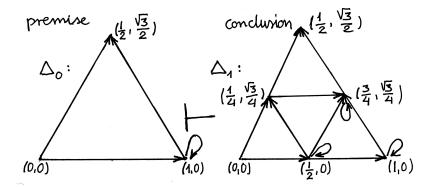
An example illustrating the topic ideas of *Causal nets for geometrical Gandy–Păun–Rozenberg machines*

Adam Obtułowicz Institute of Mathematics, Polish Academy of Sciences Warsaw, Poland

http://www.impan.pl/~adamo/causal-ex.pdf

The example concerns a generation of the contours (frontiers) Δ_n (for a natural number $n \ge 0$) of Sierpiński gasket iterations by a geometrical Gandy–Păun–Rozenberg machine, where these contours Δ_n are finite directed graphs and the *instantaneous descriptions* of the machine.

The machine is equipped with exactly one graph rewriting rule of its instantaneous descriptions:



The generation of the contours is here an inductive construction such that the graph Δ_{n+1} is constructed from Δ_n $(n \ge 0)$ by using the graph rewriting rule $\Delta_0 \vdash \Delta_1$ and by a family of 3^n *h*-processors for the graph embeddings $h: \Delta_0 \rightarrow \Delta_n$, respectively, where these embeddings are called the *places of application of the rule in* Δ_n . Simultaneously the 3^{*n*} *h*-processors perform their tasks of graph replacement for every embedding $h : \Delta_0 \rightarrow \Delta_n$ according to the following program:

Program

Begin;

delete from Δ_n all edges of the image h in Δ_n ; scale (or contract, or diminish, or shrink) the conclusion Δ_1 of the rule by that factor by which h scales the premise Δ_0 to embed it in Δ_n

 $[\underline{\text{comment}}: \text{ since this factor should be } 2^{-n} \text{ in} \\ \text{the case of an embedding } h: \Delta_0 \rightarrow \Delta_n, \text{ we denote} \\ \text{the result of scaling } \Delta_1 \text{ by } 2^{-n}(\Delta_1)]; \\ \text{translate the result of scaling to } h(0,0) \\ \text{according to translation formula} \\ f_h(\vec{x}) = \vec{x} + h(0,0), \text{ where both } \vec{x} \text{ and } h(0,0) \text{ are} \\ \text{ordered pairs of numbers and } + \text{ is the vector} \\ \text{sum}; \\ \end{cases}$

(日本) (日本) (日本)

<u>End</u>.

We denote the result of performance of the above program by $f_h(2^{-n}(\Delta_1))$ and call it the result of the application of the rule in the place h in Δ_n .

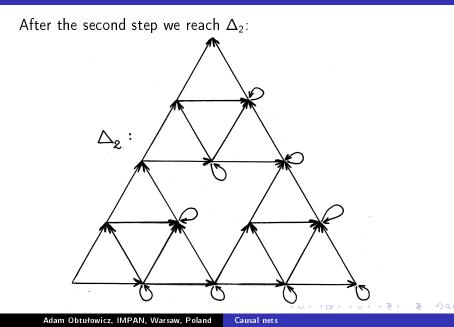
Thus the global result of the application of the rule in Δ_n is given by

$$\Delta_{n+1} := \bigcup_{h \in \mathcal{A}} f_h(2^{-n}(\Delta_1)).$$

h is an embedding of Δ_0 in Δ_n

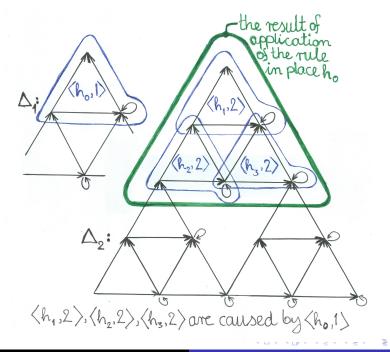
Here the inductive steps of the construction of Δ_n (n > 0) coincide with the steps of the Gandy-Păun-Rozenberg machine work.

Second step



Since a place $h: \Delta_0 \rightarrow \Delta_n$ of application of the machine rule determines unambigously a 'local' event of an appearance of the *h*-processor performing its program in the *n*-th 'global' step of the machine work, one can identify or represent this local event with the ordered pair $\langle h, n \rangle$ called simply an *event*. The *initial event* is $\langle id_{\Delta_0}, 0 \rangle$, where id_{Δ_0} is the identity mapping. The events are ordered by a causal relation \prec of events defined by

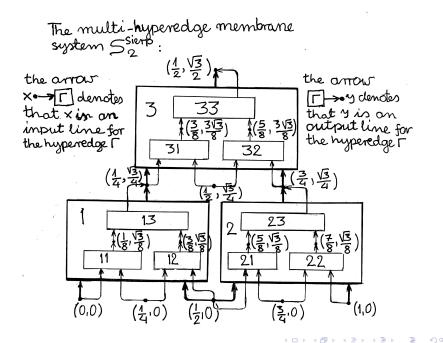
 $\langle h,i \rangle \prec \langle h',i' \rangle$ ($\langle h,i \rangle$ is caused by $\langle h',i' \rangle$) iff i = i' + 1 and the image of h is a subgraph of the result of application of the rule in the place h' (i.e. the image of h is a subgraph of $f_{h'}(2^{-i}(\Delta_1))$).



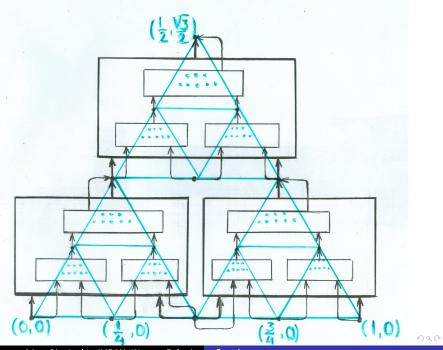
The graph of the causal relation \prec of events is a ternary tree (every node has exactly 3 children nodes) whose root is the initial event $\langle id_{\Delta_0}, 0 \rangle$.

A (10) > (10)

The causal relation of events coincides with the nesting relation of boxes presenting the hyperedges of multihyperedge membrane structures used to describe self-similarity structure of the iterations of Sierpiński gasket in *In search of a structure of fractals by using membranes as hyperedges* by A. Obtułowicz in the Proceedings of MCM14.



Causal nets



Adam Obtułowicz, IMPAN, Warsaw, Poland

Causal nets

Since the causal relation of events represents the process of computation of the machine, one can say that *structure is process* in the light of the coincidence of the causal relation of events and the nesting relation of boxes.