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Abstract

Risk sensitive control of Markov processes satisfying minorization property is stud-
ied using splitting techniques. Existence of solutions to multiplicative Poisson equation
is shown. Approximation by uniformly ergodic controlled Markov processes is intro-
duced, which allows to show the existence of solutions to the infinite horizon risk
sensitive Bellman equation.
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1 Introduction

On a probability space (Ω,F , P ) consider a controlled Markov process X = (xn) taking
values on a complete separable metric state space E endowed with the Borel σ-algebra
E . Assume that xn has a controlled transition operator P an(xn, ·), where an is the con-
trol at time n taking values on a compact metric space U and adapted to the σ-algebra
σ{x0, x1, . . . , xn}.
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Let c : E × U → R be a continuous and bounded function. Our aim is to minimize the
following exponential ergodic performance criterion

Jγ
x ((an)) = lim

t→∞ sup
1
t

ln E(an)
x

{
exp

{
t−1∑

i=0

γc(xi, ai)

}}
(1)

with risk factor γ > 0. In what follows we shall distinguish the following special classes of
admissible controls (an): Markov controls UM = {(an) : an = un(xn)}, where un : E 7→ U
is a sequence of Borel measurable functions, and stationary controls Us = {(an) : an = u(xn)},
where u : E 7→ U is a Borel measurable function.

Consider the following assumptions

(A1) ∃β>0 ∃Ccompact∈E ∃ν∈P(E) with ν(C) = 1 such that ∀A∈E

inf
x∈C

inf
a∈U

P a(x,A) ≥ βν(A)

(A2) C given in (A1) is ergodic, i.e. ∀(an)∈UM
∀x∈E E

(an)
x {τC} < ∞, where τC =

inf {i > 0 : xi ∈ C}.

In the paper risk sensitive control problem with cost functional (1) and general state space
is studied. The paper generalizes [7] and [8] where uniform ergodicity assumption was
required. Instead of uniform ergodicity we require minorization property (A1) which allows
us to use splitting techniques arguments. Risk sensitive discrete time control problems
has been studied in a number of papers [1], [3], [4], [5], [6], [9], [10] for finite or countable
state spaces. General state space model in discrete time was considered in [7] and [8]
only. Financial applications of risk sensitive control problems were introduced in [2] and
continued in a number of papers e.g. see [12] and [14] and references therein. The first
part of the paper is devoted to the study of so called Poisson equation. Although such
equation was considered in [11] and [3], a rather simple characterization of the solution
seems to be new. The main result of the paper is the existence of solutions to the Bellman
equation corresponding to the risk sensitive control problem with a general state space
(under minorization property).

2 Splitting of Markov processes

Let Ê = {C × {0} ∪ C × {1} ∪ E \ C × {0}} and x̂n = (x1
n, x2

n) ∈ Ê. Given a Markov
control an = un(x1

n), where un : E 7→ U is a sequence of Borel measurable functions,
consider the following Markov process defined on Ê
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(i) when (x1
n, x2

n) ∈ C×{0}, x1
n moves to y accordingly to (1−β)−1(P an(x1

n, dy)−βν(dy))
and whenever y ∈ C, x2

n is changed into x2
n+1 = βn+1, where βn is i.i.d. P {βn = 0} =

1− β, P {βn = 1} = β,

(ii) when (x1
n, x2

n) ∈ C × {1}, x1
n moves to y accordingly to ν and x2

n+1 = βn+1,

(iii) when (x1
n, x2

n) ∈ E \C×{0}, x1
n moves to y accordingly to P an(x1

n, dy) and whenever
y ∈ C, x2

n is changed into x2
n+1 = βn+1.

In what follows we shall write that the control (an) of (x̂n) is in the class UM , whenever
there is a sequence of Borel measurable functions un : E 7→ U such that an = un(x1

n).
Let C0 = C × {0}, C1 = C × {1}. By direct calculation we obtain

Lemma 1 For n = 1, 2 . . . we have P a.e.

P {x̂n ∈ C0|x̂n ∈ C0 ∪ C1, x̂n−1, . . . , x̂0} = 1− β

P {x̂n ∈ C1|x̂n ∈ C0 ∪ C1, x̂n−1, . . . , x̂0} = β.

Furthermore we have

Lemma 2 Under Markov control (an) ∈ UM the process (x̂n = (x1
n, x2

n)) is Markov with
transition operator P̂ an(x̂n, dy) defined by (i)-(iii). Furthermore the first coordinate (x1

n)
is also a Markov process with transition operator P an(x1

n, dy).

Proof. The first statement follows from the construction (i)-(iii) of the split Markov
process (x̂n). For the second notice that for A ∈ E

P
{
x1

n+1 ∈ A|x1
n, x1

n−1, . . . , x
1
0

}
=

P
{
x1

n+1 ∈ A|x1
n, x2

n = 0, x1
n−1, . . . , x

1
0

}
P

{
x2

n = 0|x1
n, x1

n−1, . . . , x
1
0

}

+P
{
x1

n+1 ∈ A|x1
n, x2

n = 1, x1
n−1, . . . , x

1
0

}
P

{
x2

n = 1|x1
n, x1

n−1, . . . , x
1
0

}
(2)

In the case when x1
n ∈ C, (2) is equal to

P an(x1
n, A)− βν(A)
1− β

(1− β) + βν(A) = P an(x1
n, A).

For x1
n /∈ C, (2) is equal to P an(x1

n, A), which completes the proof of Markov property of
(x1

n).
2
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Corollary 1 For any bounded Borel measurable function f : Em 7→ R, m = 1, 2, . . . , and
control (an) ∈ UM we have

E(an)
x {f(x1, x2, . . . , xm)} = Ê

(an)
δ∗x

{
f(x1

1, x
1
2, . . . , x

1
m)

}
(3)

where δ∗x = δ(x,0) for x ∈ E \ C and δ∗x = (1 − β)δ(x,0) + βδ(x,1) for x ∈ C and Êµ stands
for conditional law of Markov process (x̂n) with initial law µ ∈ P(Ê).

Proof. It follows from (2) that for a bounded Borel measurable g : E 7→ R

Ê
{
g(x1

i+1)|x1
i , x

1
i−1, . . . , x

1
0

}
= Ê

{
Ê

{
g(x1

i+1)|x̂i, x̂i−1, . . . , x̂0

}
|x1

i , x
1
i−1, . . . , x

1
0

}

= Ê
{
Êx̂i

{
g(x1

1)
}
|x1

i , x
1
i−1, . . . , x

1
0

}
= Êδ∗

x1
i

{
g(x1

1)
}

. (4)

On the other hand by Markovianity of (x1
n) we have

Ê
{
g(x1

i+1)|x1
i , x

1
i−1, . . . , x

1
0

}
=

∫

E
g(y)P ai(x1

i , dy). (5)

Consequently applying (4) and (5) to function f : Em 7→ R we obtain (3).
2

3 Multiplicative Poisson equation (MPE)

In this section we shall assume that

(A3) ∀(an)∈Us
∃d such that ∀x∈Ê

Ê(an)
x



exp





τC1∑

i=1

(
γc(x1

i , ai)− d
)






 < ∞

and for x ∈ C1

Ê(an)
x



exp





τC1∑

i=1

(
γc(x1

i , ai)− d
)






 ≥ 1

Lemma 3 Under (A3) for (an) ∈ Us there is a unique λγ((an)) such that for

Ê(an)
x



exp





τC1∑

i=1

(
γc(x1

i , ai)− λγ((an))
)






 = 1 (6)

for x ∈ C1.
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Proof. Notice that for x ∈ C1 the mapping

D : λ 7→ Ê(an)
x



exp





τC1∑

i=1

γc(x1
i , ai)− λ









is strictly decreasing whenever it is finite valued. Moreover by (A3) we have that ∞ >
D(d) ≥ 1. Since limd→∞D(d) = 0 by continuity of D there is a unique λγ((an)) for which
(6) holds.

2

Remark 1 Notice that letting d = infx∈E,a∈U γc(x, a) we have a sufficient condition for
(A3) in the form:
(D1) Ê

(an)
x {exp {γ‖c‖spτC1}} < ∞ for x ∈ Ê, where ‖c‖sp := supx∈E,a∈U c(x, a) −

infx∈E,a∈U c(x, a). In section 6 we shall formulate a sufficient condition for (D1) in terms
of the expected value of the functional with respect to the original Markov process (xn).

For Borel measurable u : E 7→ U let

eŵu(x) = Êu
x



exp





τC1∑

i=0

(
γc(x1

i , u(x1
i ))− λγ(u)

)






 , (7)

where by λγ(u) we denote the value of λγ((u(x1
n)) and expected value Êu

x stands for
Ê

(u(x1
n))

x .
By (A3) clearly λγ(u) ≥ d and therefore ŵu is well defined. Furthermore we have

Lemma 4 Function ŵu defined in (7) is a unique up to an additive constant solution to
the multiplicative Poisson equation (MPE) for the split Markov process (x̂n):

eŵu(x) = eγc(x1,u(x1))−λγ(u)
∫

Ê
eŵu(y)P̂ u(x1)(x, dy) (8)

Furthermore, if ŵ and λ satisfy the equation

eŵ(x) = eγc(x1,u(x1))−λ
∫

Ê
eŵ(y)P̂ u(x1)(x, dy) (9)

then λ = λγ(u) defined in Lemma 4 and ŵ differs from ŵu by an additive constant.
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Proof. In fact, we have using (6)

Êu
x {exp {w(x̂1)}} = Êu

x



χx̂1∈C1Ê

u
x1



exp





τC1∑

i=0

γc(x1
i , u(x1

i ))− λγ(u)













+Êu
x



χx̂1 /∈C1

Êu
x1



exp





τC1∑

i=0

γc(x1
i , u(x1

i ))− λγ(u)











 = Êu

x {χx̂1∈C1

exp
{
γc(x1

1, u(x1
1))− λγ(u)

}}
+ Êu

x



χx̂1 /∈C1

exp





τC1∑

i=1

γc(x1
i , u(x1

i ))− λγ(u)









= Êu
x



exp





τC1∑

i=0

γc(x1
i , u(x1

i ))− λγ(u)







 exp

{
−(γc(x1, u(x1))− λγ(u))

}

from which (8) follows. If ŵu is a solution to the equation (8) then by iteration

eŵu(x) = Êu
x



exp





τC1∑

i=0

(
γc(x1

i , u(x1
i ))− λγ(u)

)


 Êu

x̂τC1

{exp {ŵu(x̂(1))}}




and since by the construction of the split Markov process Êu
x̂τC1

{exp {ŵu(x̂(1))}} is a

positive constant ŵu differs from ŵu defined in (7) by an additive constant. Similarly if
ŵ and λ are solutions to (9) then ŵ differs from

ew̃(x) = Êu
x



exp





τC1∑

i=0

(
γc(x1

i , u(x1
i ))− λ

)








by an additive constant ln Êu
z {exp {ŵ(x̂1)}} with z ∈ C1. Since w̃ is also a solution to (9)

we have that Êu
z {exp {w̃(x̂1)}} = 1. Therefore

1 = Êu
z



χC1(x̂1) exp

{
γc(x1

1, u(x1
1))− λ

}
Êu

x̂1



exp





τC1∑

i=1

(
γc(x1

i , u(x1
i ))− λ

)






 +

(1− χC1(x̂1)) exp





τC1∑

i=1

(
γc(x1

i , u(x1
i ))− λ

)






 =

Êu
z

{
χC1(x̂1) exp

{
γc(x1

1, u(x1
1))− λ

}}
η + η − Êu

z

{
χC1(x̂1) exp

{
γc(x1

1, u(x1
1))− λ

}}

where η = Êu
z

{
exp

{∑τC1
i=1

(
γc(x1

i , u(x1
i ))− λ

)}}
for z ∈ C1. Hence

(
Êu

z

{
χC1(x̂1) exp

{
γc(x1

1, u(x1
1))− λ

}}
+ 1

)
η = Êu

z

{
χC1(x̂1) exp

{
γc(x1

1, u(x1
1))− λ

}}
+1
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and η = 1, which by Lemma 3 implies that λ = λγ(u).
2

Corollary 2 For x ∈ E and solution to MPE (6) ŵu : Ê 7→ R we have that wu defined
by

ewu(x) := eŵu(x,0) + 1C(x)β(eŵu(x,1) − eŵu(x,0)) (10)

is a solution to MPE for the original Markov process (x(n))

ewu(x) = eγc(x,u(x))−λγ(u)
∫

E
ewu(y)P u(x)(x, dy) (11)

Furthermore if wu is a solution to (11) then ŵu defined by

eŵu(x1,x2) = eγc(x1,u(x1))−λγ(u)Êx1,x2

{
ewu(x1

1)
}

(12)

is a solution to (8).

Proof. By Lemma 1 we have

Êu
x

{
eŵu(x̂1)

}
= Êu

x

{
Êu

x

{
eŵu(x̂1)|x1

1

}}

= Êu
x

{
χC(x1

1)((1− β)eŵu(x1
1,0) + βeŵu(x1

1,1))

+χE\C(x1
1)e

ŵu(x1
1,0)

}
= Êu

x

{
ewu(x1

1)
}

(13)

Therefore by (8) we obtain that wu defined in (10) is a solution to (11). Assume now that
wu is a solution to (11). Then

Êu
δ∗x

{
ewu(x1

1)
}

= Eu
x

{
ewu(x1

1)
}

and for ŵu given in (12) we obtain (10). From (10) we obtain (13) which in turn by (12)
shows that ŵu is a solution to (8).

2

Proposition 1 If for Borel measurable u : E 7→ U

(B1) ∃d(u) such that for x ∈ Ê, N = 1, 2, . . .

Êu
x



exp





τC1
∧N∑

i=1

(
γc(x1

i , u(x1
i ))− d(u)

)






 < ∞ (14)

and for z ∈ C1

Êu
z



exp





τC1∑

i=1

(
γc(x1

i , u(x1
i ))− d(u)

)






 > 1 (15)
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(B2) for x ∈ Ê

inf
N

Êu
x



exp





σC1
∧N−1∑

i=1

(
γc(x1

i , u(x1
i ))− λγ(u)

)






 > 0 (16)

(B3) for x ∈ Ê

sup
N

Êu
x



exp





σC1
∧N−1∑

i=1

(
γc(x1

i , u(x1
i ))− λγ(u)

)






 < ∞ (17)

with σC1 = inf {i ≥ 0 : x̂(i) ∈ C1}
then for x ∈ E

λγ(u) = lim
n→∞

1
n

ln Eu
x

{
exp

{
n−1∑

i=0

γc(xi, u(xi)))

}}
(18)

Proof. Let λ > λγ(u). For z ∈ C1 we have

Êu
z



exp





τC1∑

i=1

(
γc(x1

i , u(x1
i ))− λ

)






 < 1

and consequently for N ≥ N0

Êu
z



exp





τC1
∧N∑

i=1

(
γc(x1

i , u(x1
i ))− λ

)






 ≤ 1. (19)

Let

ewu
N (x) = Êu

x



exp





σC1
∧N−1∑

i=0

(
γc(x1

i , u(x1
i ))− λ

)






 . (20)

By (B3) wu
N is well defined. For x /∈ C1

ewu
N+1(x) = Êu

x



eγc(x1

0,u(x1
0))−λÊu

x̂1



exp





σC1
∧N−1∑

i=0

(
γc(x1

i , u(x1
i ))− λ

)












= Êu
x

{
eγc(x1

0,u(x1
0))−λewu

N (x̂1)
}

(21)
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and x ∈ C1 by (19) we have

ewu
N+1(x) = eγc(x1

0,u(x1
0))−λ ≥

≥ Êu
x



eγc(x1

0,u(x1
0))−λÊu

x̂1



exp





σC1
∧N−1∑

i=0

(
γc(x1

i , u(x1
i ))− λ

)












= Êu
x

{
eγc(x1

0,u(x1
0))−λewu

N (x̂1)
}

(22)

Consequently
ewu

N+1(x) ≥ Êu
x

{
eγc(x1

0,u(x1
0))−λewu

N (x̂1)
}

and by iteration for N ≥ N0

ewu
N+k(x) ≥ Êu

x

{
e
∑k−1

i=0
(γc(x1

i ,u(x1
i ))−λ)ewu

N (x̂k)
}

≥ Êu
x

{
e
∑k−1

i=0
(γc(x1

i ,u(x1
i ))−λ)e−γ‖c‖N

}
.

Therefore
1
k

ln Êu
x

{
eγ

∑k−1

i=0
c(x1

i ,u(x1
i ))

}
≤ 1

k
γ‖c‖N

+
1
k

sup
N

ln Êu
x



exp





σC1
∧N−1∑

i=1

(
γc(x1

i , u(x1
i ))− λγ(u)

)






 + λ

and by (B3)

lim sup
k→∞

1
k

ln Êu
x

{
eγ

∑k−1

i=0
c(x1

i ,u(x1
i ))

}
≤ λ

Consequently letting λ decreasing to λγ(u) we obtain

lim sup
k→∞

1
k

ln Êu
x

{
eγ

∑k−1

i=0
c(x1

i ,u(x1
i ))

}
≤ λγ(u) (23)

Assume now that λ < λγ(u). Then by (B1) for z ∈ C1 and λ close to λγ(u) we have

Êu
z



exp





τC1∑

i=1

(
γc(x1

i , u(x1
i ))− λ

)






 > 1

and consequently for N ≥ N0

Êu
z



exp





τC1
∧N∑

i=1

(
γc(x1

i , u(x1
i ))− λ

)






 ≥ 1. (24)
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Therefore by (B1) wu
N given by (20) (now for λ as above) is well defined and similarly as

in (21) (22) we have
ewu

N+1(x) ≤ Êu
x

{
eγc(x1

0,u(x1
0))−λewu

N (x̂1)
}

(25)

and by iteration for N ≥ N0

ewu
N+k(x) ≤ Êu

x

{
e
∑k−1

i=0
(γc(x1

i ,u(x1
i ))−λ)ewu

N (x̂k)
}

≤ Êu
x

{
e
∑k−1

i=0
(γc(x1

i ,u(x1
i ))−λ)eγ‖c‖N

}
.

Therefore

1
k

ln Êu
x

{
eγ

∑k−1

i=0
c(x1

i ,u(x1
i ))

}
≥ −1

k
γ‖c‖N

+
1
k

inf
N

ln Êu
x



exp





σC1
∧N−1∑

i=1

(
γc(x1

i , u(x1
i ))− λγ(u)

)






 + λ

and by (B2)

lim inf
k→∞

1
k

ln Êu
x

{
eγ

∑k−1

i=0
c(x1

i ,u(x1
i ))

}
≥ λ

and finally

lim inf
k→∞

1
k

ln Êu
x

{
eγ

∑k−1

i=0
c(x1

i ,u(x1
i ))

}
≥ λγ(u) (26)

which together with (23) using (3) completes the proof.
2

Remark 2 Notice that under (D1) the conclusion of Proposition 1 i.e. (18) holds. In
fact, under (D1) condition (14) is satisfied with d(u) = infx∈E,a∈U γc(x, a) and (15) holds
provided that the process (x̂n) starting from C1 enters the set

{
x = (x1, x2) ∈ Ê : γc(x1, u(x1)) > inf

z∈E,a∈U
γc(z, a)

}

before hitting C1 with positive probability. In the case (x̂n) does not enter the above set we
have equality in (15) and then also (24) is satisfied so that under (B2) and (B3) equality
(18) holds. By Hölder inequality using the fact that λγ(u) ≤ supx∈E,a∈U γc(x, a) we have
that

1 ≤

Êu

x



exp





σC1
∧N−1∑

i=1

(
−γc(x1

i , u(x1
i )) + λγ(u)

)











1
2
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Êu

x



exp





σC1
∧N−1∑

i=1

(
γc(x1

i , u(x1
i ))− λγ(u)

)











1
2

≤
(
Êu

x

{
eγ‖c‖spτC1

}) 1
2


Êu

x



exp





σC1
∧N−1∑

i=1

(
γc(x1

i , u(x1
i ))− λγ(u)

)











1
2

from which under (D1) inequality (16) holds. Since λγ(u) ≥ infx∈E,a∈U γc(x, a), under
(D1) (17) also holds.

4 Uniformly ergodic approximation of controlled Markov
processes

We shall now assume that

(A4) for x ∈ E, A ∈ E
P a(x,A) =

∫

A
p(x, a, y)ν(dy) (27)

where p is a positive continuous function of its coordinates.
Denote by |x| the value of ρ(x, θ), where ρ is a metric on E compatible with the topology
of E and θ ∈ E is a fixed point.
Let

p̃N (x, a, y) =





p(x,a,y)
∆a

N (x) for |y| ≤ N
p(θ,ā,y)
∆a

N (x) for |y| ≥ N + 1
p(x,a,y)(N+1−|y|)+p(θ,ā,y)(|y|−N)

∆a
N (x) elsewhere

with ∆a
N (x) = P a(x,BN )+P ā(θ, Bc

N+1)+
∫
BN+1\BN

[p(x, a, y)(N +1−|y|)+p(θ, ā, y)(|y|−
N)]ν(dy), where BN = {x ∈ E : |x| ≤ N} and ā is a fixed element of U .
Let

pN (x, a, y) = p̃N (x, a, y) if |x| ≤ N

pN (x, a, y) = p̃N

(
x
|x|N, a, y)

)
for |x| > N .

and define
P a

N (x, dy) = pN (x, a, y)ν(dy) (28)

We clearly have that

11



Lemma 5
sup
a∈U

‖P a
N (x, ·)− P a(x, ·)‖var → 0 (29)

as N →∞, uniformly in x from compact sets. Furthermore for each N

sup
a,a′∈U

sup
x,x′∈E

sup
y∈E

pN (x, a, y)
pN (x′, a′, y)

< ∞ (30)

Let for (an) ∈ Us

F
(an)
Nx (λ) = Ê(an),N

x



exp





τC1∑

i=1

(γc(x1
i , ai)− λ)







 (31)

and

F (an)
x (λ) = Ê(an)

x



exp





τC1∑

i=1

(γc(x1
i , ai)− λ)







 , (32)

where P̂
(an),N
x is a conditional probability of the split Markov process (x̂n) corresponding

to Markov process (xn)with transition probability P an
N at time n.

Notice that whenever x ∈ C1 the functions in (31) and (32) do not depend on x and will
be denoted by F

(an)
N and F (an). We have

Proposition 2 Assume that there is N0 such that for N ≥ N0 there exist d1 < d2 such
that for (an) ∈ Us, x ∈ C1 we have

F
(an)
N (d2) = F

(an)
Nx (d2) ≤ 1 ≤ F

(an)
Nx (d1) < ∞, (33)

F
(an)
Nx (λ) → F

(an)
x (λ) for x ∈ C1 uniformly in (an) ∈ Us and λ ∈ [d1, d2], and furthermore

sup
(an)

|F (an)′(d1)| < ∞, (34)

where ′ stands for the derivative with respect to λ. Then

λγ
N ((an)) :=

(
F

(an)
N

)−1
(1) →

(
F (an)

)−1
(1) = λγ((an)) (35)

uniformly in (an) ∈ Us as N →∞.

Proof. Assume that there is ε > 0, a sequence (ak
n) of strategies from Us and sequence

Nk →∞ such that
|λγ

Nk
((ak

n))− λγ((ak
n))| > ε. (36)
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By assumption we have that

|F (ak
n)

Nkx (λNk
((ak

n)))− F (ak
n)

x (λNk
((ak

n)))| → 0

and therefore
F (ak

n)
x (λγ

Nk
((ak

n))) → 1 = F
(ak

n)
Nkx (λγ

Nk
((ak

n))) (37)

as k → ∞. Since F
(ak

n)
x (λγ((ak

n))) = 1 and sup(ak
n) |F (ak

n)′(λ)| is bounded for λ ∈ [d1, d2]
(by (34)) we should have |λγ

Nk
((ak

n))− λγ((ak
n))| → 0 as k →∞, which contradicts (36).

2

Remark 3 Notice that the choice of d1 and d2 in (33) is uniform with respect to (an) ∈ Us.
Natural candidate is d1 = infx∈E,a∈U γc(x, a) and d2 = supx∈E,a∈U γc(x, a). To have

convergence F
(an)
Nx (λ) → F

(an)
x (λ) for x ∈ C1 uniform in (an) ∈ UM and λ ∈ [d1, d2] we

have to assume for x ∈ C1

(D2) sup(an)∈Us
Ê

(an)
x {exp {γ‖c‖spτC1}} < ∞,

and
(D3) supN sup(an)∈Us

Ê
(an),N
x {exp {γ‖c‖spτC1}} < ∞.

Since

|F (an)′
x (λ)| = Ê(an)

x



τC1 exp





τC1∑

i=1

(γc(x1
i , hi)− λ)









≤ Ê(an)
x {τC1 exp {γ‖c‖spτC1}}

≤ KÊ(an)
x {exp {(1 + ε)γ‖c‖spτC1}}

for ε > 0 and K > 0, to have (34) it is sufficient to assume for x ∈ C1 that
(D4) sup(an)∈Us

Ê
(an)
x {exp {(1 + ε)γ‖c‖spτC1}} < ∞ for a sufficiently small ε > 0.

By Theorem 1 of [7] using (30) we have

Proposition 3 For each N there are λγ
N and wN ∈ C(E) such that

ewN (x) = inf
a∈U

[eγc(x,a)−λγ
N

∫

E
ewN (y)P a

N (x, dy)] (38)

and consequently
λγ

N = inf
an

Jγ,N
x ((an)), (39)

where

Jγ,N
x ((an)) := lim sup

t→∞
1
t

lnE(an),N
x

{
exp

{
t−1∑

i=0

γc(xi, ai)

}}
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and infimum is taken over all admissible controls (an).
Moreover the strategy an = uN (xn), where uN : E 7→ U is a Borel measurable function for
which the infimum in (38) is attained, is optimal.

Corollary 3 Under (D2), (D3) and (D4) we have that

λγ := inf
(an)∈Us

Jγ
x ((an)) = lim

N→∞
λγ

N (40)

for x ∈ E.

Proof. By Remark 3 and Proposition 2

sup
(an)∈Us

|λγ
N ((an))− λγ((an))| → 0.

Since by Remark 2, Proposition 1 and Proposition 2, λγ
N ((an)) = inf(an)∈Us

λγ
N ((an)) = λγ

N

we obtain (40).
2

5 Risk sensitive Bellman equation

Let uN be an optimal control function corresponding to P a
N (x, dy). Furthermore assume

that

(A5) ∃ε>0 such that ∀K compact⊂ Ê

sup
a∈U

sup
x∈K̂

sup
N

Êa,N
x



exp





τC1∑

i=1

(γc(x1
i , uN (x1

i ))− λγ
N (uN ))(1 + ε)







 = M(K) < ∞,

(41)

where above we control the split Markov process (x̂n) using at time 0 control a0 = a and
then an = uN (x1

n) for n ≥ 1.

Theorem 1 Under (A1)-(A5) there exist λγ and a continuous function w : E 7→ R such
that

ew(x) = inf
a∈U

[eγc(x,a)−λγ
∫

E
ew(y)P a(x, dy)] (42)

Moreover, under (D1) satisfied for all (an) ∈ Us we have that λγ is an optimal value of
the cost functional Jγ

x and the control û(xn), where û is a Borel measurable function for
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which the infimum in the right hand side of (42) is attained, is an optimal control within
the class of controls from Us.
Furthermore, if for admissible control (an) we have that

lim sup
t→∞

E(an)
x

{(
Eat

xt

{
ew(x1)

})α}
< ∞

for every α > 1, then λγ ≤ Jγ
x ((an)).

Proof. The proof consists of several steps:
Step 1. We prove first that supN Êa,N

x {exp {ŵuN
N (x̂1}} is bounded uniformly on compact

subsets of (E0 ∪ C1)× U , where ŵuN
N is a solution to the multiplicative Poisson equation

corresponding to the transition operator P a
N (x, dy) with control function uN .

In fact,

Êa,N
x {exp {ŵuN

N (x̂1}} = Êa,N
x

{
χC1(x̂1)eγc(x1

1,uN (x1
1))−λγ

N (uN )
}

+Êa,N
x



χCc

1
(x̂1) exp





τC1∑

i=1

(γc(x1
i , uN (x1

i ))− λγ
N (uN ))







 (43)

and by (A5) follows the required boundedness.
Step 2. We show now that for N = 1, 2 . . . , the functions Êa,N

x {exp {ŵuN
N (x̂1)}} are

equicontinuous in x and a from compact subsets of E0 ∪ C1 and U respectively.
Notice first that by (29) for each compact set K ⊂ E0 ∪ C1, ε′ > 0 there is a compact set
K1 ⊃ C0 ∪ C1 such that

sup
a∈U

sup
x∈K

sup
N

P̂ aN
x {x̂1 ∈ Kc

1} < ε′ (44)

Furthermore by Hölder inequality

sup
a∈U

sup
x∈K

sup
N

Êa,N
x



χCc

1
(x̂1)χKc

1
(x̂1) exp





τC1∑

i=1

(γc(x1
i , uN (x1

i ))− λγ
N (uN ))









≤ sup
a∈U

sup
x∈K

sup
N

(
P̂ a,N

x {x̂1 ∈ Kc
1}

) ε
1+ε sup

a∈U
sup
x∈K

sup
N


Êa,N

x



exp





τC1∑

i=1

(γc(x1
i , uN (x1

i ))

−λγ
N (uN ))(1 + ε)}}) 1

1+ε ≤ ε′
ε

1+ε (M(K))
1

1+ε (45)

Consequently by (43)-(45)

|Êa,N
x {exp {ŵuN

N (x̂1}} − Êa′,N
x′ {exp {ŵuN

N (x̂1}} |
≤ e|γ|‖c‖‖P̂ aN (x,C1 ∩ ·)− P̂ a′N (x′, C1 ∩ ·)‖var + 2ε′

ε
1+ε (M(K))

1
1+ε

+|Êa,N
x {χK1(x̂1) exp {ŵuN

N (x̂1}} − Êa′,N
x′

{
χK1(x̂1) exp

{
ŵuN

N (x̂′1
}} | (46)
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For δ > 0 choose K1 in (44) such that ε′
ε

1+ε (M(K))
1

1+ε < δ
3 . Since

|Êa,N
x | {χK1(x̂1) exp {ŵuN

N (x̂1}} − Êa′,N
x′

{
χK1(x̂1) exp

{
ŵuN

N (x̂′1
}} |

≤ sup
x∈K1

exp {ŵuN
N (x)} ‖P̂ aN (x,K1 ∩ ·)− P̂ a′N (x′,K1 ∩ ·)‖var

for x, x′ ∈ E0 ∪ C1 and a, a′ ∈ U such that

‖P̂ aN (x,C1 ∩ ·)− P̂ a′N (x′, C1 ∩ ·)‖var ≤ δ

3eγ‖c‖ (47)

and
‖P̂ aN (x,K1 ∩ ·)− P̂ a′N (x′,K1 ∩ ·)‖var ≤ δ

3 supz∈K1
eŵ

uN
N (z)

(48)

by (46) we obtain that

|Êa,N
x {exp {ŵuN

N (x̂1}} − Êa′,N
x′ {exp {ŵuN

N (x̂1}} | ≤ δ.

Now by (A5) supz∈K1
eŵ

uN
N (z) is bounded in N and therefore by (29) we can choose x, x′

and a, a′ in (47) and (48) uniformly in N , which completes the proof of equicontinuity.
Step 3. By step 1, 2 and (9) we immediately see that

Ea,N
x {exp {wuN

N (x1)}}

is uniformly (in N) bounded and equicontinuous in x and a from compact subsets of E×U .
Since uN is optimal for P a

N (x, dy) we have that wuN
N = wN . Therefore by Ascoli theorem

(thm. 33 of [13]) there is a subsequence Nk such that

Ea,Nk
x {exp {wNk

(x1)}}

converges uniformly in a ∈ U and x from compact subsets of E and λγ
Nk

(uNk
) → λ (since

λγ
N (un) ∈ [infx∈E,a∈U γc(x, a), supx∈E,a∈U γc(x, a)]). Consequently there is a continuous

function w such that

ew(x) = inf
a∈U

[eγc(x,a)−λ lim
k→∞

∫

E
ewNk

(y)P a
Nk

(x, dy)] (49)

Step 4. To prove that function w defined in (49) is a solution to the Bellman equation
(42) it remains to show that

lim
k→∞

Ea,Nk
x {exp {wNk

(x1)}} = Ea
x

{
ew(x1)

}
. (50)
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In fact, by Fatou lemma

Ea
x

{
ew(x1)

}
≤ lim

k→∞
Ea,Nk

x {exp {wNk
(x1)}} < ∞ (51)

By step 1 and 2 one can find a compact set K1 ⊃ C such that

sup
N

sup
a∈U

Ea,N
x

{
χKc

1
(x1) exp {wN (x1)}

}
≤ ε

3
(52)

and
sup
a∈U

Ea
x

{
χKc

1
(x1) exp {w(x1)}

}
≤ ε

3
. (53)

Therefore

|Ea
x {exp {w(x1)}} − Ea,Nk

x {exp {wNk
(x1)}} | ≤

|Ea
x {χK1(x1) exp {w(x1)}} − Ea,Nk

x {χK1(x1) exp {w(x1)}} |
+|Ea,Nk

x {χK1(x1) (exp {w(x1)} − exp {wNk
(x1)})} |

+Ea,Nk
x

{
χKc

1
(x1) exp {wNk

(x1)}
}

+ Ea
x

{
χKc

1
(x1) exp {w(x1)}

}

≤ sup
x∈K1

ew(x)‖P a(x,K1 ∩ ·)− P aN (x,K1 ∩ ·)‖var + sup
x∈K1

|ew(x) − ewNk (x)|+ 2ε

3
.

Consequently letting k → ∞ and taking into account that ε may be arbitrarily small we
obtain the convergence (50). By continuity on x and a of the right hand side of (42) we
have the existence of a Borel measurable function û for which the infimum is attained.
Step 5. We shall show now that for Borel measurable u : E 7→ U we have we have
λγ(u) ≥ λγ .
In fact, then

ew(x) ≤ eγc(x,u(x))−λγ
∫

E
ew(y)P u(x)(x, dy). (54)

Define following (12)

eŵu(x1,x2) = eγc(x1,u(x1))−λγ
Ê

u(x1)
x1,x2

{
ew(x1

1)
}

(55)

Since by (3) for a ∈ U

Ea
x

{
ew(x1)

}
= Êa

δ∗x

{
ew(x1

1)
}

=

χC(x)[(1− β)Êa
(x,0)

{
ew(x1

1)
}

+ βÊa
(x,1)

{
ew(x1

1)
}
] + χE\C(x)Êa

(x,0)

{
ew(x1

1)
}
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we have from (54)

ew(x) ≤ [eγc(x,u(x))−λγ
(
χC(x)[(1− β)Êu(x)

(x,0)

{
ew(x1

1)
}

+βÊ
u(x)
(x,1)

{
ew(x1

1)
}
] + χE\C(x)Êu(x)

(x,0)

{
ew(x1

1)
})

=

χC(x)
(
(1− β)eŵu(x,0) + βeŵu(x,1)

)
+ χE\C(x)eŵu(x,0)

Consequently

Ê
u(x1)
(x1,x2)

{
ew(x1

1)
}
≤ Ê

u(x1)
(x1,x2)

{
χC(x1

1)
(
(1− β)eŵu(x1

1,0) + βeŵu(x1
1,1)

)
+ χE\C(x1

1)e
ŵu(x1

1,0)
}

= Ê
(u(x1)
(x1,x2)

{
eŵu(x1)

}
. (56)

Therefore by the definition of ŵu we have that

eŵ(x1,x2) ≤ eγc(x1,u(x1))−λγ
Ê

u(x1)
(x1,x2)

{
eŵu(x1)

}
(57)

Iterating the last inequality for z ∈ C1 we obtain

Êu
z

{
eŵ(x1)

}
≤ Êu

z



exp





τC1∑

i=1

(γc(x1
i , u(x1

i ))− λγ)



 Êu

xτC1

{
eŵ(x1)

}


 (58)

Since by step 1 we have that Êz

{
eŵ(x1)

}
< ∞ we obtain

Êz



exp





τC1∑

i=1

(γc(x1
i , u(x1

i ))− λγ)







 ≥ 1,

for z ∈ C1, which by Lemma 3 implies that λγ ≤ λγ(u).
Step 6. Assuming (D1) satisfied for any (an) ∈ Us, by Proposition 1 and Lemma 4 and
step 5 we have for any Borel measurable u : E 7→ U

λγ = λγ(û) = Jγ
x (û(xn)) ≤ Jγ

x ((u(xn))),

which shows optimality of (û(xn)) within the class of stationary controls. If for an admis-
sible control (an) we have lim supt→∞E

(an)
x

{(
Eat

xt

{
ew(x1)

})α}
< ∞ for every α > 1, then

by Hölder inequality we have from (42)

w(x) ≤ ln E(an)
x

{
exp

{
t−1∑

i=0

(γc(xi, ai)− λγ)

}
Eat

xt

{
ew(x1)

}}

≤ −tλγ + ln

(
E(an)

x

{
exp

{
t−1∑

i=0

γc(xi, ai)(1 + ε)

}}) 1
1+ε

+

ln
(

E(an)
x

{(
Eat

xt

{
ew(x1)

})1+ 1
ε

}) ε
1+ε
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Dividing both sides of the last inequality by t and letting t to infinity we obtain that
1

1+εJ
γ(1+ε)
x ((an)) ≥ λγ for any ε > 0. It remains to show that the mapping γ 7→ Jγ

x ((an))
is a continuous function for γ > 0 since then letting ε → 0 we obtain Jγ

x ((an)) ≥ λγ . To
prove continuity notice that for γ1, γ2 > 0, γ1 ≤ γ2

|Jγ1
x ((an))− Jγ2

x ((an))| ≤ lim sup
t→∞

1
t
| lnE(an)

x

{
exp

{
t−1∑

i=0

γ1c(xi, ai)

}}

− lnE(an)
x

{
exp

{
t−1∑

i=0

γ2c(xi, ai)

}}
| ≤ lim sup

t→∞
1
t
|γ1 − γ2| sup

γ∈[γ1,γ2]
|g′t(γ)|

≤ ‖c‖|γ1 − γ2|,
since the derivative of the function

gt(γ) := lnE(an)
x

{
exp

{
t−1∑

i=0

γc(xi, ai)

}}

is bounded by t‖c‖.
2

Remark 4 A sufficient condition for (A5) can be formulated a follows
(D5) there is ε > 0 such that for each compact set K ⊂ Ê

sup
a∈U

sup
x∈K

sup
N

Êa,N
x {exp {(1 + ε)|γ|‖c‖spτC1}} < ∞

where the split Markov process (x̂n) after control a at time 0 is controlled using the control
function uN . Notice furthermore that since λ is defined in a unique way (as the optimal
value of the cost functional (1)) we therefore have the convergence λγ

N → λγ which we
obtained earlier in Corollary 3 under additional assumptions.

6 Remarks on assumptions and an example

We shall formulate first a sufficient condition for (A3).

Proposition 4 If for x ∈ E and (an) ∈ Us

E(an)
x {exp {γ‖c‖spτC}} < ∞ (59)

and
sup
x∈C

E(an)
x {exp {γ‖c‖spτC}} − β exp {γ‖c‖sp} < 1 (60)

then (A3) holds.
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Proof. Notice first that by Corollary 1 for z /∈ C and positive integer m we have

Ê
(an)
(z,0) {exp {γ‖c‖spτC}χτC≤m} = E(an)

z {exp {γ‖c‖spτC}χτC≤m} . (61)

Letting m →∞ by (59) we obtain

Ê
(an)
(z,0) {exp {γ‖c‖spτC}} = E(an)

z {exp {γ‖c‖spτC}} . (62)

Now for (an) ∈ UM and x ∈ C using the definition of split Markov process and (60) we
have

Ê
(an)
(x,0) {exp {γ‖c‖spτC}} = Ê

(an)
(x,0)

{
χC(x1

1)e
γ‖c‖sp +

χCc(x1
1)Ê

(an)
x̂1

{exp {γ‖c‖spτC}}
}

= eγ‖c‖sp
P a0(x,C)− β

1− β

+eγ‖c‖sp

∫

Cc
E(an)

z {exp {γ‖c‖spτC}} P a0(x, dz)
1− β

=
1

1− β

[
eγ‖c‖sp(P a0(x,C)− β)

−E(an)
x

{
χC(x1)eγ‖c‖sp

}
+ Ex

{
eγ‖c‖spτC

}]
<

1
1− β

. (63)

Let τ1 = τC :=
{
i ≥ 0 : x1

i ∈ C
}
, τn+1 = τn + τ1 ◦ θτn .

For x ∈ Ê and L = supz∈C Ê
(an)
(z,0)

{
eγ‖c‖spτC

}
using Lemma 1 we have

Ê(an)
x

{
eγ‖c‖spτC1

}
= Êx

{ ∞∑

i=1

χCc
1
(x̂τ1) . . . χCc

1
(xτi−1)χC1(x̂τi)e

γ‖c‖spτi

}

≤
∞∑

i=1

Ê(an)
x

{
χCc

1
(x̂τ1) . . . χCc

1
(x̂τi−1)e

γ‖c‖spτi−1

}
Lβ ≤

Ê(an)
x

{
eγ‖c‖spτC

} ∞∑

i=1

(1− β)i−1βLi−1 = Ê(an)
x

{
eγ‖c‖spτC

} β

1− (1− β)L
,

and taking into account (62), (59), (60) we obtain (D1) which completes the proof.
2

Taking into account Remark 4, by the proof of Proposition 4 we easily obtain a sufficient
condition for (A5)

Corollary 4 If there is an ε > 0 such that for any compact set K ⊂ E we have

sup
a∈U

sup
x∈K

sup
N

Ea,N
x {exp {(1 + ε)γ‖c‖spτC}} < ∞ (64)
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and
sup
a∈U

sup
x∈C

sup
N

Ea,N
x {exp {(1 + ε)γ‖c‖spτC}} − β exp {εγ‖c‖sp} < 1, (65)

where Markov process (xn) is controlled using constant a at time 0 and an = uN (xn)
afterwards, then (A5) holds.

Consequently we see that assumptions imposed in the paper are satisfied for a class of
processes for which f(γ) := Ex {eγτC} is finite provided that we choose γ sufficiently
small (to guarantee (60) and (65)). As an example one can consider a discretized ergodic
diffusion (xn) in Rd given by the following equation:

xn+1 = xn + Axn + b(xn, an) + D(xn, an)wn, (66)

where (wn) is a sequence of i.i.d. standard normal random vectors in Rd, A is a sta-
ble matrix, b(x, a) is a continuous bounded vector function of x ∈ Rd and a ∈ U , and
D(x, a) is a continuous bounded matrix valued function which is uniformly elliptic i.e.
infx∈Rd infa∈U trD(x, a)D(x, a)T > 0. Notice that by nondegeneracy of D the minoriza-
tion property (A1) is satisfied for any closed ball C in Rd. The stability of the matrix A
and boundendess of b implies that if C is sufficiently large the controlled process no matter
what control is used is pushed to C. For completeness we add the following Lyapunov
type criterion

Lemma 6 If for (an) ∈ Us

sup
x/∈C

E(an)
x

{
‖xτC‖−1

}
< ∞ (67)

and for γ > 0
sup
x/∈C

sup
a∈U

Ea
x {‖x1‖} ≤ e−4γ‖x‖ (68)

then
E(an)

x {eγτC} < ∞ (69)

Proof. Define a Lyapunov function V (s, x) := e2γ(s+1)‖x‖. For x /∈ C by (68) we have

E(an)
x {V (s + 1, x1)} − V (s, x) ≤ e2γ(s+2)E(an)

x {‖x1‖} − e2γ(s+1)‖x‖ ≤
−(e2γ(s+1) − e2γs)‖x‖

Consequently

E(an)
xm

{V (m + 1, x1)} − V (m, xm) ≤ −(e2γ(m+1) − e2γm)‖xm‖,
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E(an)
xm−1

{V (m,x1)} − V (m− 1, xm−1) ≤ −(e2γm − e2γ(m−1))‖xm−1‖,
and summing up the above inequalities till the process (xn) enters the set C and taking
the expected value we obtain

E(an)
xτC

{V (τ, xτ )} − V (0, x) ≤ −E(an)
x {‖xτC‖} (e2γτC − 1), (70)

from which by nonegativity of V we have that

E(an)
x

{
e2γτC‖xτC‖

}
≤ V (0, x). (71)

By Hölder inequality

E(an)
x {eγτC} ≤

(
E(an)

x

{
e2γτC‖xτC‖

}) 1
2

(
E(an)

x

{
‖xτC‖−1

}) 1
2

and from (67) we obtain (69).
2
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