomic formulae of L. Observe that there is a standard polynomial
π(n) such that lh(A(Λ)) ≤ π(lh(Λ)). Let us fix some such π.

Some more notation: if F is a class of formulae, the symbol F(M) denotes
the family of all F–definable elements of M, while MF denotes the set of
F–sentences true in M.

Finally, let us recall some relevant facts about universal formulae. Firstly,
in I∆0 + exp there is a Σ1 universal formula Sat for ∆0. Thus, Sat is Σ1,
and for any M |= I∆0 + exp, ϕ ∈ M a ∆0 formula,

M |= Sat(ϕ) iff M |= ϕ.

Secondly, in I∆0 + Ω3 there is an ∃r universal formula Satr for ∃r, for
each r ∈ ω. Satr can obviously be also used as a universal formula for Er,
and additionally, if we limit our attention to the truth of Er formulae smaller
than some a with parameters smaller than some b, then the initial existential
quantifier in Satr can also be bounded (thus giving an “Er formula with a
parameter”: call this formula SatEr).
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2 Evaluations and evaluation models

Let p : A(Λ) −→ {0, 1} map every axiom of equality in A(Λ) to 1. We call
such a p an evaluation on Λ, since we may think of p as assigning a logical
value to sentences in A(Λ) (see also [A1], [A2], [A3], [AZ1], [AZ2], [S]). Of
course, p can be uniquely extended to all boolean combinations of sentences
in A(Λ) in the routine way.

Note in passing that any evaluation on Λ is an object of size at most
exp(lh(A(Λ))) and thus at most exp(π(lh(Λ))).

For ϕ(x̄) in negation normal form, t̄ ∈ Λ, we define the notion that Λ is
good enough (g.e.) for 〈ϕ, t̄〉 by induction on ϕ. Λ is always g.e. for 〈ϕ, t̄〉 if
ϕ is open. Λ is g.e. for 〈ϕ1∨ϕ2, t̄〉 iff it is g.e. for 〈ϕ1, t̄〉 and 〈ϕ2, t̄〉, similarly
for conjunctions. If ϕ is ∃yϕ′(x̄, y), then Λ is g.e. for 〈ϕ, t̄〉 if sϕ(t̄) ∈ Λ and
Λ is g.e. for 〈ϕ′, t̄_sϕ(t̄)〉. Finally, if ϕ is ∀yϕ̃(x̄, y), then Λ is g.e. for 〈ϕ, t̄〉
if s∃y¬ϕ̃(x̄,y)(t̄) ∈ Λ (where ∃y¬ϕ̃ is the normal form of ¬ϕ) and Λ is g.e. for
〈ϕ̃, t̄_s∃y¬ϕ̃(x̄,y)(t̄)〉.

The idea is that Λ is g.e. for 〈ϕ, t̄〉 if it contains enough appropriate
Skolem terms so that assigning a logical value to ϕ(t̄) based on an evaluation
on Λ makes sense.

Definition 2.1 Let t̄ ∈ Λ. We define the relation p |= ϕ(t̄) for ϕ(x̄) in
negation normal form by induction:

(i) p |= ϕ(t̄) iff p(ϕ(t̄)) = 1 for ϕ(t̄) open;

(ii) the relation p |= ϕ behaves in the natural way with respect to conjunc-
tions and disjunctions;

(iii) if ϕ is ∃yϕ′(x̄, y), then p |= ϕ(t̄) iff Λ is g.e. for 〈ϕ, t̄〉 and p |=
ϕ′(t̄, sϕ(t̄)),

(iv) if ϕ is ∀yϕ̃(x̄, y), then p |= ϕ(t̄) iff for all t ∈ Λ such that Λ is g.e. for
〈ϕ̃, t̄_t〉, p |= ϕ̃(t̄, t).

We will be especially interested in the case where Λ is one of a number
of canonical sequences of terms. To define these, let K(i) be the unique
function satisfying K(0) = 1 and K(i + 1) = c · exp(i) ·K(i)i, where c is an
appropriately large standard integer. Note that for any i, K(i) ∈ log, as for
almost all i, K(i) ≤ exp(ii), and ii is always in log(2), since we have:

Remark 2.2 In any model of I∆0 + Ω3, log is closed under ω2, log
(2) is

closed under ω1, log
(3) is closed under multiplication, and log(4) is closed

under addition.
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The notion of canonical sequence of rank i, Λi, is now defined by induction.
Λi+1 is the smallest sequence Λ such that:

• for any j ≤ i + 1, Λ contains the term sj and is good for 〈exp(3)(x) =
y, jasj〉;

• for any a ≤ K(i), Λ contains the numeral a, and if exp(a) ≤ exp(3)(i+
1), then Λ is g.e. for 〈∃exp(x), a〉;

• for any formula ϕ < exp(i) of the form ψt or ∃x ≤ t ψx (where t ∈ Λi),
and any t̄ ∈ Λi, Λ is g.e. for 〈ϕ, t̄〉.

Observe that if c is chosen large enough, then lh(Λi) ≤ K(i) for all i
(since a formula smaller than exp(i) contains at most i quantifiers).

Some particularly well–behaved evaluations on Λi will be called evalua-
tions of rank i (we let Ai stand for A(Λi)):

Definition 2.3 A function p : Ai −→ {0, 1} is called an evaluation of rank
i if the following holds:

(i) for every ϕ(x̄) < exp(i) and every t̄ ∈ Λi of appropriate length, if Λi is
g.e. for 〈ϕ, t̄〉, then for all j ≤ i,

p |= ϕ(t̄)sj or p |= ¬ϕ(t̄)sj ;

(ii) if ϕ < exp(i) is an axiom of I∆∗
0, then assuming Λi is g.e. for 〈ϕ, ∅〉,

p |= ϕ;

(iii) p |= (0 = 0 ∧ 1 = 1), and given any a, b ∈ Λi: if a+ b ∈ Λi, then
p |= (a+ b = a+ b), and similarly for the other symbols of L;

(iv) for all a ∈ Λi such that exp(a) ≤ exp(3)(i+ 1), p |= ∃exp(a);

(v) for all j ≤ i, p |= sj = exp(3)(j).

We let “p ∈ Ei” stand for “p is an evaluation of rank i”. This is a slight
abuse of notation, since the code for the set of evaluations of rank i might
be too large to be an element of the model.

We claim that both “p |= ϕ” (for p an evaluation on Λi) and “p ∈ Ei” are
∆0 definable with an appropriately large parameter (and thus ∆1 definable).

To see whether an evaluation p on Λi sets ϕ to “True” (i.e. whether
p |= ϕ), we need to deal with sets V0, . . . , Vr, where where Vl is the set of
values given by p to the l–th subformula of ϕ under all relevant substitutions
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of terms in Λi for the free variables in that subformula. Since there are at most
log ϕ variables in any subformula of ϕ, the number of possible substitutions
is not greater than K(i)log ϕ, and hence Vl ≤ exp(K(i)log ϕ). Again, there can
be no more than log ϕ subformulae of ϕ. Thus, the sequence 〈V0, . . . , Vr〉 is
at most log ϕ–long, so its code is at most exp(log ϕ ·K(i)log ϕ). This is the
largest object relevant to the truth value given to ϕ by ψ, which shows that
“p |= ϕ” is indeed ∆0 definable with a parameter.

To see whether an evaluation p on Λi is in Ei, we have to check what
truth value it assigns to a number of formulae ϕ smaller than exp(i). With
some additional work, one may verify that all objects we need to consider
are smaller than ω3(exp

(3)i), which implies that also “p ∈ Ei” is ∆0 definable
with a parameter.

We let True(p, i, ϕ) be a ∆1 formula which says “p ∈ Ei and p |= ϕ”.

Definition 2.4 If p1 ∈ Ei1 and p2 ∈ Ei2 with i1 ≤ i2, we say that p2 extends
p1 iff p1 ⊆ p2.

The following proposition lists some “conservativity” relationships be-
tween evaluations one of which extends the other. The proofs are simple
inductive arguments.

Proposition 2.5 Let p2 ∈ Ei2 extend p1 ∈ Ei1. Then:

(1) if Λi1 is g.e. for 〈ϕ, t̄〉 and j ≤ i1, then p1 |= ϕ(t̄)sj iff p2 |= ϕ(t̄)sj ;

(2) if ϕ(x̄) is an open formula and t̄ ∈ Λi1, then p1 |= ϕ(t̄) iff p2 |= ϕ(t̄);

(3) if Λi1 is g.e. for 〈ϕ, t̄〉, then p2 |= ϕ(t̄) implies p1 |= ϕ(t̄).

Another simple fact about evaluations is:

Proposition 2.6 Let p ∈ Ei and let i′ ≤ i. Then (p � Ai′) ∈ Ei′.

The importance of evaluations consists in the fact that they make possible
the construction of models for I∆0 + Ω3. More precisely, such a model is
determined by an ascending chain of evaluations whose ranks are cofinal in
log(3) (note that by remark 2.2, in a model of I∆0 + Ω3 the third logarithm
has no last element).

Let P = 〈pn : n ∈ ω〉 be such a chain. If t̄ is a tuple of terms of LT and
ϕ(t̄) is open, then almost all pn’s agree on the logical value of ϕ(t̄). So, we
may define P |= ϕ(t̄) by:

pn |= ϕ(t̄) for almost all n.
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We define the relation =P between terms in LT by:

t1 =P t2 iff P |= (t1 = t2).

Since the pn’s are evaluations, =P is an equivalence relation and a con-
gruence with respect to the relations of L. Let M0[P ] be the model whose
universe is the set of =P–equivalence classes and whose relations are defined
by

[t1] + [t2] = [t3] iff P |= (t1 + t2 = t3) etc.

Clearly, we have:

M0[P ] |= ϕ([̄t]) iff P |= ϕ(t̄)

for any open ϕ. If we introduce the more general relation P |= ϕ(t̄), for ϕ
not necessarily open, by the same clause as above, then induction yields

P |= ϕ(t̄) implies M0[P ] |= ϕ([̄t]).

The converse implication will not generally hold unless we accept a more
restrictive definition of evaluation which is not needed here.

The next lemma and corollary show that the numeral a may be treated
as a name for the a–th element of M0[P ].

Lemma 2.7 Let p ∈ Ei. If for a term t ∈ LT , p |= (t ≤ a), then there is
b ≤ a such that p |= (t = b).

Moreover, if ϕ is an open formula and ā is a tuple of numerals for numbers
less or equal to K(i− 1), then ϕ(ā) implies p |= ϕ(ā).

Proof. We may assume that our formalization of I∆∗
0 contains axioms such

as: ∀x(x ≤ 0 ⇒ x = 0), ∀x∀y(x ≤ y+1 ⇒ x = y+1∨x ≤ y), ∀x(x+0 = x),
∀x∀y((x+ (y+ 1) = (x+ y) + 1) and similar axioms for the other symbols of
L.

The first part of the lemma is proved by induction on a ≤ K(i− 1). For
a = 0, p |= (0 = 0), so p |= (t ≤ 0) implies p |= (t ≤ 0), hence p |= (t = 0)
by the appropriate axiom, hence p |= (t = 0). Assume that the thesis holds
for a and that p |= (t ≤ a+ 1). Then, since p |= (a+ 1 = a + 1), we get
either p |= (t = a+ 1) or p |= (t ≤ a), in which case we use the inductive
assumption to get p |= (t = b) for some b ≤ a.

For the “moreover” part, first prove p |= (a1 + a2 = a1 + a2) (as-
suming a1 + a2 ≤ K(i − 1)) by induction, using appropriate axioms
for the induction base and induction step. Then proceed similarly with
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p |= (a1 · a2 = a1 · a2) (again, assuming i is large enough) and the remaining
symbols of L, and pass through boolean combinations to obtain the thesis. �

Corollary 2.8 The mapping a → [a] (for a ∈ log(M) is an isomorphism
between log(M) and an initial segment I of M0[P ]

Proof. It suffices to observe that if P = 〈Pn : n ∈ ω〉 where pn ∈ Ein , then
for any tuple ā ∈ log, the maximal element of ā is smaller than K(in − 1)
for almost all n, so we may apply lemma 2.7. �

By clause (iv) of definition 2.3, I ⊆ log(M0[P ]). Let M[P ] be the initial
segment of M0[P ] generated by exp(I). If we identify I with log(M), we
obtain:

Corollary 2.9 log(M) = log(M[P ]). Thus, more generally, log(n)(M) =
log(n)(M[P ]) for all n ≥ 1.

We also have:

Corollary 2.10 If ϕ(x̄) is a Π1 formula and P |= ϕ(t̄), then M[P ] |= ϕ([̄t])

We close this section with a theorem on evaluation models (i.e. models
of the form M[P ]) which will play a key role later on.

Theorem 2.11 Let M be a countable model of I∆0 + Ω3 + BΣ1. Assume
that F is a set of standard L–formulae,

F = {θn(x1, . . . , xr) : n ∈ ω},

and is a subset of a set

{θl(x1, . . . , xr) : l ∈ log(3+k) M}

(for some k ∈ ω) which is ∆1–definable in M and satisfies

(#) ∀i ∃p ∈ Ei ∀l, l1, . . . , lr < log(k) i p |= θl(l1, . . . , lr).

Then there exists an increasing and cofinal sequence P = 〈pn : n ∈
ω〉 of evaluations such that P |= ϕ(l1, . . . , lr) for each ϕ ∈ F , l1, . . . , lr ∈
log(3+k)(M), and the model M[P ] satisfies I∆0 + Ω3.

In particular, for any n such that θn is Π1, M[P ] |= θn(l1, . . . , lr), for
each l1, . . . , lr ∈ log(3+k)(M), n ∈ ω.
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Proof. Let us introduce the following convention: every evaluation p of
rank i appearing in this proof satisfies p |= θl(l1, . . . , lr) for all l, l1, . . . , lr <

log(k) i.
Let i1 < i2 < . . . be cofinal in log(3)(M). We shall define a sequence

P = 〈pn : n ∈ ω〉 such that pn ∈ Ein .
P is defined by induction as follows. Suppose that at a given step n

we already have evaluations p1 ⊆ . . . ⊆ pn such that p1 ∈ Ei1 , . . . , pn ∈ Ein
satisfying the inductive condition

(∗) ∀i > in ∃p ∈ Ei
[
pn ⊆ p

]
.

Note that at the initial step the validity of the inductive condition is
ensured by the assumption of the theorem.

We claim that it follows by BΣ1 that:

(∗∗) ∃pn+1 ∈ Ein+1

[
∀i > in+1 ∃p ∈ Ei pn ⊆ pn+1 ⊆ p

]
.

Indeed, assume (∗∗) fails. Then for any p̃ ∈ Ein+1 extending pn there exists
i(p̃) > in+1 for which there is no evaluation p ∈ Ei extending p̃. Now, all p̃’s
are bounded by exp(π(K(in+1)). Thus, we may use BΣ1 to find a common
bound i for all the i(p̃)’s. It follows that there is no p ∈ Ei extending any of
the i(p̃)’s. On the other hand, by (∗) there is some p ∈ Ei extending pn. But
(p � Ain+1) ∈ Ein+1 , and pn ⊆ (p � Ain+1) ⊆ p, a contradiction. Hence, (∗∗)
must hold and the claim is proved.

Finally, the evaluation pn+1 given by (∗∗) satisfies the inductive condition
at stage n+ 1.

Now let P = 〈pn : n ∈ ω〉. Obviously P is increasing and cofinal.
Since all the axioms of I∆∗

0 are Π1 we infer from corollary 2.10 that

M[P ] |= I∆∗
0.

On the other hand, the set {exp(3)i : i ∈ log(3) M} is cofinal in both
M and M[P ] (cf. corollary 2.9). Since M |= Ω3, we infer in view of
corollary 2.9 that M[P ] |= Ω3. Consequently, M[P ] |= I∆0 + Ω3 since obvi-
ously I∆∗

0+Ω3 implies I∆0+Ω3. This completes the proof of the theorem. �

Remark 2.12 To keep the enunciation of the above theorem reasonably con-
cise, we have formulated its assumptions in a relatively simple way. It is
clear, however, that appropriate variants of the theorem would also be true if
the assumptions were modified in one or more of the following ways:

• in (#), ∀i∃p ∈ Ei(. . .) could be replaced by ∀∞i∃p ∈ Ei(. . .);
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• also in (#), ∀l, l1, . . . , lr < log(k)i could be replaced by ∀l, l1, . . . , lr <
(log(k)i)/r (for any standard r), as long as log(3+k) is closed under
addition;

• F could be extended by adding finitely many formulae of the form ϕ(t̄)
evaluated to “True” by almost all of the p’s given by (#).

In the sequel, we will sometimes speak of using “theorem 2.11” when some
such variant is actually meant.

3 The principle τ

The present section introduces a consistent sentence τ which is a kind of
reflection principle (mentioned in the title). We begin by formulating some
preservation properties of evaluations.

For a Σ1 sentence Φ of the form ∃xφx let ΓΦ(p, i) be the formula

∀j ≤ i
(
∃x ≤ exp(3)j φx ⇒ True(p, i,∃x ≤ sjφ

x)
)

∧
(
∀x ≤ exp(3)i ¬φx ⇒ True(p, i,∀x¬φx

)
,

and, for a fixed sufficiently large m which depends on some further con-
structions but could be specified in advance, let Γm(p, i) be the formula

∀ψ < i, ψ ∈ ∃m ∀j ≤ i ∀a1, . . . , ar ∈ Λi(
Satm(ψexp

(3)j(a1, . . . , ar)) ⇒ True(p, i, ψsj (a1, . . . , ar)
)
.

Intuitively, ΓΦ(p, i) says “p preserves the size of a witness for Φ = ∃xφx,
and disallows witnesses of size greater than exp(3)i”, while Γm(p, i) says “p

preserves the restrictions ψexp
(3)j, for j ≤ i, of all ∃m sentences smaller than

i”.
Arguments similar to those in the previous section show that both ΓΦ

and Γm are ∆0 with a parameter (and hence ∆1), as they make no reference
to objects greater than ω3(exp

(3)i).
We will now define some (possibly non–standard) sentences τj,j1 for j, j1 ∈

log(4). The definition is by induction on j1. Let τj,0 be:(
∃p ∈ Eexp 0{Γm(p, exp 0) ∧

∧
Φ≤j

ΓΦ(p, exp 0)}
)exp(4)2·0

,

and let τj,j1+1 be:
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(
∃p ∈ Eexp(j1+1){Γm(p, exp(j1 + 1)) ∧

∧
Φ≤j ΓΦ(p, exp(j1 + 1))

∧
∧
l,l1<((j1+1)/2) True(p, exp(j1 + 1), τl,l1)}

)exp(4)2(j1+1)

.

If the definition of τj,j1 is to make sense, an evaluation of rank exp j1
should be able to decide the truth value of τl,l1 for l, l1 < j1/2. To check that
this is so, let ϕj,j1(z, x̄) stand for(

∃y ∈ Eexp z{Γm(y, exp z) ∧
∧

Φ≤j ΓΦ(y, exp z)

∧
∧
l,l1<(j1/2)

True(y, exp(z), xl,l1)}
)exp(4)(2z)

,

and t̄j1 stand for 〈τl,l1 : l, l1 < (j1/2)〉.
Observe that for τj,j1 is ϕj,j1(j1, t̄j1). Therefore, it is enough to check that

for any j1, ϕj1/2,j1/2 is smaller than exp(exp(j1)−1) and that t̄j1/2 ∈ Λexp(j1)−1.

To see the former, note that given any j1 a code for ϕj1,j1 is about j
j21
1 ,

which is smaller than ω1(exp j1) (a precise bound on ϕj1,j1 depends on the
details of how we code the syntax, esp. the variables, but the main ingredient
of ϕj1,j1 is a (j2

1/4)–long conjunction of formulae whose codes will not greatly
exceed the code for the (j2

1/4)-th variable, which in turn may be around j2
1).

So for us it suffices if ω1(exp(j1/2)) is smaller than exp(exp(j1) − 1), which
is clearly always the case.

To see the latter, we only need to check that for all j1, τj1/4,j1/4 is smaller
than K(exp(j1) − 1). But for any j1, the size of τj1,j1 can be bounded by
roughly ω1(exp j1) (the code for ϕj1,j1) times the code for the (j2

1/4)–long
sequence of the τl,l1 ’s (for l, l1 < j1/2). This sequence will have a code

smaller than (3 ·τj1/2,j1/2)j
2
1/4. Using the fact that K(i+1) > cK(i)i for some

large standard c, it is easy to verify that K(exp(j1) − 1) is more than τj1,j1
(not to mention τj1/4,j1/4).

In addition to the τj,j1 ’s we also define, for any j ∈ log(4), a formula τj(j1)
with j1 as a free variable. τj(j1) is:

(
∃p ∈ Eexp j1{Γm(p, exp j1) ∧

∧
Φ≤j ΓΦ(p, exp j1)

∧ ∀l, l1 < (j1/2)∀x
(
x = τl,l1 ⇒ True(p, exp j1, x)

)
}
)exp(4)(2j1)

,

where x = τl,l1 is an abbreviation for the inductive definition of τl,l1 with
l and l1 as parameters. Note that although the τj(·)’s are in general again
non–standard, τn(·) is a standard formula for any standard n.
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Note also that exp(4)(2j1) is not less than ω3(exp
(4)j1) — the greatest

element we possibly need to access in order to check whether a given p ∈
Eexp j1 satisfies all the conditions required in τj,j1 or τj(j1) (as long as j is not
unreasonably large in comparison to j1). For this reason, the relativization
to exp(4)(2j1), which is necessary for technical reasons, does not essentially
influence the sense of τj,j1 or τj(j1).

Let ψj(z) stand for

(
∃y ∈ Eexp z{Γm(y, exp z)) ∧

∧
Φ≤j ΓΦ(y, exp z))

∧ ∀l, l1 < (z/2)∀x
(
x = τl,l1 ⇒ True(y, exp z, x)

)
}
)exp(4)(2z)

,

where x = τl,l1 is an abbreviation for the inductive definition of τl,l1 .
The following lemma establishes an important connection between τj,j1

and τj(j1).

Lemma 3.1 Let j ≤ j1 and let i be such that:

• The formulae x = τl,l1 (as a formula of x, l, l1) and True(y, exp z, x)
may be bounded by exp(3)(i/2) for any choice of l, l1 < j1/2, z < j1,
y < exp(π(K(exp j1))), and x < K(exp j1)

exp j1;

• Λi is g.e. for 〈ϕj,j1 , j1at̄j1〉 and for 〈ψj,j1 , j1〉.

Let p ∈ Ei satisfy Γm(p, i).
Then M |= True(p, i, τj,j1) iff M |= True(p, i, τj(j1))

Remark 3.2 Any i ≥ exp(2j1) satisfies the conditions of the lemma.

Proof. We prove the left-to-right direction as the other direction is very
similar.

Assume M |= True(p, i, τj,j1).
As already noted, τj,j1 is ϕj,j1(j1, t̄j1). So, by the definition of τj,j1 and

the meaning of the formula True, it follows that for all l, l1 < j1/2,

p |= True(sϕj,j1 (j1
at̄j1), exp j1, τl,l1).

We may assume that m was chosen large enough so that the formula
x = τl,l1 is ∃m. Then, by our assumptions on the size of i, we may use the
fact that p satisfies Γm to get p |= (τl,l1 = τl,l1) for all l, l1 < j1/2. Thus, for

every t such that p |= (t = τl,l1), we also have p |= (t = τl,l1). By definition
2.1, this means that

p |= ∀x(x = τl,l1 ⇒ True(sϕj,j1 (j1
at̄j1), exp j1, x))

13



for any choice of l, l1 < j1/2.
Similarly, for every t such that p |= (t < j1/2), we also have p |= (t = l)

for some l < j1/2. Therefore, we get

p |= ∀l, l1 < j1/2 ∀x(x = τl,l1 ⇒ True(sϕj,j1 (j1
at̄j1), exp j1, x)).

Combining this with the original assumption that M |= True(p, i, τj,j1),
we obtain:

p |=
(
{Γm(sϕj,j1 (j1

at̄j1), exp j1) ∧
∧

Φ≤j ΓΦ(sϕj,j1 (j1
at̄j1 , exp j1)

∧ ∀l, l1 < j1/2 ∀x(x = τl,l1 ⇒ True(sϕj,j1 (j1
at̄j), exp(j1), x)}

)exp(4)(2j1)

.

To prove M |= True(p, i, τj(j1)), we only need to check that p also
evaluates the above formula to “True” if we substitute the appropriate
Skolem term for sϕj,j1 (j1

at̄j1). If that was not the case, we would have
neither p |= τj(j1) nor p |= ¬τj(j1) (since we have a witness for the initial

existential quantifier in τj(j1)). But p |= (sexp 2j1 = exp(4)(2j1)), so p treats
τj(j1) as a formula relativized to sexp 2j1 . Now, p ∈ Ei, and thus it follows
from part (i) of definition 2.3 that at least one of p |= τj(j1) and p |= ¬τj(j1)
must hold. �

Corollary 3.3 Let j ≤ j1. Then

M |= ∀i (Λi g.e. for 〈ϕj,j1 , j1at̄j1〉 ⇒ ∃p ∈ Ei True(p, i, τj,j1))

iff
M |= ∀i (Λi g.e. for 〈ψj, j1〉 ⇒ ∃p ∈ Ei True(p, i, τj(j1)).

Proof. Follows from the lemma via propositions 2.5 and 2.6. �

We now let τ be ∀j∀j1Sat(τj(j1)).
In view of lemma 3.1, the sentence τ can be treated as a form of reflection

principle (an observation due to A. Blass). Indeed, a “Π1 reflection principle”
is usually understood to be a formalized version of the principle

(∗) ψ is provable ⇒ ψ is true,

for ψ ∈ Π1, in other words,

(∗∗) φ is true ⇒ φ is consistent,
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for φ ∈ Σ1. Now, the existence of evaluations which satisfy φ is a kind of
consistency of φ. So, in any model in which Sat is well–behaved as a truth
definition, τ says:

φ is true ⇒ φ plus a restricted fragment of τ is consistent,

for φ ∈ Σ1. Thus, τ expresses (∗∗) and additionally has a limited “self–
reproducing” property.

As remarked above, τ is a consistent sentence. Even more:

Theorem 3.4 The theory I∆0 + exp proves τ .

Proof. Let us work in a model of I∆0 + exp. We prove ∀j ≤ j1Sat(τj(j1))
by induction on j1.

Assume ∀j ≤ j1Sat(τj(j1)). We want to show ∀j ≤ j1 + 1 Sat(τj(j1)).
Thus, given any j ≤ j1 + 1, we need

(
∃p ∈ Eexp(j1+1){Γm(p, exp(j1 + 1)) ∧

∧
Φ≤j ΓΦ(p, exp(j1 + 1)))

∧ ∀l, l1 < ((j1 + 1)/2) ∀x
(
x = τl,l1 ⇒ True(p, exp(j1 + 1), x)

)
}
)exp(4)(2(j1+1))

.

We will find an evaluation p of rank j1 + 1 such that

(∗) Γm(p, exp(j1 + 1)) ∧
∧

Φ≤j ΓΦ(p, exp(j1 + 1))

∧ ∀l, l1 < ((j1 + 1)/2) (True(p, exp(j1 + 1), τl(l1)).

The fact that p is as required in τj(j1 + 1) will then follow from lemma
3.1, since exp(j1 + 1) is a large enough rank for the lemma to ensure the
equivalence of p |= τl,l1 and p |= τl(l1) for l ≤ l1 < (j1 + 1)/2 (see remark
3.2).

The way to obtain p is by constructing a Skolem hull on Λexp(j1+1). A
Skolem hull on a given Λ is a sequence H = 〈ht : t ∈ Λ〉 of elements of
M , where the element ht is thought of as an interpretation of the term t.
One may define the satisfaction relation H |= ϕ(t̄) in much the same way as
p |= ϕ(t̄), i.e. by postulating

• H |= ϕ(t̄) iff M |= ϕ(h̄t)

for ϕ open, and then proceeding as in definition 2.1, so that e.g.

• H |= ∃yϕ′(t̄, y) iff Λi is g.e. for 〈∃yϕ′(x̄, y), t̄〉 and H |= ϕ′(h̄t, hsϕ(t̄)).
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It is clear that any hull H on Λ determines an evaluation pH such that
pH |= ϕ iff H |= ϕ. If Λ is Λi, and H is a hull of rank i (defined analogously
to “evaluation of rank i”, cf. def. 2.3), then pH ∈ Ei.

The hull we want to construct on Λexp(j1+1) is to satisfy:

(i) for any h ∈ H, h ≤ exp(4)(j1 + 1),

(ii) for any a ≤ K(exp j1), ha = a, and for any j′ ≤ exp(j1 + 1), hsj′
=

exp(3) j′;

(iii) for any ht ∈ H and for any formula of the form ψt smaller than
exp(exp(j1 + 1) − 1),

(H |= ψt) iff Sat(ψht);

(iv) for any ht ∈ H and for any formula of the form ∃x ≤ t ψx smaller than
exp(exp(j1 + 1) − 1),

(H |= ∃x ≤ t ψx) iff Sat(∃x ≤ htψ
x);

(v) for every ϕ < exp(j1 + 1),

if Sat(∀x ≤ exp(4)(j1 + 1)¬φx) then H |= ∀x¬ϕx.

The actual construction of H is based on a straightforward induction.
Given that Λexp(j1+1) is ordered as 〈t1, . . . , tk〉, we assign interpretations to
the tr’s by induction on r ≤ k. If tr+1 is a, then htr+1 = a, if it is sj′ , then
htr+1 = exp(3)j′. If tr+1 = sϕ(t̄), then we define htr+1 to be the smallest
witness below exp(4)(j1 + 1) for ϕ(h̄t) whenever it exists, and arbitrary (but
smaller than exp(4)(j1 + 1)) if there is no such witness.

We take p to be pH . It is again straightforward to check that
p ∈ Eexp(j1+1) and that p has all the properties required in (∗). In particular,
∀l, l1 < ((j1 + 1)/2)(True(p, exp(j1 + 1), τl(l1)) follows by the construction
of p from the inductive assumption ∀j ≤ j1Sat(τj(j1)). �

4 The main theorem

To define the theory T mentioned in the introduction, we will use “finite
fragments” of the principle τ . Namely, let τn denote
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∀i ∃p ∈ Ei
(
{Γm(p, i)) ∧

∧
Φ≤n ΓΦ(p, i))

∧ ∀l, l1 < (log i)/2∀x
(
x = τl,l1 ⇒ True(p, i, x)

)
}
)(exp(3)(2log i))

.

Thus, using the notation of the previous section, τn is (approximately)
∀j1τn(j1). In particular, for n ∈ ω, τn is a standard Π1 sentence.

Lemma 4.1 Any ∃m sentence χ consistent with I∆0 + Ω3 is consistent with
all the τn’s.

Proof. Let M |= I∆0 + Ω3 + τ0 + χ. W.l.o.g. we may assume that
M |= BΣ1, since (cf. e.g. [P]) M has a 1–elementary extension M′ of the
same height satisfying BΣ1.

Let F be the set

{τn(x) : n ∈ ω} ∪ {χ}.

This is a subset of

{τl(x) : l ∈ log(4)} ∪ {χ}.

Using the fact that M |= τ0, we infer from (a minor variant of) corollary
3.3 that:

∀i ∃p ∈ Ei ∀l, j1 < (log i)/2 p |= τl(j1),

since Λi is g.e. for 〈ψl, j1〉 whenever l, j1 < (log i)/2. Also, almost all the
p’s evaluate χ to “True”, because all p’s given by τ0 satisfy Γm, and there
is an i such that a witness for χ exists below exp(3)i. Since log(4) is closed
under addition, we may apply theorem 2.11 and obtain an increasing and
cofinal sequence P0 of evaluations such that: M[P0] |= I∆0 + Ω3, P0 |= χ,
and P0 |= τn(l1) for any n ∈ ω, j1 ∈ log(4)(M). Since the τn(·)’s are Π1, it
holds that M[P0] |= τn(j1) for any n and j1.

But this means that for any n, j1,

M[P0] |= ∃p ∈ Eexp j1{Γm(p, exp j1)) ∧
∧

Φ≤n ΓΦ(p, exp j1))

∧ ∀l, l1 < j1/2 ∀x
(
x = τl,l1 ⇒ True(p, exp j1, x)

)
}.

We may obtain suitable p’s in Ei for i not of the form expj1 by restricting
the evaluations we have in Eexp j1 (use propositions 2.6 and 2.5 to ensure that
these restrictions are indeed evaluations of the appropriate ranks and that
they have the desired properties). Hence, for any n it holds in M[P0] that
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∀i ∃p ∈ Ei{Γm(p, i)) ∧
∧

Φ≤n ΓΦ(p, i))

∧ ∀l, l1 < (log i)/2 ∀x
(
x = τl,l1 ⇒ True(p, i, x)

)
},

which implies that M |= τn for all n. It remains to point out that
M[P0] also satisfies χ, since P0 |= χ and we may in this context treat χ as
a ∆0 formula by considering its relativization to the smallest witness for χ. �

Observe that the construction described in the proof of the lemma would
have also worked if we started in a model of some higher τN , and not just τ0.
In that case, we would be able to replace the set F by a set which additionally
contains ¬Φ, for all Φ ≤ N false in M, and suitable true relativizations of
Φ, for Φ ≤ N true in M. Theorem 2.11 would then give us a sequence PN
corresponding to that set. M[PN ] would satisfy all the τn’s and χ just as
M[P0] did, but it would additionally satisfy exactly those Φ ≤ N which are
true in M.

Given any Π1 consequence θ of I∆0 +exp, there exists a purely existential
sentence ϕθ consistent with I∆0 +Ω3 +BΣ1 +θ, but inconsistent with I∆0 +
exp (see [HP]). If we apply this result to θ := τ0, we obtain an ∃m sentence
χ consistent with I∆0 + Ω3 + BΣ1 + {τn : n ∈ ω}, but inconsistent with
I∆0 + exp. Let us fix such a χ and define the theory T0 by

T0 := I∆0 + Ω3 +BΣ1 + {τn : n ∈ ω} + χ.

In the sequel ε will denote a binary sequence, ε = 〈ε0, . . . , εlh(ε)−1〉.
Given a fixed ∆0 enumeration 〈ϕn : n ∈ ω〉 of all Σ1 sentences, let us

introduce the sentences σn,ε:

σn,ε := (n = lh(ε))

∧ ∀i ∃p ∈ Ei
(

Γm(p, i) ∧ ∀l, l1 < (log i)/2 ∀x(x = τl,l1) ⇒ True(p, i, x))

∧ ∀k < n (εk = 0 ⇒ p |= ¬ϕk) ∧ p |= ¬ϕn
)
.

Lemma 4.2 Assuming m is sufficiently large, for any n and ε, σn,ε is (equiv-
alent in I∆0 + Ω3 to) a ∀m sentence.

Proof. The only difficulty is to show that ∀i∃p ∈ EiΓm(p, i) can be equiva-
lently written as a ∀m formula. ∀i∃p ∈ EiΓm(p, i) is:

∀i ∃p ∈ Ei ∀j ≤ i ∀ψ < i, ψ ∈ ∃m ∀a1, . . . , ar ∈ Λi(
Satm(ψexp

(3)j(a1, . . . , ar)) ⇒ True(p, i, ψsj (a1, . . . , ar)
)
,
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so the main problem is that an implication with the ∃m precedent Satm
occurs in the scope of the bounded existential quantifier ∃p. Actually, we
could clearly replace Satm by its Em analogue SatEm (see the Preliminaries),
but this still does not solve our problem.

By the definition of ∃m, an ∃m formula ψ(a1, . . . , ar) is ∃xψ′(a1, . . . , ar, x)

for ψ′ ∈ Um−1. Thus ψexp
(3)j(a1, . . . , ar) holds iff there is a witness x ≤ exp(3)j

such that ψ′(a1, . . . , ar, x).
Consider the sentence ξm

∀i ∀〈xj,ψ,ā : j ≤ i, ψ < i in ∃m, ā ∈ Λi of appropriate length〉
such that each xj,ψ,ā is ≤ exp(3)j

∃p ∈ Ei ∀j ≤ i ∀ψ < i, ψ ∈ ∃m ∀a1, . . . , ar ∈ Λi(
SatUm−1(ψ

′(a1, . . . , ar, xj,ψ,ā)) ⇒ True(p, i, ψsj (a1, . . . , ar)
)
,

where 〈xj,ψ,ā〉 should be thought of as a sequence of “potential witnesses”
smaller than exp(3)j for ψ(ā), and SatUm−1 is dual to SatEm−1 .

ξm is easily seen to be equivalent to a ∀m sentence. Indeed: SatUm−1 is
Um−1 with an appropriately large parameter, so it is Em−1 in the precedent
of an implication; the universal quantifiers for j, ψ, and ā may be treated
as sharply bounded (in particular, ā is an at most log ψ–long sequence of
objects smaller than 3K(i − 1), so it is ≤ (3K(i − 1))log i ∈ log); and the
initial unbounded universal quantifiers may obviously be merged into one.

Moreover, ξm is also equivalent to ∀i∃p ∈ EiΓm(p, i). The right-to-left
direction is trivial: for any i the p ∈ Ei satisfying Γ(p, i) will be good for
all sequences of witnesses. For the other direction, given a fixed i, there
is always an “optimal” sequence of witnesses 〈xj,ψ,ā〉, i.e. one such that if
there is any x ≤ exp(3)j for which ψ′(a1, . . . , ar, x) holds, then xj,ψ,ā is such
an x. Now, ξm gives us a p ∈ Ei which works for this “optimal” sequence.
One easily checks that p must satisfy Γm(p, i). �

We also introduce the sentences Ψn, for n ∈ ω:

Ψn :=
∨

ε∈{0,1}n+1

( ∧
r≤n, εr=0

¬φr ∧
∧

r≤n εr=1

(φr ∧ ¬σr,(ε�r))
)
.

Finally, we define our theory T by:

T := T0 + {Ψn : n ∈ ω}.
Obviously, T is a recursive theory. We will now prove our main theorem,

which shows, among others, that T axiomatizes a certain class of models
of T0 in which the set of elements definable by ∆0 formulae of restricted
complexity is cofinal in the set of all ∆0 definable elements:
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Theorem 4.3 (a) T is consistent.
(b) For any (not necessarily countable) M |= T , MΣ1 is recursively re-

ducible to M∃m.
(c) In any (not necessarily countable) M |= T , Em+1∧Um+1(M) is cofinal

in ∆0(M).

Proof. We first prove (a). The proof is an inductive construction based on
repeated application of theorem 2.11.

In the initial step, take an arbitrary countable model M of T0. Consider
σ0 = σ0,∅ and put

M′
0 =

{
M[P0], if M |= σ0;

M, otherwise,

where P0 is as in theorem 2.11 for k = 1 and F0 defined as

{τn(x) : n ∈ ω} ∪ {¬φ0} ∪ {χ},

where χ should be treated as a relativization of the original χ to some exp(3)(·)
true in M (note that the existence of P0 follows from the fact that M |= σ0

via theorem 2.11 and lemma 3.1). Also let ε0 = 0 in the former and ε0 = 1
in the latter case.

M′
0 clearly satisfies I∆0 +Ω3 and {τn : n ∈ ω}+χ (either by our assump-

tions on M or by the choice of F0). Furthermore, by lemma 2.10, M |= σ0

implies M[P0] |= ¬φ0. On the other hand, in all models of {τn : n ∈ ω}, ¬φ0

implies σ0, because of the validity of a suitable τN . Hence either
ε0 = 0 and M′

0 |= ¬φ0

or
ε0 = 1 and M′

0 |= φ0 ∧ ¬σ0.

In other words, M′
0 |= Ψ0. Thus, we always have M′

0 |= (T0 \BΣ1) + Ψ0. By
passing to a 1–elementary extension of the same height if necessary (see the
beginning of the proof of lemma 4.1), we may obtain a model M0 satisfying
T0 + Ψ0.

Proceeding inductively, assume that we are given a model Mn satisfying
T0 + Ψn. Similarly as in the initial step, consider σn+1 = σn+1,ε for the
sequence ε = 〈ε0, . . . , εn〉 determined uniquely in view of Mn |= Ψn. Put

M′
n+1 =

{
Mn[Pn+1], if M |= σn+1;

Mn, otherwise,

where Pn+1 is as in theorem 2.11 for k = 1 and Fn+1 defined as
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{τn(x) : n ∈ ω} ∪ {¬φr : r ≤ n, εr = 0}
∪ {¬σr,(ε�r) : r ≤ n, εr = 1} ∪ {¬φn+1} ∪ {χ},

where χ and the ¬σ’s should again be treated as true relativizations to some
exp(3)(·) (note as previously that the existence of Pn+1 follows from Mn |=
σn+1 via theorem 2.11 and lemma 3.1). Define εn+1 = 0 in the former and
εn+1 = 1 in the latter case.

Again, it is clear that M′
n+1 satisfies I∆0 + Ω3 and {τn : n ∈ ω} + χ. As

in the initial step, we get either
εn+1 = 0 and M′

n+1 |= ¬φn+1

or
εn+1 = 1 and M′

n+1 |= φn+1 ∧ ¬σn+1.

We now check that M′
n+1 |= Ψn+1. This is obvious if εn+1 = 1, so assume

εn+1 = 0 and thus M′
n+1 = Mn[Pn+1]. For a given r ≤ n, if εr = 0, then

M′
n+1 |= ¬φr as required, since Pn+1 |= ¬φk. On the other hand, if εr = 1,

then M′
n+1 |= ¬σr,(ε�r), since Pn+1 sets a suitable relativization of ¬σr,(ε�r) to

“True”. But this also means M′
n+1 |= φr, as ¬φr would imply σr,(ε�r) in view

of a suitable τN . Thus, in either case, M′
n+1 |= Ψn+1.

As before, we may pass to a 1–elementary extension if necessary to get
a model Mn+1 satisfying T0 + Ψn. Since Ψn clearly implies Ψk for k < n,
this shows that every finite subtheory of T is consistent. By compactness, T
itself is also consistent, which ends the proof of (a).

To prove (b), let M be an arbitrary model of T . Let the infinite binary
sequence ε be the unique extension of the sequences given by the Ψn’s. Then
for each n ∈ ω we have

(∗) M |= φn ≡ ¬σn,(ε�n).

For, just as in the proof of (a), ¬φn implies σn,(ε�n) since M |= {τn : n ∈
ω}, while φn yields εn = 1, whence we have ¬σn,(ε�n) because of Ψn.

¿From (∗) we obtain a recursive reduction of Σ1 truth about M to ∃m
truth about M. Indeed, knowing (ε � n) and knowing whether σn,(ε�n) is true
we deduce whether φn is true, whence we deduce (ε � n + 1) and so on: we
recover the Σ1 truth from the ∀m truth step by step.

For a proof of (c), suppose that a ∈ ∆0(M). In other words, M |= ϕ(a),
where ϕ(x) ∈ ∆0 and M |= ∃!xϕx(x). Thus, ∃xϕx(x) is a Σ1 sentence, say
φn, true in M. Let i be such that exp(3)i < a, so that we have M |= ¬∃x <
exp(3)i ϕx(x). Using an appropriate τN (recall that M |= {τn : n ∈ ω}), we
can find a p ∈ Ei such that in M we have:

Γm(p, i) ∧ ∀l, l1 < (log i)/2∀x(x = τl,l1 ⇒ True(p, i, x))
∧

∧
r<n

(
εr = 0 ⇒ p |= ¬φr

)
∧ p |= ¬φn,
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where ε is the sequence given by Ψn.
Hence

M |= σ̄n,ε(i),

where σ̄n,ε is obtained from σn,ε (the standard version, not necessarily the
one discussed in lemma 4.2) by deleting the universal quantifier ∀i.

We have proved that for any i, ¬∃x < exp(3)i ϕx(x) implies σ̄n,ε(i). How-
ever, we have M |= ¬σn,ε since M |= φn. It follows from ¬σn,ε that there
exists a number i0 such that M |= ¬σ̄n,ε(i0).

Let b0 be exp(4)(2 · log i0) (thus, b0 is large enough to be a bound for all
the quantifiers in σ̄n,ε(i0)), and let b > b0 be the smallest element of M which
is large enough to be a bound for all the quantifiers in b0 = exp(4)(2 · log i0).
Now, b is the smallest element satisfying the Em+1 formula

∃i0 < b ∃b0 < b
(
(b0 = exp(4)(2 · log i0))b ∧ ¬(σ̄n,ε(i0))

b0
)
,

so it is definable in M by an Em+1 ∧ Um+1 formula. Furthermore, b > a.
This proves that (c) holds. �

We conclude this paper with a remark on Σ1–definability of N in models of
I∆0 + Ω1 — more precisely, on its relation to the question whether elements
definable by Σ1 formulae of some fixed complexity are cofinal in a given
model.

Let M |= I∆0 + Ω1 and assume that the set ∃r(M) is cofinal in M. We
claim that if M∃r has a code a ∈ M, then N is Σ1 definable in M with a as a
parameter. For, given an enumeration 〈ϕn : n ∈ N〉 of ∃r sentences, let ψ(x)
be the formula

∃y∀z < x
(
ϕz ∈ a⇒ Satyr(ϕz)

)
.

Clearly, it follows from the cofinality of ∃r(M) that ψ(x) defines N in M.
We have thus proved one half of the following proposition (the other

follows easily by a standard argument):

Proposition 4.4 Assume that N is not Σ1 definable (with parameters) in
M. Then for any r: ∃r(M) is cofinal in M iff ∃r truth is not codable in M.
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