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Ricci Solitons

A complete Riemannian (Mn, gij) is called a Ricci soliton if

there exists a smooth function f on M such that

Rij +∇i∇jf = λgij (1)

for some constant λ. f is called a potential function of the Ricci

soliton.

λ = 0: steady soliton; λ > 0: shrinking soliton; λ < 0:

expanding soliton; f = Const.: Einstein metric.
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Shrinking and steady Ricci solitons are

• natural extension of Einstein manifolds;

• self-similar solutions to the Ricci flow

• possible singularity models of the Ricci flow

• critical points of Perelman’s λ-entropy and µ-entropy.

Thus it is important to understand the geometry/topology of

Ricci solitons and, if possible, obtain their classifications.
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Part I: Singularities of the Ricci Flow

Given any complete Riemannian manifold (Mn, g0), the Ricci

flow introduced by R. Hamilton in 1982 is

∂g(t)

∂t
= −2Rc(t),

with g(0) = g0. Here Rc(t) denotes the Ricci tensor of g(t).

• The Ricci flow is a system of second order, nonlinear, weakly

parabolic partial differential equations;

• The Ricci flow is a natural analogue of the heat equation

for metrics. Thus one expects that the initial metric could

be improved under the Ricci flow and evolve into a more

canonical metric, thereby leading to a better understanding

of the topology of the underlying manifold.
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Exact Solutions I: Einstein Metrics

If g0 is Einstein with Rcg0
= λg0, then

g(t) = (1− 2λt)g0.

• Ricci flat metrics, such as a flat torus or Calabi-Yau metric

on K3 surfaces, are stationary solutions

g(t) = g0.

• Positive Einstein metrics shrink homothetically

When λ = 1/2,

g(t) = (1− t)g0

exists for −∞ < t < 1, and shrinks homothetically as t

increases. Moreover, the curvature blows up like 1/(1 − t)

as t → 1 (an example of Type I singularity). This is the

case on a round sphere Sn.

Summary: under the Ricci flow, metrics expand in direc-

tions of negative Ricci curvature and shrink in directions of pos-

itive Ricci curvature.
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Exact Solutions II: Ricci Solitons

Suppose g is a complete gradient Ricci soliton, either

steady or shrinking, so that

Rij +∇i∇jf = λgij

for λ = 0, or 1/2.

If g is a steady Ricci soliton (λ = 0) and V = ∇f generates

a one-parameter group of diffeomorphisms ϕt, then

g(t) = φ∗tg

is a solution to the Ricci flow.

If g is a shrinking Ricci soliton, with λ = 1/2, and V =

∇f/(1− t) generates a one-parameter group of diffeomorphisms

ϕt, then

g(t) = (1− t)φ∗tg

is also a solution to the Ricci flow which shrinks to a point in

finite time.
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Some facts about Ricci solitions

• Compact steady (and expanding) solitons are Einstein in

any dimension n;

• Compact shrinking solitons in n = 2 and n = 3 must be of

positive constant curvature (Hamilton, Ivey).

• No non-flat noncompact shrinking soliton in n = 2 (Hamil-

ton).

• Three-dimensional complete noncompact non-flat shrinking

gradient solitons are classified (Perelman, Ni-Wallach, Cao-

Chen-Zhu).

• Ricci solitons exhibit rich geometric properties.
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Examples of gradient Shrinking Ricci Solitions

• Positive Einstein manifolds, such as space forms Sn/Γ

• Gaussian shrinking solitons on Rn

(Rn, g0, f(x) = |x|2/4) is a gradient shrinker:

∇2f =
1

2
g0.

• Round cylinders Sn−k × Rk or its quotients
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• Compact Kähler shrinkers on CP 2#(−CP 2)

In early 90’s Koiso, and independently by myself, con-

structed a gradient shrinking metric on CP 2#(−CP 2). It

has U(2) symmetry and Rc > 0.

• Toric Kähler shrinkers on CP 2#2(−CP 2)

In 2004, Wang-Zhu found a gradient Kähler-Ricci soliton

on CP 2#2(−CP 2) which has U(1)× U(1) symmetry.

• Noncompact Kähler shrinkers on O(−1)

In 2003, Feldman-Ilmanen-Knopf found the first complete

noncompact U(n)-invariant shrinking gradient Kähler-Ricci

soliton on the tautological line bundle on O(−1) of CP n−1

(n ≥ 2) which is cone-like at infinity.

• Very recently, Dancer-Wang produced new examples of gra-

dient shrinking Kähler solitons on bundles over the product

of Fano Kähler-Einstein manifolds.

9



Examples of Steady Ricci Solitons

• The cigar soliton Σ

In dimension n = 2, Hamilton discovered the cigar soliton

Σ = (R2, gij), where the metric gij is given by

ds2 =
dx2 + dy2

1 + x2 + y2

with potential function

f = − log(1 + x2 + y2).

The cigar has positive (Gaussian) curvature and linear vol-

ume growth, and is asymptotic to a cylinder of finite cir-

cumference at ∞.

• Σ × R: an 3-D steady Ricci soliton with nonnegative cur-

vature.

10



• The Bryant soliton on Rn

In the Riemannian case, higher dimensional examples of

noncompact gradient steady solitons were found by Robert

Bryant on Rn (n ≥ 3). They are rotationally symmetric and

have positive sectional curvature. The volume of geodesic

balls Br(0) grow on the order of r(n+1)/2, and the curvature

approaches zero like 1/s as s →∞.

• Noncompact steady Kähler-Ricci soliton on Cn

I found a complete U(n)-symmetric steady Ricci soliton on

Cn (n ≥ 2) with positive curvature. The volume of geodesic

balls Br(0) grow on the order of rn, n being the complex

dimension. Also, the curvature R(x) decays like 1/r.

• Noncompact steady Kähler-Ricci soliton on ˆCn/Zn

I also found a complete U(n) symmetric steady Ricci soliton

on the blow-up of Cn/Zn at 0, the same underlying space

that Eguchi-Hanson (n=2) and Calabi (n ≥ 2) constructed

ALE Hyper-Kähler metrics.
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Examples of 3-D Singularities in the Ricci flow.

• 3-manifolds with Rc > 0.

According to Hamilton, any compact 3-manifold (M 3, gij)

with Rc > 0 will shrink to a point in finite time and be-

comes round.

• The Neck-pinching

If we take a dumbbell metric on topological S3 with a neck

like S2 × I, as Yau pointed out to Hamilton in mid 80s, we

expect the neck will shrink under the Ricci flow because

the positive curvature in the S2 direction will dominate

the slightly negative curvature in the direction of interval

I. We also expect the neck will pinch off in finite time.

(In 2004, Angnents and Knopf confirmed the neck-pinching

phenomenon in the rotationally symmetric case.)

• The Degenerate Neck-pinching

One could also pinch off a small sphere from a big one. If

we choose the size of the little to be just right, then we

expect a degenerate neck-pinching: there is nothing left on

the other side. (This picture is confirmed by X.-P. Zhu and

his student Gu in the rotationally symmetric case in 2006)
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Singularities of the Ricci flow

In all dimensions, Hamilton showed that the solution g(t)

to the Ricci flow will exist on a maximal time interval [0, T),

where either T = ∞, or 0 < T < ∞ and |Rm|max(t) becomes

unbounded as t tends to T . We call such a solution a maximal

solution. If T < ∞ and |Rm|max(t) → ∞ as t → T , we say the

maximal solution g(t) develops singularities as t tends to T and

T is a singular time. Furthermore, Hamilton classified them into

two types:

Type I: lim supt→∞ (T − t) |Rm|max(t) < ∞
Type II: lim supt→∞ (T − t) |Rm|max(t) = ∞
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Determine the structures of singularities

Understanding the structures of singularities of the Ricci flow

is the first essential step. The parabolic rescaling/blow-up method

was developed by Hamilton since 1990s’ and further developed

by Perelman to understand the structure of singularities. We

now briefly outline this method.

- -
scaling

initial manifold

6

solution near T

Figure 1: Rescaling
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The Rescaling Argument:

• Step 1: Take a sequence of (almost) maximum curvature

points (xk, tk), where tk → T and xk ∈ M , such that for all

(x, t) ∈ M × [0, tk], we have

|Rm|(x, t) ≤ CQk, Qk = |Rm|(xk, tk).

• Step 2: rescale g(t) around (xk, tk) (by the factor Qk and

shift tk to new time zero) to get the rescaled solution to the

Ricci flow g̃k(t) = Qkg(tk+Q−1
k t) for t ∈ [−Qktk, Qk(T−tk))

with

|Rm|(xk, 0) = 1, and |Rm|(x, t) ≤ C

on M × [−Qktk, 0].

By Hamilton’s compactness theorem and Perelman’s non-

collapsing estimate, rescaled solutions (Mn, g̃k(t), xk) converges

to (M̃, g̃(t), x̃), −∞ < t < Ω, which is a complete ancient solu-

tion with bounded curvature and is κ-noncollapsed on all scales.
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Hamilton’s Compactness Theorem:

For any sequence of marked solutions (Mk, gk(t), xk), k =

1, 2, . . ., to the Ricci flow on some time interval (A, Ω], if for all

k we have

• |Rm|gk(t) ≤ C, and

• inj (Mk, xk, gk(0)) ≥ δ > 0,

then a subsequence of (Mk, gk(t), xk) converges in the C∞
loc topol-

ogy to a complete solution (M∞, g∞(t), x∞) to the Ricci flow

defined on the same time interval (A, Ω].

Remark: In n = 3, by imposing an injectivity radius condition,

Hamilton obtained the following structure results:

Type I: spherical or necklike structures ;

Type II: either a steady Ricci soliton with positive curvature

or Σ× R, the product of the cigar soliton with the real line.
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Perelman’s No Local Collapsing Theorem

Given any solution g(t) on Mn× [0, T ), with M compact and

T < ∞, there exist constants κ > 0 and ρ0 > 0 such that for

any point (x0, t0) ∈ M × [0, T ), g(t) is κ-noncollapsed at (x0, t0)

on scales less than ρ0 in the sense that, for any 0 < r < ρ0,

whenever

|Rm|(x, t) ≤ r−2

on Bt0(x0, r)× [t0 − r2, t0], we have

V olt0(Bt0(x0, r)) ≥ κrn.

Corollary: If |Rm| ≤ r−2 on Bt0(x0, r)× [t0 − r2, t0], then

inj(M,x0, g(t0) ≥ δr

for some positive constant δ.

Remark: There is also a stronger version: only require the

scalar curvature R ≤ r−2 on Bt0(x0, r).
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The Proof of Perelman’s No Local Collapsing Theorems

Perelman proved two versions of “no local collapsing” prop-

erty, one with a entropy functional, the W-functional, and the

other the reduced volume associated to a space-time distance

function obtained by path integral analogous to what Li-Yau

did in 1986.

• The W-functional and µ-entropy:

µ(g, τ) = inf

{
W(g, f, τ) | f ∈ C∞(M),

∫

M

(4πτ)−
n
2 e−fdV = 1

}
,

where W(g, f, τ) =
∫

M [τ(R+ |∇f |2)+f−n](4πτ)−
n
2 e−fdV.

• Perelman’s reduced distance l and reduced volume Ṽ (τ):

For any space path σ(s), 0 ≤ s ≤ τ , joining p to q, define

the action
∫ τ

0

√
s(R(σ(s), t0 − s) + |σ̇(s)|2g(t0−s))ds, the L-

length L(q, τ) from (p, t0) to (q, 0), l(q, τ) = 1
2
√

τ
L(q, τ),

and

Ṽ (τ) =

∫

M

(4πτ)−
n
2 e−l(q,τ)dVτ(q).

• Monotonicity of µ and Ṽ under the Ricci flow:

Perelman showed that under the Ricci flow ∂g(τ)/∂τ =

2Rc(τ), τ = t0 − t, both µ(g(τ), τ) and Ṽ (τ) are nonin-

creasing in τ .
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Remark: S1 ×R is NOT κ-noncollapsed on large scales for

any κ > 0 and neither is the cigar soliton Σ, or Σ × R. In par-

ticular, Σ×R cannot occur in the limit of rescaling! (However,

S2 × R is κ-noncollapsed on all scales for some κ > 0.)
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A magic of 3-D Ricci flow: The Hamilton-Ivey pinching

theorem

In dimension n = 3, we can express the curvature operator

Rm : Λ2(M) → Λ2(M) as

Rm =




λ

µ

ν


 ,

where λ ≥ µ ≥ ν are the principal sectional curvatures and the

scalar curvature R = 2(λ + µ + ν).

The Hamilton-Ivey pinching theorem Suppose we have

a solution g(t) to the Ricci flow on a three-manifold M 3 which

is complete with bounded curvature for each t ≥ 0. Assume at

t = 0 the eigenvalues λ ≥ µ ≥ ν of Rm at each point are bounded

below by ν ≥ −1. Then at all points and all times t ≥ 0 we have

the pinching estimate

R ≥ (−ν)[log(−ν) + log(1 + t)− 3]

whenever ν < 0.

Remark: This means in 3-D if |Rm| blows up, the positive

sectional curvature blows up faster than the (absolute value of)

negative sectional curvature. As a consequence, any limit of

parabolic dilations at an almost maximal singularity has

Rm ≥ 0
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Ancient κ-Solution

An ancient κ-solution is a complete ancient solution with

nonnegative and bounded curvature, and is κ-noncollapsed on all

scales.

Recap: Whenever a maximal solution g(t) on a compact Mn

develop singularities, parabolic dilations around any (maximal)

singularity converges to some limit ancient solution (M̃, g̃(t), x̃),

which has bounded curvature and is κ-noncollapsed. Moreover,

if n = 3, then the ancient solution has nonnegative sectional

curvature, thus an ancient κ-solution.
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Crucial a priori estimate: Li-Yau-Hamilton inequality

When Rm ≥ 0, we have the following crucial a priori estimate

for ancient solutions in all dimensions which is used repeatedly

in understanding κ-solutions.

Li-Yau-Hamilton Inequality (Hamilton, 1993) Let g(t)

be a complete ancient solution to the Ricci flow with bounded

and nonnegative curvature operator. Then for any one-form Va

we have
∂R

∂t
+ 2∇aR · Va + 2RabVaVb ≥ 0.

Corollary
∂R

∂t
> 0,

and R(·, t) is pointwise nondecreasing in t.
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Structure of Ancient κ-solutions in 3-D

Canonical Neighborhood Theorem (Perelman):

∀ ε > 0, every point (x0, t0) on an orientable nonflat ancient

κ-solution (M̃ 3, g̃(t)) has an open neighborhood B, which falls

into one of the following three categories:

(a) B is an ε-neck of radius r = R−1/2(x0, t0); (i.e., after scal-

ing by the factor R(x0, t0), B is ε-close, in C [ε−1]-topology,

to S2 × [−ε−1, ε−1] of scalar curvature 1.)

Figure 2: ε-neck

(b) B is an ε-cap; (i.e., a metric on B3 or RP3 \ B̄3 and the

region outside some suitable compact subset is an ε-neck).

Figure 3: ε-cap

(c) B is compact (without boundary) with positive sectional

curvature (hence diffeomorphic to the 3-sphere by Hamil-

ton).
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Part II: Classification of 3-D Complete Shrinking Ricci

Solitons

1. Classification of 3-D κ-shrinking solitons

• Classification of 3-d κ-shrinking solitons (Perelman): they

are either round S3/Γ, or round cylinder S2 × R, or its Z2

quotients S2 × R/Z2.

In particular, there are no 3-d noncompact κ-noncollaping

shrinking solitons with 0 < Rm < C.

Sketch of the Proof:

1) For s sufficiently large
∣∣∣∇f · γ̇(s)− s

2

∣∣∣ ≤ C,

and ∣∣∣∣f(γ(s))− s2

4

∣∣∣∣ ≤ C · (s + 1).

In particular, f has no critical points outside some large geodesic

ball Bx0
(s0).
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2) When Rc > 0,

∇R · ∇f = 2Rc(∇f,∇f) > 0

for d(x, x0) ≥ s0. So outside Bx0
(s0), the scalar curvature R is

strictly increasing along the gradient curves of f . In particular

R̄ = lim sup
d(x,x0)→+∞

R(x) > 0.

3) At ∞, the soliton is asymptotic to a shrinking cylinder

S2 × R defined (at least) on (−∞, 1). Thus,

R(x) < 1

outside some Bx0
(s0).

4) the level surface Σs = {x ∈ M : f(x) = s} is convex: The

second fundamental form of Σs is

hij = ∇i∇jf/|∇f |, i, j = 1, 2.

But

∇ei
∇ej

f =
1

2
δij −Rc(ei, ej) ≥ 1

2
(1−R)δij,

and
d

ds
Area (Σs) >

1− R̄

2
√

s
Area (Σs) ≥ 0

for s ≥ s0.

Here we used the fact that Rm ≥ 0 is equivalent to 2Rij ≤
Rgij when n = 3.
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5) Now Area (Σs) is strictly increasing as s increases, and

log Area (Σs) > (1− R̄)
√

s− C,

for s ≥ s0. But Area (Σs) is uniformly bounded from above by

the area of the round sphere with scalar curvature one. Thus

we conclude that R̄ = 1, and

Area (Σs) < 8π (∗)

for s large enough.

6) By using the Gauss equation and the soliton equation (1),

the intrinsic curvature K of the level surface Σs can be computed

and it turns out

K <
1

2
(∗∗)

for s sufficiently large. But (*) and (**) lead to a contradiction

to the Gauss-Bonnet formula!
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2. Classification of shrinking solitons in 3-D

• Complete noncompact non-flat shrinking gradient soliton

with Rc ≥ 0 and with curvature growing at most as fast as

ear(x) are quotients of S2 × R. (Ni-Wallach, 2007)

Sketch of the Proof.

It suffices to show that if (M 3, gij, f) is a complete with Rc >

0 and |Rm|(x) ≤ Cear(x), then (M 3, gij) is a finite quotient of

S3. Basic ideas of Ni-Wallach’s proof:

1) Consider the identity

∆(
|Rc|2
R2 ) = ∇(

|Rc|2
R2 )·∇f+

2

R4 |R∇Rc−∇RRc|2− 2

R
∇(
|Rc|2
R2 )·∇R+

P

R3

satisfied by the soltion metric, where

P =
1

2
((λ+µ−ν)2(λ−µ)2+(µ+ν−λ)2(µ−ν)2+(ν+λ−µ)2(ν−λ)2)

and λ ≥ µ ≥ ν are the eigenvalues of Rc. This is a special case

of Hamilton’s computation for any solution gij(t) to the Ricci

flow on 3-manifolds.
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2) By multiplying |Rc|2e−f to the above identity and integra-

tion by parts, Ni-Wallach deduced

0 =

∫

M

(|∇(
|Rc|2
R2 )|2R2+

2|Rc|2
R4 |R∇Rc−∇RRc|2+

P

R3 |Rc|2)e−f .

Thus:

(i) |Rc|2
R2 = constant;

(ii) R∇Rc−∇RRc = 0;

(iii) P = 0;

provided the integration by parts is legitimate. Moreover, Rc >

0 and P = 0 imply λ = µ = ν. Thus Rij = R
3 gij, implying R is

a (positive) constant and (M 3, gij) is a space form.

3) Finally, using the fact shown by Ni earlier that if Rc ≥ 0

then f has a certain quadratic growth lower bound, they argued

that the integration by parts can be justified when the curvature

bound |Rm|(x) ≤ Cear(x) is satisfied.
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• A complete noncompact non-flat shrinking gradient soliton

is a quotient of S2 × R (Cao-Chen-Zhu, 2007).

Sketch of the Proof:

1) Rm ≥ 0 without any curvature bound assumption (B.-L.

Chen);

2)R(x) ≤ C(r2(x) + 1): According to Hamilton, after adding

a constant, f satisfies

R + |∇f |2 − f = 0.

Therefore,

0 ≤ |∇f |2 ≤ f, or |∇
√

f | ≤ 1

2

whenever f > 0. Thus

|
√

f(x)−
√

f(x0)| ≤ Cr(x),

and

√
f(x) ≤ C(r(x) + 1) or, f(x) ≤ C ′(r2(x) + 1).

This proves the upper estimate for f , from which it also follows

that

|∇f |(x) ≤ C(r(x) + 1),

and

R(x) ≤ C ′(r2(x) + 1).
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3. Further Extensions in 4-D

4-D:

• Any complete gradient shrinking soliton with Rm ≥ 0 and

positive isotropic curvature (PIC), and satisfying some ad-

ditional assumptions, is either a quotient of S4 or a quotient

of S3 × R. (Ni-Wallach, 2007)

• Any non-flat complete noncompact shrinking Ricci soliton

with bounded curvature and Rm ≥ 0 is a quotient of either

S3 × R or S2 × R2. (Naber, 2007)
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Part III: Geometry of Complete Shrinking Ricci Soli-

tons

A. Asymptotic behavior of potential functions

Theorem (Cao-Zhou, 2009): Let (Mn, gij, f) be a complete

noncompact gradient shrinking Ricci soliton, satisfying

Rij +∇i∇jf =
1

2
gij.

Then,
1

4
(r(x)− c1)

2 ≤ f(x) ≤ 1

4
(r(x) + c2)

2.

Here r(x) = d(x0, x) for some x0 ∈ M , c1 > 0 and c2 > 0

depending only on n and the geometry of gij on the unit ball

Bx0
(1).

Remark: In view of the Gaussian shrinker (Rn, g0) with the

potential function |x|2/4, the leading term 1
4r

2(x) for the lower

and upper bounds on f is optimal.

Remark: ρ(x) = 2
√

f(x) defines a distance-like function:

r(x)− c ≤ ρ(x) ≤ r(x) + c,

and

|∇ρ| = |∇f |√
f
≤ 1.
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Sketch of the Proof

1) The upper bound on f :

By a result of B.-L.Chen we have R ≥ 0. Also, according to

Hamilton,

R + |∇f |2 − f = C0

for some constant C0. So, by adding C0 to f , we can normalize

f so that

R + |∇f |2 − f = 0.

Therefore,

0 ≤ |∇f |2 ≤ f, or |∇
√

f | ≤ 1

2

whenever f > 0. Thus

|
√

f(x)−
√

f(x0)| ≤ 1

2
r(x).

Hence √
f(x) ≤ 1

2
r(x) +

√
f(x0),

or

f(x) ≤ 1

4
(r(x) + 2

√
f(x0))

2.

This proves the upper estimate for f , from which it also follows

that

|∇f |(x) ≤ 1

2
r(x) +

√
f(x0),

and

R(x) ≤ 1

4
(r(x) + 2

√
f(x0))

2.
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2) The lower bound on f :

Consider any minimizing normal geodesic γ(s), 0 ≤ s ≤ s0

for s0 > 0 large, with γ(0) = x0. Denote by X(s) = γ̇(s) the

unit tangent vector along γ. Then, by the second variation of

arc length, we have

∫ s0

0
φ2Rc(X,X)ds ≤ (n− 1)

∫ s0

0
|φ̇(s)|2ds (2)

for every φ(s) ≥ 0 defined on the interval [0, s0]. Now, following

Hamilton, we choose φ(s) by

φ(s) =





s, s ∈ [0, 1],

1, s ∈ [1, s0 − 1],

s0 − s, s ∈ [s0 − 1, s0].

Then
∫ s0

0
Rc(X, X)ds =

∫ s0

0
φ2Rc(X, X)ds +

∫ s0

0
(1− φ2)Rc(X, X)ds

≤ (n− 1)

∫ s0

0
|φ̇(s)|2ds +

∫ s0

0
(1− φ2)Rc(X,X)ds.
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On the other hand, using the Ricci soliton equation, we have

∇X ḟ = ∇X∇Xf =
1

2
−Rc(X,X). (3)

Integrating (3) along γ from 0 to s0, we get

ḟ(γ(s0))− ḟ(γ(0)) =
1

2
s0 −

∫ s0

0
Rc(X, X)ds.

Now if |Rc| ≤ C, as in Perelman’s case, then
∫ s0

0
Rc(X,X)ds ≤ 2(n− 1) + max

Bx0
(1)
|Rc|+ max

Bγ(s0)(1)
|Rc|.

Hence

ḟ(γ(s0)) ≥ s0

2
+ ḟ(γ(0))− 2(n− 1)− max

Bx0
(1)
|Rc| − max

Bγ(s0)(1)
|Rc|

≥ 1

2
s0 − ḟ(γ(0))− 2(n− 1)− 2C =

1

2
(s0 − c),

and

f(γ(s0)) ≥ 1

4
(s0 − c)2 − f(x0)− c2

4
.
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However, since we do not assume any curvature bound, we

have to modify the above argument.

Integrating along γ from s = 1 to s = s0−1 instead, we have

ḟ(γ(s0 − 1))− ḟ(γ(1)) =

∫ s0−1

1
∇X ḟ(γ(s))ds

=
1

2
(s0 − 2)−

∫ s0−1

1
Rc(X,X)ds

=
1

2
(s0 − 2)−

∫ s0−1

1
φ2(s)Rc(X,X)ds

≥ s0

2
− 2n + 1− max

Bx0
(1)
|Rc|+

∫ s0

s0−1
φ2Rc(X, X)ds.

Next, using equation (3) one more time and integration by parts,

we obtain

∫ s0

s0−1
φ2Rc(X,X)ds =

1

2

∫ s0

s0−1
φ2(s)ds−

∫ s0

s0−1
φ2(s)∇X ḟ(γ(s))ds

=
1

6
+ ḟ(γ(s0 − 1))− 2

∫ s0

s0−1
φ(s)ḟ(γ(s))ds.

Therefore,

2

∫ s0

s0−1
φ(s)ḟ(γ(s))ds ≥ s0

2
− 2n +

7

6
− max

Bx0
(1)
|Rc|+ ḟ(γ(1)).
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2

∫ s0

s0−1
φ(s)ḟ(γ(s))ds ≥ s0

2
− 2n +

7

6
− max

Bx0
(1)
|Rc|+ ḟ(γ(1)).

Furthermore, we claim

√
f(γ(s0)) ≥ max

s0−1≤s≤s0

|ḟ(γ(s))| − 1

2
.

Indeed,

|ḟ(γ(s))| ≤
√

f(γ(s)),

and

|
√

f(γ(s))−
√

f(γ(s0))| ≤ 1

2
(s0 − s) ≤ 1

2

for s0 − 1 ≤ s ≤ s0. Thus,

max
s0−1≤s≤s0

|ḟ(γ(s))| ≤
√

f(γ(s0)) +
1

2
.

Combining the above two inequality and noting 2
∫ s0

s0−1 φ(s)ds =

1, we conclude that

√
f(γ(s0)) ≥ 1

2
(s0 − c1)

for some constant c1 depending only on n and the geometry of

gij on the unit ball Bx0
(1).
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B. Volume Growth Lower Estimate

Theorem (Cao-Zhu, 2008): Let (Mn, gij, f) be a complete

noncompact gradient

shrinking Ricci soliton. Then (Mn, gij) has infinite volume.

More specifically, there exists some positive constant C3 > 0

such that

Vol(Bx0
(r)) ≥ C3 log r

for r > 0 sufficiently large.

Remark: A theorem of Yau (and Calabi) states that on a com-

plete Riemannian manifolds with Rc ≥ 0,

Vol(Bx0
(r)) ≥ Cr.

We believe an analogous result for complete shrinking soliton

should be true.
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C. Volume Growth Upper Estimate

Theorem (Cao-Zhou, 2009): Let (Mn, gij, f) be a complete

noncompact gradient shrinking Ricci soliton and suppose the

scalar curvature R is bounded above by

R(x) ≤ αr2(x) + A(r(x) + 1)

for any 0 ≤ α < 1
4 and A > 0. Then, there exists some positive

constant C4 > 0 such that

Vol(Bx0
(r)) ≤ C4r

n

for r > 0 sufficiently large.

Remark: In general we have R(x) ≤ 1
4(r(x) + c)2. Moreover,

observed that our argument in fact does not need the assumption

on R.

Remark: The theorem can be regarded as an analog of Bishop’s

theorem for complete Riemannian manifolds with Rc ≥ 0.

Remark: The noncompact Kähler shrinker of Feldman-Ilmanen-

Knopf has Euclidean volume growth, with Rc changing signs and

R decaying to zero. This shows that the volume growth rate in

the above theorem is optimal.
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