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A new approach to the computational complexity beyond the known complexity measures of the
consumed time and space of computation is proposed. The approach focuses on the chaotic behaviour
and randomness aspects of computational processes and bases on a representation of these processes by
causal sets. The abstract systems allowing some synchronized parallelism of computation are investi-
gated within the approach, where the computational processes realized in a discrete time are represented
by causal sets like in [2].

The representation of computational processes by causal sets is aimed to provide an abstraction from
those features of computational processes which have not a spatial nature such that the abstraction could
make visible some new aspects of the processes like an aspect of chaotic behaviour or a fractal shape.

The aspects of a chaotic behaviour and a fractal shape inspired by the research area of dynamics of
nonlinear systems [11] regarding an unpredictability of the behaviour of these systems1 could suggest
an answer to the following question formulated in [13]: Is the concept of randomness, founded in the
concept of absence of computable regularities, the only adequate and consistent one? In which direction,
if any, should one look for alternatives?

The answers may have an impact on designing pseudorandom number generators applied in statistics,
cryptography, and Monte Carlo Method.

Thus the proposed approach comprises measuring of complexity of computational processes by a
use of graph dimensions [6] and network fractal dimensions [10] in parallel to measuring complexity of
random strings in [4] by Hausdorff dimension.

The proposed approach concerns investigations of abstract computing devices of two types:

• geometrical Gandy machines,

• Gandy machines over multisets, where these machines are counterparts of some uniform families
of P systems (the underlying systems of membrane computing [9]) like in [5].

The geometrical Gandy machines are some modifications of the known Gandy’s mechanisms [3] by
assuming that the sets of machine instantaneous descriptions2 are skeletal sets, similarly like in [7], with
respect to the permutations of urelements, where urelements are n-tuples of rational numbers. Hence the
adjective “geometrical” is used.

It has been pointed out in [12] that Gandy mechanisms “conform to basic principles of physics”, see
also [1].

The geometrical Gandy machines are aimed to respect a claim (contained in the open problem in [12])
for Gandy mechanisms to be “more consistent with local causation in physics”. In other words, to be

1unpredictability due to sensitive dependence on initial conditions—an important feature of deterministic transient chaos
[11] often having fractal shape.

2a machine instantaneous description is here a hereditarily finite set which describes potential ‘wireless’ intercommunication
between urelements appearing in this set.
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2 Causal sets for Gandy machines

more realistic than (possible) imaginary constructs within the theory of hereditarily finite sets and hence
less “technically somewhat complicated”.

The Gandy machines over multisets are geometrical Gandy machines, where the urelements appear-
ing in the machine instantaneous descriptions are in addition labelled by multiset and the machine rules
of local causation respect processing of multisets in the manner of P system evolution rules. These ma-
chines are aimed to present some uniform families of P system [5] in terms of a one machine with finite
number of schemes of evolution rules.

The assumption that the sets of machine instantaneous descriptions are skeletal together with the fea-
tures of machine local causation rules provide a natural construction of causal sets representing compu-
tational processes. The causal sets representing computational processes are here subsets of space-time,
i.e. (n+1)-tuples of rational numbers if urelements are n-tuples (forming phase space), and the causality
relations are determined by the applications of machine local causation rules, respectively.

The examples of Gandy–Păun–Rozenberg machines, including generalized machines, in [7] and [8]
give rise to the examples of geometrical Gandy machines after some slight modifications.

Some models of computation in [2] may give rise to examples of geometrical Gandy machines whose
computational processes are represented by causal sets of fractal shape.
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