Isometric embeddings of surfaces and quasilocal gravitational energy

Mu-Tao Wang
Columbia University Joint with Shing-Tung Yau at Harrvard

IMPAN
Warsaw, Poland
April 6, 2009

Plan of the talk

- Issues of energy and mass in general relativity. $E=m c^{2}$.
- What is the energy contained in a bounded region Ω^{3} in spacetime?
- Closely related to isometric embedding of $\partial \Omega^{3}$ into $\mathbb{R}^{3,1}$.

The Minkowski space $\mathbb{R}^{3,1}$

The Minkowski space $\mathbb{R}^{3,1}$

- Space of special relativity.

The Minkowski space $\mathbb{R}^{3,1}$

- Space of special relativity.
- coordinates $\left(x^{1}, x^{2}, x^{3}, x^{4}=t\right)$. Given $x, y \in \mathbb{R}^{3,1}$ the Lorentz product is is $\langle x, y\rangle=x^{1} y^{1}+x^{2} y^{2}+x^{3} y^{3}-x^{4} y^{4}$.

The Minkowski space $\mathbb{R}^{3,1}$

- Space of special relativity.
- coordinates $\left(x^{1}, x^{2}, x^{3}, x^{4}=t\right)$. Given $x, y \in \mathbb{R}^{3,1}$ the Lorentz product is is $\langle x, y\rangle=x^{1} y^{1}+x^{2} y^{2}+x^{3} y^{3}-x^{4} y^{4}$.
- Unit: speed of light $c=1$.

The Minkowski space $\mathbb{R}^{3,1}$

- Space of special relativity.
- coordinates $\left(x^{1}, x^{2}, x^{3}, x^{4}=t\right)$. Given $x, y \in \mathbb{R}^{3,1}$ the Lorentz product is is $\langle x, y\rangle=x^{1} y^{1}+x^{2} y^{2}+x^{3} y^{3}-x^{4} y^{4}$.
- Unit: speed of light $c=1$.
- Light cone $\left\{x^{1}\right)^{2}+\left(x^{2}\right)^{2}+\left(x^{3}\right)^{2}-\left(x^{4}\right)^{2}=\langle x, x\rangle=0$

Causal structure

Causal structure

- $\langle x, x\rangle<0 \Rightarrow$ timelike vector, $x^{4}>0$ future directed

Causal structure

- $\langle x, x\rangle<0 \Rightarrow$ timelike vector, $x^{4}>0$ future directed
- $\langle x, x\rangle>0 \Rightarrow$ spacelike vector.

Causal structure

- $\langle x, x\rangle<0 \Rightarrow$ timelike vector, $x^{4}>0$ future directed
- $\langle x, x\rangle>0 \Rightarrow$ spacelike vector.
- Postulate: a material particle moves in timelike direction.

Causal structure

- $\langle x, x\rangle<0 \Rightarrow$ timelike vector, $x^{4}>0$ future directed
- $\langle x, x\rangle>0 \Rightarrow$ spacelike vector.
- Postulate: a material particle moves in timelike direction.
- Motion is described by 4 -velocity vector $v,\langle v, v\rangle=-1$, $v^{4}>0$, a future timelike unit vector.

Causal structure

- $\langle x, x\rangle<0 \Rightarrow$ timelike vector, $x^{4}>0$ future directed
- $\langle x, x\rangle>0 \Rightarrow$ spacelike vector.
- Postulate: a material particle moves in timelike direction.
- Motion is described by 4 -velocity vector $v,\langle v, v\rangle=-1$, $v^{4}>0$, a future timelike unit vector.
- The set of all future timelike unit vector $\left\{\langle x, x\rangle=\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}+\left(x^{3}\right)^{2}-\left(x^{4}\right)^{2}=-1, x^{4}>0.\right\}$ forms the hyperbolic three-space in $\mathbb{R}^{3,1}$.

Energy and mass of a particle

- Give a material particle, energy-momentum 4-vector is $p=m v$

Energy and mass of a particle

- Give a material particle, energy-momentum 4-vector is $p=m v$
- A observer has 4-velocity w, again a future timelike unit vector.

Energy and mass of a particle

- Give a material particle, energy-momentum 4-vector is $p=m v$
- A observer has 4-velocity w, again a future timelike unit vector.
- Energy seen by w is $E(w)=-\langle p, w\rangle$.

Energy and mass of a particle

- Give a material particle, energy-momentum 4-vector is $p=m v$
- A observer has 4-velocity w, again a future timelike unit vector.
- Energy seen by w is $E(w)=-\langle p, w\rangle$.
- When the observer is at rest with the particle, i.e. $w=v$ $\Rightarrow E=m(c=1)$.

Energy and mass of a particle

- Give a material particle, energy-momentum 4-vector is $p=m v$
- A observer has 4-velocity w, again a future timelike unit vector.
- Energy seen by w is $E(w)=-\langle p, w\rangle$.
- When the observer is at rest with the particle, i.e. $w=v$ $\Rightarrow E=m(c=1)$.
- To recover the mass and momentum 4-vector from the energy, consider $E(w)$ as a function define on $\left\{w \mid\langle w, w\rangle=-1, w^{4}>0\right\}$.

Energy and mass of a particle

- Give a material particle, energy-momentum 4-vector is $p=m v$
- A observer has 4-velocity w, again a future timelike unit vector.
- Energy seen by w is $E(w)=-\langle p, w\rangle$.
- When the observer is at rest with the particle, i.e. $w=v$ $\Rightarrow E=m(c=1)$.
- To recover the mass and momentum 4-vector from the energy, consider $E(w)$ as a function define on $\left\{w \mid\langle w, w\rangle=-1, w^{4}>0\right\}$.
- The minimum of E is the mass m. Achieved at v and $p=m v$ is the energy-momentum 4 -vector of the particle.

Energy of a continuous matter filed in $\mathbb{R}^{3,1}$.

- Described by the energy-momentum tensor of matter density, a symmetric $(0,2)$ tensor $T(\cdot, \cdot)$.

Energy of a continuous matter filed in $\mathbb{R}^{3,1}$.

- Described by the energy-momentum tensor of matter density, a symmetric $(0,2)$ tensor $T(\cdot, \cdot)$.
- Energy-momentum flow vector seen by an observer with 4-velocity w is dual to $T(w, \cdot)$.

Energy of a continuous matter filed in $\mathbb{R}^{3,1}$.

- Described by the energy-momentum tensor of matter density, a symmetric $(0,2)$ tensor $T(\cdot, \cdot)$.
- Energy-momentum flow vector seen by an observer with 4-velocity w is dual to $T(w, \cdot)$.
- Given a spacelike (i.e "Riemannian" with the induced metric) bounded region Ω.

Energy of a continuous matter filed in $\mathbb{R}^{3,1}$.

- Described by the energy-momentum tensor of matter density, a symmetric $(0,2)$ tensor $T(\cdot, \cdot)$.
- Energy-momentum flow vector seen by an observer with 4-velocity w is dual to $T(w, \cdot)$.
- Given a spacelike (i.e "Riemannian" with the induced metric) bounded region Ω.
- The energy intercepted by Ω as seen by the observer w is the flux integral

$$
\int_{\Omega} T(w, n)
$$

where n is the future timelike unit normal of Ω.

Energy conservation

- Suppose w is a constant future-directed timelike unit vector in $\mathbb{R}^{3,1}$, by local conservation law of $T, T(w, \cdot)$ is divergence free.

Energy conservation

- Suppose w is a constant future-directed timelike unit vector in $\mathbb{R}^{3,1}$, by local conservation law of $T, T(w, \cdot)$ is divergence free.
- $\int_{\Omega_{1}} T\left(w, n_{1}\right)=\int_{\Omega_{2}} T\left(w, n_{2}\right)$ if $\partial \Omega_{1}=\partial \Omega_{2}$.

Energy conservation

- Suppose w is a constant future-directed timelike unit vector in $\mathbb{R}^{3,1}$, by local conservation law of $T, T(w, \cdot)$ is divergence free.
- $\int_{\Omega_{1}} T\left(w, n_{1}\right)=\int_{\Omega_{2}} T\left(w, n_{2}\right)$ if $\partial \Omega_{1}=\partial \Omega_{2}$.
- Determine by the boundary $\Sigma=\partial \Omega$, a spacelike 2 -surface in $\mathbb{R}^{3,1}$.

Quasilocal energy in General relativity

- (N, g) 4-dimensional spacetime. Gravitational field represented by the Lorentz metric g. T energy-momentum tensor of matter density.

Quasilocal energy in General relativity

- (N, g) 4-dimensional spacetime. Gravitational field represented by the Lorentz metric g. T energy-momentum tensor of matter density.
- Einstein equation

$$
R i c-\frac{1}{2} R g=8 \pi T
$$

Quasilocal energy in General relativity

- (N, g) 4-dimensional spacetime. Gravitational field represented by the Lorentz metric g. T energy-momentum tensor of matter density.
- Einstein equation

$$
R i c-\frac{1}{2} R g=8 \pi T
$$

- Relation between gravitation field and matter fields.

Quasilocal energy in General relativity

- (N, g) 4-dimensional spacetime. Gravitational field represented by the Lorentz metric g. T energy-momentum tensor of matter density.
- Einstein equation

$$
R i c-\frac{1}{2} R g=8 \pi T
$$

- Relation between gravitation field and matter fields.
- Question: Ω bounded spacelike region, what is the total energy intercepted by Ω as seen by an observer w, What is the total mass contained in Ω ?

Difficulties

- Suppose we mimic the definition in $\mathbb{R}^{3,1}$ by taking the flux integral.

Difficulties

- Suppose we mimic the definition in $\mathbb{R}^{3,1}$ by taking the flux integral.
- No constant (Killing) vector field w in general spacetime to make $T(w, \cdot)$ divergence free.

Difficulties

- Suppose we mimic the definition in $\mathbb{R}^{3,1}$ by taking the flux integral.
- No constant (Killing) vector field w in general spacetime to make $T(w, \cdot)$ divergence free.
- Only accounts for the energy of matter fields.

$$
R i c-\frac{1}{2} R g=0
$$

Vacuum solution such as the Schwarzchild, still has gravitational energy.

Gravitation energy in general relativity

- No density (equivalence principle). One can choose local coordinates around any $p \in M$ such that any derivative of g is zero at p

Gravitation energy in general relativity

- No density (equivalence principle). One can choose local coordinates around any $p \in M$ such that any derivative of g is zero at p
- Depends on underlying geometry. Gravitation binding energy depends on distance $m_{1}+m_{2}-\frac{m_{1} m_{2}}{r}$.

ADM energy momentum

- Possible to define when Ω is (unbounded) asymptotically flat (isolated physical system, gravitation field is weak at infinity)

ADM energy momentum

- Possible to define when Ω is (unbounded) asymptotically flat (isolated physical system, gravitation field is weak at infinity)
- i.e. $\Omega \backslash c p t \simeq \cup\left(\mathbb{R}^{3} \backslash \cup B^{3}\right)$ and $g_{i j} \sim$ flat metric (with appropriate decay) on $\Omega \backslash \mathrm{cpt}$

ADM energy momentum

- Possible to define when Ω is (unbounded) asymptotically flat (isolated physical system, gravitation field is weak at infinity)
- i.e. $\Omega \backslash c p t \simeq \cup\left(\mathbb{R}^{3} \backslash \cup B^{3}\right)$ and $g_{i j} \sim$ flat metric (with appropriate decay) on $\Omega \backslash \mathrm{cpt}$
- The ADM energy momentum 4-vector is $\left(E, P_{1}, P_{2}, P_{3}\right)$. Each component is given by the limit of a flux integral over coordinate sphere $S_{r} \subset \mathbb{R}^{3}$ as $r \rightarrow \infty$.

Positive energy theorem of Schoen-Yau

- Dominant energy condition: $T(w, \cdot)$ is past timelike for any future timelike w.
- Suppose the dominant energy condition holds along an asymptotically flat Ω, then $\left(E, P_{1}, P_{2}, P_{3}\right)$ is a future-directed non-spacelike vector, i.e.

$$
E \geq 0,-E^{2}+P_{1}^{2}+P_{2}^{2}+P_{3}^{2} \leq 0
$$

- In particular, the ADM mass $\sqrt{E^{2}-P_{1}^{2}-P_{2}^{2}-P_{3}^{2}}$ is non-negative and $=0$ if and only if the spacetime is flat along Ω.

Bounded region in general spacetime, strong field

- Recall in $\mathbb{R}^{3,1}$ the energy intercepted by Ω depends only on $\partial \Omega$.
- In, general given a $\Sigma=\partial \Omega$ a spacelike 2 -surface, we want to attach to it a quasilocal energy-momentum 4 vector.

Bounded region in general spacetime, strong field

- Recall in $\mathbb{R}^{3,1}$ the energy intercepted by Ω depends only on $\partial \Omega$.
- In, general given a $\Sigma=\partial \Omega$ a spacelike 2 -surface, we want to attach to it a quasilocal energy-momentum 4 vector.
- Recall particle case:

$$
\text { observer } w \Rightarrow E(w), m=\min E(w) \text { and } p=m v
$$

Bounded region in general spacetime, strong field

- Recall in $\mathbb{R}^{3,1}$ the energy intercepted by Ω depends only on $\partial \Omega$.
- In, general given a $\Sigma=\partial \Omega$ a spacelike 2 -surface, we want to attach to it a quasilocal energy-momentum 4 vector.
- Recall particle case:

$$
\text { observer } w \Rightarrow E(w), m=\min E(w) \text { and } p=m v
$$

- Given Σ a spacelike 2-surface in spacetime N,

$$
(i, w) \Rightarrow E(i, w), m=\min E(i, w) \text { and } p=m v
$$

where $i: \Sigma \rightarrow \mathbb{R}^{3,1}$ an isometric embedding of Σ and $i \in \mathbb{R}^{3,1}$ is future timelike.

Why isometric embedding into $\mathbb{R}^{3,1}$?

- Hamilton-Jacobi analysis of gravitation action (whose Euler-Lagrange equation is the Einstein equation). The energy is the difference between physical Hamiltonian and reference Hamiltonian.
- Physical Hamiltonian=integral over $\Sigma \subset N$
- Reference Hamiltonian=integral over a reference surface.
- Isometric embedding gives reference surface in flat spacetime. Uniqueness?
- Isometric embedding into \mathbb{R}^{3} (Weyl, Nirenberg, Pogorelov) has been used to define:
- Isometric embedding into \mathbb{R}^{3} (Weyl, Nirenberg, Pogorelov) has been used to define:
- Brown-York mass, $\frac{1}{8 \pi}\left(\int_{\Sigma} H_{0}-\int_{\Sigma} H\right)$ (positivity Shi-Tam).
- Isometric embedding into \mathbb{R}^{3} (Weyl, Nirenberg, Pogorelov) has been used to define:
- Brown-York mass, $\frac{1}{8 \pi}\left(\int_{\Sigma} H_{0}-\int_{\Sigma} H\right)$ (positivity Shi-Tam).
- Liu-Yau mass $\frac{1}{8 \pi}\left(\int_{\Sigma} H_{0}-\int_{\Sigma}|H|\right)$ (positivity Liu-Yau).
- Isometric embedding into \mathbb{R}^{3} (Weyl, Nirenberg, Pogorelov) has been used to define:
- Brown-York mass, $\frac{1}{8 \pi}\left(\int_{\Sigma} H_{0}-\int_{\Sigma} H\right)$ (positivity Shi-Tam).
- Liu-Yau mass $\frac{1}{8 \pi}\left(\int_{\Sigma} H_{0}-\int_{\Sigma}|H|\right)$ (positivity Liu-Yau).
- However, there exist surfaces in $\mathbb{R}^{3,1}$ with strictly positive mass.

Physical surface Hamiltonian

- Derived by ADM, Brown-York, Hawking-Horowitz.
- Reduce to an integral on a spacelike 2-surface in spacetime N.
- Physical surface Hamiltonian

$$
\int_{\Sigma} \mathfrak{H}(\bar{n}, \bar{w})
$$

where \bar{n} is a future directed timelike unit normal of Σ, \bar{w} a future-directed timelike unit vector (observer) (Recall $\left.\int_{\Omega} T(n, w)\right)$.

The prescription of reference surface Hamiltonian (W-Yau)

- Given an isometric embedding $i: \Sigma \rightarrow \mathbb{R}^{3,1}$ and a constant future timlike unit vector w in $\mathbb{R}^{3,1}$, we define a reference Hamiltonian $\int_{\Sigma} \mathfrak{H}(n, w)$.
- (i,w) determines a canonical gauge n along $i(\Sigma) . \bar{n}$ and \bar{w} are uniquely determined by matching conditions of Σ in N and $i(\Sigma)$ in $\mathbb{R}^{3,1}$.
- Quasilocal energy is

$$
E(i, w)=\int_{\Sigma} \mathfrak{H}(n, w)-\int_{\Sigma} \mathfrak{H}(\bar{n}, \bar{w}) .
$$

- ADM mass on S_{r}.
- We assume the mean curvature vector of Σ in N is spacelike.
- We assume the mean curvature vector of Σ in N is spacelike.
-

$$
\mathfrak{H}(\bar{n}, \bar{w})=\langle J-V, \bar{w}\rangle
$$

where J (a future directed timelike normal vector field of Σ) is the reflection of the mean curvature vector field H of Σ along the light cone in the normal bundle.

- We assume the mean curvature vector of Σ in N is spacelike.
-

$$
\mathfrak{H}(\bar{n}, \bar{w})=\langle J-V, \bar{w}\rangle
$$

where J (a future directed timelike normal vector field of Σ) is the reflection of the mean curvature vector field H of Σ along the light cone in the normal bundle.

- V is the tangent vector field on Σ that is dual to the connection one form determined by \bar{n} (this is gauge dependent). Imagine \bar{n} is the future timelike unit normal of a spacelike domain Ω that Σ bounds.

Observation (Gibbons)

Important property of $\mathfrak{H}(n, w)$, when Σ is in $\mathbb{R}^{3,1}$, w a constant future timelike unit vector in $\mathbb{R}^{3,1}$, there exists a canonical gauge n such that $\int_{\Sigma} \mathfrak{H}(n, w)$ is equal to the total mean curvature of $\hat{\Sigma}$, the projection of Σ onto the orthogonal complement of w.

Matching condition

- The matching condition requires

$$
\left\langle H_{0}, w\right\rangle=\langle H, \bar{w}\rangle
$$

i.e. the observers \bar{w} in N and w in $\mathbb{R}^{3,1}$ see the same rate of change of area (expansion) of the corresponding surfaces Σ and $i(\Sigma)$.

Matching condition

- The matching condition requires

$$
\left\langle H_{0}, w\right\rangle=\langle H, \bar{w}\rangle
$$

i.e. the observers \bar{w} in N and w in $\mathbb{R}^{3,1}$ see the same rate of change of area (expansion) of the corresponding surfaces Σ and $i(\Sigma)$.

- $\Sigma \subset N$ and $i(\Sigma) \subset \mathbb{R}^{3,1}$ have the same induced metric.

Theorem

If N satisfies the dominant energy condition, and (i, w) is admissible, then

$$
E(i, w)=\int_{\Sigma} \mathfrak{H}(n, w)-\int_{\Sigma} \mathfrak{H}(\bar{n}, \bar{w})
$$

is non-negative.

1. variational properties of canonical gauges. 2. Solvability of Jang's equation (Schoen-Yau) to reduce to a Riemannian case. 3. A quasispherical construction (Bartnik) and positive mass theorem for manifolds with corners (Shi-Tam) 4. Relating the surface Hamiltonian in different ambient manifolds.

Isometric embeddings with convex shadows

- Admissible pair (i, w) is best described by the time function τ, the restriction of x^{4} to $i(\Sigma)$.
- (i, w) is said to have convex shadow if the projection of $i(\Sigma)$ onto the orthogonal complement of w is a convex surface (always get an embedded surface).

Theorem

(Weyl, Nirenberg, Pogorelov) Given an metric σ on $\Sigma \simeq S^{2}$ and suppose

$$
K>0
$$

Then there exists a unique isometric embedding i: $\Sigma \rightarrow \mathbb{R}^{3}$ that is convex.

Theorem

(Weyl, Nirenberg, Pogorelov) Given an metric σ on $\Sigma \simeq S^{2}$ and suppose

$$
K>0
$$

Then there exists a unique isometric embedding $i: \Sigma \rightarrow \mathbb{R}^{3}$ that is convex.

Theorem

(W-Yau) Given an metric σ on $\Sigma \simeq S^{2}$ suppose τ is a smooth function on Σ that satisfies

$$
K+\left(1+|\nabla \tau|^{2}\right)^{-1} \operatorname{det}\left(\nabla^{2} \tau\right)>0
$$

Then there exists a unique isometric embedding i: $\Sigma \rightarrow \mathbb{R}^{3,1}$ with convex shadow and with τ as its time function.

