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Abstract. We introduce and analyse a simple probabilistic model of
genome evolution. It is based on three fundamental evolutionary events:
gene loss, duplication and accumulated change. This is motivated by
previous works which consisted in fitting the available genomic data
into, what is called paralog distributions. This formalism is described
as a system of infinite number ‘of linear equations. We show that this
system generates a semigroup of linear operators on the space l1. We
prove that size distribution of paralogous gene families in a genome
converges to the equilibrium as time goes to infinity. Moreover we show
that when probabilities of gene removal and duplication are close to each
other, then the resulting distribution is close to logarithmic distribution.
Some empirical results for yeast genomes are presented.

1. Introduction

Gene and genome duplication is a fundamental feature of evolution. Since

the seminal work of Ohno [12] it is considered as one of the main mechanisms

of sequence divergence, functional innovation, speciation and constitutes a

substratum for the Darwinian selection for adaptive fitness. These duplica-

tion processes lead to the appearence of paralogous genes. Two genes present

in the same genome are said to be paralogs if they are homologous and have

evolved through a duplication from a single ancestor gene. It should be born

in mind that the term homology as defined above is an abstraction in that it

is a relationship which can only be inferred with more or less certainty (see

Fitch [4] for an in depth discussion). Operationally, in the study of molecular

evolution, one infers homology not by the study of descent, which is in most
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cases not accessible, but by the comparison of extant genes/proteins. If the

degree of similarity/identity is so great (using a treshhold or cut-off value

which is reasonable albeit arbitrary) as compared to a random explanation

of similarity, then one infers homology.

Obviously a genome is not simply a set of genes, but rather a dynamic

collection of genes which changes in time. Various molecular events (e.g.

gene duplication and loss, point mutation, recombination, gene conversion,

rearrangement, DNA repair, translocation, horizontal transfer) constantly

act on genomes and drive them to evolve dynamically. In this paper we

propose to study a simple model of genome evolution in the spirit of Kimura

[9], i.e. in the total absence of selective pressures. We are aware that such

a purely neutralistic model cannot be truly realistic. We belive, however,

that it can be useful as a basis for further discussions. The model addresses

three evolutionary events: gene duplication, gene loss or removal and gene

change. Although it may seem trivial we prefer to define these notions: (i)

by gene duplication we understand an event in which one gene gives rise to

two genes which cannot be operationally distinguished between themeselves,

which remain in the same genome and are therefore paralogs; (ii) by gene

loss we understand an event which leads to a removal of the gene from the

genome; (iii) by gene change we understand an event (or a cumulative series

of events like mutations, rearrangements, recombinations, ...) which lead

to such a modification of a sequence that the resulting gene is no longer

similar to its parental ancestor and therefore is no longer classified as a

paralog. Mathematical analysis of the model allows us to rigorously study

the problem of size distribution of paralogous gene families in a genome.

A motivation for the present work comes from the study of the size distri-

bution of paralog families in several microbial genomes which was undetaken

in late 90’s. In 1998 P. Slonimski et al. [14, 15] and independently M.A. Huy-

nen and E. van Nimwegen [5] have counted the numbers of i-element clusters

of paralogous genes (for i = 2, 3, . . ., etc.) in several genomes which have

been sequenced till then and came with two different claims concerning the
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shape of the observed distribution: [14] states that the distribution is log-

arithmic (i.e. a probability of being an i-element cluster is C · θi/i, where

0 < θ < 1 and C is a normalizing constant), while [5] claims that this dis-

tribution is power law (i.e. the probability is D · i−γ , where γ > 1 and D

is a suitable normalizing constant). In 2001 Jordan et al. [6] have analysed

21 completely sequenced bacterial genomes and concluded that the logarith-

mic approximation fits the distribution slightly better than the power law

approximation. The above cited papers did not propose any probabilistic

model which explained the observed distributions. In 2000 Yanai et al. [17]

designed a simple model of genome evolution based on random gene du-

plication and point mutations. The main result of the paper consisted in

showing that it is possible for each of the 20 microbial genomes to tune the

parameters of the model so that the obtained distribution matches closely

the paralog distribution of the genome. Mathematical analysis of the model

was not given in that paper.

To our knowledge the first paper which proposed a model of genome evo-

lution together with complete mathematical analysis of the equilibrium fre-

quences of domain families is Karev et al. [7] published in 2002 (see also [8]).

The model in that paper is based on three elementary processes: domain

birth (duplication), domain death (deletion), and domain innovation (acqui-

sition via horizontal transfer, or emergence from a non-coding sequence), the

so called BDIM model. The external source of new genes serves the purpose

of stabilizing the asymptotic behaviour of the model. Karev et al. show

in their paper that depending on relative rates of duplication and death of

domains in families (these rates depend on the size of the family and are

constant in time) one obtains various equilibrium distributions, including

logarithmic and power law. The BDIM model and the model presented in

this paper differ in two important respects. (1) BDIM model sets a fixed

upper bound on the maximal size of a family, while our model allows fam-

ilies of arbitrary unbounded size. It is not clear what are the consequences

for the resulting distribution if one bounds the maximal size of the family.
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In technical terms bounding the size results in a finite system of differen-

tial equations (as this is the case for the BDIM model), while without the

bound the system becomes infinite. (2) Finally, in the BDIM model there

is an external source of new genes (invention), while our model is a ‘closed

system’ in the sense that there are no new genes coming from outside. New

gene families are being created in our model via accumulated change. It

would be interesting to see what happens when both features are present in

the model: innovation and change.

Two models in the spirit of the present paper but without the mechanism

of accumulated change was analysed in Tiuryn at al. [16]. In that paper we

proposed both a discrete and a comtinous time model for this phenomena.

It is shown there that the asymptotic distribution in this model is geometric

(i.e. the probability of being an i-element family is G · θi, where 0 < θ < 1

and G is a normalization constant).

The organization of our paper is the following. First we present our model.

The size distribution of paralogous gene families in a genome is described by

a system of infinite number of linear equations. We show that this system

generates a continuous semigroup of linear operators on the space l1. Then

we check that after suitable substitution we obtain a semigroup of Markov

operators on that space. Using ”the lower-bound function” theorem by

Lasota and Yorke [10] we prove that this semigroup is asymptotically stable.

It implies that the size distribution of paralogous gene families in a genome

converges to the equilibrium as time goes to infinity. Moreover we show

that when probabilities of gene removal and duplication are close to each

other, then the resulting distribution is close to logarithmic distribution.

The paper contains also a presentation of some experimental results for five

yeasts.

2. Model

Now we describe more formally our model of duplication, loss and change

(DLC) of genes. In order to express the concept of gene homology we will
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assume that all genes we are working with are colored. The convention is

that genes with the same color are homologous and genes of different colors

are not homologous in the operational sense of the term (vide supra). We

will assume that an unlimited supply of colors is given. A genome is a finite

set of all colored genes. A gene family in a genome is a set of all genes of that

genome which have the same color. We group families according to their

size. For any i > 0, let Ci denote the class/cluster of all i-element families

of the genome.

Evolution of genome is modeled by a Markov chain with continuous time.

States of the Markov chain at time t are infinite sequences (si(t))i≥1 of non-

negative integers. A state (si(t))i≥1 represents a genome in which for every

i ≥ 1, the number of i-element gene families is si(t).

The model is parameterized by three positive reals: d, r and m. A transi-

tion from a genome G at time t to G′ at time t+∆t is based on the following

process of evolution which is performed independently for each gene of G.

A gene, which is subject to the process of evolution during time interval of

length ∆t is:

• duplicated with probability d·∆t+o(∆t). A new gene is created in the

genome and this gene inherits the color of its parent, i.e. duplication

of a gene in a family of class Ci moves this family to the class Ci+1,

• removed from the genome with probability r ·∆t+ o(∆t). For i > 1,

removal of a gene from a family of class Ci moves this family to class

Ci−1; removal of a gene from one-element family results in elimina-

tion of this family from the genome. A removed gene is eliminated

permanently from the pool of all genes.

• changed with probability m · ∆t + o(∆t). It changes its color to a

new one, not present in the genome, i.e. the gene starts a new one-

element family and is removed from the family to which it belonged.

It is assumed that lim∆t→0
o(∆t)
∆t = 0. Moreover, we assume that all ele-

mentary events are independent of each other.
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Let si(t) be the number of i-element families in our model at the time t

and let ∆si = si(t+∆t)−si(t). It follows from the description of our model

that

∆s1 = −(d + r)s1(t)∆t + 2(m + r)s2(t)∆t +
∞∑

k=2

mksk(t)∆t + o(∆t)

and

∆si =− (d + r + m)isi(t)∆t + d(i− 1)si−1(t)∆t

+ (r + m)(i + 1)si+1(t)∆t + o(∆t)

for i ≥ 2. From these equations it follows that

s′1(t) = −(d + r)s1(t) + 2(m + r)s2(t) + m
∞∑

k=2

ksk(t),(1)

s′i(t) = d(i− 1)si−1(t)− (d + r + m)isi(t) + (r + m)(i + 1)si+1(t)(2)

for i ≥ 2. Let s(t) =
∑∞

i=1 si(t) be the total number of families. Then the se-

quence (pi(t)), where pi(t) = si(t)/s(t) is the size distribution of paralogous

gene families in a genome at time t.

3. Markov semigroups approach

In this section we prove a theorem on the existence and uniqueness of

solutions of the system (1) and (2).

Assume that r ≥ 0, m ≥ 0 and d ≥ 0. Let S(t) =
∑∞

i=1 isi(t) be the

total number of genes in the genome. We show that for each non-negative

sequence (si(0))i≥1 such that S(0) < ∞ the system (1) and (2) has a unique

solution such that si(t) ≥ 0 for all t > 0 and all positive integers i. The

idea is the following. First, we change variables to obtain a new system

which will be easier to study. We check that this new system generates a

continuous Markov semigroup on the space l1. Consequently, both systems

have unique solutions in properly chosen spaces.

Let

yi(t) = e(r−d)tisi(t).
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Then

y′1 = −2dy1 + (2m + r)y2 +
∞∑

k=3

myk,(3)

y′i = −(d + r + m + d−r
i )iyi + diyi−1 + (r + m)iyi+1(4)

for i ≥ 2.

Let l1 denote the space of absolutely summable sequences. We check that

the system (3) and (4) generates a Markov semigroup on l1. We recall some

notions concerning Markov operators and Markov semigroups.

A linear mapping P : l1 → l1 is called a Markov or stochastic operator if

P (D) ⊂ D, where

D = {x ∈ l1 : xi ≥ 0 for all i ≥ 1 and
∞∑

i=1

xi = 1}.

A family {P (t)}t≥0 of Markov operators which satisfies conditions:

(a) P (0) = Id,

(b) P (t + s) = P (t)P (s) for s, t ≥ 0,

(c) for each x ∈ l1 the function t 7→ P (t)x is continuous with respect to

the l1 norm

is called a Markov or stochastic semigroup.

Let q1,1 = −2d, q1,2 = 2m + r, q1,j = m for j ≥ 3, and qi,i = −i(d + r +

m+ d−r
i ), qi,i−1 = di, qi,i+1 = (r+m)i, for i ≥ 2, and qi,j = 0 in other cases.

The system (3) and (4) can be written in the following way:

(5) y′i(t) =
∞∑

j=1

qi,jyj(t), for i ≥ 1

and in the abstract form:

(6) y′(t) = Qy(t),

where Q = (qi,j)i,j≥1. The matrix Q has the following properties:

(i) qi,j ≥ 0 for i 6= j,

(ii)
∑∞

i=1 qi,j = 0 for j ≥ 1.

We need the following result
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Theorem 1. Let the matrix Q satisfies conditions (i) and (ii). Let Q∗ =

(q∗i,j)i,j≥1, where q∗i,j = qj,i for i, j ≥ 1 and let θ be a positive constant. Then

the operator Q generates a Markov semigroup on l1 if and only if there is

no non-zero solution of the equation Q∗x = θx, where x ∈ l∞.

Recall that l∞ is the space of bounded sequence. The proof of Theorem 1

can be found in Norris [11].

The direct proof that the operator Q corresponding to system (3) and (4)

by means of Theorem 1 is not easy and we do it in a little different way.

Assume additionaly that d + m > 0. The case d = m = 0 is simple and

we omit it here. Define matrices A = (ai,j)i,j≥1 and K = (ki,j)i,j≥1. Let

ai,i = −(i− 1)(d+ r +m), ai+1,i = (i− 1)d, ai−1,i = (i− 1)(r +m) for i ≥ 2,

and ai,j = 0 in other cases, and let k1,i = m
2d+m and ki+1,i = 2d

2d+m for i ≥ 1,

and ki,j = 0 in other cases. Then

(7) Q = A− (2d + m)I + (2d + m)K.

Since ki,j ≥ 0 for all i, j and
∑∞

i=1 ki,j = k1,j + kj+1,j = 1 for all j, the

matrix K is a Markov operator on l1.

We check that A is an infinitesimal generator of a Markov semigroup.

First, we observe that the matrix A satisfies conditions (i) and (ii). Con-

dition (i): ai,j ≥ 0 is obvious. Since
∑∞

i=1 ai,j = aj−1,j + aj,j + aj+1,j = 0

we also have (ii). If A∗x = θx, then x1 = 0 and |xn+1| ≥ (1 + θ
n−1)|xn|

for n ≥ 2, which imples that limn→∞ |xn| = ∞, and, consequently, x /∈ l∞.

According to Theorem 1 the operator A is an infinitesimal generator of a

Markov semigroup, which we denote by {S(t)}t≥0.

¿From the Phillips perturbation theorem [2], equation (6) generates a

Markov semigroup {P (t)}t≥0 on l1 given by

(8) P (t)x = e−(2d+m)t
∞∑

n=0

(2d + m)nSn(t)x,

where S0(t) = S(t) and

Sn+1(t)x =
∫ t

0
S(t− s)KSn(s)x ds, n ≥ 0.



MODEL OF GENOMES EVOLUTION 9

Thus we have proved the following result.

Theorem 2. For each y0 ∈ l1 equation (6) has a unique solution y(t) such

that y(0) = y0. If we denote by P (t)y0 the solution y(t) of with the initial

condition y(0) = y0, then {P (t)}t≥0 is a Markov semigroup on l1.

Now we can return to the orginal system (1) and (2).

Corollary 1. For each sequence (si) such that
∑∞

i=1 i|si| < ∞ system (1),

(2) has a unique solution s(t) such that si(0) = si for i = 1, 2, . . . . We have
∑∞

i=1 isi(t) =
∑∞

i=1 e(d−r)tisi for all t ≥ 0. Moreover, if si ≥ 0 for all i then

si(t) ≥ 0 for all i and t.

4. Asymptotic behaviour

Next result characterize asymptotic behaviour of the solutions of equa-

tion (6).

Theorem 3. If m > 0 then there exists a sequence y∗ = (y∗n)n≥1 such that

y∗ ∈ D and for each y ∈ D we have limt→∞(P (t)y)n = y∗n for each n ≥ 1.

The proof of Theorem 3 is based on the following Lasota-Yorke lower

bound function theorem [10]:

Theorem 4. Let {P (t)}t≥0 be a Markov semigroup on L1(X, Σ, µ). If there

exists 0 ≤ h ∈ L1(X,Σ, µ) such that limt→∞ ‖(P (t)f − h)−‖1 = 0 for every

f ∈ D, then there exists f∗ ∈ D with Pf∗ = f∗ such that for every f ∈ D

limt→∞ ‖P (t)f − f∗‖ = 0.

Remark 1. A continuous semigroup {P (t)}t≥0 of linear operators on L1(X, Σ, µ)

is called a Markov semigroup if P (t)(D) ⊂ D for all t ≥ 0, where

D = {f ∈ L1(X, Σ, µ) : f ≥ 0,

∫
f(x)µ(dx) = 1}.

In our case l1 = L1(N, 2N, µ) and µ(A) is the number of elements of the

set A. We use the notation f−(x) = −f(x) if f(x) < 0 and f−(x) = 0 if

f(x) ≥ 0.
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Proof of Theorem 3. Let y(0) ∈ D and m > 0. Since

y′1(t) ≥ −2ry1(t) + m(1− y1(t))

we have

lim inf
t→∞ y1(t) ≥ m

2r + m
.

Let h = ( m
2r+m , 0, 0, . . . ). Then h ∈ l1, h ≥ 0, h 6= 0 and

lim
t→∞(P (t)y − h)− = 0

for each y ∈ D. ¿From Theorem 4 it follows that there exists y∗ ∈ D such

that limt→∞ P (t)y = y∗ for y ∈ D. ¤

Now we are looking for a stationary solution of the system (1) and (2).

Then d = r and y∗n = m
r ( r

r+m)n is an element of D such that P (t)y∗ = y∗.

Corollary 2. If d = r then for every non-negative and non-zero solu-

tion of the system (1) and (2) there exists a positive constant C such that

limt→∞ xn(t) = Cn−1( r
r+m)n.

5. Experimental results

In order to compare the observed families of paralogous genes which oc-

cur in species with the values predicted by our model we have examined

five genomes of yeast species: Saccharomyces cerevisiae, Candida glabrata,

Klyveromyces lactis, Debaromyces hansenii, and Yarrowia lipolytica, whose

genomes (with the exception of Saccharomyces cerevuisiae) have been re-

cently sequenced [1]. The paralogous families were taken from http://cbi

.labri.fr/Genolevures/raw/fam/family-20040327-byfamily.txtwhich

provides a suplementary material to [1]. As it was observed by many re-

searchers [5, 7, 14] the distribution of large families of paralogous genes in

organisms is very uneven: large families may span hundreds of classes, most

of them empty. An explanation proposed by [14] is that large families are

subjected to Darwinian selection of adaptive functions, a feature which is

not present in our model. For this reason some researchers [14, 15] restrict

analysis of families to small classes (cluster size 2 through 6), while others
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[5, 7] group families into bins, each containing a certain prespecified minimal

number of families. In our analysis we choose the former method, i.e. we

consider only families which have between 2 and 6 members. The number

of such families for each organism considered is given in Table 1. We re-

ject all single–member families because their number is very uneven: there

are many pseudogenes, inactive genes, etc. Thus, it seems that the num-

ber of detected singletons is too big in this data set. The observed data

was fitted to the logarithmic distribution and the distribution parameter

θ = 1
1+m/r was choosen to minimize the value of Pearson’s χ2 test. For

each genome, before we evaluated the χ2 test we grouped the expected par-

alog family frequencies into bins, each containing at least 10 genes. For all

analysed genomes, with the exception of Y. lipolytica, P (χ2) for this model

was larger than 0.05, i.e. no significant difference between the observed and

predicted values was detected. The values of parameter θ, the fraction m/r

and the goodness-of-fit P (χ2) are given in Table 1. It should be noticed that

the maximal likelihood method gives us almost the same θ for each genome.

Yeast genome # of families θ m/r P(χ2)
Candida glabrata 576 0.475 1.105 0.229
Debaryomyces hansenii 755 0.564 0.773 0.101
Kluyveromyces lactis 465 0.517 0.934 0.060
Saccharomyces cerevisiae 723 0.496 1.016 0.167
Yarrowia lipolytica 632 0.536 0.866 0.005

Table 1. Paralogous families in yeast genomes [1] and the
parameter of the best-fit model.

It appears from studying Table 1 that constant θ for yeasts is around

0.5. This is consistent with Slonimski’s First Law of Genomics, because the

Slonimski’s group claims that this value is 1/2 for all genomes [14, 15]. The

fit of the model reveals also the existance of a simple relationship between

probabilities of accumulated change and gene duplication/loss. On average,

the probability of gene dupliaction/loss appears to be approximately equals
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the per gene probability of accumulated change (see the fraction m/r in

Table 1).

We have also performed a similar analysis for the power law distribution.

The resulting P (χ2) was similar to the corresponding value for the logarith-

mic distribution (data not shown). Difference between the goodness of fit

for both distributions was not essential. However, it seems that the power

law distribution has better goodness of fit than the logarithmic distribution

when we cosider bigger family sizes. Some explanations of this situation can

be found in [14, 15].

The only organism for which the difference between the observed distri-

bution of paralogous gene families and the predicted value is statistically

significant, is Y. lipolytica. Its genome differs from the other four genomes

in several respects [1], the most pronounced being that its size (20.5 Mb) is

almost twice as big as any other genome (10-12 Mb). The only class which

causes this discrepancy is the class of three element families, which is much

smaller in the genome that the predicted value. This suggests that during

the evolution of this genome some kind of an accident has happend which

disrupted the distribution of paralogs. It has been also observed in [1] that

this genome ”shows a strong tendency for map dispersion”, and ”by contrast

the other yeast species show significant constraints on genome size, possibly

associated with their ability to duplicated blocks and tandem gene repeats in

their genomes”. Finding an explanation of this mystery sounds like a good

research topic and we plan to work on this in the future.

Conclusions

Here we present a mathematical description of the size distribution of

paralog families encoded in genomes for a simple but a very natural model

of evolution, which includes three types of events: gene removal, duplica-

tion and accumulated change. The paper presents mathematical analysis

of the asymptotic distribution of gene families. Genome evolution is a very

complicated stochastic process which involves many additional events than
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the ones considered in this paper. We do not claim that our model is the

most accurate description of this process. It is the simplicity of our model

which allows us to mathematically analyse it, and yet the theory behind it

is quite involved mathematically. It would be interesting to see how other

evolutionary events (like gene invention proposed in [7]), when introduced

into the model affect the asymptotic distribution. For example removing

gene change from the model results in geometric distribution [16].

Another interesting topic of research is to investigate the role of changing

the rate of shrinking and expanding the size of a family, as a function of

the size. In our model this rate depends on the size, but other dependencies

may be considered too.

Although our theoretical results are not fully consistient with empirical

data, the model has some advantages. For example, it is practically im-

possible to check experimentally the relationship between probabilities of

accumulated change and gene duplication/loss. Our model allow to find

this relationship (maybe not precisely) only studying the distribution of

paralogous families.
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