
4 Infinite horizon with ergodic cost

4.1 Introduction

This chapter considers the problem of determining nearly optimal controls for
infinite horizon problems with an ergodic cost functional as given in (1.6) or,
equivalently, (1.12). As in the previous chapters, the construction of nearly
optimal controls is based on an approximation approach. Paralleling chapter
3, we shall first consider the problem of the construction of nearly optimal
control functions which, when applied to the true filter values, yield nearly
optimal controls. This will make up most of the chapter, namely sections 4.2
to 4.5. Since the true filter process takes its values in an infinite dimensional
spaces of measures, it can in general not be computed explicitly. In a second
part, namely section 4.6 below that is analogous to section 3.5, we shall
therefore construct a computable approximating filter process and show that
the nearly optimal control functions, provided they are continuous, still yield
nearly optimal controls when applied to the approximating filter.

Again as in chapter 3 we shall work with normalized filters so that, with-
out the benefits of the measure transformation exploited in chapter 2, for
the construction of nearly optimal control functions we shall make use of
some compactness arguments. One such argument relies on assuming the
state space E to be compact. In section 4.2 we show that in such a case
a solution to the problem of determining a nearly optimal control function
for an ergodic cost functional can be obtained by solving the corresponding
problem for the case of a discounted cost criterion where the discount factor
β is close to 1. In particuliar, in section 4.2 such a result is obtained with
the use of Bellman’s equation thus justifying also our choice of admissible
controls that are obtained by applying a control function to the filter values.
Similar results are obtained also in subsection 4.5.5 without use of Bellman’s
equation or the compactness of E; there, following a direct approach, we
restrict the control functions to be continuous and use ergodic properties of
an embedded Markov chain studied in section 4.4. All the rest of the chapter
exploits compactness arguments related to assuming the control functions to
be continuous.

With controls that are (continuous) functions of the filter, the filter pro-
cess itself is Markov and, under additional assumptions, also Feller. We may
then consider invariant measures of the filter process and express the ergodic
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cost functional (1.12) as integral with respect to an invariant measure. It
is then natural for our main purpose to study approximations, convergence,
as well as uniqueness of invariant measures. Since the general problem of
the uniqueness of invariant measures for the filtering process associated to
a partial observation stochastic control problem is hard, in sections 4.3 and
4.4 we consider general situations for which a unique invariant measure can
be shown to exist. In particular, in section 4.3 we study controlled Markov
chains with a mixed observation structure: on a given recurrent subset of
the state space E the state process is completely observed, but outside only
partially. Since this mixed observation model is of interest in its own, in sec-
tion 4.3 we obtain for it also results related to the ergodic Bellman equation
that is the subject of section 4.2. In section 4.4 we consider in particular
possible situations when the filter process admits an embedded i.i.d. process
to which the law of large numbers applies. Both for this latter as well as for
the mixed observation case, in section 4.4 we not only obtain existence and
uniqueness of invariant measures but also explicit representations, which are
useful to obtain convergence results.

After these various preliminary results, in section 4.5 we concentrate on
the actual construction of nearly optimal control functions. The approach is
analogous to that already followed in chapter 3: the original problem is ap-
proximated by simpler problems for which the associated filter process, based
on fictitious observations, takes values in a finite dimensional space of mea-
sures so that for these problems the construction of a nearly optimal control
function becomes feasible. Extending then these functions to functions on
the space of measures where the original filtering process takes its values, one
obtains the desired nearly optimal control functions for the original problem.

Recalling that the ergodic cost functional (1.12) can be expressed as inte-
gral with respect to an invariant measure of the filtering process, in subsection
4.5.1 we first establish general results on convergence of invariant measures.
These general results are then applied in subsection 4.5.2 to more specific
approximations resulting from approximations of the set of admissible con-
trol functions and from discretizations of the state and observation spaces.
After these specific approximations, one is left with a complete observation
problem where the state is the filter that now evolves on a simplex. Although
a simplex is a finite dimensional space of measures, it is still infinite valued.
Since for practical computations one has to deal with finite valued quanti-
ties, in subsection 4.5.3 a discretization of the simplex is introduced allowing
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finally the actual construction of a nearly optimal control function for this
last step approximating problem that, after a suitable extension, is nearly
optimal also for the original problem. Some computational considerations
along with numerical results are reported in subsection 4.5.4.

4.2 Bellman equation (Discounted cost approximations)

In this section we study the Bellman equation corresponding to the infinite
horizon ergodic cost problem defined in (1.6). The starting point is the Bell-
man equation for infinite horizon with discounting considered in section 3.2.
Recalling Theorem 3.1 we know that, under (A1)–(A5), there is a unique
solution vβ ∈ C(P (E)) to the following discounted Bellman equation (see
3.2)

vβ(µ) = inf
a∈U

{ ∫

E

c(x, a)µ(dx) + β
∏a

(µ, vβ)
}

Assume first that E is compact. Then by the continuity of vβ there exists
µβ = arg min vβ(µ), and we can define the function

wβ(ν) = vβ(ν) − vβ(µβ) (4.1)

By an algebraic transformation of the discounted Bellman equation we obtain

wβ(ν) + (1 − β)vβ(µβ) = inf
a∈U

[ ∫

E

c(x, a)ν(dx) + β
∏a

(ν, wβ)
]

(4.2)

Clearly wβ(ν) ≥ 0 and wβ ∈ C(P (E)). If {wβ, β ∈ (0, 1)} forms a rela-
tively compact family in C(P (E)), since ‖(1 − β)vβ‖ ≤ ‖c‖, one can find a
subsequence βn ↑ 1, a constant γ and a function w ∈ C(P (E)) such that

wβn(ν) → w(ν) in C(P (E)) as n→ ∞

(1 − βn)vβn(µβn
) → γ

(4.3)

Consequently letting βn ↑ 1 in (4.2) and noticing that, by (4.3),

|
∏a

(ν, wβn) −
∏a

(ν, w)| → 0
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uniformly in a ∈ U as n→ ∞, we obtain

w(ν) + γ = inf
a∈U

[ ∫

E

c(x, a)ν(dx) +
∏a

(ν, w)
]

(4.4)

Equation (4.4) is called ergodic Bellman equation. The existence of solu-
tions to (4.4), in particular the relative compactness of {wβ, β ∈ (0, 1)}, the
construction of nearly optimal control functions for the cost (1.6) and the
study of the case when E is only locally compact will be the subject of the
following subsections.

4.2.1 Existence of solutions to the ergodic Bellman equation for
the case of a compact state space E

In addition to (A1)–(A5) in this section we make the following assumption

(A6) inf
z,z′∈E

inf
a,a′∈U

inf
C∈B(E),P a(z,C)>0

P a′

(z′, C)

P a(z, C)
: = λ > 0

Remark 4.1 In the case of a finite state space E, the assumption (A6) has
the form

min
z,z′∈E

inf
a,a′∈U

min
x∈E,P a(z,x)>0

P a′

(z′, x)

P a(z, x)
> 0 (4.5)

and its meaning is that if we enter the state x with a positive probability from
a state z with control a, then we enter x starting from any z′ ∈ E, and using
any control a′ ∈ U , with probability bounded away from 0.

Remark 4.2 If E is nonfinite the assumption (A6) says that the transition
probabilities for different controls and initial states are mutually equivalent
with the Radon-Nikodym density bounded away from 0. In particular, if for

some η ∈ P (E), P a(z, C) =
∫

C

ga(z, x)η(dx), for each a ∈ U , z ∈ E, then

the assumption

inf
z,z′∈E

inf
a,a′∈U

inf
x∈E,ga(z,x)>0

ga′

(z′, x)

ga(z, x)
> 0 (4.6)

is sufficient for (A6) to be satisfied.
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We start proving two preliminary results. First we have

Proposition 4.3 Under (A1)–(A6) assuming additionally that E is com-
pact, for β ∈ (0, 1), ν ∈ P (E) we have

0 ≤ wβ(ν) ≤
‖c‖

λ2
(4.7)

P r o o f . Let, for n = 0, 1, 2, . . .,

wβ
n(ν) = vβ

n(ν) − vβ
n(µn

β) (4.8)

where vβ
n is defined in (3.5) and µn

β = arg min vβ
n. By (3.6), for any β ∈ (0, 1),

wβ
n converges uniformly as n→ ∞ to wβ.

Therefore it suffices to show the inequality (4.7) for wβ
n. Clearly, by the

very definition, wβ
n(ν) ≥ 0. We show by induction that, for n = 0, 1, 2, . . .,

wβ
n(ν) ≤

‖c‖

λ2
for ν ∈ P (E), β ∈ (0, 1) (4.9)

For n = 0, we have wβ
n(ν) ≡ 0 and (4.9) holds. Assume now that for a generic

n > 0, (4.9) is satisfied. Fix ν ∈ P (E). By (3.7) there exist a, a′ ∈ U such
that

w
β
n+1(ν) =

∫

E

c(x, a)ν(dx) −
∫

E

c(x, a′)µn+1
β (dx)+

+β[
∏a(ν, vβ

n) −
∏a′

(µn+1
β , vβ

n)]

(4.10)

For y ∈ Rd and B ∈ B(E) define

m(y)(B) = Ma′

(y, µn+1
β )(B) − λ2Ma(y, ν)(B) (4.11)

with Ma(y, ν) as in (1.8).
Since by (A6)

∫

B

r(z, y)
∫

E

P a′

(z′1, dz)µn+1
β (dz′1) ≥

λ

∫

B

r(z, y)
∫

E

P a(z1, dz)ν(dz1) =

= λMa(y, ν)(B) ·
∫

E

r(z, y)
∫

E

P a(z1, dz)ν(dz1) ≥

≥ λ2Ma(y, ν)(B)
∫

E

r(z, y)
∫

E

P a′

(z′1, dz)µn+1
β (dz′1)
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we have m(y)(B) ≥ 0 for B ∈ B(E), y ∈ Rd.
From (A6) it is clear that 0 ≤ λ ≤ 1. If λ = 1 we have a stationary,

noncontrolled Markov chain with P a(z, C) = η(C), for a ∈ U , z ∈ E, and
fixed η ∈ P (E), and consequently wβ

n ≡ 0 for n = 0, 1, 2, . . . . Therefore it
remains to consider the case λ < 1 for which

(1 − λ2)−1m(y) ∈ P (E).

Since
Ma′

(y, µn+1
β ) = λ2Ma(y, ν) + (1 − λ2)[(1 − λ2)−1m(y)]

by the concavity of vβ
n (see (3.8)), we obtain

vβ
n(Ma′

(y, µn+1
β )) ≥ λ2vβ

n(Ma(y, ν)) + (1 − λ2)vβ
n((1 − λ2)−1m(y)) (4.12)

Substituting (4.12) into (4.10), by the definition of
∏a(ν, F ) in (1.14) and

taking into account the induction hypothesis (4.9) as well as the fact that
c ≥ 0 and µn

β = arg min vβ
n, we obtain

w
β
n+1(ν) ≤ ‖c‖ + β

∫

E

∫

Rd

vβ
n(Ma(y, ν))r(z, y)dy

( ∫

E

P a(z1, dz)ν(dz1) − λ2
∫

E

P a′

(z1, dz)µn+1
β (dz1)

)

−β(1 − λ2)
∫

E

∫

Rd

vβ
n((1 − λ2)−1m(y))r(z, y)dy

∫

E

P a′

(z1, dz)µn+1
β (dz1)

= ‖c‖ + β

∫

E

∫

Rd

(vβ
n(Ma(y, ν)) − vβ

n(µn
β))r(z, y)dy

( ∫

E

P a(z1, dz)ν(dz1) − λ2
∫

E

P a′

(z1, dz)µn+1
β (dz1)

)

−β(1 − λ2)
∫

E

∫

Rd

(vβ
n((1 − λ2)−1m(y)) − vβ

n(µn
β))r(z, y)dy

∫

E

P a′

(z1, dz)µn+1
β (dz1) ≤ ‖c‖ + β

‖c‖

λ2
(1 − λ2) ≤

‖c‖

λ2

which is exactly the induction hypothesis (4.9) for n+ 1. Thus by induction
(4.9) holds and consequently we have (4.7).
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To obtain our existence result, as we mentioned at the beginning of this
section, we shall need the family {wβ, β ∈ (0, 1)} to be compact in C(P (E))
for E compact. From Proposition 4.3 we have the uniform boundedness of the
family {wβ, β ∈ (0, 1)}. To have the above family compact in C(P (E)), by
the Ascoli-Arzela theorem (Theorem 9.33 of [28]), we shall need the equicon-
tinuity of wβ with β ∈ (0, 1).

For this purpose we assume additionally

(A7) if P (E) ∋ µn ⇒ µ then sup
a∈U

sup
C∈B(E)

|P a(µn, C) − P a(µ,C)| → 0

Remark 4.4 In the case of a finite state space E = {1, 2, . . . , N} a version
of (A7) can be written as

sup
a∈U

N∑

k=1

∣∣∣
N∑

i=1

(sn
i − si)P

a(i, k)
∣∣∣ → 0 as n→ ∞ (4.13)

for sn = (sn
1 , . . . , s

n
N) → s = (s1, . . . , sN), 0 ≤ sn

i ≤ 1, 0 ≤ si ≤ 1,
∑
sn

i = 1,∑
si = 1, and is clearly satisfied.

Remark 4.5 In the case when P a(z, C) =
∫

C

ga(z, x)η(dx) for z ∈ E, a ∈ U ,

C ∈ B(E) with η ∈ P (E), the assumption that the mapping

U × E × E ∋ (a, z, x) 7→ ga(z, x) is continuous (4.14)

is sufficient for (A7) to be satisfied. In fact, by the compactness of E
and the Stone Weierstrass theorem (Thm. 9.28 and Prob. 9.32 of [28]),
ga(z, x) can be uniformly approximated by continuous functions of the form
k∑

i=1
bi(a)ci(z)di(x), and then

sup
a∈U

sup
C∈B(E)

|P a(µn, C) − P a(µ,C)| ≤

≤ sup
a∈U

∫

E

∣∣∣
∫

E

ga(z, x)(µn(dz) − µ(dz))
∣∣∣η(dx)

≤ 2 sup
a∈U

sup
z,x∈E

∣∣∣ga(z, x) −
k∑

i=1

bi(a)ci(z)di(x)
∣∣∣ +

+
k∑

i=1

sup
a∈U

|bi(a)|
∫

E

|di(x)|η(dx)
∣∣∣
∫

E

ci(z)(µn(dz) − µ(dz))
∣∣∣
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Therefore by the weak convergence of µn to µ we obtain (A7).

We can now formulate the result on the equicontinuity of wβ

Proposition 4.6 Assume (A1)–(A7) and the compactness of E. Then the
family of functions {wβ, β ∈ (0, 1)} is equicontinuous, i.e.

∀ε>0∃δ>0∀µ,µ′∈P (E) ρw(µ, µ′) < δ ⇒ sup
β∈(0,1)

|wβ(µ) − wβ(µ′)| < ε (4.15)

with ρw standing for a metric compatible with the weak topology on P (E).

P r o o f . For ν, µ ∈ P (E) define

λ(ν, µ): = inf
a∈U

inf
C∈B(E),P a(µ,C)>0

P a(ν, C)

P a(µ,C)
(4.16)

By (A7) and using also (A6) we have that ν ⇒ µ implies

λ(ν, µ) → 1 as λ(µ, ν) → 1 (4.17)

Define for a ∈ U , y ∈ Rd, µ, ν ∈ P (E), B ∈ B(E)

ma(y, µ, ν)(B) = Ma(y, µ)(B) − λ(µ, ν)λ(ν, µ)Ma(y, ν)(B) (4.18)

Similarly as for m(y)(B) in Proposition 4.3, we have that ma(y, µ, ν)(B) ≥ 0
for B ∈ B(E). Notice from (4.16) that λ(ν, µ) ≤ 1 and λ(µ, ν) ≤ 1. If
λ(ν, µ)·λ(µ, ν) = 1, then λ(ν, µ) = 1, λ(µ, ν) = 1 implying P a(µ, ·) = P a(ν, ·)
for a ∈ U , and so P a(µ,wβ) = P a(ν, wβ) for β ∈ (0, 1), and consequently by
(4.2)

|wβ(µ) − wβ(ν)| ≤ sup
a∈U

∣∣∣
∫

E

c(x, a)(µ(dx) − ν(dx))
∣∣∣ (4.19)

Consider then λ
2

= λ(µ, ν) · λ(ν, µ) < 1. By the concavity of wβ we have

wβ(Ma(y, µ)) ≥ λ
2
wβ(Ma(y, ν)) + (1− λ

2
)wβ((1− λ2)−1ma(y, µ, ν)) (4.20)
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From (4.2) we obtain

wβ(ν) − wβ(µ) ≤ sup
a∈U

∣∣∣
∫

E

c(x, a)(ν(dx) − µ(dx))
∣∣∣+

+β sup
a∈U

(
∏a(ν, wβ) −

∏a(µ,wβ) =

= sup
a∈U

∣∣∣
∫

E

c(x, a)(ν(dx) − µ(dx))
∣∣∣+

+β sup
a∈U

{ ∫

E

∫

Rd

wβ(Ma(y, ν))r(z, y)dy(P a(ν, dz) − λ
2
P a(µ, dz))

+
∫

E

∫

Rd

(λ
2
wβ(Ma(y, ν)) − wβ(Ma(y, µ)))r(z, y)dyP a(µ, dz)

}

= I + II + III

(4.21)

Now, by (4.7) and (4.16)

II ≤ β
‖c‖

λ2
sup
a∈U

sup
C∈B(E)

(P a(ν, C) − λ
2
P a(µ,C)) ≤

≤ β
‖c‖

λ2
sup
a∈U

sup
C∈B(E)

P a(ν, C)(1 − λ
2
λ(µ, ν)) =

=
β‖c‖

λ2
(1 − λ2(µ, ν)λ(ν, µ))

(4.22)

By (4.20) and the nonnegativity of wβ

III ≤ sup
a∈U

β

∫

E

∫

Rd

(λ
2
− 1)wβ((1 − λ2)−1ma(y, µ, ν))r(z, y)dyP a(µ, dz) ≤ 0

(4.23)
Therefore substituting (4.22) and (4.23) into (4.21) we obtain

wβ(ν) − wβ(µ) ≤ sup
a∈U

∣∣∣
∫

E
c(x, a)(ν(dx) − µ(dx))

∣∣∣+

+
β‖c‖

λ2
(1 − λ2(µ, ν)λ(ν, µ))
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Interchanging µ with ν in the previous inequality we finally have

|wβ(ν) − wβ(µ)| ≤ sup
a∈U

∣∣∣
∫

E
c(x, a)(ν(dx) − µ(dx))

∣∣∣+

+
β‖c‖

λ2
(1 − λ2(µ, ν)λ2(ν, µ))

(4.24)

Recall from (4.19) that for λ
2

= 1, (4.24) is trivially satisfied. Therefore by
(4.17), (A5) and (4.24) we obtain (4.15).

We are now ready for our main existence result

Theorem 4.7 Assume (A1)–(A7) and the compactness of E. Then there
exist a function w ∈ C(P (E)) and a unique constant γ such that for ν ∈
P (E)

w(ν) + γ = inf
a∈U

[ ∫

E

c(x, a)ν(dx) +
∏a

(ν, w)
]

(4.25)

Moreover there exists u ∈ B(P (E), U) for which the infimum on the right
hand side of (4.25) is attained. The strategy an = u(πn) is optimal for Jµ

and
Jµ(u(πn)) = γ (4.26)

P r o o f . By Propositions 4.3, 4.6, using the Ascoli-Arzelá theorem we have
that the family {wβ, β ∈ (0, 1)} is relatively compact in C(P (E)). Therefore
by (4.2) and (4.3) we obtain the existence of w ∈ C(P (E)) and of γ for which
(4.25) is satisfied. Since under the given assumptions the mapping

U ∋ a 7→
∫

E

c(x, a)ν(dx) +
∏a

(ν, w)

is continuous, there exists a Borel selector u ∈ B(P (E), U). In a standard
way from (4.25) and the definition of Jµ(u) in (1.6) using the boundedness
of w we obtain then (4.26), from which the uniqueness of γ follows.
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4.2.2 Control function approximations

The fact that the solutions to the ergodic Bellman equation can be obtained
as suitable limits of discounted Bellman equations will be used below to the
construction of nearly optimal control functions for ergodic cost problems.

Let us first notice that we have

Corollary 4.8 Under (A1)–(A7) and the compactness of E we have

lim
β↑1

sup
µ∈P (E)

|(1 − β)vβ(µ) − γ| = 0 (4.27)

P r o o f . By Proposition 4.6 and the fact that ‖(1− β)vβ‖ ≤ ‖c‖ the family
{(1−β)vβ, β ∈ (0, 1)} is relatively compact in C(P (E)). From any sequence
βn → 1 one can then extract a subsequence βnk

such that

(1 − βnk
)vβnk → γ in C(P (E))

By (4.3) and Theorem 4.7, γ is unique. Therefore we have (4.27).

Before we formulate our next result, recall first (see section 3.2) that if
for given ε ≥ 0 the function uβ

ε ∈ B(P (E), U) is such that

vβ(ν) ≥
∫

E

c(x, uβ
ε (ν))ν(dx) + β

∏uβ
ε (ν)

(ν, vβ) − ε (4.28)

for ν ∈ P (E), then the strategy an = uβ
ε (πn) is

ε

1 − β
optimal for the cost

functional Jβ
µ .

Corollary 4.9 Under the assumptions of Corollary 4.8, if β is so large that

sup
µ∈P (E)

|(1 − β)vβ(µ) − γ| ≤ ε (4.29)

and the function uβ
ε ∈ B(P (E), U) satisfies (4.28), then the strategy an =

uβ
ε (πn) is 2ε+ (1 − β)

‖c‖

λ2
optimal for the cost functional Jµ.
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P r o o f . By (4.29) and (4.1) we have

wβ(ν) + (1 − β)vβ(µβ) ≥
∫

E

c(x, uβ
ε (ν))ν(dx) + β

∏uβ
ε (ν)

(ν, wβ) − ε

Using (4.29) and (4.7) we then obtain

wβ(ν) + γ ≥
∫

E

c(x, uβ
ε (ν))ν(dx) +

∏uβ
ε (ν)

(ν, wβ) − 2ε− (1 − β)
‖c‖

λ2

from which the required near optimality of the strategy an = uβ
ε (πn) follows,

by considerations similar to the end of the proof of Theorem 4.7.

Remark 4.10 As a consequence of the results of this subsection we now
have that, in order to obtain a nearly optimal control function for Jβ

µ , it
suffices to determine a function uβ

ε satisfying (4.28). At this point we are
in the same situation as pointed out at the end of Remark 3.3, so that, to
practically determine the function uβ

ε , the further approximations discussed
in Chapter 3 are required.

4.2.3 The case of a locally compact state space

This subsection is devoted to the study of the ergodic Bellman equation for
a locally compact state space E. When E is noncompact, several difficulties
appear. As a starting point, by section 3.2, we still have the discounted
Bellman equation (3.2). However a µβ as minimizing argument of vβ may
not exist. Therefore for a fixed δ > 0 define µβ as a δ-minimizer i.e.

vβ(µβ) − δ ≤ vβ(ν) for ν ∈ P (E) (4.30)

Let
wβ(ν) = vβ(ν) − vβ(µβ) (4.31)

Then
wβ(ν) ≥ −δ for ν ∈ P (E) (4.32)

and

wβ(ν) + (1 − β)vβ(µβ) = inf
a∈U

[ ∫

E

c(x, a)ν(dx) + β
∏a

(ν, wβ)
]

(4.33)
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One would again like to let β ↑ 1 in (4.33). Since E is now locally compact, we
cannot expect to find a subsequence βn, for which wβn converges uniformly.
However, the uniform convergence on compact subsets of P (E), as will be
clear later on, will guarantee the existence of solutions to a local version of
the ergodic Bellman equation. We shall continue to assume also (A6) and
(A7) which, for a locally compact state space, somewhat limit the class of
models that can be considered.

However, if
xi+1 = F (xi, ai) +G(xi)vi (4.34)

with xi ∈ Rn, F :Rn × U 7→ R, G−1:Rn 7→ Rn × Rn, continuous bounded,
where G−1(x) is the inverse matrix of G(x), and where vi are n-dimensional
i.i.d. standard Gaussian random variables, then (A6) and (A7) are satisfied.
From the proofs of Propositions 4.3 and 4.6 we obtain

Corollary 4.11 Under (A1)–(A7), for wβ defined by (4.31) we have

−δ ≤ wβ(ν) ≤
‖c‖

λ2
+

(1 − λ2)δ

λ2
(4.35)

P r o o f . By the same reasons as in the proof of Proposition 4.3 it suffices
to show that for n = 0, 1, 2, . . .,

wβ
n(ν) ≤

‖c‖

λ2
+

(1 − λ2)δ

λ2
(4.36)

for ν ∈ P (E), β ∈ (0, 1), with wβ
n(ν) = vβ

n(ν)− vβ
n(µn

β), where this time µn
β is

a δ-minimizer of vβ i.e. vβ
n(µn

β) − δ ≤ vβ
n(ν) for ν ∈ P (E).

The inequality (4.36) is again shown by induction. The step n = 0 is
clearly satisfied. Repeating the considerations of the proof of Proposition 4.3,
assuming (4.36) for n, we obtain for n+ 1

w
β
n+1(ν) ≤ ‖c‖ + β(1 − λ2)

(‖c‖
λ2

+
(1 − λ2)δ

λ2

)
+ β(1 − λ2)δ

≤
‖c‖

λ2
+

(1 − λ2)δ

λ2

where the last inequality corresponds to putting β = 1 in the previous ex-
pression. Therefore (4.35) holds.
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Corollary 4.12 Under (A1)–(A7), for any compact set Γ ⊂ P (E) the family
{wβ, β ∈ (0, 1)} is equicontinuous on Γ.

P r o o f . By considerations similar to those of (4.16)–(4.24) we obtain

|wβ(ν) − wβ(µ)| ≤ sup
a∈U

∣∣∣
∫

E
c(x, a)(ν(dx) − µ(dx))

∣∣∣+

+β
(‖c‖
λ2

+
(1 − λ2)δ

λ2

)
(1 − λ2(µ, ν)λ2(ν, µ)) + βδ(1 − λ(µ, ν)λ(ν, µ))

(4.37)
with λ(µ, ν) and λ(ν, µ) defined in (4.16).

Applying (4.17) to (4.37) and using (A5) we obtain the conclusion of
Corollary 4.12.

Consider now a fixed compact set Γ ⊂ P (E). By (1.19) the family of
measures {

∏a(ν, ·), ν ∈ Γ, a ∈ U} is compact in P (P (E)). Therefore there
exists (notice that P (E) is a complete, separable, metric space, so we can use
the Prokhorov theorem) a sequence (Γ1

n) of compact subsets of P (E), such
that

sup
a

sup
ν∈Γ

∏a
(ν, (Γ1

n)c) <
1

n
(4.38)

Moreover the family of measures

{
∏a1

∏a2
. . .

∏ai
(ν, ·), ν ∈ Γ, a1, . . . , ai ∈ U}

is also compact in P (P (E)). Therefore again there exists a sequence (Γi
n) of

compact subsets of P (E) such that

sup
a1,...,ai∈U

sup
ν∈Γ

∏a1
∏a2

. . .
∏ai

(ν, (Γi
n)c) <

1

n
(4.39)

Denote by
I(Γ) = {Γi

n, i = 1, 2, . . . , n = 1, 2, . . .}

the family of compact subsets defined above.
Let

I(I(Γ)) =
∞⋃

i=1

∞⋃

n=1

I(Γi
n)
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and inductively
In+1(Γ) = I(In(Γ)) = ∪I(D)

with union over all D from In(Γ).
Denote by Z the union of all elements of families I(Γ), I2(Γ), . . . , In(Γ), . . .,

and the set Γ.
By the very construction, for ν ∈ Z, n = 1, 2, . . .,

Pν{πn 6∈ Z} = 0 (4.40)

no matter what control strategy (an) was used.
We have

Theorem 4.13 Under (A1)–(A7) there exist w ∈ bB(P (E)) and a unique
γ ∈ R such that

w(ν) + γ = inf
a∈U

[ ∫

E

c(x, a)ν(dx) +
∏a

(ν, w)
]

(4.41)

for ν ∈ Z.
Moreover the restriction of w to Z is continuous and there exists a func-

tion u ∈ B(P (E), U), such that for ν ∈ Z

w(ν) + γ =
∫

E

c(x, u(ν))ν(dx) +
∏u(ν)

(ν, w) (4.42)

The strategy an = u(πn) is optimal for Jµ with µ ∈ Z, and

Jµ(u(πn)) = γ (4.43)

Furthermore γ is the optimal value of Jµ for all µ ∈ P (E).

P r o o f . Clearly Z is locally compact since it is the sum of an increasing
sequence compact subsets in P (E). By Corollaries 4.11 and 4.12 there exists
a constant γ, a function w ∈ C(Z) and a subsequence βn ↑ 1 such that

(1 − βn)vβn(µβn
) → γ (4.44)

and
wβn → w
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as n→ ∞ uniformly on compact subsets of Z.
For ν ∈ P (E) \ Z define

w(ν) = lim inf
β→1

wβ(ν) (4.45)

Letting βn → 1 as n→ ∞ in (4.33), by (4.44) and the construction of Z, we
obtain (4.41) for ν ∈ Z.

Since under the given assumptions the mapping

U ∋ a→
∏a

(ν, w)

is continuous for ν ∈ Z, there exists a Borel measurable function u:Z 7→ U

such that (4.42) is satisfied. Extend now u to all of P (E), by letting on
P (E) \ Z, u = a a fixed element of U . By (4.40) the strategy an = u(πn)
is optimal for Jµ with µ ∈ Z. Clearly, by (4.42), the equality (4.43) holds.
Since for any µ1, µ2 ∈ P (E) one can find a compact set Γ ⊂ P (E), such that
µ1, µ2 ∈ Γ and so by (4.43) the optimal values of Jµ1 and Jµ2 coincide, we
see that γ is in fact an optimal value for Jµ also with µ ∈ P (E).

4.3 Mixed observation model

Section 4.3 is devoted to the study of controlled Markov chains with a par-
ticular observation structure. Namely, we assume that the state space E is
a closed subset of Rd and there exists a compact set Γ ⊂ E in which the
process (xn) is completely observed. Outside of Γ, the observation is partial
with a known density r of its distribution. To be more precise we have, with
y ∈ Rd

P{yn+1 ∈ A|x0, x1, . . . , xn+1, Y
n} = χ

A∩Γ
(xn+1)+χ

Γc(xn+1)
∫

A∩Γc

r(xn+1, y)dy

(4.46)
for n = 0, 1, . . ., and A ∈ B(E).

An observation of the form (4.46) arises when we are monitoring the
system through a ”window” Γ in which, due to the accuracy of measurements,
we have complete observation of the state while outside of Γ the observations
are noisy. In particular, one may consider the following example, that will
be referred to also in the following sections.
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Example. Let
xn+1 = Axn + f(xn, an) +B(xn)wn (4.47)

where wn are independent standard Gaussian vectors on Rd, A is an asymp-
totically stable matrix, the functions f , B are continuous in their arguments
and bounded with B possessing furthermore a bounded inverse (matrix). As-
sume Γ is a Cartesian product of intervals of the form [−bk, bk], k = 1, 2, ..., d,
with bk > 0.

Let the generic k-th coordinate yk
n+1 of yn+1 be equal to the k-th coordi-

nate xk
n+1 of xn+1 when xl

n+1 ∈ [−bl, bl], for each l = 1, 2, ..., d. Otherwise,
yk

n+1 is equal to

max{xk
n+1 + g(xn+1)v

k
n+1, x

k
n+1} for xk

n+1 ≥ bk,

min{max{xk
n+1 + g(xn+1)v

k
n+1,−bk}, bk} for −bk ≤ xk

n+1 ≤ bk,

min{xk
n+1 + g(xn+1)v

k
n+1, x

k
n+1} for xk

n+1 ≤ −bk,

(4.48)

where vk
n for k = 1, 2, ..., d, and n = 1, 2, ... are i.i.d. standard Gaussian, inde-

pendent of (wn), and g is a continuous bounded function with support equal
to the closure of the complement of the Cartesian product of the intervals
[−bk, bk], k = 1, 2, ..., d.

Notice that by the form of observation structure defined above, if xn is
in Γc, the observation yn is also in Γc.

Clearly, under (4.48), we have an observation of the form (4.46). More-
over, as we shall see later on, the assumptions that we are going to make in
the following section 4.3.1 are also satisfied by this example.

4.3.1 Study of the associated filter process

Given a controlled Markov process (xn) with observations (yn) satisfying
(4.46) and admissible controls u = (an) with an adapted to Y n, we can
define the filter process (πu

n) as in (1.7).
With some abuse of notation, below we shall use the same symbols

Ma(y, ν),
∏a(ν, ·), R(x, ·) as in chapter 3 to denote the corresponding quan-

tities of this section with the particular observation structure (4.46).
By analogy to Lemma 1.1 and Lemma 1.3 we have
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Lemma 4.14 Under the observation structure (4.46) the associated filtering
process (πu

n) has the following representation

πu
n+1(A) = χ

A∩Γ
(yn+1)+

χ
Γc(yn+1)

∫

A∩Γc

r(z, yn+1)P
an(πu

n, dz)
( ∫

Γc

r(z, yn+1)P
an(πu

n, dz)
)−1

: = Man(yn+1, π
u
n)(A): = χ

A∩Γ
(yn+1) + χ

Γc(yn+1)N
an(yn+1, π

u
n)(A)

(4.49)

Pµ a.e., for A ∈ B(E), with the mappings Ma(y, π) and Na(y, π) defined
implicitly.

Moreover, if an = u(πn) for u ∈ B(P (E), U), then the filter process (πu
n)

is Markov with respect to the σ-field Y n and has transition operator

∏u(ν)(ν, F ) =
∫

Γ

F (δz)P u(ν)(ν, dz)+

+
∫

Γc

∫

Γc

F (Mu(y, ν))r(z, y)dyP u(ν)(ν, dz)

(4.50)

where ν ∈ P (E), F ∈ bB(P (E)), and δz denotes the Dirac measure at the
point z.

P r o o f . The proof is based on considerations similar to those of the proofs
of Lemma 1.1 and Lemma 1.3, and is therefore left to the reader.

In what follows we shall also need the Feller property of the transition
operators

∏u(ν)(ν, ·) with u ∈ C(P (E), U) as well as of
∏a(ν, ·) with a ∈ U

where
∏a(ν, F ) =

∫

Γ

F (δz)P a(ν, dz)+

+
∫

Γc

∫

Γc

F (Ma(y, ν))r(z, y)dyP a(ν, dz)

(4.51)

for F ∈ bB(P (E)).
For this purpose we make the following assumptions, where (A8) and

(A9) are adaptations of (A3) and (A4) respectively
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(A8) r(z, y) is continuous for z, y ∈ Γc, and is bounded on the set Γc
δ =

{(z, y) ∈ Γc × Γc, ρE(z,Γ) ≥ δ} ∪ {(z, y) ∈ Γc × Γc, ρE(z, y) ≥ δ} for
δ > 0, with ρE standing for the metric on E. Moreover, if Γc ∋ ym →
y ∈ Γ and B(y, δ): = {z ∈ Γc: ρE(z, y) ≤ δ} for δ > 0, then

inf
a∈U

inf
x∈K

∫

B(y,δ)

r(z, ym)P a(x, dz) → ∞ (4.52)

as m→ ∞, for any compact set K ⊂ E.

(A9) if Γc ∋ zm → z, then

R(zm, ·) ⇒ R(z, ·) as m→ ∞

with

R(z, A): =





∫

A∩Γc

r(z, y)dy for z ∈ Γc

χ
A

(z) for z ∈ Γ

for A ∈ B(E).

(A10) for x ∈ E, a ∈ U

P a(x, ∂Γ) = 0

with ∂Γ standing for the boundary of Γ.

Let us notice that by (A9) the observation measure R(z, ·) depends con-
tinuously on the state z and therefore the observation density r(x, y) has to
converge to infinity as y comes close to x, with x close to ∂Γ.

We have

Proposition 4.15 Under (A1), (A2), (A8) and (A10) the mapping

U ×Rd × P (E) ∋ (a, y, ν) 7→Ma(y, ν) (4.53)

is continuous.
Assuming additionally (A9), for F ∈ C(P (E)) the mapping

U × P (E) ∋ (a, ν) 7→
∏a

(ν, F ) (4.54)
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is also continuous and for u ∈ C(P (E), U)

∏u(ν)
(ν, ·) is Feller (4.55)

Finally if v:P (E) → R is continuous and concave then for a ∈ U the function

P (E) ∋ ν 7→
∏a

(ν, v) (4.56)

is also continuous and concave.

P r o o f . To prove the continuity of the mapping (4.53) assume U ∋ am → a,
Rd ∋ ym → y, P (E) ∋ νm ⇒ ν, as m → ∞. Consider now three cases:
y ∈ IntΓ, i.e. y is in the interior of Γ; y ∈ ∂Γ; y ∈ Γc. In the first case
the continuity of the mapping (4.53) is immediate. If y ∈ ∂Γ it suffices to
consider the case when ym ∈ Γc for large values of m, since otherwise, as in
the first case, the continuity of the mapping (4.53) is immediate. For y ∈ ∂Γ
and ym ∈ Γc we have by (4.52) for δ > 0

∫

B(y,δ)

r(z, ym)P am(νm, dz) → ∞

as m→ ∞.
Consequently, by (A8) and (4.49)

Nam(ym, νm) ⇒ δy

as m→ ∞, and we have the continuity of the mapping (4.53) also for y ∈ ∂Γ.
The last case y ∈ Γc can be shown similarly as in the proof of Propo-

sition 1.4, taking into account (A10) and the fact that, by (A8), for fixed
y ∈ Γc, r(x, y) and r(x, ym) are bounded in x ∈ Γc and m = 1, 2, . . . .

Summarizing, Ma(y, ν) is therefore a continuous function of its argu-
ments.

Consider now the mapping (4.54). Let am → a and νm ⇒ ν. Clearly it is
sufficient to show the convergence

∣∣∣
∫

Γc

∫

Γc

r(z, y)F (Mam(y, νm))dyP am(νm, dz)

−
∫

Γc

∫

Γc

r(z, y)F (Ma(y, ν))dyP a(ν, dz)
∣∣∣ → 0

(4.57)
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for F ∈ C(P (E)), as m→ ∞.
By the continuity of the mapping (1.20), for any ε > 0 one can find a

compact set K ⊂ E such that

P am(νm, K) ≥ 1 − ε for m = 1, 2, . . . , (4.58)

Given the compact set K, by (A9) the family of measures {R(z, ·) z ∈ K} is
compact and so there exists a set L ⊂ E such that

∫

L∩Γc

r(z, y)dy ≥ 1 − ε for z ∈ K ∩ Γc (4.59)

By (4.58) and (4.59) we now have

∣∣∣
∫

Γc

∫

Γc

r(z, y)F (Mam(y, νm))dyP am(νm, dz)

−
∫

Γc

∫

Γc

r(z, y)F (Ma(y, ν))dyP a(ν, dz)
∣∣∣

≤
∫

Γc

∫

Γc

r(z, y)|F (Mam(y, νm)) − F (Ma(y, ν))|dyP am(νm, dz)

+
∣∣∣
∫

Γc

∫

Γc

r(z, y)F (Ma(y, ν))dy(P am(νm, dz) − P a(ν, dz))
∣∣∣

≤
∫

Γc∩K

∫

Γc∩L

r(z, y)|F (Mam(y, νm)) − F (Ma(y, ν))dyP am(νm, dz)

+4‖F‖ε+

+
∣∣∣
∫

E

χ
Γc(z)

∫

Γc

r(z, y)F (Ma(y, ν))dy(P am(νm, dz) − P a(ν, dz))
∣∣∣

= Im + 4‖F‖ε+ IIm

(4.60)

Since
Im ≤ sup

y∈L
|F (Mam(y, νm)) − F (Ma(y, ν))| → 0

and by (A10) and the continuity of the mapping (1.20), IIm → 0, we obtain
(4.57). The mapping (4.54) is therefore continuous.
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The Feller property of
∏u(ν)(ν, ·) with u ∈ C(P (E), U) follows immedi-

ately from the continuity of the mapping (4.54). It therefore remains to show
the concavity of the mapping

P (E) ∋ ν 7→
∏a

(ν, v)

with v continuous concave.
An analysis of the proof of Proposition 1.7 shows that we can adapt the

same considerations to the mixed observation model and consequently the
mapping (4.56) is concave.

The proof of Proposition 4.15 is complete.

Remark 4.16 If instead of (A8) we assume

(A8’) r(x, y) is continuous and bounded on Γc

then we have the mapping (4.53) continuous for y 6∈ ∂Γ. This case corre-
sponds to a discontinuous observation structure. Namely, at the boundary ∂Γ
we may have an abrupt change in the precision of the observation. Replacing
(A9) by

(A9’) for xn → x ∈ Γc we have R(xn, ·) ⇒ R(x, ·), and for any compact set
K ⊂ E, the family {R(x, ·) x ∈ K ∩ Γc} is tight,

then by considerations similar to those of (4.58)–(4.60) we obtain the conver-
gence (4.57). Consequently, the mapping (4.54) is continuous and the Feller
property (4.55) and the concavity of (4.56) hold as well.

Remark 4.17 When the state space E is finite or countable i.e. E =
{1, 2, . . . ,m} or E = {1, 2, . . . ,m, . . .} and also the observation process takes
its values in E, we can consider an analog of (4.46) as follows

P{yn+1 = i|x0, . . . , xn, xn+1 = j, Y n} = χ
Γ
(j)δj(i) + χ

Γc(j)r(j, i) (4.61)

with Γ ⊂ E a finite set corresponding to the complete observation subset of
the state process. Assuming

U ∋ a→ pa(i, j) continuous for i, j ∈ E (4.62)

where pa(i, j) is the transition matrix of the controlled Markov chain (xn),
all assertions of Proposition 4.15 hold also for this case.
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4.3.2 Solution to the Bellman equation

By analogy to the case of partial observation i.e. the case when the ob-
servations (yn) of (xn) satisfy (1.1), for the mixed observation problem i.e.
the problem with the observation structure (4.46) we can consider partially
observed control problems with cost functionals (1.4)–(1.6) or in equivalent
form (1.10)–(1.12), where (πu

n) is now given by (4.49).
To study the Bellman equation for the ergodic cost problem with mixed

observation structure, following the approach of section 4.2, we start from
the Bellman equation for the discounted cost problem. Notice first that, for
the discounted cost functional Jβ

µ , from Theorem 3.1 we obtain the following

Corollary 4.18 Under (A1), (A2), (A5), (A8)–(A10) all assertions of The-
orem 3.1 hold also for operators

∏a and
∏u(ν)(ν, ·) as defined in (4.51) and

(4.50) respectively.

P r o o f . For the proof of Theorem 3.1 we needed Proposition 1.4 and
Proposition 1.7, the analog of which for the mixed observation case is shown
in Proposition 4.15. Therefore, repeating the same considerations as in the
proof of Theorem 3.1 we obtain Corollary 4.18.

Starting from the solution vβ ∈ C(P (E)) of the discounted Bellman equa-
tion corresponding to the mixed observation problem, namely

vβ(µ) = inf
a∈U

{ ∫

E

c(x, a)µ(dx) + β
∏a

(µ, vβ)
}

(4.63)

in the case when E is compact we can define wβ as in (4.1) i.e.

wβ(ν) = vβ(ν) − vβ(µβ) (4.64)

with µβ = arg min vβ, and we may expect that for a certain subsequence
βn ↑ 1 we have

wβn(ν) → w(ν) in C(P (E))

(1 − βn)vβn(µβn
) → γ
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where w ∈ C(P (E)) and γ are the solutions to the ergodic Bellman equation

w(ν) + γ = inf
a∈U

[ ∫

E

c(x, a)ν(dx) +
∏a

(ν, w)
]

(4.65)

In fact, treating first the case when the state space E is compact we have by
analogy to Theorem 4.7 and Corollary 4.8

Theorem 4.19 Under (A1), (A2), (A5)–(A10) and the compactness of E,
there exist a function w ∈ C(P (E)) and a unique constant γ for which (4.65)
is satisfied.

Moreover there exists u ∈ B(P (E), U) such that the infimum on the right
hand side of (4.65) is attained. Furthermore the strategy an = u(πn) is
optimal for Jµ and

Jµ(u(πn)) = γ (4.66)

Finally we have
lim
β↑1

sup
µ∈P (E)

|(1 − β)vβ(µ) − γ| = 0 (4.67)

P r o o f . From an analysis of the proofs of Theorem 4.7 and Corollary 4.8
it follows that it is sufficient to show the uniform boundedness (4.7) and the
equicontinuity (4.15) of wβ, β ∈ (0, 1) also in the present case.

We therefore adapt the proofs of Proposition 4.3 and Proposition 4.6 to
the mixed observation case. Define wβ

n as in (4.8). In view of the proof of
Proposition 4.3, to have the boundedness of the family {wβ, β ∈ (0, 1)}, it
suffices to show that

sup
ν∈P (E)

wβ
n(ν) ≤

‖c‖

λ2
for β ∈ (0, 1) (4.68)

implies

sup
ν∈P (E)

w
β
n+1(ν) ≤

‖c‖

λ2
for β ∈ (0, 1) (4.69)

By analogous reasons as in Proposition 4.3 we can restrict ourselves to the
case λ2 < 1. For fixed ν ∈ P (E), let then a, a′ ∈ U be such that

w
β
n+1(ν) =

∫

E
c(x, a)ν(dx) −

∫

E
c(x, a′)µn+1

β (dx)+

+β[
∏a(ν, vβ

n) −
∏a′

(µn+1
β , vβ

n)]

(4.70)
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and define by analogy to (4.11)

m(y)(B) = Ma′

(y, µn+1
β )(B) − λ2Ma(y, ν)(B) for B ∈ B(E)

from which, based on (4.49) and letting y ∈ Γc, we obtain

Na′

(y, µn+1
β ) = λ2Na(y, ν) + (1 − λ2)[(1 − λ2)−1m(y)]

By the concavity of vβ
n (see Corollary 4.18) we then have

vβ
n(Na′

(y, µn+1
β )) ≥ λ2vβ

n(Na(y, ν)) + (1 − λ2)vβ
n((1 − λ2)−1m(y))

Therefore, using (4.49) and the definition of
∏a(ν, ·) in (4.51) we obtain

w
β
n+1(ν) ≤ ‖c‖ + β

[ ∫

Γ

vβ
n(δz)(P a(ν, dz) − P a′

(µn+1
β dz))

]

+β
[ ∫

Γc

∫

Γc

r(z, y)vβ
n(Na(y, ν))P a(ν, dz)dy

−
∫

Γc

∫

Γc

r(z, y)vβ
n(Na′

(y, µn+1
β ))P a′

(µn+1
β , dz)dy

]

≤ ‖c‖ + β
[ ∫

Γ

vβ
n(δz)(P a(ν, dz) − P a′

(µn+1
β dz))

]

+β
[ ∫

Γc

∫

Γc

r(z, y)vβ
n(Na(y, ν))dy(P a(ν, dz) − λ2P a′

(µn+1
β , dz))

]

−β(1 − λ2)
∫

Γc

∫

Γc

vβ
n((1 − λ2)−1m(y))r(z, y)dyP a′

(µn+1
β , dz)

= ‖c‖ + β
[ ∫

Γ

(vβ
n(δz) − vβ

n(µn
β))(P a(ν, dz) − λ2P a′

(µn+1
β dz))

]

−β(1 − λ2)
∫

Γ

(vβ
n(δz) − vβ

n(µn
β))P a′

(µn+1
β , dz)

+β
[ ∫

Γc

∫

Γc

r(z, y)(vβ
n(Na(y, ν)) − vβ

n(µn
β))dy(P a(ν, dz)

−λ2P a′

(µn+1
β , dz))

]
− β(1 − λ2)

∫

Γc

∫

Γc

(vβ
n((1 − λ2)−1m(y))

−vβ
n(µn

β))r(z, y)dyP a′

(µn+1
β , dz) = I + II + III + IV + V
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where the last equality follows from an appropriate adding and subtracting
of terms.

Since µn
β is a minimizer of vβ

n, we have III ≤ 0 and V ≤ 0. Recalling the
definition (4.8) and applying (4.68) to II and IV we finally obtain

w
β
n+1(ν) ≤ ‖c‖ +

‖c‖

λ2
(1 − λ2) =

‖c‖

λ2

i.e. (4.69) is satisfied.

The family {wβ, β ∈ (0, 1)} is thus uniformly bounded by
‖c‖

λ2
and it

remains now to show the equicontinuity of wβ, with β ∈ (0, 1).
For µ, ν ∈ P (E) let λ(ν, µ) be given by (4.16). Define the measure

ma(y, µ, ν) analogously to (4.18).
Similarly, as in the proof of Proposition 4.6 it suffices to consider the case

when λ
2
: = λ(µ, ν)λ(ν, µ) < 1. Notice that from (4.49) we then obtain

Ma(y, µ) = λ
2
Ma(y, ν) + (1 − λ

2
)[(1 − λ

2
)−1ma(y, µ, ν)]

so that, by the concavity for wβ defined by (4.64), the inequality (4.19) holds.
From (4.63) and (4.64) we then have (compare to (4.21))

wβ(ν) − wβ(µ) ≤ sup
a∈U

∣∣∣
∫

E

c(x, a)(ν(dx) − µ(dx))
∣∣∣

+ sup
a∈U

{
β

∫

Γ

wβ(δz)(P a(ν, dz) − λ
2
P a(µ, dz)

}

+ sup
a∈U

{
β(λ

2
− 1)

∫

Γ

wβ(δz)P a(µ, dz)
}

+ sup
a∈U

{
β

∫

Γc

∫

Γc

wβ(Ma(y, ν))r(z, y)dy(P a(ν, dz) − λ
2
P a(µ, dz))

}

+ sup
a∈U

{
β

∫

Γc

∫

Γc

(λ
2
wβ(Ma(y, ν)) − wβ(Ma(y, µ)))r(z, y)dyP a(µ, dz)

}

= I + II + III + IV + V

Clearly III ≤ 0, and, applying (4.20) to V , also V ≤ 0. By analogy to (4.22)
we obtain

II + IV ≤ 2
‖c‖

λ2
(1 − λ2(µ, ν)λ(ν, µ))
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Therefore finally

|wβ(ν) − wβ(µ)| ≤ sup
a∈U

∣∣∣
∫

E

c(x, a)(ν(dx) − µ(dx))

+
2‖c‖

λ2
(1 − λ2(µ, ν)λ2(ν, µ))

from which the equicontinuity of {wβ, β ∈ (0, 1)} follows. This finishes the
proof of Theorem 4.19.

Remark 4.20 Under the assumptions of Theorem 4.19, also the statement
of Corollary 4.9 holds and Remark 4.10 applies. Moreover, we can repeat
the considerations of section 4.2.3 and obtain results analogous to those of
Corollary 4.11, Corollary 4.12 and Theorem 4.13 also for the case of mixed
observations with locally compact state space E.

Remark 4.21 If, as in Remark 4.17 the state space is finite, the statement
of Theorem 4.19 holds true requiring only assumption (A6), together with the
continuity condition (4.62).

4.4 Invariant measures for controlled filtering processes

From Theorems 4.7 and 4.19 it is clear that, under certain assumptions,
among the optimal controls for the ergodic cost functional (1.12) there are
controls of the form an = u(πn), with u ∈ B(P (E), U) a fixed mapping.
The filtering process (πu

n) that corresponds to a control of this form is by
Lemma 1.3 and Lemma 4.14 (in the case of mixed observations) Markov,
with transition operator

∏u(ν)(ν, ·) given by (1.14) or (4.50) respectively. It
is well known that the limit behaviour of iterations of transition operators
of Markov processes can be described in terms of integrals over an invariant
measure Φu ∈ P (P (E)), which by definition satisfies the following condition

∫

P (E)

F (ν)Φu(dν) =
∫

P (E)

∏u(ν)
(ν, F )Φu(dν) (4.71)

for any F ∈ bB(P (E)).
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For the purpose of studying limit theorems as well as approximations, one
would like to have conditions guaranteeing the existence of a unique invariant
measure Φu for u ∈ B(P (E), U), or at least u ∈ C(P (E), U). As we shall see
below, the general problem of the uniqueness of Φu seems to be hard, and we
are so far able to solve it only in the particular cases studied in sections 4.4.2
and 4.4.3 below.

4.4.1 A counterexample

To better see the nature of the problems that may arise with the exis-
tence and uniqueness of invariant measures for controlled partially observed
Markov processes, we begin with a fundamental result concerning uncon-
trolled Markov processes (xn) with transition operator P (x, dz) and obser-
vations yn satisfying (1.1), or (4.46) in the case of mixed observations.

Theorem 4.22 Assume the Markov process (xn) is Feller, has a unique in-
variant measure µ and the filtering process (πn), that corresponds to obser-
vations yn satisfying (1.1) or (4.46), is also Feller. Then (πn) has a unique
invariant measure Φ if and only if for each f ∈ C(E)

lim
n→∞

∫

E

|P nf(x) − µ(f)|µ(dx) = 0 (4.72)

P r o o f . For a compact state space E and an observation model with additive
noise we may follow the considerations of [19], applying suitable versions of
Proposition 1.7. To extend the result to more general cases of state and
observation models one may exploit the approach of [35].

Remark 4.23 Notice that if (xn) is ergodic and aperiodic, condition (4.72)
is automatically satisfied. Furthermore Theorem 4.22 completely character-
izes the situation, when there exists a unique invariant measure of the filtering
process, in terms of ergodic properties of the underlying state process.

Coming now to controlled Markov processes we find that the situation is
much more complicated:
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Even a nice behaviour of the controlled state process (xn) does not nec-
essarily imply the existence of a unique invariant measure for the associated
filtering process (πn).

To clarify this point we now present an example for which in the uncon-
trolled case there exists a unique invariant measure, while in the controlled
case uniqueness fails.

Example. Assume we can find measures η1, η2 ∈ P (E) and a function r(x, y)
for which (A3) and (A4) holds, such that the sets S1 = {Q(y, η1)(·), y ∈ D}
and S2 = {Q(y, η2)(·), y ∈ D}, with the operator Q defined as in (3.200) and
D = Rd , have disjoint closures in P (E), that can be separated. In other
words we require the distance (in the metric of P (E)) between S1 and S2

to be positive. Such a requirement is e.g. easily seen to be satisfied in the
somewhat ”pathological” example when r(x, y) is a function of y only and
η1 6= η2. Moreover, it is also satisfied in the case when E = {1, . . . ,m} and
D = {d1, . . . , ds} for which one can easily find η1, η2 ∈ P (E) and the matrix
r(i, dj), i = 1, 2, . . . ,m, j = 1, 2, . . . , s, such that the separation of S1 and S2

holds.
Next choose a Markov kernel P a(x, ·) such that for certain a1 6= a2 ∈ U ,

and all x ∈ E

P a1(x, ·) = η1(·), P a2(x, ·) = η2(·)

and, furthermore for a ∈ U the assumptions (A1) and (A2) are satisfied.
Due to the separation of S1 and S2, we can now choose u ∈ C(P (E), U)

such that
u(ν) = a1 if ν ∈ S1 and u(ν) = a2 if ν ∈ S2

By (1.8) and their definition, the sets S1 and S2 are then clearly invariant
for the filtering processes (πu

n) starting from S1 or S2 respectively. Assuming
additionally that E is compact, we know that so is P (E) and therefore the
Cesaro averages

1

n

n−1∑

i=0

(
∏u(ν1)

)i(ν1, ·),
1

n

n−1∑

i=0

(
∏u(ν2)

)i(ν2, ·),

with ν1 ∈ S1 and ν2 ∈ S2 are tight for n = 1, 2, . . . .
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By the Feller property of
∏u (see Corollary 1.5), one can choose subse-

quences (nk), (nk′) such that

1

nk

nk−1∑

i=0

(
∏u(ν1)

)i(ν1, ·) ⇒ Φ1(·)

1

n′
k

nk′−1∑

i=0

(
∏u(ν2)

)i(ν2, ·) ⇒ Φ2(·)

as k, k′ → ∞, where Φ1, Φ2 are two invariant measures of (πu
n) with supports

contained in the disjoint closures of the sets S1 and S2 respectively.
Assuming finally that for each fixed a ∈ U , there exists a unique invariant

measure µa ∈ P (E) corresponding to the transition operator P a(x, ·), and
that for this measure the condition (4.72) is satisfied, by Theorem 4.22, we
have that for each constant control u ≡ a, a ∈ U (the uncontrolled case),
there exists a unique invariant measure Φu for the filtering process (πu

n). If
however we consider the case of a control u that takes values a1 in S1 and a2

in S2 we have already seen that there exist at least two invariant measures for
the filtering process (πu

n). Notice that in the case when E = {1, 2, . . . ,m},
D = {d1, . . . , ds}, a condition sufficient for (4.72) to be satisfied is, by Remark
4.23, the assumption that for each a ∈ U , the transition probabilities P a(i, k)
are strictly positive for all i, k in E.

Remark 4.24 It is worth pointing out that we may have two disjoint in-
variant sets but one invariant measure for the filtering processes. In fact,
if in an uncontrolled case with a finite state space E = {1, 2, . . . ,m} and
an observation space D = {d1, . . . , ds}, the transition matrix P (i, j) is such
that P (k, 1) = 0 for k = 2, . . . ,m, P (k,m) = 0 for k = 1, 2, . . . ,m − 1 and
P (i, j) > 0 elsewhere, then, provided r(i, dj) > 0 for all i ∈ E and all dj ∈ D,
the sets S1 = {µ ∈ P (E), µ(1) = 0 and µ(m) > 0}, S2 = {µ ∈ P (E), µ(1) >
0 and µ(m) = 0} are disjoint and invariant for πn. However, since there ex-
ists a unique invariant measure µ for the Markov process (xn), and condition
(4.72) is satisfied, by Theorem 4.22 there exists a unique invariant measure
for (πn).

4.4.2 Embedded i.i.d. case

In this subsection we study the situation when we may assume that, for
a given control function u ∈ B(P (E), U), there exists a sequence of (Y n)-
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adapted Markov times (τn) such that

τ1 = τ

. . .

τn+1 = τn + τ ◦ Θτn

(4.73)

with τ satisfying
sup

µ∈P (E)
Eu

µ{τ} <∞ (4.74)

Θτn
standing for the Markov shift operator corresponding to the controlled

filtering process πu
n, and with the random variables πu

τn
i.i.d. having the

distribution independent of the initial law of πu
n.

Proposition 4.25 Under the above assumptions, for any F ∈ bB(P (E)) we
have

1

n

n−1∑

i=0

F (πu
i ) → E

{
Eπτ1

{ τ−1∑

i=0

F (πu
i )

}}
(E{Eπτ1

{τ}})−1 P.a.e. (4.75)

as n→ ∞.
Furthermore the measure Φu ∈ P (P (E)) defined for F ∈ bB(P (E)) as

Φu(F ) = E
{
Eπτ1

{ τ−1∑

i=0

F (πu
i )

}}
(E{Eπτ1

{τ}})−1 (4.76)

is the unique invariant measure for the controlled filtering process (πu
n).

P r o o f . Since for any F ∈ bB(P (E)) the random variables

τn+1−1∑

i=τn

F (πu
i ) n = 1, 2, . . . ,

are i.i.d., by the law of large numbers we have

1

n

τn−1∑

i=0

F (πu
i ) → E

{
Eπτ1

{ τ−1∑

i=0

F (πu
i )

}}
(4.77)
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and
1

n
τn → E{Eπτ1

{τ}} P a.e.

as n→ ∞.
Consequently

1

τn

τn−1∑

i=0

F (πu
i ) =

n

τn
·

1

n

τn−1∑

i=0

F (πu
i ) → Φu(F )

P a.e. as n→ ∞.
Let N(n) = inf{i: τi ≥ n} for n = 1, 2, . . ., then

∣∣∣
1

n

n−1∑

i=0

F (πu
i ) −

1

τN(n)

τN(n)−1∑

i=0

F (πu
i )

∣∣∣

≤
∣∣∣
( 1

n
−

1

τN(n)

) n−1∑

i=0

F (πu
i )

∣∣∣ +
1

τN(n)

∣∣∣
τN(n)−1∑

i=n

F (πu
i )

∣∣∣

≤ 2
τN(n) − τN(n)−1

τN(n)

· ‖F‖

which, using (4.77), can easily be shown to converge to 0, P a.e. as n→ ∞.
Therefore (4.75) holds and, since the distribution of πu

τ1
does not depend

on the initial law of (πu
n), the measure Φu is the unique invariant measure for

(πu
n).

Below we introduce two examples for which the assumptions made in this
section are satisfied.

Example 1. This example presents an entire class of models, character-
ized in terms of their transition kernel P a(x, dz) and their observation density
r(z, y), for which the above assumptions hold. More precisely, we assume

(E1.1) there exists D1 ⊂ Rd and K ⊂ E such that r(z, y) = 0 for y ∈ D1 and
z 6∈ K

(E1.2) there exists λ ∈ P (E) such that, for all a ∈ U and all x ∈ K

P a(x, ·) = λ(·)
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Assumption (E1.1) corresponds to a partial detectability of (xn): if yn ∈
D1, then we know that xn ∈ K. However it may happen that xn ∈ K and
yn 6∈ D1. Identifying K with the set of ”failure states” of the Markov process
(xn), assumption (E1.2) can be understood as a selfregeneration property:
when a failure occurs, the Markov chain (xn) continues to evolve starting
from a same measure λ, independent of the position of the state process in
K and of the chosen control.

We shall also need the following two technical assumptions

(E1.3) inf
z∈K

∫

D1

r(z, y)dy = β1 > 0

and

(E1.4) inf
a∈U

inf
z∈E\K

P a(z,K) = β2 > 0

Before proving that, under (E1.1)–(E1.4), the assumptions made in this sub-
section are satisfied, let us show the following:

Putting
σ = inf{i > 0: yi ∈ D1} (4.78)

we have

Lemma 4.26 Under (E1.3) and (E1.4)

sup
u=(an)

sup
x∈E

Eu
x{σ

2} <∞ (4.79)

where the first supremum is taken over all admissible controls (an), namely
those for which an is Y n adapted.

P r o o f . Let
τ = inf{i ≥ 0:xi ∈ K} (4.80)

We have
sup

u=(an)
sup
x∈E

Exτ
2 = M <∞ (4.81)

In fact, by (E1.4) for a ∈ U , z ∈ E \K,

P a(z, E \K) ≤ 1 − β2
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and therefore

Exτ
2 ≤ 1 + 22 + 32(1 − β2) + 42(1 − β2)

2 + . . . =

= 1 +
∞∑

n=0

(n+ 2)2(1 − β2)
n <∞

Let

τ1 = τ

. . .

τn+1 = τn + τ ◦ Θτn

Then

Exσ
2 = Ex{τ

2
1χyτ1∈D1

} + Ex{τ
2
2χyτ2∈D1

χ
yτ1 6∈D1

}

+ . . .+ Ex{τ
2
nχyτn∈D1

χ
yτn−1 6∈D1

. . . χ
yτ1 6∈D1

} . . . ≤

≤ Ex{τ
2} + Ex{τ

2
2χyτ1 6∈D1

} + . . .+ Ex{τ
2
nχyτn−1 6∈D1

. . .

χ
yτ1 6∈D1

} + . . .

(4.82)

By (E1.3)

Ex{χyτn−1 6∈D1
. . . χ

yτ1 6∈D1
}

= Ex{P{yτn−1 6∈D1|x0, x1, . . . , xτn−1 , Y
τn−1−1}

χ
yτn−2 6∈D1

. . . χ
yτ1 6∈D1

} ≤ (1 − β1)Ex{χyτn−2 6∈D1

. . . χ
yτ1 6∈D1

} ≤ . . . ≤ (1 − β1)
n−1

(4.83)
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and applying (4.81) we have

Ex{τn−1χyτn−1 6∈D1
. . . χ

yτ1 6∈D1
}

≤ (1 − β1)Ex{τn−1χyτn−2 6∈D1
. . . χ

yτ1 6∈D1
}

≤ (1 − β1)Ex{τn−2χyτn−2 6∈D1
. . . χ

yτ1 6∈D1
}

+(1 − β1)M
1/2Ex{χyτn−2 6∈D1

. . . χ
yτ1 6∈D1

}

≤ (1 − β1)Ex{τn−2χyτn−2 6∈D1
. . . χ

yτ1 6∈D1
} + (1 − β1)

n−1M1/2

(4.84)

Iterating (4.84) we obtain

Ex{τn−1χyτn−1 6∈D1
. . . χ

yτ1 6∈D1
} ≤ (n− 1)(1 − β1)

n−1M1/2 (4.85)

Now, by (4.81), (4.83) and (4.85)

Ex{τ
2
nχyτn−1 6∈D1

. . . χ
yτ1 6∈D1

}

≤ Ex{τ
2
n−1χyτn−1 6∈D1

. . . χ
yτ1 6∈D1

}

+2M1/2Ex{τn−1χyτn−1 6∈D1
. . . χ

yτ1 6∈D1
}

+MEx{χyτn−1 6∈D1
. . . χ

yτ1 6∈D1
}

≤ (1 − β1)Ex{τ
2
n−1χyτn−2 6∈D1

. . . χ
yτ1 6∈D1

}

+2(n− 1)(1 − β1)
n−1M + (1 − β1)

n−1M

and by iteration

Ex{τ
2
nχyτn−1 6∈D1

. . . χ
yτ1 6∈D1

} ≤ (1 − β1)
n−1Ex{τ

2
1 }

+2(n− 1)2(1 − β1)
n−1M + (n− 1)(1 − β1)

n−1M

= n(1 − β1)
n−1M + 2(n− 1)2(1 − β1)

n−1M

Thus finally by (4.82)

Exσ
2 ≤M +

∞∑

n=2

n(1 − β1)
n−1M + 2(n− 1)2(1 − β1)

n−1M <∞
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Since the bounds we obtained do not depend on the initial state nor on the
chosen control, we obtain (4.79).

Putting now

σ1 = σ

. . .

σn+1 = σn + σ ◦ Θσn

(4.86)

which clearly form a sequence of Y n-adapted Markov times, we can show

Proposition 4.27 Under (E1.1)–(E1.4) for a control function u ∈ B(P (E), U)
we have

(a) (xσn+1) is a sequence of i.i.d.’s with common distribution λ

(b) (yσn+1) is a sequence of i.i.d.’s with common distribution
∫

E

R(z, ·)λ(dz)

(c) the filtering process πu
σn+1 has the form

πu
σn+1 = Q(yσn+1, λ)

with Q defined in (3.200), and πu
σn+1 are i.i.d. with distribution inde-

pendent of the initial law of (πu
n)

(d) the convergence (4.75) holds with τ = σ+ 1; furthermore there exists a
unique invariant measure Φu for the filtering process (πu

n), and it has
the form (4.76).

P r o o f . Notice that, by the definition of σ, we have yσn
∈ D1 and there-

fore by (E1.1), xσn
∈ K. Using (E1.2) we see that xσn+1 is independent of

x0, . . . , xσn
, y1, . . . , yσn

and has law λ. Consequently by (1.1), yσn+1 is inde-

pendent of x0, . . . , xσn
, y1, . . . , yσn

and has law
∫

E

R(z, ·)λ(dz). The statement

(c) follows immediately from the fact that xσn
∈ K and (E1.2) as well as from
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(b). Since all the assumptions of Proposition 4.25 are satisfied we also have
(d).

Example 2. Also in this second example we consider an entire class of
models, characterized by their transition operators and observation structure,
for which the assumptions made in this subsection are satisfied.

First we assume that the set of control parameters U is such that U ⊂ Rl,
l ≥ 1, and {0} ∈ U . Furthermore let the observation process yn ∈ Rd be of
the form

yn = h(xn) + wn, (4.87)

where h ∈ C(E,Rd) and (wn) are i.i.d. d-dimensional standard Gaussian
random variables, independent of xk for k ≤ n.

Moreover assume

(E2.1) There exists j ∈ {1, 2, . . . , d} such that the j-th component hj(x) of
h(x) has a limit at ”∞” and attains at ”∞” its strong maximum or
strong minimum; more precisely, letting

Bn = {x ∈ E: ρE(x, x) ≤ n} (4.88)

where ρE is a metric on E and x a fixed element of E we either have

sup
x∈Bn

hj(x) < sup
x∈E

hj(x) for n = 1, 2, . . .

or (4.89)

inf
x∈Bn

hj(x) > inf
x∈E

hj(x) for n = 1, 2, . . .

(E2.2) There exists λ ∈ P (E) such that

P a(x, ·) = λ(·)

for a = 0 and all x ∈ E,

(E2.3) For any compact set K ⊂ E there exists α > 0 such that

inf
a∈U

inf
x∈E

P a(x,Kc) ≥ α
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Notice that the assumptions (E2.2) and (E2.3) are satisfied for any model
of the form

xn+1 = F (xn, an) +G(xn, an)vn

where F (x, a) is bounded uniformly in (x, a) with F (x, 0) being a constant
vector, and where for positive constants c1, c2 the matrix G(x, a) satisfies

G(x, a)GT (x, a) ≥ c1I

for all (x, a) and G(x, 0) = c2I. Furthermore vn are i.i.d. standard Gaussian
vectors.

Finally let r: [0, 1] → [0, 1] be a continuous nondecreasing function such
that, with 0 < b < c < 1,

r(x) =





0 for x ≤ b

1 for x ≥ c

(4.90)

Additionally let ψm ∈ C(E) with values in [0, 1] be a given function
satisfying (compare to (3.36))

ψm(x) =





1 for x ∈ Bm

0 for x ∈ E \Bm+1

(4.91)

with Bm defined in (4.88).
We shall show below that for a control function u ∈ B(P (E), U) of the

form
u(ν) = u(ν)r(ν(ψm)) (4.92)

for some m, and u ∈ B(P (E), U), the assumptions of this subsection are
satisfied and therefore by Proposition 4.25, there exists a unique invariant
measure for the filtering process (πu

n).
We need first an auxiliary result

Lemma 4.28 Under (E2.1) and (E2.3), for any γ ∈ (0, 1), C > 0, m =
1, 2, . . ., one can find y0 such that, if (yj is the j-th component of y ∈ Rd, for
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which one of inequalities (4.89) holds) yj > y0, |y
i| ≤ C for i 6= j in the case

of the first inequality (4.89), yj < y0, |y
i| ≤ C for i 6= j in the case of the

second inequality (4.89), we have for any ν ∈ P (E) and any u ∈ B(P (E), U)

Mu(y, ν)(Bc
m) ≥ γ (4.93)

where Bm is as in (4.88) and Mu(y, ν) as in (1.8) with r(x, y) given by (1.2).

P r o o f . Assume that the first alternative in (4.89) holds. Let ‖hj‖m =
sup

x∈Bm

|hj(x)| and put y0 > 0. Then for yj > y0 and |yi| ≤ C if i 6= j, m1 > m

such that hj(z) ≥ ‖hj‖m + ε for some ε > 0 and all z 6∈ Bm1 , we have

Mu(y, ν)(Bm1) ≤ e2‖h‖C
( ∫

Bc
m1

exp[(y, h(z) − ‖hj‖m)

−
1

2
(h(z), h(z))]P u(ν)(ν, dz)

)−1
≤

≤ e2‖h‖Ce
1
2
‖h‖2

e−εy0e2‖h‖C(P u(ν)(ν,Bc
m1

))−1

≤ e4‖h‖Ce
1
2
‖h‖2 1

α
e−εy0

and therefore choosing y0 sufficiently large we obtain

Mu(y, ν)(Bm1) ≤ 1 − γ

Consequently (4.93) holds. The proof in the case when the second alternative
in (4.89) holds is similar.

Let now, for u ∈ B(P (E), U) and fixed positive integer m

σ = inf{i > 0, πu
i (ψm) ≤ b} (4.94)

with ψm and b as in (4.91), (4.90) respectively. From Lemma 4.28 we easily
obtain

Corollary 4.29 Under the assumptions of Lemma 4.28

sup
u∈B(P (E),U)

sup
µ∈P (E)

Eu
µ{σ

2} <∞ (4.95)

where the first supremum is over all controls an = u(πn) with u ∈ B(P (E), U).
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P r o o f . Letting γ = 1 − b, by Lemma 4.28 we have that for yj > y0,
|yi| ≤ C when i 6= j, in the case of the first inequality in (4.89), and for
yj < y0, |y

i| < C when i 6= j, in the case of the second inequality in (4.89)

sup
u∈B(P (E),U)

sup
µ∈P (E)

Mu(y, µ)(ψm) ≤ 1 − γ = b (4.96)

Define
Γ = {ν ∈ P (E), ν(ψm) ≤ b}

By (4.96), taking into account the observation structure (4.87), we therefore
have for some β > 0

inf
u∈B(P (E),U)

inf
µ∈P (E)

∏u
(µ,Γ) ≥ β

from which (4.95) immediately follows.

Let

σ1 = σ

. . .

σn+1 = σn + σ ◦ Θσn

(4.97)

By analogy to Proposition 4.27 we now have

Proposition 4.30 Under (E2.1)–(E2.3) for a control function u ∈ B(P (E),
U) of the form (4.92) we have

(a) (xσn+1) is a sequence of i.i.d.’s with common distribution λ

(b) (yσn+1) is a sequence of i.i.d.’s with common distribution
∫

E

R(z, ·)λ(dz)

(c) the filtering process πu
σn+1 has the form

πu
σn+1 = Q(yσn+1, λ)

with Q as in (3.200), and πu
σn+1 are i.i.d. with distribution independent

of the initial law of (πu
n)
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(d) the convergence (4.75) holds, there exists a unique invariant measure
Φu for the filtering process (πu

n), and it has the form (4.76).

P r o o f . Notice that by (E2.2), the form (4.92) of u together with the
definition (4.90) of r(x) and the definition (4.94) of σ, we have that the
random variable xσn+1 is independent of x0, . . . , xσn

, y1, . . . , yσn
and has law

λ. Therefore by considerations similar to those of Proposition 4.27, using in
particular the fact that u(πσ) = 0, we obtain (b), (c); applying furthermore
Proposition 4.25 we obtain (d) as well.

4.4.3 Mixed observation case

In this subsection we consider the case when the observations are of the
mixed type, i.e. satisfy (4.46).

We need the following assumption, where Γ is as in section 4.3

(A11) there is a compact set Γ1 ⊂ Γ such that

(i) P a(x, ∂Γ1) = 0 for a ∈ U , x ∈ E

(ii) Eu
µTΓ1 < ∞ for µ ∈ P (E), u ∈ C(P (E), U) where TΓ1 = inf{s ≥

0:xs ∈ Γ1} and Eu
µ stands for the conditional expectation of the

filtering process starting from µ with u ∈ C(P (E), U).

(iii) sup
x∈Γ1

sup
u∈C(P (E),U)

Eu
xτ

2 <∞ with τ = TΓc +TΓ1 ◦ΘTΓc and Θt stand-

ing for the Markov shift operator corresponding to the state pro-
cess (xn)

(iv) For τ1 = τ , τn+1 = τn + τ ◦ Θτn
, the embedded Markov chain xτn

has for u ∈ C(P (E), U) a unique invariant measure ηu and the
strong law of large numbers holds for (xτn

).

Let us comment on the assumptions (A11)(i)–(iv)

Remark 4.31 Notice that τ is the first time of return to Γ1 after hitting
Γc. To guarantee (A11)(iii) one usually imposes Lyapunov type conditions.
Assumption (A11)(iii) is also satisfied when

inf
a∈U

inf
x∈E

P a(x,Γ1) > 0
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and
inf
a∈U

inf
x∈E

P a(x,Γc) > 0

Notice furthermore that since Γ1 is compact, if the transition operator
P u

x {xτ ∈ ·} is Feller for x ∈ Γ1 and u ∈ C(P (E), U), then there exists
an invariant measure ηu for the embedded Markov chain (xτn

). It does not
mean however that ηu is unique.

Finally, as follows from Theorem 6.2 in Chapter 5 of [13] and its proof,
the strong law of large numbers holds for (xτn

) if it is uniformly ergodic, or
more generally if there are no invariant sets of ηu measure zero.

We have

Proposition 4.32 Under (A11) for any u ∈ C(P (E), U) there exists a
unique invariant measure Φu for the controlled filtering process (πu

n) and it
is of the form

Φu(F ) =
∫

Γ1

Eu
x

{ τ−1∑

i=0

F (πδx,u
i )

}
ηu(dx)

( ∫

Γ1

Eu
x{τ}η

u(dx)
)−1

(4.98)

for F ∈ bB(P (E)), with (πδx,u
i ) standing for the filtering process starting from

the measure µ = δx.
Moreover for F ∈ bB(P (E)), µ ∈ P (E)

lim
n→∞

1

n

n−1∑

i=0

F (πµ,u
i ) = Φu(F ) Pµ a.e. (4.99)

P r o o f . Since ηu is invariant for xτn
and therefore

∫

Γ1

Eu
x{F (πδx,u

τ )}ηu(dx) =

=
∫

Γ1

Eu
x{F (δxτ

)}ηu(dx) =

=
∫

Γ1

F (δx)ηu(dx),
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we have
∫

Γ1

Eu
x

{ τ−1∑

i=0

∏
F (πδx,u

i )
}
ηu(dx) =

=
∫

Γ1

Eu
x

{ τ∑

i=1

F (πδx,u
i )

}
ηu(dx) =

=
∫

Γ1

Eu
x

{ τ−1∑

i=0

F (πδx,u
i )

}
ηu(dx)

and clearly Φu is an invariant measure for (πµ,u
n ).

It remains to show the convergence (4.99) from which the uniqueness of
Φu follows.

For g ∈ bB(P (E)) by the strong law of large numbers for martingales (see
Thm. III.8.2 of [15]) we have

lim
n→∞

n−1
( τn−1∑

i=0

g(πδx,u
i ) −

n−1∑

i=0

Exτi

{ τ−1∑

j=0

g(π
δxτi

,u

j )
})

→ 0 Px a.e.

for x ∈ Γ1.
Now, by (A11)(iv) the strong law of large numbers holds for (xτn

), so that

lim
n→∞

n−1
n−1∑

i=0

Exτi

{ τ−1∑

j=0

g(π
δxτi

,u

j )
}

=
∫

Γ1

Ex

{ τ−1∑

j=0

g(πδx,u
j )

}
ηu(dx)

Px a.e. for x ∈ Γ1.
Letting g ≡ F and g ≡ 1 in the above two equalities we obtain

lim
n→∞

τ−1
n

τn−1∑

i=0

F (πδx,u
i ) = Φu(F )

Px a.e. for x ∈ Γ1.
Since by considerations similar to those of the proof of Proposition 4.25

we have that

lim
n→∞

τ−1
n

τn−1∑

i=0

F (πδx,u
i ) = lim

n→∞
n−1

n−1∑

i=0

F (πδx,u
i )

Px a.e. for x ∈ Γ1, using (A11)(ii) we obtain (4.99).
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Remark 4.33 If u : P (E) → U is Borel measurable, ηu is an invariant
measure of (xτn

) and
sup
x∈Γ1

Eu
xτ ≤ ∞

then, by the first part of the proof of Proposition 4.32, it is clear that Φu

defined in (4.98) is an invariant measure of πµ,u
n .

Remark 4.34 Whenever (4.75) or (4.99) hold, we can express the ergodic
cost functional Jµ(u) in (1.6), ((1.12)) as

Jµ(u) =
∫

P (E)

∫

E

c(x, u(ν))ν(dx)Φu(dν)

4.5 Construction of nearly optimal continuous control
functions

By analogy to the infinite horizon case with discounting, that was studied
in section 3, also in the present case with the ergodic cost criterion (1.6)
the nearly optimal controls are obtained along two steps: on a first step
(correspoding to section 3.3) nearly optimal control functions are constructed
which, when applied to the true filter values, yield nearly optimal controls;
since in general the true filter values cannot be computed, on a second step
(corresponding to section 3.5) a computable approximating filter process is
constructed. The nearly optimal controls are then obtained by applying the
nearly optimal control functions to the approximating filter values.

This section is devoted to the construction of nearly optimal control func-
tions for the ergodic case. For this purpose, as in section 3, we have to make
use of some compactness arguments by either assuming that the state space
E is compact, or by approximating the class of admissible controls by a com-
pact family of controls. For the infinite horizon with discounting problem, in
section 3.3 we constructed for the case of a compact state space E nearly op-
timal Borel measurable control functions with the use of Bellman’s equation;
in the general case we restricted ourselves from the beginning to the class A
of continuous control functions. Since in the present context of an ergodic
cost, in the case when E is compact and (A6), (A7) hold, by section 4.2.2
the problem of the construction of nearly optimal Borel measurable control

191



functions can be reduced to that for a discounted cost criterion where the
factor β is sufficiently close to 1, here we shall consider only the case of a
general E restricting ourselves to continuous control functions.

Paralleling partly subsection 3.3.1, as preliminary to the construction of
nearly optimal control functions, in subsection 4.5.1 we shall obtain general
results on approximations of invariant measures of controlled filtering pro-
cesses. This subsection will be split into two further subsections: in 4.5.1.a we
obtain such results for the mixed observation model; in 4.5.1.b we shall then
formulate suitable versions of these results also for the embedded i.i.d. case
concentrating on the two examples of section 4.4.2. In subsection 4.5.2 we
shall apply these general convergence results to more specific approximations.
More precisely, in the further subsection 4.5.2.a we shall first approximate the
class of continuous control functions by suitable compact subclasses. Hav-
ing done this, in subsection 4.5.2.b we then proceed analogously to section
3.3.2 to a discretization of the state and observation spaces that allows to
reduce the original partial observation problem to a complete observation
problem where the state is the filter that evolves on a simplex. This subsec-
tion is further split into 4.5.2.b1 dealing with the mixed observation model,
and 4.5.2.b2 concerning the embedded i.i.d. case. Although a simplex is a
finite - dimensional space of measures, it is still infinite - valued. In subsec-
tion 4.5.3. we therefore introduce a discretization of the simplex that allows
finally the actual construction of a nearly optimal control function which,
after a suitable extension, is nearly optimal also for the original problem.
Computational considerations along with numerical results are reported in
subection 4.5.4.

Finally, subsection 4.5.5 contains results along the line of section 4.2 stat-
ing that, under certain assumptions, a nearly optimal control function for the
infinite horizon case with discounting is nearly optimal also for the infinite
horizon case with ergodic cost functional if the discount factor β is close to
1. While in section 4.2 these results are obtained with the use of Bellman’s
equation assuming the compactnes of E, here, in line with the rest of section
4.5, we obtain such results in a direct way restricting the control functions to
be continuous and exploiting ergodic properties of embedded Markov chains.
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4.5.1 Approximation of invariant measures (General convergence
result)

In this section, similarly as in 3.3.1, we formulate a general convergence result
on the approximation of invariant measures, which later will be applied to
more specific approximations.

We shall first prove the convergence result for the mixed observation
model and then formulate suitable versions for the embedded i.i.d. case
concentrating on the examples 1 and 2, that were considered in section 4.4.2.
By (4.75) and (4.99) it is clear that the approximation of the ergodic cost
functional Jµ(u), defined in (1.6)(see also (1.12)) can now be reduced to
the approximation of the invariant measure Φu defined in (4.76) and (4.98)
respectively.

4.5.1.a The mixed observation case

Consider first the case of a mixed observation structure. Assume the state
process (xn) is approximated by a process (xm

n ) corresponding to a transition
kernel P a

m for which (D1) of section 3.3.1 is satisfied as well as

(D4) for any compact set K ⊂ E, and any ε > 0, there exists δ > 0 such
that

P a
m(x,Γ(δ)) < ε uniformly for a ∈ U, x ∈ K, m = 1, 2, . . . ,

with Γ(δ) = {z ∈ Γc: ρ
E

(z,Γ) < δ},

Assumption (D4) is mainly motivated by the fact that (see also comment
below (A10)) the observation density r(x, y) has to converge to infinity as y
comes close to x, with x close to ∂Γ.

Furthermore, assume (xm
n ) is, for each m, completely observed in the set

Γ and partially outside with the observation density rm(x, y), that approxi-
mates r(x, y) in the following way

(D5) (i) rm ∈ bB(Γc × Γc), rm(x, y) → r(x, y) uniformly in (x, y) from
compact subsets of Γc×Γc, as m→ ∞, and rm(z, y) are uniformly
in m bounded on Γc

δ (defined in (A8)) for δ > 0,
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(ii) for any compact K ⊂ Γc

sup
z∈K

∫

Γc

|r(z, y) − rm(z, y)| dy → 0 as m→ ∞

(iii) if Γc ∋ ym → y ∈ ∂Γ, then for δ > 0 and any compact set K ⊂ E

inf
a∈U

inf
x∈K

∫

B(y,δ)

rm(z, ym)P a
m(x, dz) → ∞

as m→ ∞, with B(y, δ) = {z ∈ Γc: ρ
E

(z, y) < δ},

We assume moreover that (xm
n ) is controlled by control functions um sat-

isfying the following two conditions below where, as in the rest of this sub-
section we use Eum,m

x to denote the conditional expectation of (xm
n ) starting

from x and controlled in the generic period n by um(πm,um
n ), where πm,um

n is
the filtering process corresponding to (xm

n ); similarly for Eum,m
µ ,

(D6) um:P (E) → U are Borel measurable and um(ν) → u(ν), as m → ∞,
uniformly in ν from compact subsets of P (E), where u ∈ A is the
continuous function used to control (xn),

(D7) for the compact set Γ1 of assumption (A11) and for the Markov times
TΓ1 , τ , τn, defined in (A11), considered now as Markov times with
respect to (xm

i ) we have

(i) Eum,m
µ TΓ1 <∞ for µ ∈ P (E), and m = 1, 2, . . .,

(ii) sup
x∈Γ1

sup
m
Eum,m

x τ 2 <∞

(iii) for each m = 1, 2, . . ., there exists an invariant measure ηum
m , of

the Markov chain (xm
τn

) that is embedded in (xm
n ) with control

um(πm,um
n ) in the generic period n.

Under the above assumptions, by Remark 4.33 there is an invariant mea-
sure Φum of πm,um

n of the following form, where F ∈ bB(P (E))

Φum
m (F ) =

∫

Γ1

Eum,m
x

{ τ−1∑

i=0

F (πm,um

i )
}
ηum

m (dx)

( ∫

Γ1

Eum,m
x {τ}ηum

m (dx)
)−1

(4.100)

194



The main result of this section can be formulated as follows

Theorem 4.35 Under (A1), (A2), (A8)-(A11), and (D1), (D4)-(D7), we
have

Φum

m ⇒ Φu weakly in P (P (E)) as m→ ∞

P r o o f . We split the proof into a sequence of Lemmas and Corollaries.

Lemma 4.36 Under (A1),(A2), (D1) and (D6) for f ∈ C(E) and a set
A ∈ B(E) such that

sup
x∈E

sup
a∈U

P a(x, ∂A) = 0 (4.101)

we have
P um(ν)

m (ν, fχ
A

) → P u(ν)(ν, fχ
A

) (4.102)

as m→ ∞, uniformly in ν from compact subsets of P (E).

P r o o f . Assume (4.102) does not hold, i.e. for νm ⇒ ν we have

|P um(νm)
m (νm, fχA

) − P u(νm)(νm, fχA
)| ≥ δ > 0 (4.103)

Taking into account the tightness of {νm,m = 1, 2, . . .} by (D1) we have that
|P u(νm)

m (νm, f1) − P u(ν)(νm, f1)| → 0, for f1 ∈ C(E), as m → ∞. Therefore
by (A1), for f1 ∈ C(E)

|P um(νm)
m (νm, f1) − P u(ν)(ν, f1)| ≤

|P um(νm)
m (νm, f1) − P u(ν)(νm, f1)| + |P u(ν)(νm, f1) − P u(ν)(ν, f1)| → 0

as m → ∞, and consequently and P um(νm)
m (νm, ·) ⇒ P u(ν)(ν, ·). By Theo-

rem 1.2.1 (v) of [6] we therefore have by (4.101)

P um(νm)
m (νm, fχA

) → P u(ν)(ν, fχ
A

)

and
P u(νm)(νm, fχA

) → P u(ν)(ν, fχ
A

) as m→ ∞

as m→ ∞, a contradiction to (4.103). Thus (4.102) is holds.
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Before we formulate the next lemma, by analogy to (4.49) define the
measures

Nu
m(y, ν)(A): =

∫

A∩Γc

rm(z, y)P u(ν)
m (ν, dz){

∫

Γc

rm(z, y)P u(ν)
m (ν, dz)}−1 (4.104)

for y ∈ Γc and

Mu
m(y, ν)(A): = χ

A∩Γ
(y) + χ

Γc(y)Nu
m(y, ν)(A) (4.105)

for y ∈ E,A ∈ B(E).
It will be convenient also to let

Nu
m(y, ν)(A) = Nu(y, ν)(A): = χ

A
(y)

for y ∈ Γ.

Lemma 4.37 Assume (A1),(A2), (A8)-(A10) and (D1),(D5),(D6). Then

Num

m (y, ν) ⇒ Nu(y, ν) as m→ ∞ (4.106)

uniformly on compact subsets of Γc × P (E).

P r o o f . It suffices to show for any ϕ ∈ C(E) that if Γc ∋ ym → y and
P (E) ∋ νm ⇒ ν we have

|Num(νm)
m (ym, νm)(ϕ) −Nu(νm)(ym, νm)(ϕ)| → 0

Since Proposition 4.15 implies

Nu(νm)(ym, νm)(ϕ) → Nu(ν)(y, ν)(ϕ)

as m→ ∞, it remains to show that

Num(νm)
m (ym, νm)(ϕ) → Nu(ν)(y, ν)(ϕ)

We consider two cases y ∈ Γc and y ∈ ∂Γc. If y ∈ Γc it is sufficient to prove
the convergence of the numerator of Num(νm)

m (ym, νm)(ϕ) to the numerator of
Nu(ν)(y, ν)(ϕ).
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We have

|
∫

Γc

rm(z, ym)ϕ(z)P um(νm)
m (νm, dz) −

∫

Γc

r(z, y)ϕ(z)P u(ν)(ν, dz)|

≤
∫

Γc

|rm(z, ym) − r(z, y)| |ϕ(z)|P um(νm)
m (νm, dz)

+
∣∣∣
∫

Γc

r(z, y)ϕ(z)(P um(νm)
m (νm, dz) − P u(ν)(ν, dz))

∣∣∣

= Im + IIm

Notice that since y ∈ Γc, by (A8) and (D5)(i) there are positive constants
m0(y) and M(y) such that for m > m0(y), x ∈ Γc

max{r(x, y), rm(x, ym)} < M(y).

Now, by the tightness of {νm,m = 1, 2, ...} and (D4), for given ε > 0
there exists δ > 0 such that

∫

Γc

|rm(z, ym) − r(z, y)| |ϕ(z)|P um(νm)
m (νm, dz)

≤ 4ε‖ϕ‖M(y) +
∫

Γc∩Γ(δ)

|rm(z, ym) − r(z, y)| |ϕ(z)|P um(νm)
m (νm, dz)

for m > m0(y).
Therefore, by Lemma 3.4, there exist a compact set K ⊂ E and positive

integer m1, such that for m ≥ max{m0(y),m1} we have

Im ≤ 6ε‖ϕ‖M(y) + sup
z∈Γc∩Γ(δ)∩K

|rm(z, ym) − r(z, y)| ‖ϕ‖

and consequently by (D5)(i) lim sup
m→∞

Im ≤ 6ε‖ϕ‖M(y). By Lemma 4.36,

(A10) and (A1), (A2), also IIm → 0 as m → ∞, which completes the proof
in the case when y ∈ Γc.

If y ∈ ∂Γc, then by (D5)(iii)

Num(νm)
m (ym, νm)(ϕ) → ϕ(y)

197



as m → ∞. Summarizing and noticing that ϕ(y) = Nu(ν)(y, ν)(ϕ) for y ∈
∂Γ we have Num(νm)

m (ym, νm) ⇒ Nu(ν)(y, ν), for y ∈ Γc and the proof of
Lemma 4.37 is completed.

Let by analogy to (4.50) for F ∈ bB(P (E)), ν ∈ P (E)

∏u
m(ν, F ) =

∫

Γ

F (δz)P u(ν)
m (ν, dz)+

+
∫

Γc

∫

Γc

F (Mu
m(y, ν))rm(z, y) dyP u(ν)

m (ν, dz)

(4.107)

which is the transition operator of the filter process (πm,u
n ). Given a set

A ∈ B(E) denote by Ã the set of all measures δx with x ∈ A.
We have

Lemma 4.38 Assume (A1),(A2),(A8)-(A11), (D1),(D4)-(D6). Let Fm ∈
bB(P (E)), F ∈ C(P (E)), Fm be uniformly bounded and Fm(ν) → F (ν), as
m→ ∞, uniformly in ν from compact subsets of P (E).

Then ∏um
m (ν, Fm) →

∏u
(ν, F ) (4.108)

and ∏um
m (ν, FmχÃ

) →
∏u

(ν, Fχ
Ã

) (4.109)

uniformly in ν from compact subsets of P (E), as m → ∞, with A = Γ or
A = Γ1.

P r o o f . Let H be a compact subset of P (E). We have

|
∏um

m (ν, Fm) −
∏u

(ν, F )| ≤
∫

Γ

|Fm(δz) − F (δz)|P um(ν)
m (ν, dz)

+
∣∣∣
∫

Γ

F (δz)(P um(ν)
m (ν, dz) − P u(ν)(ν, dz))

∣∣∣ +

+
∣∣∣
∫

Γc

∫

Γc

(rm(z, y) − r(z, y))Fm(Mum

m (y, ν)) dyP um(ν)
m (ν, dz)

∣∣∣

+
∣∣∣
∫

Γc

∫

Γc

r(z, y)(Fm(Mum

m (y, ν)) − F (Mu(y, ν))) dyP um(ν)
m (ν, dz)

∣∣∣
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+
∣∣∣
∫

Γc

∫

Γc

r(z, y)F (Mu(y, ν)) dy(P um(ν)
m (ν, dz) − P u(ν)(ν, dz))

∣∣∣

= Im + IIm + IIIm + IVm + Vm

Since, sup
z∈Γ

|Fm(δz) − F (δz)| → 0, clearly Im → 0 as m → ∞, uniformly in

ν ∈ H. By (A10), (A11)(i) and Lemma 4.36, also IIm → 0 as m → ∞
uniformly in ν ∈ H.

Given ε > 0, by Lemma 3.4 there is a compact set K ⊂ E and a positive
integer m0 such that for m ≥ m0, (3.16) holds. Furthermore by the com-
pactness of H there is a compact set K1 ⊂ E such that ν(K1) ≥ 1 − ε for
ν ∈ H. By (D4), for some δ > 0 we then have

P a
m(z,Γ(δ)) < ε for a ∈ U, z ∈ K1, m = 1, 2, . . . ,

Therefore, for m > m0

IIIm ≤
∫

Γc∩K

∫

Γc

|rm(z, y) − r(z, y)| ‖Fm‖ dyP
um(ν)
m (ν, dz)

+ 2ε‖Fm‖ ≤

≤ sup
z1∈K1

∫

Γc∩K

∫

Γc

|rm(z, y) − r(z, y)| ‖Fm‖ dyP
um(ν)
m (z1, dz)

+ 2ε‖Fm‖ + 2ε‖Fm‖ ≤

≤ sup
z1∈K1

∫

{Γc\Γ(δ)}∩K

∫

Γc

|rm(z, y) − r(z, y)| ‖Fm‖ dyP
um(ν)
m (z1, dz)

+6ε‖Fm‖ ≤ sup
z∈{Γc\Γ(δ)}∩K

‖Fm‖
∫

Γc

|rm(z, y) − r(z, y)| dy + 6ε‖Fm‖

Letting m→ ∞, since ‖Fm‖ ≤ C, by (D5) (ii) we obtain that lim sup
m→∞

IIIm ≤

6εC, uniformly in ν ∈ H.
Now, by (A9) there is a compact set L ⊂ E such that with the compact

set K as before
sup
z∈K

R(z, Lc) < ε

Hence

IVm ≤ 4εC +
∫

Γc∩K

∫

Γc∩L

r(z, y)|Fm(Num

m (y, ν)) −

F (Nu(y, ν))| dyP um(ν)
m (ν, dz)
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and by Lemma 4.37, lim sup
m→∞

IVm ≤ 4εC for ν ∈ H. Finally, by Lemma 4.36

and (A9), also Vm → 0 as m→ ∞ uniformly in ν ∈ H.
Summarizing, Im + IIm + IIIm + IVm + Vm → 0 as m→ ∞ uniformly in

ν ∈ H. Consequently (4.108) holds.
The proof of (4.109) is almost immediate since

∏um
m (ν, FmχÃ

) =
∫

A∩Γ

Fm(δz)P um(ν)
m (ν, dz)

→
∫

A∩Γ

F (δz)P u(ν)(ν, dz) =
∏u

(ν, Fχ
Ã

) as m→ ∞

as m → ∞, by Lemma 4.36, uniformly in ν ∈ H. The proof of Lemma 4.38
is complete.

In the next Lemma 4.39 we extend (4.109) to the probabilities of more
complex events.

Lemma 4.39 Assume (A1),(A2),(A8)-(A11),(D1),(D4)-(D6). Let bB(P (E)) ∋
Fm → F ∈ C(P (E)) uniformly on compact subsets of P (E) and Fm be uni-
formly bounded. Then for each i = 1, 2, . . .,

Eum,m
x {χ

∆1
(πm,um

1 ) . . . χ
∆i

(πm,um

i )Fm(πm,um

i )}

→ Eu
x{χ∆1

(πu
1 ) . . . χ

∆i
(πu

i )F (πu
i )}

(4.110)

as m→ ∞, uniformly in x belonging to the compact set Γ1 from (A11) with
∆k, for k = 1, 2, . . . , i, standing for any of the sets Γ̃1, Γ̃c

1, Γ̃ or Γ̃c, where˜
denotes the operator defined before Lemma 4.38.

P r o o f . The proof is by induction. For i = 1 (4.110) holds by (4.109).
Assume, now that (4.110) holds for i. Then, again by (4.109) and induction
hypothesis, for i+ 1 we have

Eum,m
x {χ

∆1
(πm,um

1 ) . . . χ
∆i+1

(πm,um

i+1 )Fm(πm,um

i+1 )} =

Eum,m
x {χ

∆1
(πm,um

1 ) . . . χ
∆i

(πm,um

i )
∏um

m (πm,um

i , χ
∆i+1

Fm)}

→ Eu
x{χ∆1

(πu
1 ) . . . χ

∆i
(πu

i )
∏u

(πu
i , χ∆i+1

F )}

= Eu
x{χ∆1

(πu
1 ) . . . χ

∆i
(πu

i )χ
∆i+1

(πu
i+1)F (πu

i+1)}

200



as m→ ∞, uniformly in x ∈ Γ1.

From formula (4.110) we now obtain

Corollary 4.40 Under (A1),(A2),(A8)-(A11),(D1),(D4)-(D7), for f ∈ C(Γ1)
and F ∈ C(P (E)) we have

Eum,m
x {f(xm

τ )} → Eu
x{f(xτ )} (4.111)

and

Eum,m
x

{ τ−1∑

i=0

F (πm,um

i )
}
→ Eu

x

{ τ−1∑

i=0

F (πu
i )

}
(4.112)

uniformly in x ∈ Γ1, as m→ ∞, with τ on the left hand side of (4.111),(4.112)
standing for the Markov time defined as in (A11) but with respect to the pro-
cess (xm

n ), while on the right hand side it corresponds to (xn).

P r o o f . Recall that, by its definition in (A11), τ can equivalently be
considered as stopping time of the process (xn) and of the corresponding
filter πn. We therefore have

f(xτ ) =
∞∑
i=2

i−1∑
j=1

χ
Γ̃
(π1) . . . χΓ̃

(πj−1)χΓ̃c(πj)χΓ̃c
1
(πj+1) . . . χΓ̃c

1
(πi−1)

χ
Γ̃1

(πi)πi(f)

(4.113)

and

τ−1∑
i=0

F (πi) =
∞∑
i=0

χ
Γ̃
(π0) . . . χΓ̃

(πi)[F (πi) + χ
Γ̃c(πi+1)F (πi+1)

+χ
Γ̃c(πi+1)

∞∑
k=i+2

χ
Γ̃c

1
(πi+2) . . . χΓ̃c

1
(πk)F (πk)]

(4.114)

and the analogous representations hold for f(xm
τ ) and

τ−1∑
i=0

F (πm
i ).
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By (A11) (iii) and (D7) (ii) to prove (4.111) and (4.112) it is therefore
sufficient to show that for each i, j, k = 1, 2, . . . (j < i < k − 1)

Eum,m
x {χ

Γ̃
(πm,um

1 ) . . . χ
Γ̃
(πm,um

j−1 )χ
Γ̃c(π

m,um

j )χ
Γ̃c

1
(πm,um

j+1 ) . . .

χ
Γ̃c

1
(πm,um

i−1 )χ
Γ̃1

(πm,um

i )πm,um

i (f)} →

Eu
x{χΓ̃

(πu
1 ) . . . χ

Γ̃
(πu

j−1)χΓ̃c(π
u
j )χ

Γ̃c
1
(πu

j+1) . . .

χ
Γ̃c

1
(πu

i−1)χΓ̃1
(πu

i )πu
i (f)}

(4.115)

and

Eum,m
x {χ

Γ̃
(πm,um

1 ) . . . χ
Γ̃
(πm,um

i )[F (πm,um

i ) + χ
Γ̃c(π

m,um

i+1 )

F (πm,um

i+1 ) + χ
Γ̃c(π

m,um

i+1 )χ
Γ̃c

1
(πm,um

i+2 ) . . . χ
Γ̃c

1
(πm,um

k )F (πm,um

k )]}

→ Eu
x{χΓ̃

(πu
1 ) . . . χ

Γ̃
(πu

i )[F (πu
i ) + χ

Γ̃c(π
u
i+1)F (πu

i+1) + χ
Γ̃c(π

u
i+1)

χ
Γ̃c

1
(πu

i+2) . . . χΓ̃c
1
(πu

k )F (πu
k )]}

(4.116)

uniformly in x ∈ Γ1, as m → ∞. Since by Lemma 4.39, the convergences
(4.115) and (4.116) hold, we obtain (4.111) and (4.112).

With the use of the representations (4.113) and (4.114) we prove now the
following

Lemma 4.41 Under (A1), (A2), (A8)-(A11), for f ∈ C(Γ1), F ∈ C(P (E)),
u ∈ A = C(P (E), U) the mappings

Γ1 ∋ x 7→ Eu
x{f(xτ )} (4.117)

Γ1 ∋ x 7→ Eu
x

{ τ−1∑

i=0

F (πu
i )

}
(4.118)

are continuous and bounded.
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P r o o f . By (4.113), (4.114) and (A11) (iii) it suffices to show the continuity
of the mappings

Γ1 ∋ x 7→ Eu
x{χΓ̃

(πu
1 ) . . . χ

Γ̃
(πu

j−1)χΓ̃c(π
u
j )

χ
Γ̃c

1
(πu

j+1) . . . χΓ̃c
1
(πu

i−1)χΓ̃1
(πu

i )πu
i (f)}

and

Γ1 ∋ x 7→ Eu
x{χΓ̃

(πu
1 ) . . . χ

Γ̃
(πu

i )[F (πu
i ) + χ

Γ̃c(π
u
i+1)F (πu

i+1)

+χ
Γ̃c(π

u
i+1)χΓ̃c

1
(πu

i+2) . . . χΓ̃c
1
(πu

k )F (πu
k )]}

for i, j, k = 1, 2, . . . (j < i < k − 1).
For this purpose it is sufficient in turn to show by induction the following

property:

for F ∈ C(P (E)), i = 1, 2, . . ., the mapping

Γ1 ∋ x 7→ Eu
x{χ∆1

(πu
1 ) . . . χ

∆i
(πu

i )F (πu
i )} (4.119)

with ∆k, k = 1, 2, . . . , i standing for Γ̃, Γ̃c, Γ̃1 or Γ̃c
1, is continuous.

Step i = 1 follows immediately from the Feller property of
∏u

(see (4.55)),
and (A10),(A11)(i). Given (4.119) true for i, we have for i+ 1

Eu
x{χ∆1

(πu
1 ) . . . χ

∆i+1
(πu

i+1)F (πu
i+1)} =

= Eu
x{χ∆1

(πu
1 ) . . . χ

∆i
(πu

i )
∏u

(πu
i , χ∆i+1

F )}

and by the continuity of the mapping ν 7→
∏u

(ν, χ
∆i+1

F ) (follows from step

i = 1) and the induction hypothesis, we obtain (4.119) for i + 1. There-
fore (4.119) holds and consequently the mappings (4.117) and (4.118) are
continuous.

In (D7) (iii) we assume that the embedded Markov chains (xm
τn

) corre-
sponding to control functions um have invariant measures ηum

m . Since Γ1 is
compact, the measures are tight, and therefore one can choose a convergent
subsequence. In the next lemma we identify the limit
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Lemma 4.42 Under (A1),(A2),(A8)-(A11) and (D1),(D4)-(D7) we have

ηum

m ⇒ ηu as m→ ∞ (4.120)

where ηu is the unique invariant measure according to (A11)(iv).

P r o o f . Assume ηu is a weak limit of a subsequence η
umk
mk , for simplicity

denoted by ηum
m . By Lemma 4.41 and (4.111) for f ∈ C(Γ1) we have

∣∣∣
∫

Γ1

Eu
x{f(xτ )}ηu(dx) −

∫

Γ1

f(x)ηu(dx)
∣∣∣ ≤

≤
∣∣∣
∫

Γ1

Eu
x{f(xτ )}(ηu(dx) − ηum

m (dx))
∣∣∣ +

+
∣∣∣
∫

Γ1

(Eu
x{f(xτ )} − Eum,m

x {f(xm
τ )})ηum

m (dx)
∣∣∣

+
∣∣∣
∫

Γ1

f(x)(ηum

m (dx) − ηu(dx))
∣∣∣ → 0

as m→ ∞.
Therefore ηu is invariant for (xτn

) and by (A11) (iv) ηu = ηu.

We are now in a position to complete the proof of Theorem 4.35. By
(4.98) and (4.100) it suffices to show that for F ∈ C(P (E))

∫

Γ1

Eum,m
x

{ τ−1∑

i=0

F (πm,um

i )
}
ηum

m (dx)

→
∫

Γ1

Eu
x

{ τ−1∑

i=0

F (πu
i )

}
ηu(dx) as m→ ∞

(4.121)

We have

∣∣∣
∫

Γ1

Eum,m
x

{ τ−1∑

i=0

F (πm,um

i )
}
ηum

m (dx)

−
∫

Γ1

Eu
x

{ τ−1∑

i=0

F (πu
i )

}
ηu(dx)

∣∣∣ ≤
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≤ sup
x∈Γ1

|Eum,m
x

{ τ−1∑

i=0

F (πm,um

i )
}
− Eu

x

{ τ−1∑

i=0

F (πu
i )

}
|

+
∫

Γ1

Eu
x

{ τ−1∑

i=0

F (πu
i )

}
(ηum

m (dx) − ηu(dx)) → 0

as m→ ∞ by (4.112), Lemma 4.41 and Lemma 4.42. Consequently Φum
m ⇒

Φu as m→ ∞. The proof of Theorem 4.35 is completed.

Remark 4.43 In the case when (A8) and (A9) are replaced by (A8’) and
(A9’) the assertion of Theorem 4.35 still holds if instead of (D5) we assume
just (D5)(i) with uniform in m boundedness of rm(x, y) on Γc ×Γc as well as
(D5)(ii). In fact, by the uniform boundedness of rm, to prove Theorem 4.35,
we need Lemma 4.37 to hold only on compact subsets of Γc × P (E). On the
other hand assumption (D5)(iii), which here is not satisfied, was only used
in Lemma 4.37 to treat the case when y ∈ ∂Γc.

Remark 4.44 In the case when E is finite (see Remark 4.17) under the con-
tinuity assumption (4.62) (that corresponds to (A2)) and (A11)(ii)-(iv), the
statement of Theorem 4.35 is true if the transition and observation matrices
pa(i, j), r(i, j) are approximated by pa

m(i, j) and rm(i, j) respectively in such
a way that

pam

m (i, j) → pa(i, j),

whenever am → a and m→ ∞,

rm(i, j) → r(i, j),

as m→ ∞, and furthermore also (D6) and (D7)(i)-(iii) are satisfied.

4.5.1.b The embedded i.i.d. case

This further subsection is devoted to the study of the embedded i.i.d. case,
for which we restrict ourselves to the two particular cases considered in ex-
amples 1 and 2 of section 4.4.2.

Starting with Example 1 assume that the state and observation processes
(xn), (yn) satisfy (A1)–(A4), (E 1.1)–(E 1.4).

Furthermore assume that
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(E 1.5) the d-dimensional Lebesgue measure of ∂D1 is zero, where D1 is as in
(E 1.1), and that the state process (xn) is controlled by a continuous
control function u ∈ C(P (E), U) = A.

Let (xn) be approximated by (xm
n ) with transition operator P a

m, observation
density rm(x, y), and control function um ∈ B(P (E), U) for which (D1), (D2)
and (D6) are satisfied.

Assume moreover

(Em 1.1) rm(x, y) = 0 for y ∈ D1 and x 6∈ K, where D1 and K are as in
(E 1.1)

(Em 1.2) for each m there exists λm ∈ P (E) such that for x ∈ K, a ∈ U ,
P a

m(x, ·) = λm(·)

(Em 1.3) inf
m

inf
z∈K

∫

D1

rm(z, y)dy = β1 > 0

(Em 1.4) inf
m

inf
a∈U

inf
z∈E\K

P a
m(z,K) = β2 > 0

Then by Proposition 4.27 there are unique invariant measures Φu and Φum
m

for the filtering processes (πu
n) and (πm,um

n ) corresponding to (xn) and (xm
n )

respectively, and they are of the following forms, for F ∈ bB(P (E))

Φu(F ) = Eu
λ

{ σ∑

i=0

F (πu
i )

}
(Eλ{σ + 1})−1 (4.122)

Φum

m (F ) = E
um,m
λm

{ σ∑

i=0

F (πm,um

i )
}

(Eum,m
λm

{σ + 1})−1 (4.123)

with σ defined in (4.78), and having here a double usage analogous to τ in
(4.111) and (4.112).

We have the following convergence theorem

Theorem 4.45 Under (A1)–(A4), (E 1.1)–(E 1.5), (D1), (D2), (D6) and
(Em 1.1)–(Em 1.4), we have

Φum

m ⇒ Φu weakly in P (P (E)),

as m→ ∞.
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P r o o f . By analogy to the proof of Theorem 4.35 it suffices to show
the convergence of the numerator of (4.123) to the numerator of (4.122) for
F ∈ C(P (E)).

Using similar arguments as in the proof of Corollary 4.40, by Lemma 4.26
it is enough to prove that for any positive integer i

E
um,m
λm

{χ
Dc

1
(ym

1 ) . . . χ
Dc

1
(ym

i−1)χD1
(yi)

i∑

k=0

F (πm,um

k )}

→ Eu
λ{χDc

1
(y1) . . . χDc

1
(yi−1)χD1

(yi)
i∑

k=0

F (πu
k )}

(4.124)

as m→ ∞, with (ym
n ) standing for the observation process corresponding to

(xm
n ).
The proof of (4.124) is a immediate consequence of the following Lemma

Lemma 4.46 Under (A1)–(A4), (D1), (D2), (D6) and (E 1.2), (E 1.5),
(Em 1.2), if bB(P (E)) ∋ Fm → F ∈ C(P (E)) uniformly on compact sub-
sets of P (E), and Fm are uniformly in m bounded we have for any positive
integer i

E
um,m
λm

{χ
∆1

(ym
1 ) . . . χ

∆i
(ym

i )Fm(πm,um

i )}

→ Eu
λ{χ∆1

(y1) . . . χ∆i
(yi)F (πu

i )}.

(4.125)

as m→ ∞, where ∆k is any of D1, D
c
1 or Rd.

P r o o f . Notice first that by (E 1.2), (Em 1.2) and (D1), we have λm ⇒ λ.
Now, let for µ ∈ P (E)

Gum,i
m (µ): = Eum,m

µ {χ
∆i

(ym
1 )Fm(πm,um

1 )}

and
Gu,i(µ): = Eu

µ{χ∆i
(y1)F (πu

1 )}

Clearly, by the definition of r and rm

Gum,i
m (µ) =

∫

E

∫

∆i

Fm(Mum

m (y, µ))rm(z, y)dyP um(µ)
m (µ, dz)
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and
Gu,i(µ) =

∫

E

∫

∆i

F (Mu(y, µ))r(z, y)dyP u(µ)(µ, dz)

Repeating the considerations of the proof of Proposition 3.7, taking into
account (E 1.5) we obtain that for i = 1, 2, . . .,

Gum,i
m (µ) → Gu,i(µ) (4.126)

as m→ ∞, uniformly in µ from compact subsets of P (E).
By (4.126) we immediately have that (4.125) holds with i = 1. Assuming

that (4.125) holds true for i, we have for i+ 1

E
um,m
λm

{χ
∆1

(ym
1 ) . . . χ

∆i+1
(ym

i+1)Fm(πm,um

i+1 )}

= E
um,m
λm

{χ
∆1

(ym
1 ) . . . χ

∆i
(ym

i )Gum,i+1
m (πm,um

i )}

→ Eu
λ{χ∆1

(y1) . . . χ∆i
(yi)G

u,i+1(πu
i )}

= Eu
λ{χ∆1

(y1) . . . χ∆i+1
(yi+1)F (πu

i+1)}

as m→ ∞, by (4.126) and the induction hypothesis. Therefore by induction
we have (4.125) and the proof of Lemma 4.46 is finished.

With the proof of Lemma 4.46 we also completed the proof of Theo-
rem 4.45.

Consider now the model corresponding to example 2 of section 4.4.2.
Assume additionally to (E 2.1)–(E 2.3)

(E 2.4) for each open set O, a ∈ U and x ∈ E we have P a(x,O) > 0

and denote by A the following class of control functions that correspond to
those in (4.92) when u, and therefore also u, are continuous

A = {u ∈ A: there is u ∈ A and a positive integer m such
that for ν ∈ P (E), u(ν) = u(ν)r(ν(ψm))}

Assume the state process (xn), that is controlled by a control function u ∈ A,
i.e. u(ν) = u(ν)r(ν(ψm)), u ∈ A, where now m is a fixed positive integer,
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is approximated by (xm
n ) with a transition operator P a

m and the observations
(ym

n )
ym

n = hm(xm
n ) + wm

n (4.127)

where hm ∈ bB(E,Rd) and wm
n are i.i.d. standard Gaussian random variables,

independent of xm
k for k ≤ n.

Moreover, assume

(D8) hm are uniformly in m bounded, hm converges uniformly on compact
sets of E to h; moreover for the j-th coordinate, for which (E 2.1)
holds, the convergence of hj

m to hj is uniform on E

(Em 2.2) For each n there is λm ∈ P (E) such that

P a
m(x, ·) = λm(·)

for a = 0 and x ∈ E

(Em 2.3) For any compact set K ⊂ E there exists α > 0 such that

inf
m

inf
a∈U

inf
x∈E

P a
m(x,Kc) ≥ α

Furthermore, we assume that (xm
n ) is controlled with a control function um

that has the following properties

(D9) um(ν) → u(ν) uniformly on compact subsets of P (E). Furthermore um

is of the form
um(ν) = um(ν)r(Kmν(ψm)) (4.128)

where um ∈ B(P (E), U) and, uniformly on compact subsets of P (E)
um(ν) → u(ν), as m → ∞ with u being the same as for the limit
control u ∈ A that controls the process (xn). Finally, Km:P (E) 7→
P (E) converge uniformly on compact subsets of P (E), as m → ∞
to the identity transformation of P (E), and if ν(Km+1) ≤ b, we have
Kmν(ψm) ≤ b, for m = 1, 2, . . ., ν ∈ P (E).

Denote by (πmum
n ) the filtering process corresponding to (xm

n ) and (ym
n ). As-

suming m large enough so that by (D8) hm inherits the growth property
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(E 2.1) of h, by Lemma 4.28 and the proof of Proposition 4.30, there is a
unique invariant measure Φum

m of (πmum
n ) and it is of the form

Φum

m (F ) = E
um,m
λm

{ σm∑

i=0

F (πm,um

i )
}

(Eum,m
λm

{σm + 1})−1 (4.129)

for F ∈ bB(P (E)), with

σm = inf{i > 0, Kmπ
m,um(ψm) ≤ b} (4.130)

By the same Proposition 4.30, there is also a unique invariant measure Φu of
(πu

n) and it has the form

Φu(F ) = Eu
λ

{ σ∑

i=0

F (πu
i )

}
(Eu

λ{σ + 1})−1 (4.131)

with σ defined in (4.94).
We have

Theorem 4.47 Under (A1), (A2), (E 2.1)–(E 2.4), (Em 2.2), (Em 2.3),
(D1), (D8), (D9)

Φum

m ⇒ Φu weakly in P (P (E))

as m→ ∞.

P r o o f . By Lemma 4.28 applied to Mum
m (defined in (3.14) with rm(x, y)

given as in (1.2) for h equal to hm) we have that for m > m1, where m1 is
such that by (D8) hm inherits the growth property (E 2.1) of h (compare to
the proof of Corollary 4.29)

sup
m>m1

sup
µ∈P (E)

Eum,m
µ {σ2

m} <∞ (4.132)

Therefore by analogy to the proofs of Theorems 4.35 and 4.45 it suffices to
show the convergence of

E
um,m
λm

{χ
∆1

(Kmπ
m,um

1 ) . . . χ
∆i

(Kmπ
m,um

i )F (πm,um

i )}

to
Eu

λ{χ∆1
(πu

1 ) . . . χ
∆i

(πu
i )F (πu

i )} (4.133)

as m→ ∞ with ∆k = {ν ∈ P (E): ν(ψm) > b}, or ∆k = {ν ∈ P (E): ν(ψm) ≤
b}, or ∆k = P (E), for k = 1, 2, . . . , i.

To prove the convergence (4.133) we need the following auxiliary result
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Lemma 4.48 Under (A1), (A2), (E 2.1), (E 2.4), if Z is a continuous Rd-
valued random variable, and 0 ≤ ϕ ∈ C(E) has a compact support, then for
any b > 0, ν ∈ P (E), u ∈ A

P{Mu(Z, ν)(ϕ) = b} = 0

P r o o f . If P{Mu(Z, ν)(ϕ) = b} > 0, for some b > 0, then by the continuity
of the mapping y 7→Mu(y, ν)(ϕ) (Proposition 1.4), we have Mu(y, ν)(ϕ) = b

for y from some open set G of Rd, or, equivalently,
∫

E

exp[(y, h(z)) −
1

2
(h(z), h(z))](ϕ(z) − b)P u(ν)(ν, dz) = 0 (4.134)

for y ∈ G.
Assume (by E 2.1) that the j-th coordinate hj attains its strong maximum

at ”∞”. Differentiating m times (4.134) with respect to yj, we obtain

∫

E

(hj(z))m exp[(y, h(z)) −
1

2
(h(z), h(z))](ϕ(z) − b)P u(ν)(ν, dz) = 0

for y ∈ G.
Therefore, for any continuous function g: [−‖h‖, ‖h‖] 7→ R, and y ∈ G

∫

E

g(hj(z)) exp[(y, h(z)) −
1

2
(h(z), h(z))](ϕ(z) − b)P u(ν)(ν, dz) = 0 (4.135)

Since ϕ has compact support, there is n such that ϕ(x) = 0 for x 6∈ Bn. By
(E 2.1) there is a compact set K ⊃ Bn such that

inf
z∈Kc

hj(z) = a1 > sup
z∈Bn

hj(z)

Let now g(a) = 0 for a ≤ a1, and g(a) > 0 for a > a1. Then by (4.135)

∫

Bc
n

g(hj(z)) exp[(y, h(z)) −
1

2
(h(z), h(z))](−b)P u(ν)(ν, dz) = 0

Since g(hj(z)) is strictly positive on an open subset of Bc
n, by (E 2.4) we

obtain b = 0, a contradiction.

To show the convergence (4.133) we now prove the following
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Lemma 4.49 Under (A1), (A2), (E 2.1)–(E 2.4), (Em 2.2), (Em 2.3), (D1),
(D8), (D9) if bB(P (E)) ∋ Fm → F ∈ C(P (E)), uniformly on compact
subsets of P (E), as m→ ∞, and Fm are uniformly bounded in m, we have

E
um,m
λm

{χ
∆1

(Kmπ
m,um

1 ) . . . χ
∆i

(Kmπ
m,um

i )Fm(πm,um

i )}

→ Eu
λ{χ∆1

(πu
1 ) . . . χ

∆i
(πu

i )F (πu
i )}

(4.136)

as m→ ∞, with ∆k, for k = 1, 2, . . . , i as in (4.133).

P r o o f . By analogy to the proof of Lemma 4.46 we have λm ⇒ λ and it
suffices to show that

Gum,i
m (µ): = Eum,m

µ {χ
∆i

(Kmπ
m,um

1 )Fm(πm,um

1 )}

converges as m→ ∞, uniformly on compact subsets of P (E) to

Gu,i(µ): = Eu
µ{χ∆i

(πu
1 )F (πu

1 )}

The last convergence follows from Lemma 4.48 and considerations similar to
those of the proof of Proposition 3.7.

Since by (4.136) clearly (4.133) holds, the proof of Theorem 4.47 is com-
pleted.

4.5.2 Specific approximations

The general convergence theorems 4.35, 4.45 and 4.47 of the previous sub-
section will now be applied to more specific approximations for the mixed
observation model as well as for the models of the examples 1 and 2 de-
scribed in section 4.4.2. Namely, by analogy to the approximations for the
case of continuous controls in the discounted cost problem (sections 3.3.1.b
and 3.3.2.b), we shall first approximate the class of admissible control func-
tions A and then discretize the state and observation spaces.

Since we shall need results from section 3.3.1.b, in what follows we assume
that the set of control parameters U is a compact, convex subset of Rl, l ≥ 1,
that contains the origin of Rl.

Moreover in the case of mixed observations we also assume that
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(A12) for any compact set K ⊂ E and any ε > 0 there exists δ > 0 such that

sup
z∈K

sup
a∈U

P a(z,Γ(δ)) < ε

with Γ(δ) as in (D4).

4.5.2.a Control function approximation

Let the class A(L, n) with L > 0 and positive integer n be as in (3.37).
We have (compare with Corollary 3.14)

Proposition 4.50 Assume, for the mixed observation model that (A1), (A2),
(A5), (A8)–(A12) are satisfied. Then, for µ ∈ P (E)

lim
L→∞ n→∞

inf
u∈A(L,n)

Jµ(u) = inf
u∈A

Jµ(u) (4.137)

P r o o f . By Proposition 3.12 each u ∈ A can be approximated, uniformly
on compact subsets of P (E) by uL,n ∈ A(L, n) with L→ ∞, n→ ∞.

Let ΦuL,n , Φu be invariant measures corresponding to the controlled fil-
tering processes (πL,n

i ), (πu
i ) (by Proposition 4.32 these invariant measures

exist and are unique). Then by Theorem 4.35

ΦuL,n ⇒ Φu as L, n→ ∞

Consequently the family {Φu,ΦuL,n , L > 0, n > 0} is tight, and for given
ε > 0 there is a compact set H ⊂ P (E) such that

ΦuL,n(H) ≥ 1 − ε, for L > 0, n > 0.

By (A5) we clearly have
∫

E

c(x, uL,n(ν))ν(dx) →
∫

E

c(x, u(ν))ν(dx)

as L, n→ ∞, uniformly in ν ∈ H.
Therefore, by (1.12) and using Remark 4.34 we obtain

|Jµ(u) − Jµ(uL,n)| ≤
∣∣∣

∫

P (E)

∫

E

c(z, u(ν))ν(dz)(Φu(dν) − ΦuL,n(dν))
∣∣∣

+
∫

H

∣∣∣
∫

E

c(z, u(ν))ν(dz) −
∫

E

c(z, uL,n(ν))ν(dz)
∣∣∣ΦuL,n(dν) + 2‖c‖ε
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Letting L, n→ ∞, since ε can be chosen arbitrarily small, we have

lim
L, n→∞

Jµ(uL,n) = Jµ(u)

from which (4.137) easily follows.

Remark 4.51 As one can see from the proof of the last Proposition, if
A ∋ um → u ∈ A, uniformly on compact subsets of P (E), we always have
Jµ(um) → Jµ(u).

Almost analogously, using Theorem 4.45, as well as Proposition 4.27 we
obtain the following result for the model of Example 1.

Proposition 4.52 Assume that for Example 1 the assumptions (A1)–(A5),
(E 1.1)–(E 1.5) are satisfied. Then, for µ ∈ P (E)

lim
L→∞ n→∞

inf
u∈A(L,n)

Jµ(u) = inf
u∈A

Jµ(u) (4.138)

In the case of Example 2, recalling the definition given in section 4.5.1.b
of the class A ⊂ A, define a class A(L, n) by

A(L, n): = {u ∈ A, u(ν) = u(ν(ϕ1), . . . , ν(ϕm))r(ν(ψm)), where
u: [−‖ϕ1‖, ‖ϕ1‖] × . . .× [−‖ϕn‖, ‖ϕn‖] → 0 is Lipschitz
with constant L and ψn is as in (4.91)}

Notice that, by Proposition 3.12 and the form of the functions r and ψn (see
(4.90), (4.91)) it is immediately seen that any u ∈ A (in particular u ∈ A)
can be uniformly approximated on compact sets of P (E) by functions from
A(L, n) for L, n→ ∞. Analogously to Propositions 4.50 and 4.52 using this
time Proposition 4.30 and Theorem 4.47 we have

Proposition 4.53 Under (A1), (A2), (A5), (E 2.1)–(E 2.4) for Example 2
we have with µ ∈ P (E)

lim
L→∞ n→∞

inf
u∈A(L,n)

Jµ(u) = inf
u∈A

Jµ(u) (4.139)

214



4.5.2.b Discretization of state and observations

Consider now the discretization of the state and observation spaces intro-
duced in section 3.3.2. We shall adjust the form of the partitions of E and
Rd so that successively the assumptions of Theorems 4.35, 4.45 and 4.47 are
satisfied.

4.5.2.b1 The mixed observation case

In the case of the mixed observation model we assume that km = sm, Bm
k =

Dm
k , for k = 1, 2, . . . , km, and that there exist kr, kp, kr ≤ kp < km such that

kr⋃

k=1

Bm
k = Γ1

kp⋃

k=1

Bm
k = Γ

Then define

rm(x, y) =
( ∫

Bm
k

dz
)−1[ ∫

Bm
k

r(bmj , z)dz+

1

km − kp − 1

∫

Bm
km

r(bmj , z)dz
] (4.140)

for x ∈ Bm
j , y ∈ Bm

k with kp < k < km, j > kp, and rm(x, y) = 0 for y ∈ Bm
km

and y 6∈ Γc.
Let now Em = {1, 2, . . . , km}, Γm

1 = {1, 2, . . . , kr}, Γm = {1, 2, . . . , kp},
and for j, k, with kp < j, k ≤ km

rm(j, k) =
∫

Bm
k

rm(bmj , z)dz (4.141)

For a fixed u ∈ A consider the following two partially observed systems

I. The unobserved process (xm
i ) evolves in E according to the transition

operator P ai
m (x, ·), defined in (3.50), with initial law µ and observations

(ym
i ) such that

P{ym
i+1 ∈ A|xm

0 , . . . , x
m
i+1, y

m
1 , . . . , y

m
i } = χ

A∩Γ
(xm

i+1)+

+χ
Γc(x

m
i+1)

∫

A∩Γc

rm(xm
i+1, y)dy,

(4.142)

215



the control in the generic period i is ai = Lmu(πm
i ), where the opera-

tor Lm is defined above (3.71) and πm
i stands for the filtering process

corresponding to xm
i with observations ym

i .

II. The unobserved process (xm
i ) evolves in Em according to the transition

matrix P
ai

m(k, p), defined in (3.52), with initial law (µ(Bm
1 ), . . . , µ(Bm

km
))

and observations ym
i ∈ Em satisfying

P{ym
i+1 = k|xm

0 , . . . , x
m
i , x

m
i+1 = j, ym

1 , . . . , y
m
i } = χ

k∩Γm(j)+

+χ
(Γm)c(j)rm(j, k)

(4.143)

for 1 ≤ k ≤ km with rm(j, k) according to (3.54); the control in the
generic period i is ai = L̃mu(πm

i ), where the operator L̃m is also defined
above (3.71) and πm

i is the filtering process that corresponds to xm
i and

ym
i .

By analogy to (4.49) define

Ma
m(y, ν)(A) = χ

A∩Γ
(y) + χ

Γc(y)Na
m(y, ν)(A) (4.144)

with

Na
m(y, ν)(A) =

∫

A∩Γc

rm(z, y)P a
m(ν, dz)

( ∫

Γc

rm(z, y)P a
m(ν, dz)

)−1

for y ∈ E, ν ∈ P (E), and

M
a
m(y, η)(k) = χ

k∩Γm(y) + χ
(Γm)c(y)N

a
m(y, η)(k) (4.145)

with

N
a
m(y, η)(k) = rm(k, y)P

a
m(η, k)

( km∑

j=1

rm(j, y)P
a
m(η, j)

)−1

for y ∈ Em, η ∈ P (Em) and letting P
a
m(η, k) =

km∑
j=1

P
a
m(j, k)ηj.

We have
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Proposition 4.54 The filtering processes (πm
i ) and (πm

i ) have the following
representations

πm
i+1(A) = MLmu

m (ym
i+1, π

m
i )(A) for A ∈ B(E), P a.e.,

πm
i+1(k) = M

L̃mu
m (ym

i+1, π
m
i )(k) for k ∈ Em, P a.e.,

πm
0 (A) = µ(A) πm

0 = µ(Bm
k )

The processes (πm
i ) and (πm

i ) are Markov with respect to the σ-fields Y i
m =

σ{ym
1 , . . . , y

m
i } and Y

i

m = σ{ym
1 , . . . , y

m
i } respectively, with transition opera-

tors

∏Lmu
m (ν, F ) =

∫

Γ

F (δz)PLmu(ν)
m (ν, dz)+

+
∫

Γc

∫

Γc

F (MLmu(ν)
m (y, ν))rm(z, y)dyPLmu(ν)

m (ν, dz)

(4.146)

and

∏L̃mu
m (η, f) =

kp∑

k=1

f(δk)P
L̃mu(η)

m (η, k)+

+
km∑

k=kp+1

km∑

j=kp+1

f(M
L̃mu(η)
m (k, η))rm(j, k)P

L̃mu(η)
m (η, j)

(4.147)

for F ∈ bB(P (E)), f ∈ bB(P (Em)), and denoting by δk an element of P (Em)
with 1 corresponding to the k-th coordinate and zeros elsewhere.

Moreover, under (A2) and (B9), for u ∈ A the operator
∏L̃mu

m is Feller
i.e. it transforms C(P (Em)) into itself.

P r o o f . The first part of the Proposition follows by considerations analogous
to those of Lemma 4.14 (compare with Lemma 1.1 and 1.3). The Feller

property of
∏L̃mu

m is a consequence of (B9) and the proof of Proposition 4.15.

The filtering process πm
i will play a fundamental role in the construction of

nearly optimal control functions. For this purpose we consider the following
ergodic cost functional (see (3.55))

Jm
µ (L̃mu): = lim sup

n→∞
n−1Eµ

{ n−1∑

i=0

c(xm
i , L̃mu(πm

i ))
}

(4.148)
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with u ∈ A(L, n), c(j, a) identified with c(bmj , a) as in (3.55), and µ =
(µ(Bm

1 ), . . . , µ(Bm
km

)).
Since we have equivalently

Jm
µ (L̃mu) = lim sup

n→∞
n−1Eµ

{ n−1∑

i=0

km∑

j=1

c(j, L̃mu(πm
i ))πm

i (j)
}

(4.149)

the evaluation of this cost functional leads to the study of the ergodic proper-
ties of (πm

i ). Therefore corresponding to (A11) and with the symbols having
an analogous meaning as in (A11) e.g. TΓm = inf{i > 0: xm

i ∈ Γm}, we
assume

(C13) (i) E
u,m
j TΓm

1
<∞ for any u ∈ C(P (Em), U), j = 1, 2, . . . , km

(ii) sup
m

sup
u∈C(P (Em),U)

sup
j=1,2,...,kr

E
u,m
j {τ 2} < ∞ with τ = T(Γm)c + TΓm

1
◦

ΘT(Γm)c

(iii) for any u ∈ C(P (Em), U) there is a unique invariant measure ηu
m of

xm
τn

with τ1 = τ, . . . , τn+1 = τn + τ ◦ Θτn
,

where, for given u ∈ C(P (Em), U), xm
i stands for the unobserved process on

Em with transition matrix P u(πm
i )(k, p) and P u,m

j denotes a measure generated
by (xm

i ) with initial state xm
0 = j.

Under (C13) Proposition 4.32 applies also to the process (πm
i ) so that for

u ∈ C(P (Em), U) there is a unique invariant measure Φ
u

m of πm
i and it has

the form

Φ
u
m(f) =

kr∑

j=1

E
u,m
j

{ τ−1∑

i=0

f(πm
i )

}
ηu

m(j) ·
( kr∑

j=1

E
u,m
j {τ}ηu

m(j)
)−1

(4.150)

for f ∈ bB(P (Em)).
Consequently, by (4.149) and (4.99) we have

Jm
µ (L̃mu) =

∫

P (Em)

km∑

j=1

c(j, L̃mu(η))ηjΦ
L̃mu
m (dη) (4.151)

We are now in a position to formulate the theorem justifying our discretiza-
tions as leading to a correct approximation
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Theorem 4.55 Assume (A1), (A2), (A5), (A8)–(A12) and (C13). Then,
for L, n > 0

sup
u∈A(L,n)

|Jm
µ (L̃mu) − Jµ(u)| → 0 (4.152)

as m→ ∞, uniformly in µ ∈ P (E) with µ = (µ(Bm
1 ), . . . , µ(Bm

km
)).

P r o o f . Assume, contrary to (4.152) that

|Jm
µm

(L̃mum) − Jµm
(um)| ≥ δ > 0 (4.153)

for m = 1, 2, . . ., um ∈ A(L, n) and µm ∈ P (E).
By the compactness of the class A(L, n) we may assume that um(ν) →

u(ν), u ∈ A(L, n), uniformly on P (E). Therefore by Lemma 3.21(ii)

Lmum(ν) → u(ν) as m→ ∞ (4.154)

uniformly on compact subsets of P (E).
Notice now, that for the process xm

i and xm
i , defined in I and II with

controls ai = Lmum(πm
i ) and ai = L̃um(πm

i ) respectively, the corresponding
Markov times TΓ1 , TΓc , τ , τn have the same distributions as TΓm

1
, T(Γm)c , τ ,

τn, respectively. Moreover, under (C13), the measure

ηLmum(B): =
kr∑

j=1

P
Lmum,m
bm
j

{xm
τ ∈ B}ηL̃mum

m (j) (4.155)

for B ∈ B(Γ1), is invariant for (xm
τn

).
Therefore, by Remark 4.33

ΦLmum
m (F ): =

∫

Γ1

ELmum,m
x

{ τ−1∑

i=0

F (πm
i )

}
ηLmum

m (dx)

( ∫

Γ1

ELmum,m
x {τ}ηLmum

m (dx)
)−1

(4.156)

defined for F ∈ bB(P (E)) is an invariant measure of πm
i with control ai =

Lmum(πm
i ).

Furthermore, by (4.150), (4.151), (4.155) and (4.156)

Jm
µm

(L̃mum) =
∫

P (E)

∫

E

cm(x, L̃mum(ν))ν(dx)ΦLmum

m (dν) (4.157)
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with cm as in (3.49).
Now, we use Theorem 4.35 with (xm

i ) defined in I and controlled by
ai = Lmum(πm

i ) and the observations having density rm(x, y) defined in
(4.140). For its applicability we need to check assumptions (D1) and (D4)–
(D7). By (A1), (A2), clearly (D1) is satisfied, and (D4) follows from (A12).
By (A8) and (A9) one can show (D5) (i)–(iii). Since by (4.154) and (C13)
also assumptions (D6) and (D7) hold, from Theorem 4.35 we obtain that

ΦLmum

m ⇒ Φu weakly in P (P (E)) as m→ ∞

The next part of the proof is similar to that of Proposition 4.50. Namely,
taking into account that cm given by (3.49) satisfies (D3) (see Lemma 3.15)
we obtain by (4.157), as well as (1.12), (4.98), (4.99) that

Jm
µm

(L̃mum) → Jµ(u) as m→ ∞ (4.158)

The last convergence together with Remark 4.51 form a contradiction to
(4.153). Thus (4.152) holds.

Corollary 4.56 Under the assumptions of Theorem 4.55

(i)
inf

u∈Am(L,n)
Jm

µ (u) → inf
u∈A(L,n)

Jµ(u) (4.159)

as m→ ∞, uniformly in µ ∈ P (E), with the class Am(L, n) defined in
3.3.2.b.

(ii) if for m such that

sup
u∈A(L,n)

|Jm
µ (L̃mu) − Jµ(u)| < ε (4.160)

a control function L̃mum with um ∈ A(L, n) is ε-optimal for Jm
µ over

Am(L, n), then the control function um is 3ε optimal for Jµ over A(L, n).

P r o o f . Since L̃mA(L, n) = Am(L, n), (see (3.72)) (i) immediately follows
from (4.152). To show (ii) notice that, using (4.160)

Jµ(um) ≤ Jm
µ (L̃mum) + ε ≤ inf

u∈A(L,n)
Jm

µ (L̃mum) + 2ε ≤ inf
u∈A(L,n)

Jµ(u) + 3ε

(4.161)

220



Remark 4.57 In view of Corollary 4.56, the problem of the construction of
a nearly optimal control function u is now reduced to that of constructing a
nearly optimal control function for Jm

µ with respect to the class L̃mu where
u ∈ A(L, n) (or equivalently with respect to the class Am(L, n)). By (4.151)
the latter problem can be viewed as a finite dimensional, complete observation
control problem of the filtering process (πm

i ) with values in the simplex P (Em)
and ergodic cost functional given in (4.151). Notice moreover that for u ∈
Am(L, n) there is a unique invariant measure Φ

u

m of πm
i and it has the form

(4.150).

4.5.2.b2 The embedded i.i.d. case

In the remaining part of this section we point out the changes that are re-
quired for the models of Examples 1 and 2 and then we formulate the analogs
of Theorem 4.55 together with Corollary 4.56 for these two cases.

In the case of Example 1 we assume that the partitions (Bm
k ) of E and

(Dm
s ) of Rd introduced in 3.2.2 are such that

kp⋃

k=1

Bm
k = K and

sr⋃

s=1

Dm
s = D1

for some kp < km, sr < sm, where K and D1 are as in (E 1.1)–(E 1.4). Then,
we let P a

m be as in (3.50), rm(x, y) as in (3.48), and λm = λ as in (E 1.2).
Clearly, in this case (Em 1.1)–(Em 1.4) as well as (D1) (D2) are satisfied.

Let Em, Dm be as in (3.51) and

Km = {1, . . . , kp} D1
m = {1, . . . , sr} (4.162)

Consider now the processes (xm
i ) and (xm

i ) with observations (ym
i ) and (ym

i )
defined in I and II respectively, with the only change that (4.142) is replaced
by (1.1) with r = rm given by (3.48) and (4.143) is replaced by (3.54).
The corresponding filtering processes (πm

i ) and (πm
i ) are Markov where, for

u ∈ A(L, n), the transition operators
∏Lmu

m and
∏L̃mu

m are given by (3.15)
and (3.58) respectively. Furthermore, under (A2) and (B9), for u ∈ A the

operator
∏L̃mu

m is Feller. Let

σm = inf{i > 0, ym
i ∈ D1} (4.163)
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and
σm = inf{i > 0, ym

i ∈ D1
m}

By construction, it is clear that the distributions of σm and σm coincide. By
analogy to (4.148) let

Jm
µ (L̃mu): = lim sup

n→∞
n−1Eµ

{ n−1∑

i=0

c(xm
i , L̃mu(πm

i ))
}

(4.164)

so that we have also (4.149) for which, using Proposition 4.27, we obtain
analogously to (4.151)

Jm
µ (L̃mu) =

∫

P (Em)

km∑

j=1

c(j, L̃mu(η))ηjΦ
L̃mu
m (dη) (4.165)

with

Φ
L̃mu

m (F ) = Eλ

{ σm∑

i=0

F (πm
i )

}
(Eλ{σ

m + 1})−1 (4.166)

for F ∈ bB(P (Em)).
We have

Theorem 4.58 Assume (A1)–(A5), (E 1.1)–(E 1.5). Then, for L, n > 0

sup
u∈A(L,n)

|Jm
µ (L̃mu) − Jµ(u)| → 0 (4.167)

as m → ∞, uniformly in µ ∈ P (E). Moreover, the statements (i) and (ii)
of Corollary 4.56 also hold.

P r o o f . We repeat the steps of the proof of Theorem 4.55. That is, we have
to show a contradiction to (4.153). To this end we first recall (see remarks
before Theorem 4.45), that under the given assumption there exists invariant
measures of (πm

i ) corresponding to xm
i with controls ai = Lmum(πm

i ) and
that by Theorem 4.45 they converge to Φu of (4.122) as m → ∞. Then, by
considerations similar to the proof of Proposition 4.50 we complete the proof
of the contradiction to (4.153). The proof of the statements (i) and (ii) of
Corollary 4.56 is immediate.
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In the case of Example 2 we use the discretizations of section 3.3.2 with
the only change that now rm(x, y) is given by a particular d-dimensional form
of (1.2) where h replaced by hm

hm(x): = h(bmj ) for x ∈ Bm
j . (4.168)

Moreover instead of the class A(L, n) we use A(L, n) that is defined before
Proposition 4.53.

Similarly as in the case of Example 1, the construction of a nearly optimal
control function for Jµ(u) will be reduced to that for

Jm
µ (L̃mu) = lim sup

n→∞
n−1Eµ

{ n−1∑

i=0

km∑

j=1

c(j, L̃mu(πm
i ))πm

i (j)
}

(4.169)

over u ∈ A(L, n), where πm
i is the filtering process corresponding to (xm

i )
defined in II with (4.143) replaced by (1.1) for r = rm as above. To this
effect notice that, for m sufficiently large, hm inherits the growth property
(E 2.1) of h, and by Proposition 4.30 there exists then a unique invariant

measure Φ
L̃mu
m of πm

i and it is of the form

Φ
L̃mu
m (F ) = Eλ

{ σm∑

i=0

F (πm
i )

}
(Eλ{σ

m + 1})−1 (4.170)

for F ∈ bB(P (Em)) and σm = inf{i > 0, πm
i (ψn) ≤ b}. Therefore, again by

Proposition 4.30, for u ∈ A(L, n) we have analogously to (4.165)

Jm
µ (L̃mu) =

∫

P (Em)

km∑

j=1

c(j, L̃mu(η))ηjΦ
L̃mu

m (dη) (4.171)

By analogy to Theorem 4.58 we obtain

Theorem 4.59 Assume (A1), (A2), (A5), (E 2.1)–(E 2.4). Then for L,
n > 0

sup
u∈A(L,n)

|Jm
µ (L̃mu) − Jµ(u)| → 0 (4.172)

as m→ ∞, uniformly in µ ∈ P (E).
Furthermore the statements (i) and (ii) of Corollary 4.56 hold true with

Am(L, n) and A(L, n) replaced by Am(L, n): = L̃mA(L, n) and A(L, n) re-
spectively.
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P r o o f . Notice first that by (E 2.1), the functions hm defined in (4.168)
satisfy (D8). By the definition of P a

m (see 3.50) also (Em 2.2) with λm = λ and
(Em 2.3) are satisfied. Now as in the proof of Theorem 4.55 it suffices to show
a contradiction to (4.153). For this purpose we use here Theorem 4.47 with
the process (xm

i ) defined in I, the observations according to (1.1), (1.2) with
h = hm from (4.168), and the controls ai = Lmum(πm

i ), where um ∈ A(L, n).
Since the family A(L, n) is compact in C(P (E), U), we can also guarantee
(D9) to be satisfied with the operator Km = Lm.

4.5.3 Discretization of the simplex P (Em)

Given an ergodic control problem, either with mixed observations or with
a structure corresponding to Examples 1 and 2 of section 4.4.2, from the
results of the previous subsection 4.5.2 (Corollary 4.56 and Remark 4.57 for
the mixed observation case and Theorems 4.58 and 4.59 for the models of
Examples 1 and 2 respectively) we have that the construction of a nearly
optimal control function for the given partially observed control problem can
be reduced to the construction of a nearly optimal control function for a
complete observation ergodic control problem, where the state is the filter
process (πm

i ) that takes values in the simplex P (Em), the cost functional is

Jm
µ (u) = lim sup

n→∞
n−1Eµ

{ n∑

i=1

km∑

j=1

c(j, u(πm
i ))πm

i (j)
}

(4.173)

and the control belongs either to Am(L, n) or to Am(L, n).
Furthermore, for u ∈ Am(L, n) and the assumptions of either Theo-

rem 4.55 or Theorem 4.58, and for u ∈ Am(L, n) and the assumptions
of Theorem 4.59 (with m sufficiently large that hm in (4.168) inherits the
growth property (E 2.1)), there exist unique invariant measures Φ

u
m of the

filter process (πm
i ) having the representations (4.150), (4.166) and (4.170)

respectively. Correspondingly, in the first case, namely mixed observations
and u ∈ Am(L, n), the cost functional Jm

µ (u) in (4.173) admits also the repre-
sentation (4.151); for the second case, namely Example 1 and u ∈ Am(L, n)
and the third case of Example 2 and u ∈ Am(L, n), Jm

µ (u) admits also the
representations (4.165) and (4.171) respectively. Notice that, formally, all
these latter representations are the same. Finally, if also assumption (B9)
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holds, the filtering processes (πm
i ) are Feller with transition operators

∏u
m,

defined in (4.147) for the mixed observation model, and in (3.58) for the
models of Examples 1 and 2.

Since the processes (πm
i ) still take their values in the infinite space P (Em),

for the actual construction of nearly optimal control functions we consider
a further approximation based on the discretization of the space P (Em) in-
troduced in section 3.3.3.a1 and already used in an analogous way in section
3.3.3.b. More precisely let (Gq

k)k=1,2,...,kq
be a partition of P (Em) with repre-

sentative elements {eq
1, . . . , e

q
kq
}.

Given a control function u in Am(L, n) or Am(L, n), for the Markov pro-
cess π̂i on {eq

1, . . . , e
q
kq
} with transition matrix

∏̂u(eq

k
)

m
(eq

k, e
q
p) =

∏u(eq

k
)

m
(eq

k, G
q
p)

(see (3.126)) define analogously to (3.127) the cost functional Ĵq
eq
p
(u) by

Ĵ
q
eq
p
(u) = lim sup

n→∞
n−1Eu

eq
p

{ n−1∑

i=0

km∑

j=1

c(j, u(π̂i))π̂i(j)
}

(4.174)

We have by analogy to Theorem 3.39

Theorem 4.60 Under (A2), (A5) and (B9) together with assumptions guar-
anteeing the uniqueness of the invariant measure of πm

i , for given m (in the
case of Example 2, a sufficiently large m) we have

sup
u∈Am(L,n)

sup
η∈P (Em)

|Jm
η (u) − Ĵ

q

Q̂qη
(u)| → 0 (4.175)

as q → ∞, where Q̂q is defined in (3.125) and where Am(L, n) is replaced by
Am(L, n) in the case of Example 2.

P r o o f . For a given u ∈ Am(L, n) or u ∈ Am(L, n), consider a process (π̌i)
on P (Em) with transition operator

∏̌u(η)

m
(η, ·) =

∏u(Q̂qη)

m
(Q̂qη, ·) (4.176)
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Let Φ̂u
q be an invariant measure for π̂i. Then the measure Φ̌u

q

Φ̌u
q (·): =

kq∑

k=1

∏̌u(eq

k
)

m
(eq

k, ·)Φ̂
u
q (eq

k) (4.177)

is invariant for (π̌i).
In fact, we have for A ∈ B(P (Em))

∫

P (Em)

∏̌u(η)

m
(η,A)Φ̌u

q (dη) =

=
kq∑

l=1

kq∑

k=1

∏u(eq

l
)

m
(eq

l , A)
∏u(eq

k
)

m
(eq

k, G
q
l )Φ̂

u
q (eq

k)

=
kq∑

l=1

∏u(eq

l
)

m
(eq

l , A)
kq∑

k=1

∏̂u(eq

k
)

m
(eq

k, e
q
l )Φ̂

u
q (eq

k)

=
kq∑

l=1

∏̌u(eq

l
)

m
(eq

l , A)Φ̂u
q (eq

l ) = Φ̌u
q (A)

Now we show that if, as q → ∞, uq ∈ Am(L, n) (or Am(L, n) with m

sufficiently large in the case of Example 2), converge uniformly to u ∈
Am(L, n)(Am(L, n)), then

Φ̌uq

q ⇒ Φ
u
m as q → ∞ (4.178)

Notice that, since (π̂i) is a finite state Markov chain, for any given uq it has

an invariant measure Φ̂uq and therefore Φ̌uq
q given by (4.177) is well defined.

Moreover, since P (Em) is compact, there is a subsequence qk → ∞ and a
measure Φ ∈ P (Em) such that Φ̌

uqk
qk ⇒ Φ.

Furthermore, by (3.132) and the Feller property of
∏u

m we have for f ∈
C(P (Em))

|Φ(f) − Φ(
∏u

m
f)| ≤ |Φ(f) − Φ̌

uqk
qk (f)| +

+|Φ̌
uqk
qk (f) − Φ̌

uqk
qk (

∏̌uqk

m
f)| + |Φ̌

uqk
qk (

∏̌uqk

m
f)

−Φ̌
uqk
qk (

∏u

m
f)| + |Φ̌

uqk
qk (

∏u

m
f) − Φ(

∏u

m
f)|

≤ |Φ(f) − Φ̌
uqk
qk (f)| + sup

η
|
∏̌uqk

(η)

m
(η, f) −

∏u(η)

m
(η, f)|

+|Φ̌
uqk
qk (

∏u

m
f) − Φ(

∏u

m
f)| → 0 as k → ∞
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Thus Φ is invariant for πm
i , and by the uniqueness of the invariant measure

Φ
u

m for (πm
i ) we have that Φ = Φ

u

m.
Therefore (4.178) holds.
Assume now that (4.175) is not satisfied. Then for some sequence uq ∈

Am(L, n) (or Am(L, n)), ηq ∈ P (Em) and ε > 0 we have

|Jm
ηq

(uq) − Ĵ
q

Q̂qηq
(uq)| > ε (4.179)

By the compactness of the classes Am(L, n) and Am(L, n) we may assume
that uq → u ∈ Am(L, n) (resp. Am(L, n)), uniformly on P (Em), as q → ∞.

For each q = 1, 2, . . ., and Q̂qηq, there exists an invariant measure Φ̂uq
q of (π̂i),

which may depend on Q̂qηq such that

Ĵ
q

Q̂qηq
(uq) =

kq∑

k=1

km∑

j=1

c(j, uq(e
q
k))eq

k(j)Φ̂uq

q (eq
k)

Then with Φ̌uq defined in (4.177) we have

Ĵ
q

Q̂qηq
(uq) =

kq∑

k=1

km∑

j=1

c(j, uq(e
q
k))eq

k(j)Φ̌uq

q (Gq
k) =

∫

P (Em)

Cq(η)Φ̌uq

q (dη)

with

Cq(η): =
km∑

j=1

c(j, uq(e
q
k))eq

k(j) for η ∈ G
q
k.

Since Cq(η) →
km∑
j=1

c(j, u(η))ηj, as q → ∞, uniformly in η ∈ P (Em), by

(4.178)

Ĵ
q

Q̂qηq
(uq) →

∫

P (Em)

km∑

j=1

c(j, u(η))ηjΦ
u

m(dη) = Jm
η (u)

as q → ∞, a contradiction to (4.179).
Therefore (4.175) is satisfied.

By analogy to Corollary 3.40 we immediately have
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Corollary 4.61 Under the assumptions of Theorem 4.60, if u ∈ Am(L, n)
(or u ∈ Am(L, n) with m sufficiently large in the case of Example 2) is an
ε-optimal control function for the cost functional Ĵq

Q̂qη
(u), η ∈ P (Em) and q

is so large that

sup
u∈Am(L,n) (Am(L,n))

sup
η∈P (Em)

|Jm
η (u) − Ĵ

q

Q̂qη
(u)| < ε (4.180)

then u is a 3ε-optimal control function for the cost functional Jm
η .

By Theorem 4.60 and Corollary 4.61, to construct ε-optimal control func-
tions for the cost functional Jm

η (u), it remains to find a nearly optimal control

function u ∈ Am(L, n) (Am(L, n)) for Ĵq

Q̂qη
with q sufficiently large.

Since the Markov process (π̂i) takes values in the finite set {eq
1, . . . , e

q
kq
},

for a given u ∈ Am(L, n) or Am(L, n), we need only a finite number of values
u(ζi), i = 1, 2, . . . , kq, where ζi is as in (3.134) and u is the Lipschitz func-
tion corresponding to u in the definition of the class Am(L, n), or Am(L, n)
respectively.

Therefore, one only needs to consider the values a1, . . . , akq ∈ U , where
ai = u(ζi), and verify the Lipschitz condition (3.135).

For details see the discussion following Corollary 3.40 through the end of
section 3.3.3.b.

4.5.4 Computational analysis of an example

This section contains a computational analysis of the approximations studied
in sections 4.5.1–4.5.3 and consists of the construction of nearly optimal
controls for a particular case of the model of Example 2 in section 4.4.2.

Let us first notice that, contrary to what we did in section 4.5.2 where we
were motivated by the desire to present the most general approach, here we
present an alternative possibility where we discretize the observation space
Rd only towards the end.

Once a partition of the state space E is given, there is in fact no strict
necessity to discretize the observations right from the beginning. So, if we
discretize according to section 4.5.2.b only the state space, we obtain a par-
tially observed ergodic control problem with the state xm

i (see II in section
4.5.2.b) evolving in Em, but the observations (yi) are in Rd; the cost func-
tional Jm

µ (u) remains of the form (4.148), but (πm
i ) is now the filtering process
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corresponding to (xm
i ) and (yi) that satisfies a recursion analogous to (3.57)

where rm(j, ym
i ) is replaced by r(j, yi) = r(bj, yi) with r(x, y) determined in

(1.2); finally Jm
µ (u) is minimized over u ∈ Am(L, n).

Equivalently, we may consider a completely observed control problem on
the simplex P (Em) with transition kernel

∏u
m as in (3.58), where M

u

m is
as in (3.57) but with rm(j, ym

i ) replaced by r(bj, yi), cost functional Jm
µ (u)

given by (4.173), and control functions u from the class Am(L, n). A further
discretization of the simplex P (Em) as in section 4.5.3 leads to a problem for
which the computations can actually be carried out. However, to compute the
transition kernel for (πm

i ), one has to compute probabilities of sets of the form
{y:M

u
m(y, eq

k) ∈ Gq
p}. Since the transformation M

u
m(y, s) is highly nonlinear

as a function of y, these probabilities are difficult to determine explicitly.
Therefore, to make computations feasible, at this stage a discretization of
the observations becomes now unavoidable.

Notice that the alternative possibility not to discretize the observations
already from the beginning and that was just described for a model of the
type of Example 2, can also be applied to models corresponding to Example 1.

Based on the above comments, we now present our computational ex-
ample, dividing the rest of the section into three further subsections. In
subsection 4.5.4.a, based on an approach that is described in detail in [30],
we present a description of the computational method. Its implementation
is given in subsection 4.5.4.b and finally numerical results are reported in
subsection 4.5.4.c.

4.5.4.a The computational method

The first step consists in partitioning the state space E, by which we obtain
a partially observed Markov chain (xi) on Em = {1, 2, . . . , k}, with transition
matrix P a(j, l), j, l ∈ Em and observations (yi) of the form

yi = h(xi) + wi (4.181)

where wi are i.i.d. d-dimensional standard Gaussian vectors, and h(x) ∈ Rd

for x ∈ Em.
We choose U = [0, K] and the class of admissible control functions of the
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form Am(L, n) i.e. for η ∈ P (Em)

u(η) = u
( k∑

j=1

ϕ1(j)ηj, . . . ,
k∑

j=1

ϕn(j)ηj

)
r
( k∑

j=1

ψ(j)ηj

)
(4.182)

where, ϕi(j), ψ(j) are fixed nonnegative numbers, with (see (4.91)) ψ(k) = 0,
ψ(j) ≤ 1, and (see (4.90)) r: [0, 1] → [0, 1] satisfying for 0 < b < c < 1

r(x) =





0 for x ≤ b

c
(x− b)

c− b
for b ≤ x ≤ c

1 for c ≤ x ≤ 1

(4.183)

and where u:Rn → U = [0, K] is a Lipschitz function with Lipschitz con-
stant L.

Moreover, for the sake of our specific example, for a ∈ U = [0, K], let

P a(j, l) =
p1(j, l)a2 + p2(j, l)a+ λ(l)

a2 + a+ 1
(4.184)

where p1(j, l), p2(j, l) are fixed transition matrices and λ ∈ P (Em). Finally,
for fixed numbers c(j), d(j), j ∈ Em, let

c(j, a) = c(j)a2 + d(j) (4.185)

The problem is now completely described by the constants k, d, h(j) for j ∈
Em, K, L, n, ϕi(j) for i = 1, 2, . . . , n, j ∈ Em, ψ(j) for j ∈ Em, b, c, λ(j) for
j ∈ Em, p1(j, l), p2(j, l) for j, l ∈ Em, c(j) and d(j) for j ∈ Em.

To guarantee the existence of a unique invariant measure of the cor-
responding filtering process πm

i for any Lipschitz function u:Rn → U , by
analogy to (E 2.1), (E 2.3) we also assume that the choice of p1(i, j), p2(i, j),
λ(j) and h(j) is such that

inf
a∈U

inf
i∈Em

P a(i, k) > 0 (4.186)

and
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for some j ∈ {1, 2, . . . , d} we have either

hj(k) > hj(i) for i 6= k (4.187)

or
hj(k) < hj(i) for i 6= k

As we mentioned above, to make computations feasible, we now discretize
also the observation space Rd. For this purpose we introduce two parameters
β and γ > 0. For a given β a parameter M(β) is determined in such way
that

sup
j∈Em

∫

Rd\[−M(β),M(β)]d

(2π)−
d
2 exp[−

1

2
(y − h(j), y − h(j)]dy < β (4.188)

Then the rectangle [−M(β),M(β)]d is partitioned into D1, . . . , Ds(β,γ) sub-
rectangles with diameters less than γ. Let D0 = Rd \ [−M(β),M(β)]d and
define as its representative element d0 the point in Rd that has its coordinates
equal to M(β) + 1. In each Ds, s = 1, 2, . . . , s(β, γ) we choose the center ds

as a representative element.
Put

mu
β,γ(η): =

s(β,γ)∑

s=1

(2π)−
d
2

k∑

j=1

exp[−
1

2
(ds − h(j), ds − h(j))]P u(η)(η, j)

∫

Ds

dy

(4.189)
and for B ∈ B(P (Em)) define, with M

u

m as described at the beginning of this
section,

∏u
β,γ(η,B): =

s(β,γ)∑

s=1

(2π)−
d
2

k∑

j=1

exp[−
1

2
(ds − h(j), ds − h(j))]

P u(η)(η, j)χ
B

(M
u
m(ds, η))

∫

Ds

dy + χ
B

(M
u
m(d0, η))

(
1−

s(β,γ)∑

s=1

(2π)−
d
2

k∑

j=1

exp[−
1

2
(ds − h(j), ds − h(j))]

)

P u(η)(η, j)
∫

Ds

dy, if mu
β,γ(η) ≤ 1

(4.190)
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and

∏u
β,γ(η,B): =

s(β,γ)∑

s=1

(2π)−
d
2

k∑

j=1

exp[−
1

2
(ds − h(j), ds − h(j))]P u(η)(η, j)

χ
B

(M
u
m(ds, η))

∫

Ds

dy(mu
β,γ(η))−1 when mu

β,γ(η) > 1

Using an argument similar to the proof of Theorem 4.60, it is clear that the
control problem for a Markov process on P (Em) with the transition operator∏u

β,γ approximates the problem corresponding to the transition operator
∏u

m

provided β and γ are sufficiently small.
In the next step, according to section 4.5.3, the simplex P (Em) is parti-

tioned into sets (Gq
k)k=1,2,...,kq

. In order to determine this sets we choose a
simplex coordinate, say l, and partition the range of l, i.e. the interval [0, 1]
into subintervals [0, t1), [t1, t2), . . . , [tkq−2, tkq−1), [tkq−1, 1] having the follow-
ing property: letting, for p = 1, 2, . . . , kq, G

q
p be given by the subset of the

simplex with the l-th coordinate belonging to [tp−1, tp), these sets Gq
p have

their volumes close to one another. In each Gq
p consider as representative

element the center point eq
p with coordinates

eq
p(l) =

tp + tp−1

2
eq

p(j) =
1 − tp+tp−1

2

k − 1
for j 6= l (4.191)

with t0 = 0 and tkq
= 1.

A transition matrix
∏̂u

β,γ,q(e
q
p, e

q
s) for a process taking values in the set of

representative elements is then defined (compare with section 4.5.3) by

∏̂u

β,γ,q
(eq

p, e
q
s): =

∏u

β,γ
(ep

q , G
q
s) (4.192)

and an invariant vector Φ̂u
β,γ,q corresponding to

∏̂u

β,γ,q is computed.
Finally, for a given u of the form of (4.182) consider the cost functional

Ĵ
q
β,γ(u): =

kq∑

p=1

k∑

j=1

(c(j)(u(eq
p))2 + d(j))eq

p(j)Φ̂u
β,γ,q(p) (4.193)

As was pointed out at the end of section 4.5.3, to compute the matrix
∏̂u

β,γ,q

and the vector Φ̂u
β,γ,q we need only a finite number of values of the control

function u, namely u(eq
p), for p = 1, 2, . . . , kq.
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Furthermore, by (4.182) it is clear that the control functions can differ
only through the values of u(ζi) where

ζi: =
( k∑

j=1

ϕ1(j)e
q
i (j), . . . ,

k∑

j=1

ϕn(j)eq
i (j)

)
(4.194)

Given therefore kq elements a1, . . . , akq ∈ U for which the Lipschitz condition
(3.135), namely

ρU(aj, ap) ≤ L max
i=1,2,...,n

∣∣∣
k∑

s=1

ϕi(s)(e
q
j(s) − eq

p(s))
∣∣∣ (4.195)

is satisfied, they can be considered as values at ζp of a Lipschitz function u,
constructed from ap, p = 1, 2, . . . , kq by linear interpolation.

Therefore the problem of determining a nearly optimal control function is
now reduced to determine a1, . . . , akq ∈ U that satisfy the Lipschitz condition
(4.195) and such that, with

u(eq
p) = apr

( k∑

j=1

ψ(j)eq
p(j)

)
(4.196)

the cost functional Ĵq
β,γ(u) defined in (4.193) is minimal. To stress the fact

that Ĵq
β,γ depends only on the values a1, . . . , akq , by an abuse of notation we

shall also write Ĵq
β,γ((ai)).

For actual computations, analogously to what we did in section 3.3.3.b,
we still need to discretize U choosing N representative elements of U =
[0, K], namely (αn)n=1,2,...,N , with αn = (n−1)K

N−1
for n = 1, 2, . . . , N . In

this way we have only a finite number of kq-tuples a1, . . . , akq ∈ UN ={
0, 1

N−1
, . . . ,

(N−2)K
N−1

, K
}

satisfying (3.195) to choose from. The problem is

therefore reduced to finding a global minimum of Ĵq
β,γ((ai)) over a finite but

large number of kq-tuples (ai) with values in UN under the condition that
(4.195) holds. To this end one can apply any of the stochastic global opti-
mization algorithms.

4.5.4.b The implementation

In our example we use a simulated annealing algorithm (see e.g. [33] and
[41]) formulated as follows:
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For i = 1, 2, . . . , kq, n = 1, 2, . . ., let zi
n be a sequence of i.i.d. random

variables such that, for each given i and n, and with N denoting the number
of representative elements of U ,

P{zi
n = −

1

N
} = P{zi

n = 0} = P{zi
n = −

1

N
} =

1

3
,

and let Rn be a sequence of i.i.d. uniformly distributed random variables on
the interval (0, 1). Moreover let Tn > 0 be a sequence of so called ”cooling
parameters”, fixed apriori. Take admissible control values (ai) namely such
that, for i = 1, 2, . . . , kq, a

i ∈ UN and (4.195) is satisfied, and compute the

value of Ĵq
β,γ((ai)). Then proceed recursively along the following steps

1. put (ai
1) = (âi

0): = (ai) for i = 1, 2, . . . , kq,

2. compute ai
n: = ai

n + zi
n, for i = 1, 2, . . . , kq; if for some i′, ai′

n + zi′

n =
K + 1

N−1
or ai′

n + zi′

n = − 1
N−1

, then in the first case assign ai′

n + zi′

n the

value N−2
N−1

K or K with probability 1
2

each; analogously in the second

case assign ai′

n + zi′

n the value 0 or 1
N−1

with probability 1
2

each; then

check whether ai
n satisfy the condition (4.195); if not repeat step 2 with

a new copy of (zi
n) i = 1, 2, . . . , kq.

3. compute Ĵq
β,γ((ai

n)); if Ĵq
β,γ((ai

n)) ≤ Ĵ
q
β,γ((ai

n))

put

(âi
n−1) =





(ai
n) if Ĵq

β,γ((ai
n)) < Ĵ

q
β,γ(âi

n−1)

(âi
n−1) otherwise

and ai
n = ai

n, then set n = n+ 1 and go to the step 2.

4. if Ĵq
β,γ((ai

n)) > Ĵ
q
β,γ((ai

n)) then, in the case when

Rn < exp
[
−
Ĵ

q
β,γ((ai

n)) − Ĵ
q
β,γ((ai

n))

Tn

]

put ai
n = ai

n, n = n + 1 and go to the step 2; otherwise put ai
n = ai

n,
n = n+ 1 and go to the step 2.
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From the general theory of simulated annealing it follows that for a suffi-
ciently large number of iterations the values of (âi

n), i = 1, 2, . . . , kq form

nearly optimal controls for Ĵq
β,γ.

Following the algorithm described above, dr A. Zem la from IM PAN
wrote a computer program called CONT, which for given β, γ, q computes
the parameters (ai), i = 1, 2, . . . , kq of a nearly optimal control function.
Since of a nearly optimal control function u we need only its values at the
points eq

p ∈ P (Em), these values are easily computed from the parameters
(ai) according to (4.196).

Notice that the method used in the program CONT is based on a dis-
cretization of the observations and of the simplex, where the filter takes its
values, in addition to a discretization of the controls. Since a natural way to
perform numerical calculations is by means of Monte Carlo simulations, dr
Zem la also wrote an alternative program called CONTMC. The approach in
this latter program involves only the discretization of the controls and allows
to evaluate via simulations the cost functional Ĵq

β,γ(u) in (4.193) correspond-

ing to a control function u ∈ Am(L, n) that, by analogy to the method
described in the previous subsection 4.5.4.a, is parametrized by a finite num-
ber of parameters ap (p = 0, 1, . . . , kq + 1) that take values in UN and satisfy
the Lipschitz condition

ρU(aj, ap) ≤ L max
i=1,2,...,n

∣∣∣
k∑

s=1

ϕi(s)(e
q
j(s) − eq

p(s))
∣∣∣ (4.197)

with j, p = 0, 1, . . . , kq + 1. The parametrization is again obtained in the
following way: first choose a simplex coordinate l (the same as in CONT) and
partition it into intervals [tp−1, tp) with p = 1, . . . , kq where t0 = 0, tkq

= 1.
Then select points eq

p (p = 0, 1, . . . , kq + 1) according to the scheme

e
q
0(l) = 0 e

q
0(j) =

1

k − 1
for j 6= l

eq
p as in (4.191) for p = 1, 2, . . . , kq

e
q
kq+1(l) = 1 e

q
kq+1(j) = 0 for j 6= l

(4.198)

For a given (kq + 2)-tuple of parameters ap satisfying (4.197), the control
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function u ∈ Am(L, n) is then determined for η ∈ P (Em) by putting

u(η) =
(tp+1 − tp − 2ηl

tp+1 − tp−1

ap +
2ηl − tp − tp−1

tp+1 − tp−1

ap+1
)
r
( k∑

j=1

ψ(j)ηj

)

for ηl ∈ [eq
p(l), eq

p+1(l)] with p = 1, 2, . . . , kq − 1, and

u(η) =
(t1 − 2ηl

t1
a0 +

2ηl

t1
a1

)
r
( k∑

j=1

ψ(j)ηj

)
(4.199)

for ηl ∈ [0, eq
1(l)], and

u(η) =
(2(1 − ηl)

1 − tkq−1

akq +
2ηl − 1 − tkq−1

1 − tkq−1

akq+1
)
r
( k∑

j=1

ψ(j)ηj

)

for ηl ∈ [eq
kq

(l), 1].

Since the goal is the value of the cost functional Ĵq
β,γ(u) = Ĵ

q
β,γ((ap)) cor-

responding to an optimal u among those parametrized as in (4.199), the
program CONTMC proceeds as follows: start with any (kq + 2) tuple (ap)
satisfying (4.197) and, using the corresponding control function (4.199), sim-
ulate a sufficiently large number of independent trajectories of the controlled
process (xi) along with the observations (yi); at each step i the value of the
filter πi is computed, which, according to (4.199), allows to obtain the control
value at that step i.

Given a sufficiently large positive integer T , perform Sm simulation runs
and for each run compute then the value of

T−1
T−1∑

i=0

k∑

j=1

[c(j)(u(πi))
2 + d(j)]πi(j) (4.200)

taking the average of the various simulation runs as the value of Ĵq
β,γ(ap).

At this point one needs the optimal among the values Ĵq
β,γ(ap). For this

purpose CONTMC uses an adaptation of the simulated annealing approach
described previously that repeats the simulation procedure just described
for a sequence of suitably determined parametrizations (ap) until a global
minimum of Ĵq

β,γ(ap) is reached.

4.5.4.c Numerical example

In this subsection we present the results of testing the programs CONT and
CONTMC for a particular set of data.
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Assume k = 10, d = 1, n = 5, K = 10, L = 100, b = 0.2, c = 1 and the
matrices (p1(j, l)) and (p2(j, l)) are given respectively by

(p1(j, l)) =




0.10 0.20 0.00 0.10 0.10 0.10 0.00 0.01 0.02 0.37
0.10 0.20 0.10 0.10 0.10 0.20 0.10 0.00 0.00 0.10
0.00 0.00 0.10 0.10 0.20 0.30 0.20 0.10 0.00 0.00
0.10 0.00 0.00 0.00 0.00 0.10 0.20 0.10 0.50 0.00
0.10 0.20 0.10 0.00 0.00 0.00 0.30 0.30 0.00 0.00
0.00 0.00 0.10 0.20 0.10 0.10 0.10 0.00 0.00 0.40
0.10 0.10 0.20 0.10 0.30 0.20 0.00 0.00 0.00 0.00
0.20 0.30 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.50 0.50 0.00 0.00 0.00 0.00 0.00
0.10 0.10 0.20 0.10 0.10 0.10 0.10 0.10 0.00 0.10




(p2(j, l)) =




0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
0.20 0.00 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
0.10 0.10 0.30 0.00 0.00 0.00 0.10 0.10 0.10 0.20
0.20 0.20 0.00 0.00 0.00 0.00 0.10 0.10 0.00 0.40
0.10 0.10 0.00 0.30 0.10 0.10 0.10 0.10 0.10 0.00
0.10 0.20 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.00
0.10 0.20 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.00
0.10 0.20 0.10 0.00 0.10 0.10 0.10 0.10 0.10 0.10
0.10 0.10 0.10 0.20 0.30 0.00 0.00 0.00 0.00 0.20
0.00 0.00 0.10 0.20 0.30 0.10 0.10 0.10 0.10 0.00




Moreover

λ(1) = 0.80 λ(2) = 0.00 λ(3) = 0.01 λ(4) = 0.01 λ(5) = 0.01

λ(6) = 0.00 λ(7) = 0.02 λ(8) = 0.05 λ(9) = 0.05 λ(10) = 0.05

h(1) = 1.0 h(2) = 1.0 h(3) = 2.0 h(4) = 3.0 h(5) = 5.0 h(6) = 7.0

h(7) = 5.0 h(8) = 8.0 h(9) = 4.0 h(10) = 9.0
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c(1) = 0.5 c(2) = 3.0 c(3) = 5.0 c(4) = 7.0 c(5) = 4.0 c(6) = 7.0

c(7) = 3.0 c(8) = 5.0 c(9) = 3.0 c(10) = 1.0

d(1) = 100.00 d(2) = 25.00 d(3) = 40.00 d(4) = 35.00 d(5) = 50.00

d(6) = 45.00 d(7) = 70.00 d(8) = 15.00 d(9) = 4.00 d(10) = 30.00

and finally

ϕ1(1) = 10.00 ϕ1(2) = 6.00 ϕ1(3) = 7.00 ϕ1(4) = 9.00 ϕ1(5) = 5.00

ϕ1(6) = 2.00 ϕ1(7) = 1.50 ϕ1(8) = 2.00 ϕ1(9) = 2.00 ϕ1(10) = 2.50

ϕ2(1) = 2.00 ϕ2(2) = 2.50 ϕ2(3) = 2.50 ϕ2(4) = 3.00 ϕ2(5) = 3.00

ϕ2(6) = 3.00 ϕ2(7) = 3.00 ϕ2(8) = 3.00 ϕ2(9) = 2.00 ϕ2(10) = 2.00

ϕ3(1) = 1.00 ϕ3(2) = 1.00 ϕ3(3) = 1.00 ϕ3(4) = 1.00 ϕ3(5) = 1.00

ϕ3(6) = 1.50 ϕ3(7) = 1.50 ϕ3(8) = 2.00 ϕ3(9) = 2.00 ϕ3(10) = 2.00

ϕ4(1) = 2.00 ϕ4(2) = 2.00 ϕ4(3) = 2.00 ϕ4(4) = 2.00 ϕ4(5) = 2.00

ϕ4(6) = 2.00 ϕ4(7) = 2.00 ϕ4(8) = 2.00 ϕ4(9) = 2.00 ϕ4(10) = 2.00

ϕ5(1) = 2.00 ϕ5(2) = 2.50 ϕ5(3) = 3.00 ϕ5(4) = 2.50 ϕ5(5) = 2.50

ϕ5(6) = 2.00 ϕ5(7) = 2.00 ϕ5(8) = 2.00 ϕ5(9) = 2.00 ϕ5(10) = 2.00

ψ(1) = 1.0 ψ(2) = 1.0 ψ(3) = 1.0 ψ(4) = 1.0 ψ(5) = 1.0 ψ(6) = 1.0

ψ(7) = 1.0 ψ(8) = 0.7 ψ(9) = 0.4 ψ(10) = 0.0
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Let β = 0.1, γ = 0.15 and kq = 15. Assume the first coordinate of the
simplex P (Em) is partitioned in the following way

t1 = 0.016 t2 = 0.080 t3 = 0.150 t4 = 0.220 t5 = 0.290 t6 = 0.370

t7 = 0.460 t8 = 0.540 t9 = 0.630 t10 = 0.720 t11 = 0.810 t12 = 0.900

t13 = 0.970 t14 = 0.990

Moreover choose “the cooling parameter” Tn = n2, and N = 50 as the
number of representative elements in the set of control parameters [0, 10].

For the Monte Carlo simulations we set T = 500 and Sm = 5. Notice
that, due to the ergodicity of the process (πi), having taken T rather large,
the small number Sm = 5 of runs turned out to be sufficient.

We recall that we had chosen the partition of the simplex in R10 on the
basis of a partition of the first coordinate into kq = 15 subintervals. Accord-
ingly, the program CONT generates at each iteration a vector of 15 control
parameter values ai, (i = 1, ..., 15). On the other hand, since the program
CONTMC uses control values obtained according to the linear interpolation
(4.199), in this latter case kq + 2 = 17 values of the control parameters
ai(i = 0, 1, ..., 16) are needed which include two additional values at the end
points of the partition.

The program CONT was tested with three sets of initial control param-
eters a1

1 = . . . = a15
1 = 0, a1

2 = . . . = a15
2 = 5, a1

3 = . . . = a15
3 = 10. The

optimal control parameters (âi
1), (âi

2) and (âi
3) for the above initial values,

which we obtained using CONT, were the following: For the first set they
were

â1
1 = 1.6 â2

1 = 1.6 â3
1 = 1.6 â4

1 = 1.6 â5
1 = 1.6 â6

1 = 1.6

â7
1 = 1.6 â8

1 = 1.6 â9
1 = 1.8 â10

1 = 1.8 â11
1 = 2.0 â12

1 = 4.6

â13
1 = 3.8 â14

1 = 4.4 â15
1 = 3.6

and were obtained in 1458 iterations with corresponding value of the cost
functional given by J((âi

1)) = 57.90264572267466.
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For the second set we obtained

â1
2 = 1.6 â2

2 = 1.6 â3
2 = 1.6 â4

2 = 1.6 â5
2 = 1.6 â6

2 = 1.6

â7
2 = 1.6 â8

2 = 1.6 â9
2 = 1.8 â10

2 = 1.8 â11
2 = 2.0 â12

2 = 2.0

â13
2 = 5.6 â14

2 = 7.4 â15
2 = 4.6

in 2908 iterations and with corresponding value of the cost functional J((âi
2)) =

57.90264572267466.
For the third set

â1
3 = 1.6 â2

3 = 1.6 â3
3 = 1.6 â4

3 = 1.6 â5
3 = 1.6 â6

3 = 1.6

â7
3 = 1.6 â8

3 = 1.6 â9
3 = 1.8 â10

3 = 1.8 â11
3 = 2.0 â12

3 = 3.4

â13
3 = 1.0 â14

3 = 3.6 â15
3 = 3.2

were found in 3957 iterations and with corresponding value of the cost func-
tional J((âi

3)) = 57.90264572267465.
The program CONTMC was similarly tested with three sets of initial

control parameters a0
1 = . . . = a16

1 = 0, a0
2 = . . . = a16

2 = 5, a0
3 = . . . = a16

3 =
10. The optimal control parameters (ǎi

1), (ǎi
2) and (ǎi

3) for the above initial
values, which we obtained using CONTMC, were the following:

ǎ0
1 = 1.4 ǎ1

1 = 1.6 ǎ2
1 = 0.8 ǎ3

1 = 1.4 ǎ4
1 = 1.2 ǎ5

1 = 1.0

ǎ6
1 = 1.6 ǎ7

1 = 1.4 ǎ8
1 = 0.6 ǎ9

1 = 1.0 ǎ10
1 = 1.6 ǎ11

1 = 1.0

ǎ12
1 = 2.6 ǎ13

1 = 3.0 ǎ14
1 = 1.8 ǎ15

1 = 2.4 ǎ16
1 = 5.0

found in 1594 iterations and with corresponding value of the cost functional
J((ǎi

1)) = 60.17891686754708,
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ǎ0
2 = 1.2 ǎ1

2 = 2.8 ǎ2
2 = 0.4 ǎ3

2 = 1.2 ǎ4
2 = 1.8 ǎ5

2 = 1.8

ǎ6
2 = 1.4 ǎ7

2 = 1.6 ǎ8
2 = 2.0 ǎ9

2 = 1.8 ǎ10
2 = 1.6 ǎ11

2 = 2.0

ǎ12
2 = 3.0 ǎ13

2 = 3.2 ǎ14
2 = 2.2 ǎ15

2 = 1.6 ǎ16
2 = 3.4

found in 2541 iterations and with corresponding value of the cost functional
J((ǎi

2)) = 60.50849097426033,

ǎ0
3 = 1.4 ǎ1

3 = 1.4 ǎ2
3 = 1.0 ǎ3

3 = 1.6 ǎ4
3 = 1.0 ǎ5

3 = 1.6

ǎ6
3 = 2.4 ǎ7

3 = 0.8 ǎ8
3 = 1.8 ǎ9

3 = 1.2 ǎ10
3 = 1.8 ǎ11

3 = 1.6

ǎ12
3 = 1.8 ǎ13

3 = 3.4 ǎ14
3 = 1.6 ǎ15

3 = 2.2 ǎ16
2 = 2.6

found in 4511 iterations and with corresponding value of the cost functional
J((ǎi

3)) = 59.93256322024737.

The successive updating of the control parameters and corresponding con-
trol values of the cost functional along the search iterations of the simulated
annealing algorithm is illustrated in Figures 1-6 below (Fig. 1-3 correspond-
ing to the program CONT, Fig. 4-6 to CONTMC). Although for each of
the six cases corresponding to the six Figures, 5000 search iterations were
performed, it was found that for almost all of them the results did not im-
prove considerably beyond the 1000-th iteration; consequently only the first
1000 iterations are reported. In the upper half of each Figure the behaviour
of the values of the cost functional is shown, in the lower half that of the
control parameters. Since for each iteration one obtains a vector of control
parameters, to make the representation more accessible, we have chosen in-
stead of a standard three-dimensional diagram a two-dimensional one, where
the changes in the magnitude of the values of the control parameters are
represented by a grading of the color intensity: white corresponding to the
lowest value equal to 0, intense black to the largest equal to 10.

For programming convenience at each iteration 17 control parameters
were generated not only by CONTMC but also by CONT, whereby in this
latter case the two extreme values are kept fixed.
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In the graphs of the cost functional the base line corresponds to the mini-
mal value of 57.91 obtained over all six cases during the first 1000 iterations.
Since the value of the cost functional corresponding to initial control param-
eters equal to 10 turned out to be large compared to the other cases, we
chose a nonuniform scaling of the graphs, more precisely: in Fig.s 1, 2 and
4, 5 the upper line corresponds to a value of 200, while in Fig.s 3 and 6 it is
321.4 (the maximal value in Fig. 6 is in fact 321.315). To supplement the
information in the six graphs of the cost functional, in the following Table
we show the minimal values obtained for each of the six cases during the first
1000 iterations together with the iteration count number where it occurred.

Fig. no.: 1 2 3 4 5 6

minimal value: 57.911 57.963 58.380 60.214 60.879 77.277

iteration no.: 923 995 965 837 987 979
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We would like to point out that the iterations reported in the Figures
above correspond to the search iterations of the simulated annealing algo-
rithm which, before settling down on a local minimum, has to explore pos-
sible alternative local minima as candidates for the global minimum. This
explains the large excursions in the values of the cost functional exactly when
a minimal value seems to have been reached.

The above numerical results indicate that the method used in CONT has
the following advantages over the simulation program CONTMC: the nearly
optimal controls corresponding to CONT as well as the corresponding values
of the cost functional are almost the same for all sets of starting control
parameters; furthermore, the cost function is evaluated exactly and not via
simulations as in CONTMC. The disadvantage of CONT is that the control
is allowed to take only a finite number of values at the discretized points
of the simplex of possible filter values. In CONTMC on other hand, the
controls are obtained from the linear interpolation (4.199). This explains the
about 5% discrepancy between the values of the cost functional computed
according to the two programs. The numerical results also indicate that, for
our specific example, the values of the control parameters at the upper end
of the partition have little effect on the value of the cost functional.

We remark here also that, for simplicity, the discretization of the simplex
is determined by a discretization of only the first coordinate. One can easily
work out less crude discretizations that will lead to improved results. Notice
furthermore that the peculiar form (4.184) of the transition probability ma-
trix was chosen only to test our methods. It corresponds to the last step of
the discretization of a given initial model; different initial models will lead to
different transition kernels at this final discretization level and our programs
have then to be adjusted accordingly.

4.5.5 Discounted cost approximation

In section 4.2 a discounted cost approximation of the ergodic cost functional
(1.6) ((1.12)) was studied with the use of Bellman’s equation. As a result it
was shown (see Corollary 4.9), that ε-optimal control functions for discounted
cost problems with β close to 1 are nearly optimal also for the ergodic cost
functional. Below, for the mixed observation model and the models of Exam-
ples 1 and 2 from section 4.4.2, we obtain an analogous result in a direct way:
we do not require the existence of solutions to the ergodic Bellman equation
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(4.4), instead we exploit ergodic properties of an embedded Markov chain
and consider control functions in the class A = C(P (E), E) for the cases of
mixed observations and Example 1 and A (see section 4.5.1.b) for the case
of Example 2.

In the case of the mixed observations model, for the purpose of this section
we shall need a strengthened version of assumption (A11), namely

(A 11′) (i)—(iii) the same as in (A 11)
(iv) there exist 0 < α < 1 and, for u ∈ A, a measure ηu ∈ P (Γ1)
such that for the embedded Markov chain xτn

, where τ1 = τ , τn+1 =
τn + τ ◦ θτn

, we have for n = 1, 2, . . .

sup
B∈B(Γ1)

sup
x∈Γ1

sup
u∈A

|P u
x {xτn

∈ B} − ηu(B)| < αn

By sections 5.5 and 5.6 of [13] it is clear that (A 11′) (iv) implies (A 11) (iv).
We have

Theorem 4.62 Assume, in the case of mixed observations: (A1), (A2),
(A5), (A8)–(A10), (A 11′), (A12), in the case of Example 1: (A1)–(A5),
(E1.1)–(E1.5) and finally (A1), (A2), (A5), (E2.1)–(E2.4) in the case of
Example 2.

Then, for L, n > 0

sup
u∈A(L,n)

|(1 − β)Jβ
µ (u) − Jµ(u)| → 0 (4.201)

as β → 1, uniformly in µ ∈ P (Γ1) in the case of mixed observations, in
µ ∈ P (E) in the case of Examples 1 and 2 and where, for Example 2 the
class A(L, n) is replaced by A(L, n) (defined in section 4.5.1.b).

P r o o f . We show (4.201) for the case of mixed observations only. The
proofs for Examples 1 and 2 proceed in an analogous way exploiting the fact
that the corresponding filtering processes have embedded i.i.d. sequences
independently of the control chosen.

Assume, that (4.201) does not hold. Then there exist βm → 1, µm ⇒ µ

and um → u uniformly in P (E) as m → ∞, such that µm ∈ P (Γ1), um ∈
A(L, n) and

|(1 − βm)Jβm

µm
(um) − Jµm

(um)| ≥ δ > 0 (4.202)
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for m = 1, 2, . . ..
Clearly, putting τ0 = 0,

Jβm

µm
(um) = Eum

µm

{ ∞∑

i=0

βτi
mF

βm

m (xτi
)
}

(4.203)

with

F βm

m (x): = Eum

x

{ τ−1∑

i=0

βi
mc(xi, um(πi))

}

By considerations similar to those of the proof of Corollary 4.40 we obtain

F βm

m (x) → F (x): = Eu
x

{ τ−1∑

i=0

c(xi, u(πi))
}

(4.204)

as m→ ∞, uniformly in x ∈ Γ1.
Hence

(1 − βm)
∣∣∣Jβm

µm
(um) − Eum

µm

{ ∞∑

i=0

βτi
mF (xτi

)
}∣∣∣ → 0 (4.205)

as m→ ∞.
By Proposition 4.32, and considerations similar to those of the proof of

Proposition 4.50 (see also Remark 4.51), we have that

Jµm
(um) =

∫

P (E)

∫

E

c(x, um(ν))ν(dx)Φum(dν) →

∫

P (E)

∫

E

c(x, u(ν))ν(dx)Φu(dν) = Jµ(u)

(4.206)

as m→ ∞.
Now

(1 − βm)Eum
µm

{ ∞∑

i=0

βτi
mF (xτi

)
}
− Jµ(u)

= (1 − βm)Eum
µm

{ ∞∑

i=0

βτi
m(F (xτi

) − Jµ(u)Gβm

m (xτi
))

} (4.207)

where

Gβm

m (x): = Eum

x

{ τ−1∑

i=0

βi
m

}
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and as in (4.204)
Gβm

m (x) → G(x): = Eu
x{τ} (4.208)

as m→ ∞, uniformly in x ∈ Γ1.
Therefore, using first (4.207) with (4.208) and then (4.206) and (4.205),

we have that

|(1 − βm)Jβm
µm

(um) − Jµm
(um)

−(1 − βm)Eum
µm

{ ∞∑

i=0

βτi
m[F (xτi

) − Jµ(u)G(xτi
)]

}
| → 0

as m→ ∞

(4.209)

Fix a positive integer k and let

H
βm

m,k(x): = Eum

x {βτk
m (F (xτk

) − Jµ(u)G(xτk
)}

putting H1
m,k(x) equal to Hβm

m,k(x) for βm = 1.

Using (A11) (iii), (A11′) (iv) and noticing that, by (4.98), Jµ(u) = ηu(F )
ηu(G)

, we
obtain

(1 − βm)
∣∣∣Eum

µm

{ ∞∑

i=0

βτi
m[F (xτi

) − Jµ(u)G(xτi
)]

}∣∣∣

≤ (1 − βm)k(‖F‖ + Jµ(u)‖G‖)

+(1 − βm)
∣∣∣Eum

µm

{ ∞∑

i=k

βτi
m[F (xτi

) − Jµ(u)G(xτi
)]

}∣∣∣

= (1 − βm)k(‖F‖ + Jµ(u)‖G‖)

+(1 − βm)
∣∣∣Eum

µm

{ ∞∑

i=0

βτi
mE

um

xτi
{βτk

m (F (xτk
) − Jµ(u)G(xτk

))}
}∣∣∣

+(1 − βm)Eum

µm

{ ∞∑

i=0

βτi
m

}
sup
x∈Γ1

|Hβm

m,k(x) −H1
m,k(x)|

≤ (1 − βm)k(‖F‖ + Jµ(u)‖G‖)

+(1 − βm)
∣∣∣Eum

µm

{ ∞∑

i=0

βτi
m(ηu(F ) − Jµ(u)ηu(G))

}∣∣∣

+(1 − βm)Eu
µm

{ ∞∑

i=0

βτi
m

}
αk(‖F‖ + Jµ(u)‖G‖)
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+ sup
x∈Γ1

|Hβm

m,k(x) −H1
m,k(x)|

≤ (1 − βm)k(‖F‖ + Jµ(u)‖G‖) + αk(‖F‖ + Jµ(u)‖G‖)

+ sup
x∈Γ1

|Hβm

m,k(x) −H1
m,k(x)|

By considerations analogous to (4.204) and previous results it is easy to see
that

lim
m→∞

sup
x∈Γ1

|Hβm

m,k(x) −H1
m,k(x)| = 0

Letting now m→ ∞ and then k → ∞ we finally have that

lim
m→∞

(1 − βm)
∣∣∣Eum

µm

{ ∞∑

i=0

βτi
m[F (xτi

) − Jµ(u)G(xτi
)]

}∣∣∣ = 0

which together with (4.209) leads to a contradiction of (4.202).
The proof of (4.201) for the case of mixed observation is therefore com-

pleted.

Similarly as in Corollary 4.56 (compare also with Corollary 4.9) from
Theorem 4.62 we immediately have

Corollary 4.63 Under the assumptions of Theorem 4.62 we have

(i)

inf
u∈A(L,n)

(1 − β)Jβ
µ (u) → inf

u∈A(L,n)
Jµ(u)

as β → 1, uniformly in µ ∈ P (Γ1) in the case of mixed observations and
in µ ∈ P (E) in the case of Examples 1 and 2, replacing for Example 2
the class A(L, n) by A(L, n)

(ii) if for β ≤ 1 we have

sup
u∈A(L,n)

|(1 − β)Jβ
µ (u) − Jµ(u)| < ε (4.210)

then an ε-optimal control function uβ for Jβ(u) over u ∈ A(L, n) is
3ε-optimal for the cost functional Jµ(u) over u ∈ A(L, n).
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Combining finally Corollary 4.63 with Proposition 4.50 (or Proposition 4.52
and 4.53, for Examples 1 and 2 respectively) we have that, for β sufficiently
close to 1 and L, n sufficiently large, an ε-optimal control function uβ for
Jβ

µ (u) is nearly optimal for Jµ(u) also over the class A (A in the case of
Example 2).

4.6 Filter approximations and near optimal control val-
ues

For a given control u the filtering process (πu
n) takes its values in the infinite

dimensional space P (E) and therefore u(πu
n) can practically not be computed.

Therefore it appears reasonable to approximate (πu
n) be a process (πm

n ) with
values in the simplex P (Em), which is a finite dimensional space.

Notice now that, corresponding to section 3.3.2, in section 4.5.2 we al-
ready considered a filtering process (πm

i ) that takes values in the simplex
P (Em) and evolves essentially according to (3.57). This process (πm

i ) was
however introduced only to make the computation of nearly optimal controls
feasible and is not a real filtering process since it corresponds to fictitions Dm-
valued observations generated by the approximating observation ”densities”
rm(x, y).

Recall now that in (2.48) we introduced a projection operator Wm:Rd →
Dm; applying this operator to the real observations (yi) generated according
to (1.1), we get ”real” Dm valued observations. By analogy to what we did
in section 3.5.1 in the context of infinite horizon problems with discounting,
these real observations will now be used to construct a computable approx-
imation (π

m(µ)
i ) of the true filter according to a formula of the type (3.57)

and taking values in P (Em). As was already pointed out in section 3.5, the
approximating filter process itself is not Markov and so here too we shall
consider pairs of ”filter” processes that are Markov.

Given a control function u, that in what follows we shall assume to
belong to the class A = C(P (E), U) (or A defined in section 4.5.1.b) for
ν, µ ∈ P (E), η ∈ P (Em) define therefore according to (3.202)–(3.204) pairs
of processes (π(ν)

n , π(µ,ν)
n ), (πm(ν)

n , πm(µ,ν)
n ) and (πm(η)

n , π̃m(µ,η)
n ) where: in the

case of mixed observations, Ma(y, π),Ma
m(y, π) and M

a

m(y, π) are given by
(4.49), (4.144) and (4.145) respectively; in the case of Examples 1 and 2 by
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(1.8), (3.14) and (3.57) requiring additionally for Example 2 that r and rm

are a d-dimensional version of (1.2) as considered in 4.5.2.b2.
In the case of Examples 1 and 2, using Lemma 3.55 we have that the pairs

(π(ν)
n , π(µ,ν)

n ), (πm(ν)
n , πm(µ,ν)

n ) and (πm(η)
n , π̃m(µ,η)

n ) form Markov processes with
transition operators T , Tm and Tm defined in (3.205)–(3.207) respectively.

For the case of mixed observations we have by analogy to Lemma 3.55

Lemma 4.64 In the case of mixed observations the pairs (π(ν)
n , π(µ,ν)

n ), (πm(ν)
n ,

πm(µ,ν)
n ) and (πm(η)

n , π̃m(µ,η)
n ) form Markov process with transition operators T ,

Tm and Tm defined as follows

T uF (ν, µ): =
∫

Γ

F (δz, δz)P u(ν)(µ, dz) +
∫

Γc

∫

Γc

F (Mu(ν)(y, ν),

Q(y, ζ(µ, u(ν)))r(z, y)dyP u(ν)(µ, dz)

(4.211)

T u
mF (ν, µ): =

∫

Γ

F (δz, δz)PLmu(ν)(µ, dz) +
∫

Γc

∫

Γc

F (MLmu(ν)
m (y, ν),

Q(y, ζ(µ,Lmu(ν))))r(z, y)dyPLmu(ν)(µ, dz)

(4.212)

T
u
mf(η, µ): =

∫

Γ

f(δWmz, δz)P L̃mu(η)(µ, dz) +
∫

Γc

∫

Γc

f(M
Lmu(η)
m (Wmy, η),

Q(y, ζ(µ, L̃mu(η))))r(z, y)dyP L̃mu(η)(µ, dz)

(4.213)
for F ∈ bB(P (E) × P (E)), f ∈ bB(P (Em) × P (E), µ, ν ∈ P (E) and
η ∈ P (Em), where the operator Q(y, ν) has here the form

Q(y, ν)(A) =

∫

A∩Γc

r(z, y)ν(dz)

∫

Γc

r(z, y)ν(dz)
(4.214)

for y ∈ Γc, ν ∈ P (E), A ∈ B(E), ζ is as in (3.201) and where (see (2.48)
and section 4.5.2.b1) Wmy = k for y ∈ Bm

k , with k = 1, 2, . . . , km.
Moreover, under (A1), (A2), (A8)–(A10) the operator T is Feller.
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P r o o f . The proof of the Markov properties and of the forms of the tran-
sition operators is similar to that of Lemma 1.3 (see also Lemma 4.14 and
Lemma 3.55). The Feller property of T can be shown as in Proposition 4.15.

In the case of mixed observations for the purpose of this section we need
the following additional strengthening of assumption (A11) (ii)–(iv)

(B11) for any u ∈ A and the Markov times TΓ1 , TΓc with respect to (xn)
controlled by an = Lmu(πm(ν)

n ) = L̃mu(πm(ν)
n ) we have

(i) ELmu
ν,µ TΓ1 <∞ for ν, µ ∈ P (Γc), m = 1, 2, . . .,

(ii) sup
x∈Γ1

sup
m
ELmu

x,x τ 2 <∞ with τ = TΓc + TΓ1 ◦ θTΓc

(iii) there is a unique invariant measure ηu
m for (xτn

) where τ1 = τ ,
τn+1 = τn + τ ◦ θτ , and moreover the strong law of large numbers
for (xτn

) holds.

Analogously to Corollary 3.57 we have with (see section 3.5.1) µ = (µ(Bm
1 ), . . . ,

µ(Bm
km

))

Theorem 4.65 Under (A1), (A2), (A5), (A8)–(A12), (B11) in the case of
mixed observation, (A1)–(A5), (E 1.1)–(E 1.5) in the case of Example 1,
and (A1), (A2), (A5), (E 2.1)–(E 2.4) in the case of Example 2, for u ∈ A
and u ∈ A in the case of Example 2, we have for µ ∈ P (E)

Jµ((L̃mu(πm(µ)
n ))) → Jµ(u(πn)) (4.215)

as m→ ∞.

P r o o f . The proof is rather long and technical and follows the steps of
Theorems 4.55, 4.58 and 4.59 which in turn are based on Theorems 4.35,
4.45 and 4.47 respectively. Therefore we sketch only some preliminary steps.
Consider first the case with mixed observations. Notice that the measures

Ψ
u
m(F1): =

∫

Γ1

EL̃mu
Wmx,x

{ τ−1∑

i=0

F1(π
m(Wmx)
i , π̃

m(x,Wmx)
i )

}
ηu

m(dx)

( ∫

Γ1

EL̃mu
Wmx,x{τ}η

u
m(dx)

)−1
(4.216)
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and

Ψu
m(F2): =

∫

Γ1

ELmu
x,x

{ τ−1∑

i=0

F2(π
m(x)
i , π

m(x,x)
i )

}
ηu

m(dx)

( ∫

Γ1

ELmu
x,x {τ}ηu

m(dx)
)−1

(4.217)

defined for F1 ∈ bB(P (Em) × P (E)) and F2 ∈ bB(P (E) × P (E)), where to
simplify notations we identify Dirac measures δx with x, are invariant for the
operators T

u
m, T u

m respectively.
By (B11) and the proof of Proposition 4.32 (see also Remark 4.34)

Jµ((L̃mu(πm(ν)
n ))) =

∫

P (Em)×P (E)

∫

E

c(x, L̃mu(η))ν(dx)Ψ
u
m(dη, dν) (4.218)

and from (4.216), (4.217) by direct substitutions and recalling the definition
of the operators Lm and L̃m we have

∫

P (Em)×P (E)

∫

E

c(x, L̃mu(η))ν(dx)Ψ
u

m(dη, dν) =

=
∫

P (E)×P (E)

∫

E

c(x,Lmu(ν1))ν2(dx)Ψu
m(dν1, dν2)

(4.219)

In view of (A5), Lemma 3.21 (i) and Remark 4.34 it remains to show that

Ψu
m ⇒ Ψu as m→ ∞ (4.220)

where for F ∈ bB(P (E) × P (E))

Ψu(F ) =
∫

P (E)×P (E)

F (ν, ν)Φu(dν) (4.221)

and Φu is as in (4.98).
By (4.217) and (4.98), to obtain (4.220), it suffices to prove that

ηu
m ⇒ ηu (4.222)
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and that for F ∈ C(P (E) × P (E))

ELmu
x,x

{ τ−1∑

i=0

F (π
m(x)
i , π

m(x,x)
i )

}

→ Eu
x

{ τ−1∑

i=0

F (πδx

i , π
δx

i )
}

as m→ ∞

(4.223)

uniformly in x ∈ Γ1.
The proofs of (4.222) and (4.223) are similar to those of (4.112) and

(4.120) respectively. For this purpose one has first to show an analog of
Lemma 4.38 which says that if Fm ∈ bB(P (E)×P (E)) are uniformly bounded,
and converge uniformly on compact subsets of P (E)×P (E) to F ∈ C(P (E)×
P (E)), then for A = Γ or A = Γ1

T u
m(ν, µ, FmχÃ×Ã

) → T u(ν, µ, Fχ
Ã×Ã

)

as m → ∞, uniformly on compact subsets of P (E) × P (E). Then by in-
duction one establishes an analog of Lemma 4.39, from which by (B11) the
convergence (4.223) follows as in Corollary 4.40. To prove (4.222) one has to
show an analog of (4.111) and then repeat the considerations of the proof of
Lemma 4.42. The details are left to the reader.

The proofs for the models of Examples 1 and 2 are similar. Notice in
fact that, by Lemma 4.26 and (E 1.3), (E 1.4) in the case of Example 1, a
suitable version of the assumption (B11) is clearly satisfied. In the case of
Example 2, for u ∈ A and m so large that hm inherits the growth property
(E 2.1) of h, by (E 2.3) and considerations similar to those of Lemma 4.28
(see also Corollary 4.29), we also obtain an analog of (B11).

Remark 4.66 From the proof of Theorem 4.65 it is easily seen that, more
generally, for any µ, ν ∈ P (E) we have

Jµ(L̃mu(πm(ν)
n )) → Jµ(u(πn))

Theorem 4.65 completes our approach for the construction of nearly op-
timal controls for infinite horizon problems with an ergodic cost functional:
First determine a nearly optimal control function according to the methods
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described in section 4.5 (or section 4.2.2 provided the control function is
continuous). Applying an extension procedure as in Chapter 3, this control
function can be considered as an element of the class A (or A for Exam-

ple 2). For an initial measure µ and corresponding µ compute the filter π
m(µ)
i

according to (3.204) with the changes as mentioned at the beginning of this
section and m sufficiently large. A nearly optimal control an in the generic
period n is then obtained by putting an = L̃mu(πm(µ)

n ).
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Appendix

(Bibliographical notes)

Chapter 1

Section 1.1: The formulation given here of a control problem is
kept as general as possible and includes the models most com-
monly used in Control (see e.g. [4]) and Operation Research (see
e.g. [24], [40]).

Section 1.2: The results presented here extend the validity of
partly known results to the general discrete time setting described
in section 1.1. In particular, the Markov and Feller properties of
the filter process (Lemma 1.3 and Corollary 1.5) as well as the fact
that the filter transition kernel preserves concavity (Proposition
1.7) are the discrete time counterparts of results that can be found
in [19].

Section 1.3: The measure transformation results presented here
correspond to what in continuous time usually called a Girsanov-
type transformation [16]. To the best of our knowledge these re-
sults are the most general ones that have so far appeared concern-
ing discrete time models. Earlier results can be found in [8], [9],
[35] and references therein (for a recent account see also [14]).

Chapter 2

Section 2.1: The idea of the approximation approach follows the
lines of [10].

Section 2.2: The convergence results of this section are essen-
tially new. The technique, adopted recurrently in the convergence
proofs of subsection 2.2.2, namely the use of a weighted L1-norm,
is taken from [11] and goes back to a suggestion made by Prof. A.
Bensoussan.

Section 2.3: The idea of approximationg general transition ker-
nels by kernels corresponding to finite state Markov chains is the
most natural one and has been used by various authors; the ap-
proach followed here in subsection 2.3.1 is an extension of that
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in [10]. The idea, exploited in subsection 2.3.2, namely to obtain
finite-dimensional approximations by means of transition kernals
separated in the variables goes back to [11] where it was used for
filter approximations; it was later extended in [32] to the context
of adaptive control.

Chapter 3

Section 3.2: The Bellman equation for infinite horizon problems
with discounting is well known and is e.g. studied in [5] and [17];
Remark 3.3 is essentially taken from [5].

Section 3.3: Subsection 3.3.1 is an adaptation of results in [30]
and the further subsection 3.3.1.a is new. Subsection 3.3.2 deals
with approximations along the lines of subsection 2.3.1, that are
here extended to the case when a normalized filter process is used.
The results obtained in 3.3.2.a are, as the ones in 3.3.1.a, essen-
tially new while those of 3.3.2.b are again adaptations of similar
results in [30]. Subsection 3.3.3 deals with further approximations
that, for the part described in 3.3.3.a and particularly 3.3.3.a1,
are analogous to those in section 2.3.1. and go back to ideas in
[10]; subsection 3.3.3.a2 is instead a detailed elaboration of work
by Sondik in [34] (in this context see also [39]). Finally, subsection
3.3.3 is again based on the metodology used by the authors in [30].

Section 3.4: Analogously to section 2.3.2, this section extends
to infinite horizon problems with discounting the approach orig-
inated in a filtering context in [11] and used for approximations
in adaptive control in [32]. The entire section is new; in particu-
lar, the results of subsection 3.4.1 were derived to be able to deal
with the specific kind of approximations considered in this section.
Measurable selection theorems can be found in various references,
here we restrict ourselves to mention [26] and [27].

Section 3.5: This section is entirely new, even if subsection 3.5.1
is based on results in [30].

Chapter 4

Section 4.1: Only very few results are so far available from the lit-
erature concerning ergodic control of stochatic partially observed
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systems. This problem is in fact listed as open problem in [7] and
its difficulty appears also from [1].

Section 4.2: A first approach to the discounted cost approxima-
tion of the Bellman equation for partially observed ergodic Markov
control problems appears, under rather restrictive assumptions, in
[20] and [38]. The approach presented here in subsection 4.2.2,
is taken from [36]. The generalization to the case considered in
subsection 4.2.3 is new, and so is also the discounted cost approx-
imation discussed in 4.5.5 for the models of subsection 4.5.1.

Section 4.3: The definition of a “mixed observation model” and
the basic results of this section are taken from [37]. Subsection
4.3.2 concerning the solution of the Bellman equation is an adap-
tation from [36].

Section 4.4: The counterexample of a well-known ergodic result for
uncontrolled filtering processes (see [19] for continuous time and
[35] for its extension to discrete time and locally compact state
spaces) has been worked out for this monograph to show the kind
of difficulties that arise when studying existence and especially
uniqueness of invariant measures for controlled filtering processes.
Except for the results obtained by the authors in [30], [31] and
[37], uniqueness results appear to be available from the literature
only for very particular models as in [1] and [12]. The results
obtained here for the embedded i.i.d. case are new and generalize
related ones in [30], [31] (Example 2 is taken from [30]). Section
4.4.3 follows from [37].

Section 4.5: Since the basic approach here parallels that of section
3.3, much of what was said for the latter section holds here as well.
An exception is section 4.5.1 that is more specific to the ergodic
case.

Section 4.6: Similarly to section 3.5, the underlying technique
comes again from [30]; here however the approach is borrowed
from [37].
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