
Isometric embeddings of surfaces and quasilocal
gravitational energy

Mu-Tao Wang
Columbia University

Joint with Shing-Tung Yau at Harrvard

IMPAN
Warsaw, Poland

April 6, 2009

Mu-Tao Wang Columbia University Joint with Shing-Tung Yau at HarrvardIsometric embeddings of surfaces and quasilocal gravitational energy



Plan of the talk

Issues of energy and mass in general relativity. E = mc2.

What is the energy contained in a bounded region Ω3 in
spacetime?

Closely related to isometric embedding of ∂Ω3 into R3,1.
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The Minkowski space R3,1

Space of special relativity.

coordinates (x1, x2, x3, x4 = t). Given x , y ∈ R3,1 the Lorentz
product is is 〈x , y〉 = x1y 1 + x2y 2 + x3y 3 − x4y 4.

Unit: speed of light c = 1.

Light cone {x1)2 + (x2)2 + (x3)2 − (x4)2 = 〈x , x〉 = 0
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Causal structure

〈x , x〉 < 0⇒ timelike vector, x4 > 0 future directed

〈x , x〉 > 0⇒ spacelike vector.

Postulate: a material particle moves in timelike direction.

Motion is described by 4-velocity vector v , 〈v , v〉 = −1,
v 4 > 0, a future timelike unit vector.

The set of all future timelike unit vector
{〈x , x〉 = (x1)2 + (x2)2 + (x3)2 − (x4)2 = −1, x4 > 0.} forms
the hyperbolic three-space in R3,1.

Mu-Tao Wang Columbia University Joint with Shing-Tung Yau at HarrvardIsometric embeddings of surfaces and quasilocal gravitational energy



Causal structure

〈x , x〉 < 0⇒ timelike vector, x4 > 0 future directed

〈x , x〉 > 0⇒ spacelike vector.

Postulate: a material particle moves in timelike direction.

Motion is described by 4-velocity vector v , 〈v , v〉 = −1,
v 4 > 0, a future timelike unit vector.

The set of all future timelike unit vector
{〈x , x〉 = (x1)2 + (x2)2 + (x3)2 − (x4)2 = −1, x4 > 0.} forms
the hyperbolic three-space in R3,1.

Mu-Tao Wang Columbia University Joint with Shing-Tung Yau at HarrvardIsometric embeddings of surfaces and quasilocal gravitational energy



Causal structure

〈x , x〉 < 0⇒ timelike vector, x4 > 0 future directed

〈x , x〉 > 0⇒ spacelike vector.

Postulate: a material particle moves in timelike direction.

Motion is described by 4-velocity vector v , 〈v , v〉 = −1,
v 4 > 0, a future timelike unit vector.

The set of all future timelike unit vector
{〈x , x〉 = (x1)2 + (x2)2 + (x3)2 − (x4)2 = −1, x4 > 0.} forms
the hyperbolic three-space in R3,1.

Mu-Tao Wang Columbia University Joint with Shing-Tung Yau at HarrvardIsometric embeddings of surfaces and quasilocal gravitational energy



Causal structure

〈x , x〉 < 0⇒ timelike vector, x4 > 0 future directed

〈x , x〉 > 0⇒ spacelike vector.

Postulate: a material particle moves in timelike direction.

Motion is described by 4-velocity vector v , 〈v , v〉 = −1,
v 4 > 0, a future timelike unit vector.

The set of all future timelike unit vector
{〈x , x〉 = (x1)2 + (x2)2 + (x3)2 − (x4)2 = −1, x4 > 0.} forms
the hyperbolic three-space in R3,1.

Mu-Tao Wang Columbia University Joint with Shing-Tung Yau at HarrvardIsometric embeddings of surfaces and quasilocal gravitational energy



Causal structure

〈x , x〉 < 0⇒ timelike vector, x4 > 0 future directed

〈x , x〉 > 0⇒ spacelike vector.

Postulate: a material particle moves in timelike direction.

Motion is described by 4-velocity vector v , 〈v , v〉 = −1,
v 4 > 0, a future timelike unit vector.

The set of all future timelike unit vector
{〈x , x〉 = (x1)2 + (x2)2 + (x3)2 − (x4)2 = −1, x4 > 0.} forms
the hyperbolic three-space in R3,1.

Mu-Tao Wang Columbia University Joint with Shing-Tung Yau at HarrvardIsometric embeddings of surfaces and quasilocal gravitational energy



Causal structure

〈x , x〉 < 0⇒ timelike vector, x4 > 0 future directed

〈x , x〉 > 0⇒ spacelike vector.

Postulate: a material particle moves in timelike direction.

Motion is described by 4-velocity vector v , 〈v , v〉 = −1,
v 4 > 0, a future timelike unit vector.

The set of all future timelike unit vector
{〈x , x〉 = (x1)2 + (x2)2 + (x3)2 − (x4)2 = −1, x4 > 0.} forms
the hyperbolic three-space in R3,1.

Mu-Tao Wang Columbia University Joint with Shing-Tung Yau at HarrvardIsometric embeddings of surfaces and quasilocal gravitational energy



Energy and mass of a particle

Give a material particle, energy-momentum 4-vector is p = mv

A observer has 4-velocity w , again a future timelike unit
vector.

Energy seen by w is E (w) = −〈p,w〉.
When the observer is at rest with the particle, i.e. w = v
⇒ E = m (c=1).

To recover the mass and momentum 4-vector from the energy,
consider E (w) as a function define on
{w |〈w ,w〉 = −1,w 4 > 0}.
The minimum of E is the mass m. Achieved at v and p = mv
is the energy-momentum 4-vector of the particle.
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Energy of a continuous matter filed in R3,1.

Described by the energy-momentum tensor of matter density,
a symmetric (0, 2) tensor T (·, ·).

Energy-momentum flow vector seen by an observer with
4-velocity w is dual to T (w , ·).

Given a spacelike (i.e “Riemannian” with the induced metric)
bounded region Ω.

The energy intercepted by Ω as seen by the observer w is the
flux integral ∫

Ω
T (w , n)

where n is the future timelike unit normal of Ω.
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Energy conservation

Suppose w is a constant future-directed timelike unit vector in
R3,1, by local conservation law of T , T (w , ·) is divergence
free.

∫
Ω1

T (w , n1) =
∫

Ω2
T (w , n2) if ∂Ω1 = ∂Ω2.

Determine by the boundary Σ = ∂Ω, a spacelike 2-surface in
R3,1.
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Quasilocal energy in General relativity

(N, g) 4-dimensional spacetime. Gravitational field
represented by the Lorentz metric g . T energy-momentum
tensor of matter density.

Einstein equation

Ric − 1

2
Rg = 8πT

Relation between gravitation field and matter fields.

Question: Ω bounded spacelike region, what is the total
energy intercepted by Ω as seen by an observer w , What is
the total mass contained in Ω?
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Difficulties

Suppose we mimic the definition in R3,1 by taking the flux
integral.

No constant (Killing) vector field w in general spacetime to
make T (w , ·) divergence free.

Only accounts for the energy of matter fields.

Ric − 1

2
Rg = 0

Vacuum solution such as the Schwarzchild, still has
gravitational energy.
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Gravitation energy in general relativity

No density (equivalence principle). One can choose local
coordinates around any p ∈ M such that any derivative of g is
zero at p

Depends on underlying geometry. Gravitation binding energy
depends on distance m1 + m2 − m1m2

r .
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ADM energy momentum

Possible to define when Ω is (unbounded) asymptotically flat
(isolated physical system, gravitation field is weak at infinity)

i.e. Ω\cpt ' ∪(R3\ ∪ B3) and gij ∼ flat metric (with
appropriate decay) on Ω\cpt

The ADM energy momentum 4-vector is (E ,P1,P2,P3). Each
component is given by the limit of a flux integral over
coordinate sphere Sr ⊂ R3 as r →∞.
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Positive energy theorem of Schoen-Yau

Dominant energy condition: T (w , ·) is past timelike for any
future timelike w .

Suppose the dominant energy condition holds along an
asymptotically flat Ω, then (E ,P1,P2,P3) is a future-directed
non-spacelike vector, i.e.

E ≥ 0,−E 2 + P2
1 + P2

2 + P2
3 ≤ 0.

In particular, the ADM mass
√

E 2 − P2
1 − P2

2 − P2
3 is

non-negative and = 0 if and only if the spacetime is flat along
Ω.
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Bounded region in general spacetime, strong field

Recall in R3,1 the energy intercepted by Ω depends only on
∂Ω.

In, general given a Σ = ∂Ω a spacelike 2-surface, we want to
attach to it a quasilocal energy-momentum 4 vector.

Recall particle case:

observer w ⇒ E (w), m = min E (w) and p = mv

Given Σ a spacelike 2-surface in spacetime N,

(i ,w)⇒ E (i ,w), m = min E (i ,w) and p = mv

where i : Σ→ R3,1 an isometric embedding of Σ and i ∈ R3,1

is future timelike.
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Why isometric embedding into R3,1?

Hamilton-Jacobi analysis of gravitation action (whose
Euler-Lagrange equation is the Einstein equation). The energy
is the difference between physical Hamiltonian and reference
Hamiltonian.

Physical Hamiltonian=integral over Σ ⊂ N

Reference Hamiltonian=integral over a reference surface.

Isometric embedding gives reference surface in flat spacetime.
Uniqueness?
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Isometric embedding into R3 (Weyl, Nirenberg, Pogorelov)
has been used to define:

Brown-York mass, 1
8π (

∫
Σ H0 −

∫
Σ H) (positivity Shi-Tam).

Liu-Yau mass 1
8π (

∫
Σ H0 −

∫
Σ |H|) (positivity Liu-Yau).

However, there exist surfaces in R3,1 with strictly positive
mass.
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Physical surface Hamiltonian

Derived by ADM, Brown-York, Hawking-Horowitz.

Reduce to an integral on a spacelike 2-surface in spacetime N.

Physical surface Hamiltonian∫
Σ

H(n̄, w̄)

where n̄ is a future directed timelike unit normal of Σ, w̄ a
future-directed timelike unit vector (observer) (Recall∫

Ω T (n,w)).
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The prescription of reference surface Hamiltonian (W-Yau)

Given an isometric embedding i : Σ→ R3,1 and a constant
future timlike unit vector w in R3,1, we define a reference
Hamiltonian

∫
Σ H(n,w).

(i ,w) determines a canonical gauge n along i(Σ). n̄ and w̄
are uniquely determined by matching conditions of Σ in N and
i(Σ) in R3,1.

Quasilocal energy is

E (i ,w) =

∫
Σ

H(n,w)−
∫

Σ
H(n̄, w̄).

ADM mass on Sr .
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We assume the mean curvature vector of Σ in N is spacelike.

H(n̄, w̄) = 〈J − V , w̄〉

where J (a future directed timelike normal vector field of Σ) is
the reflection of the mean curvature vector field H of Σ along
the light cone in the normal bundle.

V is the tangent vector field on Σ that is dual to the
connection one form determined by n̄ (this is gauge
dependent). Imagine n̄ is the future timelike unit normal of a
spacelike domain Ω that Σ bounds.
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Observation (Gibbons)

Important property of H(n,w), when Σ is in R3,1, w a constant
future timelike unit vector in R3,1, there exists a canonical gauge n
such that

∫
Σ H(n,w) is equal to the total mean curvature of Σ̂,

the projection of Σ onto the orthogonal complement of w .
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Matching condition

The matching condition requires

〈H0,w〉 = 〈H, w̄〉

i.e. the observers w̄ in N and w in R3,1 see the same rate of
change of area (expansion) of the corresponding surfaces Σ
and i(Σ).

Σ ⊂ N and i(Σ) ⊂ R3,1 have the same induced metric.
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Theorem

If N satisfies the dominant energy condition, and (i ,w) is
admissible, then

E (i ,w) =

∫
Σ

H(n,w)−
∫

Σ
H(n̄, w̄)

is non-negative.

1. variational properties of canonical gauges. 2. Solvability of
Jang’s equation (Schoen-Yau) to reduce to a Riemannian case. 3.
A quasispherical construction (Bartnik) and positive mass theorem
for manifolds with corners (Shi-Tam) 4. Relating the surface
Hamiltonian in different ambient manifolds.

Mu-Tao Wang Columbia University Joint with Shing-Tung Yau at HarrvardIsometric embeddings of surfaces and quasilocal gravitational energy



Isometric embeddings with convex shadows

Admissible pair (i ,w) is best described by the time function τ ,
the restriction of x4 to i(Σ).

(i ,w) is said to have convex shadow if the projection of i(Σ)
onto the orthogonal complement of w is a convex surface
(always get an embedded surface).
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Theorem

(Weyl, Nirenberg, Pogorelov) Given an metric σ on Σ ' S2 and
suppose

K > 0

Then there exists a unique isometric embedding i : Σ→ R3 that is
convex.

Theorem

(W-Yau) Given an metric σ on Σ ' S2 suppose τ is a smooth
function on Σ that satisfies

K + (1 + |∇τ |2)−1 det(∇2τ) > 0

Then there exists a unique isometric embedding i : Σ→ R3,1 with
convex shadow and with τ as its time function.

Mu-Tao Wang Columbia University Joint with Shing-Tung Yau at HarrvardIsometric embeddings of surfaces and quasilocal gravitational energy



Theorem

(Weyl, Nirenberg, Pogorelov) Given an metric σ on Σ ' S2 and
suppose

K > 0

Then there exists a unique isometric embedding i : Σ→ R3 that is
convex.

Theorem

(W-Yau) Given an metric σ on Σ ' S2 suppose τ is a smooth
function on Σ that satisfies

K + (1 + |∇τ |2)−1 det(∇2τ) > 0

Then there exists a unique isometric embedding i : Σ→ R3,1 with
convex shadow and with τ as its time function.

Mu-Tao Wang Columbia University Joint with Shing-Tung Yau at HarrvardIsometric embeddings of surfaces and quasilocal gravitational energy


