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ABSTRACT. A description of Lagrangian and Hamiltonian formalisms naturally

arisen from the invariance structure of given nonlinear dynamical systems on the infinite–

dimensional functional manifold is presented. The basic ideas used to formulate the

canonical symplectic structure are borrowed from the Cartan’s theory of differential sys-

tems on associated jet–manifolds. The symmetry structure reduced on the invariant

submanifolds of critical points of some nonlocal Euler–Lagrange functional is described

thoroughly for both differential and differential discrete dynamical systems. The Hamil-

tonian representation for a hierarchy of Lax type equations on a dual space to the Lie

algebra of integral-differential operators with matrix coefficients, extended by evolutions

for eigenfunctions and adjoint eigenfunctions of the corresponding spectral problems, is

obtained via some special Backlund transformation. The connection of this hierarchy

with integrable by Lax spatially two-dimensional systems is studied.

1 Introduction

One of the fundamental problems in modern theory of infinite-dimensional dynam-
ical systems is that of an invariant reduction them upon some invariant subman-
ifolds with enough rich mathematical structures to treat their properties analyti-
cally. The first approaches to these problems were suggested still at the late times
of the preceding century, in the classical oeuvres by S.Lie, J.Liouville, J.Lagrange,
V.R.Hamilton, J.Poisson and E.Cartan. They introduced at first the important
concepts of symmetry, conservation law, symplectic, Poisson and Hamiltonian
structures as well invariant reduction procedure, which appeared to be extremely
useful for proceeding studies. These notions were widely generalized further by
Souriau

Sou
[21], Marsden and Weinstein

Wein,Mars
[34, 20], Lax

Lax
[3], Bogoyavlensky and Novikov

Bogo
[7], as well by many other researchers

Pri,Gill,Wah,Kup,Kupe
[8, 10, 11, 12, 13]. It seems worthwhile to

mention here also the recent enough studies in
Adl,Pry,Oew,Oe,Fok,Olv,Mag,Fer
[22, 23, 24, 39, 26, 27, 28, 29], where

the special reduction methods were proposed for the integrable nonlinear dynam-
ical systems on both functional and operator manifolds. In the present paper we
describe in detail the reduction procedure for infinite dimensional dynamical sys-
tems upon the invariant set of critical points of some global invariant functional.
The method uses the Cartan’s differential-geometric treating of differential ideals
in Grassmann algebra over the associated jet–manifold. As one of main results, we
show also that both the reduced dynamical systems and their symmetries, generate



the Hamiltonian flows on the invariant critical submanifolds of local and nonlocal
functionals with respect to the canonical symplectic structure upon it. These re-
sults are generalized for the case of differential-difference dynamical systems being
given on discrete infinite-dimensional manifolds. The direct procedure to construct
the invariant Lagrangian functionals for a given apriori Lax-type integrable dynam-
ical system is presented for both the differential and the differential-difference cases
of the manifold M. Some remarks on the Lagrangian and Hamiltonian formalisms,
concerned to infinite-dimensional dynamical systems with symmetries are given.
The Hamiltonian representation for a hierarchy of Lax type equations on a dual space

to the Lie algebra of integral-differential operators with matrix coefficients, extended by

evolutions for eigenfunctions and adjoint eigenfunctions of the corresponding spectral

problems, is obtained via some special Backlund transformation. The connection of this

hierarchy with integrable by Lax spatially two-dimensional systems is studied.

2 General setting

We are interested in treating a given nonlinear dynamical system

du/dt = K[u], (2.1)

with respect to an evolution parameter t ∈ R on an infinite-dimensional functional
manifold M ⊂ C(∞)(R; Rm), possessing two additional ingredients: a homoge-
nous and autonomous conservation law L ∈ D(M) and a number of homogenous
autonomous symmetries du/dtj = Kj [u], j = 1, k, with evolution parameters
tj ∈ R. The dynamical system (2.1) is not-supposed to be in general Hamilto-
nian, all the maps K, Kj : M → T (M), j = 1, k, being considered smooth and
well-defined on M .

To pose the problem to be discussed further more definitely, let us involve the
jet-manifold J (∞)(R; Rm) locally isomorphic to the functional manifold M men-
tioned above. This means the following: the vector field (2.1) on M is completely
equivalent to that on the jet-manifold J (∞)(R; Rm) via the representation

Grif,Fil
[1, 2]

(M 3 u→ K[u])
jet

−→ ( (K(u, u(1), . . . , u(n+1))← (x; u, u(1), . . . , u(∞)) ∈ J (∞)(R; Rm)),
(2.2)

where n ∈ Z+ is fixed, x ∈ R is the function parameter of the jet-bundle J (∞)(R; Rm)
π
−→

R, and π is the usual projection on the base R. Let us allow also that the smooth
functional L ∈ D(M) is a conservation law of the dynamical system (2.1), that is
dL/dt = 0 along orbits of (2.1) for all t ∈ R. Due to the jet-representation (2.2)
we can write the density of the functional L ∈ D(M) in the following form:

L =

∫

R

dxL[u], (2.3)



with R×Rm 3 [x; u]
jet
−→ (x; u, u(1), . . . , u(N+1)) ∈ J (N+1)(R; Rm) being the stan-

dard jet-mapping and a number N ∈ Z+ fixed. Besides, the functional (2.3) will be
assumed to be non-degenerate in the sense that Hessian of L : J (N+1)(R; Rm)→ R

has nonvanishing determinant: det‖∂2L(u,u(1),...,u(N+1))

∂u(N+1)∂u(N+1) ‖ 6= 0.

3 Lagrangian reduction

Consider now the set of critical points Mn ⊂M of the functional L ∈ D(M):

MN = {u ∈M : grad L[u] = 0} (3.1)

where, due to (2.2), grad L[u] := δL(u, . . . , u(N+1))/δu – the Euler variational
derivative. As proved by Lax

Lax
[3], the manifold MN ⊂ M is smoothly imbedded

well-defined one due to the condition HessL 6= 0. Besides, the manifold MN

appears to be invariant with respect to the dynamical system (2.1). This means
in particular that the Lie-derivative of any vector field X : M → T (M), tangent
to the manifold MN with respect to the vector field (2.1), is again tangent to MN ,
that isthe followung implication

X[u] ∈ Tu(MN )⇒ [K, X][u] ∈ Tu(MN) (3.2)

holds for all u ∈MN . Here we are in a position to begin with a study of the intrinsic
structure of the manifold MN ⊂M within the geometric Cartan’s theory developed
on the jet-manifold J (∞)(R; Rm)

Fil,Lax,Bry,St
[2, 3, 4, 5]. Let us define an ideal I(ξ) ⊂ Λ(J (∞)),

generated by the vector one-forms ξ
(1)
j = du(j) − u(j+1)dx, j ∈ Z+, which are

canceled the vector field d/dx on the jet-manifold J (∞)(R; Rm) :

i d
dx

ξ
(1)
j = 0, j ∈ Z+, (3.3)

where x ∈ R belongs to the jet-bundle base, i d
dx

– the intrinsic derivative along

the vector field
d

dx
=

∂

∂x
+
∑

j∈Z+

< u(j+1),
∂

∂u(j)
>,

where 〈., .〉 is the standard scalar product in Rm. The vector field (2.1) on the
jet-manifold J (∞)(R; R) has the analogous representation:

d

dt
=

∂

∂t
+
∑

j=Z+

< K(j),
∂

∂u(j)
>, (3.4)

where, by definition, K(j) := dj

dxj K, j = Z+. The problem arises: how to build the
intrinsic variables on the manifold MN ⊂M from the jet-manifold coordinates on
J (∞)(R; Rm))?



To proceed to the solution of the problem above, let us study the 1-form dL =
Λ1(J (∞)(R; R)) as one defined on the submanifold MN ⊂M. We have the following
chain of identities in the Grassmann subalgebra Λ(J (2N+2)(R; Rm)) :

dL = d(i d
dx
Ldx) = di d

dx
(Ldx +

N
∑

j=0

〈pj, R〉) (3.5)

= (di d
dx

+ i d
dx

d) · (Ldx +

N
∑

j=0

〈pj, ξ
(1)
j 〉)− i d

dx
d(Ldx +

N
∑

j=0

〈pj , ξ
(1)
j 〉),

where pj : J (2N+2)(R; Rm) → Rm, j = 0, N, are some until not definite vector-

functions. Requiring now that 2-form d(Ldx +
∑N

j=0〈pj , ξ
(1)
j 〉) do not depend on

differentials du(j), j = 1, N + 1, that is

i ∂

∂u(j)
(dL ∧ dx +

N
∑

k=0

〈dpk ∧ ξ
(1)
j 〉) = 0, (3.6)

one can determine thus the vector-functions pj = Rm, j = 0, N. As a result we
obtain the following simple recurrent relations:

dpj

dx
+ pj−1 =

∂L

∂u(j)
(3.7)

for j = 1, N + 1, setting p−1 = 0 = pN+1 by definition. The unique solution to
(3.7) is made by the following expressions, j = 0, N :

pj =

N
∑

k=0

(−1)k dk

dxk

∂L

∂u(j+k+1)
. (3.8)

Thereby we have got, owing (3.5) and (3.6), the following final representation for
the differential dL:

dL =
d

dx
[L −

N
∑

j=0

〈pj, u
(j+1)〉]dx− 〈grad L[u], u(1)〉dx +

+
d

dx

( N
∑

j=0

〈

pj , du(j)
〉

]

)

+ 〈grad L[u], du〉, (3.9)

with d
dx

:= di d
dx

+ i d
dx

d being the Lie-derivative along the vector field d
dx

, and

grad L[u] := δL/δu as it was mentioned above in the chapter 2. Below we intend
to treat the representation (3.9) on the topic of a symplectic structure arisen from
the above analysis on the invariant submanifold MN ⊂M .



4 Symplectic analysis and Hamiltonian formula-

tion

Let us put into the expression (3.9) the condition grad L[u] = 0 for all u = MN .
Then the following equality is satisfied:

dL =
d

dx
α(1), α(1) =

N
∑

j=0

〈pj, du(j)〉, (4.1)

since the function h(x) :=
∑N

j=0〈pj, u
(j+1)〉−L(u, . . . , u(N+1)) satisfies the condition

dh(x)/dx = −〈grad L[u], u(1)〉 for all x = R, owing to the relations (3.7). Taking
now the external derivative of (4.1), we obtain that

d

dx
Ω(2) = 0, Ω(2) = dα(1), (4.2)

where we have used the well known identity d · d
dx

= d
dx
· d. From (4.2) we can

conclude that the vector field d/dx on the submanifold MN ⊂ M is Hamiltonian
with respect to the canonical symplectic structure Ω(2) =

∑N

j=0〈dpj ∧du(j)〉. It is a

very simple exercise to state that the function h(x) : J (2N+2)(R; Rm) → R defined
above is playing a role of the corresponding Hamiltonian function for the vector
field d/dx on MN , i.e. the equation

dh(x) = −i d
dx

Ω(2) (4.3)

holds on MN . Therefore, we have got the following theorem.
slTheorem sl1. The critical submanifold M N ⊂M defined by (3.1) for a given

non degenerate smooth functional L=D(M)⊂D(J (N+1)(R;Rm)), being imbedded
into the jet-manifold J (∞)(R;Rm), carries the canonical symplectic structure sub-
ject to which the induced vector field d/dx on M N is Hamiltonian.

The theorem analogous to the that above was stated before via different man-
ners by many authors

Pri,Gelf
[8, 9]. Our derivation presented here is as much simpler

as constructive, giving rise to all ingredients of symplectic theory, stemming from
imbedding the invariant submanifold MN into the jet-manifold.

Now we are going to proceed further to studying the vector field (2.1) on the
manifold MN ⊂M endowed with the symplectic structure Ω(2) = Λ2(J (N+1)(R; Rm)),
having built via the formula (4.2).

We have the following implicating identities:

dL

dt
= 0 ⇒ 〈grad L[u], K[u]〉 = −

dh(t)

dx
,

dL

dx
= 0 ⇒ 〈grad L[u],

du

dx
〉 = −

dh(x)

dx
, (4.4)



where functions h(t) and h(x) serve as corresponding Hamiltonian ones for the
vector fields d/dt and d/dx. This means in part that the following equations hold:

dh(x) = −i d
dx

Ω(2), dh(t) = −i d
dt

Ω(2). (4.5)

To prove the above statement (4.5), we shall build the following quantities (for the
vector field d/dx at first):

d · i d
dx
〈grad L[u], du〉 = −

d

dx
(dh(x)) (4.6)

stemming from (4.4), and

i d
dx
· d〈grad L[u], du〉 = −

d

dx

(

i d
dx

Ω(2)
)

(4.7)

stemming from (3.9), where we used the preliminary used the evident identity
[i d

dx
, d

dx
] = 0. Adding now the expression (4.6) and (4.7) entails the following one:

d

dx
〈grad L[u], du〉 = −

d

dx
(dh(x) + i d

dx
Ω(2)) (4.8)

for all x = R and u = M . Since grad L[u] = 0 for all u = MN , we obtain from (4.8)
that the first equality in (4.5) is valid in the case of the vector field d/dx reduced
on MN . The analogous procedure fits also for the vector field d/dt reduced on the
manifold MN ⊂ M . The even difference of the procedure above stems from the
condition on vector fields d/dt and d/dx to be commutative, [d/dt, d/dx] = 0 what
engenders the needed identity [i d

dt
, d

dx
] ≡ i[ d

dt
, d
dx

] = 0 as a simple consequence of the

procedure considered above. There upon we have stated the validity of equations
(4.5) completely.�

Theorem 2. Dynamical systems d/dt and d/dx reduced on the invariant sub-
manifold MN ⊂M (3.1) are Hamiltonian ones with the corresponding Hamiltonian
functions built from the equations (4.4) in the unique way.

By the way, we have stated also that the Hamiltonian functions h(x) and h(t) on
the submanifold MN ⊂M are commuting with each other, that is {h(t), h(x)} = 0
where {·, ·} is the Poissin structure on D(MN) corresponding to the symplectic
structure (4.2). This indeed follows from the equalities (4.4), since {h(t), h(x)} =
dh(x)

dt
= −dh(t)

dx
≡ 0 upon the manifold MN ⊂M.

5 Symmetry invariance

Let us consider now any vector field Kj : M → T (M), j = 1, k, being symmetry
fields related with the given vector field (2.1), i.e. [K, Kj] = 0, = 1, k. As the



conservation law L ∈ D(M) for the vector field (2.1) has not to be that for the
vector fields Kj, j = 1, k, the submanifold MN ⊂ M has not to be invariant also
with respect to these vector fields. Therefore, if a vector field X ∈ T (MN), the
vector field [Kj , X] /∈ T (MN) in general, if d

dtj
, j = 1, k, are chosen as symmetries

of (2.1). Let us consider the following identity for some there existing function h̃j :
J (2N+2)(R; Rm)→ R, j = 1, k, stemming from the conditions [ d

dt
, d

dtj
] = 0, j = 1, k,

on M :
d

dt
i d

dtj

< grad L[u], du >= −
dh̃j [u]

dx
. (5.1)

Lemma 1.The functions h̃j [u], j = 1, k, reduced on the invariant submanifold
MN ⊂ M turn into constant ones. These constants can be chosen obviously as
zero ones.

Proof. We have: [ d
dt

, i d
dtj

] = 0, j = 1, k, there upon

i d
dtj

(i d
dt

d + di d
dt

) < grad L[u], du >= −
dh̃j

dx
⇒

⇒ i d
dtj

(

i d
dt

d < grad L[u], du > +di d
dt

< grad L[u], du >

)

= −i d
dtj

i d
dt

d

dx
Ω(2) − i d

dtj

d

dx
(dh(+)) = −

d

dx
i d

dtj

(i d
dt

Ω(2) + dh(t)) = −
dh̃j

dx
.

Whence we obtain that upon the whole jet-manifold M ⊂ J∞(R; Rm) the
following identities hold:

i d
dtj

(dh(t) + i d
dt

Ω(2)) = h̃j (5.2)

for all j = 1, k. Since upon the submanifold MN ⊂ M onr has i d
dt

Ω(2) = −dh(t),

we find that h̃j ≡ 0, j = 1, k, that proves the lemma.�
Note 1. The result above could be stated also using the standard functional

operator calculus of [8]. Indeed,

d

dt
i d

dtj

< gradL[u], du > (5.3)

=
d

dt
< gradL[u], Kj[u] >

= 〈
d

dt
grad L[u], Kj[u]〉+ < grad L[u],

d

dt
Kj [u] >

= 〈−K ′∗ grad L[u], Kj[u]〉+ < grad L[u], K ′
j ·K[u]〉

= −〈K ′∗ grad L[u], Kj[u]〉+ < grad L[u], K ′ ·Kj [u]〉

= −
d

dx
H[grad L[u], Kj[u]] = −

dh̃j [u]

dx
.



Here a bilinear formH{·.·} is found via the usual definition of the adjoined operator
K ′∗ for a given operator K ′ : L2 → L2 with respect to the natural scalar bracket
(·, ·)

(K ′∗a, b) := (a, K ′b), (a, b) :=

∫

R

dx〈a, b〉, (5.4)

whence we simply obtain:

〈K ′∗a, b〉 − 〈a, K ′b〉 = dH[a, b]/dx (5.5)

for all a, b ∈ L2. Therefore, we can identify h̃j [u] = H[grad L[u], Kj[u]] for all
u ∈ M, j = 1, k. If u ∈ MN , we therewith obtain that h̃j[u] ≡ 0, j = 1, k, that
was needed to prove.�

As a result of the Lemma proven above one gets the following: the functions
h̃j [u], j = 1, k, can not serve as nontrivial Hamiltonian ones for the dynamical
systems d/dtj, j = 1, k, upon the submanifold MN ⊂ M. To overcome this diffi-
culty we assume the invariant submanifold MN ⊂ M to possess some additional
symmetries d/dtj, j = 1, k, which satisfy the following characteristic criterion:
L d

dtj

grad L[u] = 0, j = 1, k, for all u ∈MN . This means that for j = 1, k

L d
dtj

grad L[u] = Gj(grad L[u]), (5.6)

where Gj(·), j = 1, k, are some linear vector-valued functionals on T ∗(M). Other-
wise, equations (5.6) are equivalent to the following:

i d
dtj

< grad L[u], du〉 = −dhj [u]/dx + gj(grad L[u]), (5.7)

where gj(·), j = 1, k,are some scalar linear functionals on T ∗(M). From (3.9) and
(5.7) we therewith find that for all j = 1, k

L d
dtj

< grad L[u], du〉 = −
d

dx
(dhj [u] + i d

dtj

Ω(2)) + dgj(grad L[u]). (5.8)

If we put now u ∈ MN , that is grad L[u] = 0, we immediately will find the
following: for all j = 1, k,

dhj[u] + i d
dtj

Ω(2) = 0. (5.9)

Whence we can make a conclusion that the vector fields d/dtj, j = 1, k, are Hamil-
tonian too on the submanifold MN ⊂ M. Since dhj/dx = {h(x), hj} = 0, j = 1, k,
on the manifold MN , we therewith obtain that dh(x)/dtj = 0, j = 1, k. This is
also an obvious corollary of the commutativity [d/dtj, d/dx] = 0, j = 1, k, for all
x, tj ∈ R on the whole manifold M. Indeed, in general case we have the identity



{h(x), hj} = i[ d
dtj

, d
dx

]Ω
(2), whence the equalities {h(x), hj} ≡ 0 hold for all j = 1, k

on the submanifold MN ⊂ M, since [ d
dtj

, d
dx

] = 0 on MN due to (5.8). The anal-

ysis fulfilled above makes it possible to treat given vector fields d/dtj, j = 1, k,
satisfying either conditions (5.6) or conditions (5.7) on the canonical symplectic
jet-submanifold MN ⊂M analytically as Hamiltonian systems.

6 Liouville integrability

Now we suppose that the vector field d/dtj, j = 1, k, are independent and commu-
tative both to each other on the jet-submanifold MN ⊂ M and with vector fields
d/dt and d/dx on the manifold M. Besides, the submanifold MN ⊂M is assumed
to be compact and smoothly imbedded into the jet-manifold J (∞)(R; Rm). If the
dimension dimMN = 2k + 4, due to the Liouville theorem

Pri,Gelf
[8, 9] the dynamical

systems d/dx and d/dt are Hamiltonian and integrable by quadratures on the sub-
manifold MN ⊂ M. This is the case for all Lax-integrable nonlinear dynamical
systems of the Korteweg-de Vries type

Lax,Bogo,Gelf,Pri
[3, 7, 9, 8] on spatially one-dimensonal

functional manifolds.

7 Discrete dynamical systems

Let us be given a differential discrete smooth dynamical system

dun/dt = Kn[u] (7.1)

with respect to a continuous evolution parameter t ∈ R on the infinite-dimensional
discrete manifold M ⊂ L2(Z; Rm) infinite vector-sequences under the condition of
rapid decrease in n ∈ Z : supn∈Z

|n|k‖un‖Rm < ∞ for all k ∈ Z+ at each point
u = (. . . , un, un+1, . . . ) ∈M, where un ∈ Rm, n ∈ Z.

Assume further that the dynamical system (7.1) possesses a conservation law
L ∈ D(M), that is dL/dt = 0 along orbits of (7.1). Via the standard oper-
atorial analysis one gets from (3.5) the variational derivative of a functional
L :=

∑

n∈Z
Ln[u] :

grad Ln := δL[u]/δun = L′
n
∗
[u] · 1, (7.2)

where the last right-hand operation of multiplying by unity is to be fulfilled by
component.

Lemma 2. Let Λ(M) be the infinite-dimensional Grassmannian algebra on the
manifold M ; then the differential dLn[u] ∈ Λ1(M) enjoys the following reduced
representation:

dLn[u] =< grad Ln, dun〉+ d/dn α(1)
n [u], (7.3)



where a one-form α
(1)
n [u] ∈ Λ1(M) is determined in unique way, 〈·, ·〉 is the usual

scalar product in Rm and d/dn = ∆− 1, ∆ is the usual shift operator.
Proof. By definition we obtain for the external differential dLn[u] the following

chain of representations for each n ∈ Z :

dLn[u] =

N
∑

k=0

<
∂Ln[u]

∂un+k

, dun+k >

=

N
∑

k=0

k
∑

s=0

d

dn
<

∂Ln−s[u]

∂un+k−s

, dun+k−s > +

N
∑

k=0

<
∂Ln−k[u]

∂un

, dun >

=
d

dn

N
∑

k=0

k
∑

s=0

<
∂Ln−s[u]

∂un+k−s

, dun+k−s > +
N
∑

k=−N

4−k <
∂Ln[u]

∂un+k

, dun >

=
d

dn

N
∑

k=0

k
∑

s=0

<
∂Ln−s[u]

∂un+k−s

, dun+k−s > + < L
,′∗
n .1, dun >

=
d

dn
α(1)

n [u]+ < grad Ln[u], dun〉, (7.4)

where N ∈ Z+ is the fixed number depending on the jet-form of a functional
L ∈ D(M),

α(1)
n [u] =

N
∑

k=0

k
∑

s=0

<
∂Ln−s[u]

∂un+k−s

, dun+k−s >

=
N
∑

k=0

k
∑

j=0

<
∂Ln+j−k[u]

∂un+j

, dun+j >, (7.5)

and

grad Ln[u] = L′
n
∗
· 1 =

N
∑

k=0

∂Ln−k[u]

∂un

.

The latter equality in (7.4) proves the lemma 2 completely.�
The above proved representation (7.3) gives rise to the following stationary

problem being posed on the manifold M :

MN = {u ∈M : grad Ln = 0} (7.6)

for all n ∈ Z, where by definition det
∥

∥

∥

∂2Ln[u]
∂uN+1∂uN+1

∥

∥

∥
= 0. In virtue of (7.3) we obtain

the validity of the following theorem.



Theorem 3. The finite-dimensional Lagrangian submanifold MN ⊂M defined
by (7.6), is a symplectic one with the canonical symplectic structure Ω

(2)
n = dα

(1)
n

being independent of the discrete variable n ∈ Z.
Proof. From (7.3) we have that on the manifold MN ⊂M dLn[u] = d/dn(α

(1)
n [u]),

whence for all n ∈ Z d/dn(Ω
(2)
n ) = 0. This means obviously, that Ω

(2)
n+1 = Ω

(2)
n

for all n ∈ Z, or equivalently, the 2-form Ω
(2)
n is not depending on the discrete

variable n ∈ Z. As the 2-form Ω
(2)
n := dα

(1)
n by definition, this form is chosen to be

a symplectic form on the manifold MN ⊂M. For this 2-form to be nondegenerate

on MN , we assume that Hessian of Ln equals det
∥

∥

∥

∂2Ln[u]
∂un+N+1∂un+N+1

∥

∥

∥
6= 0 on MN .

The latter proves the theorem.�
Let us consider now the prior given dynamical system (7.1) reduced on the

submanifold MN ⊂ M. To present it as the vector field d/dt on MN , we need
preliminary to represent it as a Hamiltonian flow on MN . To do this, let us write
the following identities on M :

i d
dt

d < grad Ln, dun〉 = −
d

dn
i d

dt
Ω(2)

n [u],

di d
dt

< grad Ln, dun〉 = −
d

dn
(dh(t)

n [u]), (7.7)

which are valid for all n ∈ Z. Adding the last identities in (7.7), we come to the
following one for all n ∈ Z :

d

dt
< grad Ln, dun〉 = −

d

dn
(i d

dt
Ω(2)

n [u] + h(t)
n [u]). (7.8)

Having reduced the identity (7.8) upon the manifold MN ⊂ M, we obtain the
wanted expression for all u ∈MN , N ∈ Z :

i d
dt

Ω(2)
n [u] + h(t)

n [u] = 0. (7.9)

The latter means that the dynamical system (7.1) on the manifold MN is a Hamil-

tonian one, with the function h
(t)
n [u] being a Hamiltonian one defined explicitly by

the second identity in (7.7).

We assume now that the symplectic structure Ω
(2)
n [u] on MN be representable

as follows:

Ω(2)
n [u] =

N
∑

j=0

〈dpj+n ∧ duj+n〉, (7.10)

where generalized coordinates pj+n ∈ Rm, j = 0, N, are determined from the



following discrete jet-expression Ln[u] := L(un, un+1, . . . , un+N+1), n ∈ Z,

α(1)
n [u] :=

N
∑

j=0

〈pj+n, duj+n〉 =

N
∑

k=0

k
∑

j=0

<
∂Ln+j−k

∂un+j

, dun+j >

=
N
∑

j=0

N
∑

k=j

<
∂Ln+j−k

∂un+j

, dun+j >,

whence we get the final expression:

pj+n :=

N
∑

k=j

∂Ln+j−k[u]

∂un+j

, (7.11)

where j = 0, N, u ∈MN ⊂M.
Now we are in a position to reformulate the given dynamical system (7.1) as

that on the reduced manifold MN ⊂M :

dun+j

dt
= {h(t)

n , un+j} =
∂h

(t)
n

∂pn+j

,
dpn+j

dt
= {h(t)

n , pn+j} = −
∂h

(t)
n

∂un+j

(7.12)

for all n ∈ Z, j = 0, N. Thereby the problem of embedding a given discrete dy-
namical system (7.1) into the vector field flow on the manifold MN ⊂M is solved
completely with the final result (7.12).

8 Invariant Lagrangians construction: functional

manifold case

In the case the given nonlinear dynamical system (2.1) being integrable one of
Lax-type, we can proceed effectively to find a commuting infinite hierarchy of
conservation laws can be serving as the invariant Lagrangians, having been under
consideration above.

At first we have to use the important property
Lax
[3] of the complexified gradient

functional ϕ = grad γ ∈ T ∗(M) ⊗ C generated by an arbitrary conservation law
γ ∈ D(M), i.e. the following Lax-type equation :

dϕ/dt + K ′∗ϕ = 0 (8.1)

where the prime sign denotes the usual Frechet derivative of the local functional K :
M → T (M) on the manifold M, the star ”*” denotes its conjugation operator with
respect to the nondegenerate standard convolution functional (·, ·) =

∫

R
dx〈·, ·〉 on



T ∗(M) × T (M). The equation (8.1) admits (what follows from
Mit,Nov,Prik
[30, 31, 32]) the

special asymptotic solution:

ϕ(x, t; λ) ∼= (1, a(x, t; λ))τexp[ω(x, t; λ) + ∂−1σ(x, t; λ)], (8.2)

where a(x, t; λ) ∈ Cm−1, σ(x, t; λ) ∈ C, ω(x, t; λ) – some dispersive function.
The sign ”τ” means here the transposition one, what is adopted in matrix analysis.
For any complex parameter λ ∈ C at |λ| → ∞ the following expansions take place:

a(x, t; λ) '
∑

j∈Z+

aj [x, t; u]λ−j+s(a), σ(x, t; λ) '
∑

j∈Z+

σj [x, t; u]λ−j+s(σ).

Here s(a) and s(σ) ∈ Z+ – some appropriate nonnegative integers, the operation
∂−1 means the inverse one to the differentiation d/dx, that is d/dx · ∂−1 = 1 for
all x ∈ R.

To find the explicit form of the representation (8.2) in the case when the associ-
ated Lax-type representation

Pri
[8] depends parametrically on the spectral parameter

λ(t; z) ∈ C, satisfying the following non-isospectral condition:

dλ(t; z)/dt = g(t; λ(t; z)), λ(t; z)|t=0+ = z ∈ C, (8.3)

for some meromorphic function g(t; ·) : C → C, t ∈ R+, we must reanalyze more
carefully the asymptotic solutions to the Lax equation (8.1). Namely, we are going
to treat more exactly the case when the solution ϕ ∈ T ∗(M) to (8.1) is represented
as an appropriate trace-functional of a Lax spectral problem at the moment τ =
t ∈ R+ with the spectral parameter λ(t; λ) ∈ C satisfying the condition (8.3), the
evolution of the given dynamical system (2.1) being considered with respect to the
introduced above parameter τ ∈ R, that is

du/dτ = K[x, τ ; u], (8.4)

u|τ=0 = ū ∈M – some Cauchy data on M. This means that the functional

ϕ̃(x, τ ; λ̃) := reg grad Sp S(x, τ ; λ̃), λ̃ = λ̃(τ ; λ(t; z)) ∈ C, (8.5)

where S(x, τ ; λ̃) is the monodrony matrix corresponding to a Lax type spectral
problem assumed to exist, has to satisfy the corresponding Lax equation at any
point u ∈M subject to (8.4):

dϕ̃/dτ + K ′∗[u] · ϕ̃ = 0 (8.6)

for all τ ∈ R+. Under the above assumption it is obvious that the spectral param-
eter λ̃ = λ̃(τ ; λ(t; z)), where

dλ̃/dτ = g̃(τ ; λ̃), λ̃
∣

∣

∣

τ=0
= λ(t; z) ∈ C, (8.7)



g̃(t; ·) : C → C – some meromorphic function being found simply from (8.6) for
instance at u = 0, the Cauchy data λ(t; z) ∈ C for all t ∈ R+ are the corresponding
ones to (8.3), the parameter z ∈ C being a spectrum value of the associate Lax
type spectral problem at a moment t ∈ R+.

Now we are in a position to formulate the following lemma.
Lemma 3. The Lax equation (8.6) as the parameter τ = t ∈ R+ admits an

asymptotic solution in the form

ϕ̃(x, τ ; λ̃) ∼= (1, ã(x, τ ; λ̃))τexp[ω̃(x, τ ; λ̃) + ∂−1σ̃(x, τ ; λ̃)], (8.8)

where ã(x, τ ; λ̃) ∈ Cm−1, σ̃(x, τ ; λ̃) ∈ C, are some local functionals on M, ω̃(x, τ ; λ̃) ∈
C is some dispersion function for all x ∈ R, τ ∈ R+, and if for |λ| → ∞ the prop-
erty |λ̃| → ∞ as τ = t ∈ R+ holds, the following expansions follows:

ã(x, τ ; λ̃) '
∑

j∈Z+

ãj [x, τ ; u]λ̃−j+s(ã), σ̃(x, τ ; λ̃) '
∑

j∈Z+

σ̃j [x, τ ; u]λ̃−j+s(σ̃), (8.9)

with s(ã) and s(σ̃) ∈ Z+ being some integers.
Proof. In virtue of the theory of asymptotic expansions for arbitrary differential

spectral problems, the result (8.8) will hold provided the representation (8.5) is
valid and the spectral parameter λ(t; z) ∈ C is taken subject to (8.7). But the
above is the case because of the Lax-type integrability of the dynamical system
(8.4). Further, due to the mentioned above integrability of (8.4) as well as due
to the well known Stokes property of asymptotic solutions to linear equations like
(8.1), the condition (8.3) holds for some meromorphic function g(t; ·) : C → C,
t ∈ R+, enjoing the determining property d

dt

∫

R
σ̃(x, t; λ̃(t; λ(t; z)))dx = 0 for all

t ∈ R+. The latter proves the lemma completely.�
As a result of Lemma 3 one ca n formulate the following important theorem.
Theorem 4. The Lax integrable parametrically isospectral dynamical system

(8.4) as τ = t ∈ R+ admits an infinite hierarchy of conservation laws, in gen-
eral nonuniform ones with respect to the variables x ∈ R, τ ∈ R+, which can be
represented in an exact form in virtue of the asymptotic expansion (8.8) and (8.9).

Proof. Indeed, due to the expansion (8.8), we can obtain right away that the
functional

γ̃(t; λ(t; z)) =

∫

R

dxσ̃(x, t; λ̃(t; λ(t; z))) (8.10)

does not depend at τ = t ∈ R+ on the parameter t ∈ R+, that is

dγ̃/dτ |τ=t∈R+
= 0 (8.11)

for all t ∈ R+. If we put also the parameter τ ∈ R+ to tend to t ∈ R+, due

to (8.5) we obtain that ϕ̃(x, τ ; λ̃)
∣

∣

∣

τ=t∈R+

→ ϕ(x, t; λ) for all x ∈ R, t ∈ R+ and



λ(t; z) ∈ C. This means that a complexified local functional ϕ(x, t; z) ∈ T ∗(M)⊗C

satisfies the equation (8.1) at each point u ∈M. As an obvious result, the following
identifications hold:

ω̃(x, τ ; λ̃)
∣

∣

∣

τ=t∈R+

→ ω(x, t; z), σ̃(x, τ ; λ̃)
∣

∣

∣

τ=t∈R+

→ σ(x, t; z)

for all z ∈ C. Hence, the functional
γ(z) := γ̃(τ ; λ(t; z))|τ=t∈R+

=
∫

R
dxσ(x, t; z) ∈ D(M) doesn’t depend on the evo-

lution parameter t ∈ R+ and due to equation (8.1) is a conserved quantity for the
nonlinear dynamical system (2.1) under consideration, i.e.

dγ(t; z)/dt = 0 (8.12)

for all t ∈ R+ and z‘ ∈ C. Therefore, it makes it possible to use the equation
(8.12) jointly with (8.7) for the asymptotic expansions (8.9) and (8.3) to be found
in exact form. To do this we at first need to insert the asymptotic expansion (8.8)
in the determining equation (8.6) for the asymptotic expansions (8.9) to be found
explicitly at the moment τ = t ∈ R+. Keeping in mind that at τ = t ∈ R+ |λ| →
∞ if |λ̃| → ∞, and solving step by step the resulting recurrence relationships for the
coefficients in (8.9), we will get the functional γ(z) := γ̃(τ ; λ(t; z))|τ=t∈R+

, z ∈ C,
in the form fitting for the criteria equation (8.12) could be used. As the second
step, we need to use the differential equation (8.7) for the criteria equation (8.12)
to be satisfied point-wise for all t ∈ R+. This means, in particular, that

dγ(z)

dt
=

d

dt
(
∑

j∈Z+

∫

R

dxσ̃j [x, τ ; u]λ̃−j+s(σ̃)

∣

∣

∣

∣

∣

∣

τ=t∈R+

) (8.13)

=

∫

R

dx
∑

j∈Z+

[

dσ̃j [x, τ ; u]

dt
λ̃−j+s(σ̃) + σ̃j [x, τ ; u]λ̃−j+s(σ̃)−1(s(σ̃)− j)

dλ̃

dt

]

∣

∣

∣

∣

∣

∣

τ=t∈R+

⇒

⇒

∫

R

dx
∑

j∈Z+



(dσ̃j/dt)λ̃−j+s(σ̃) +
∑

k>>−∞

(s(σ̃)− k)σ̃kg̃j−k−1(t)λ̃
−j+s(σ̃)

∣

∣

∣

∣

∣

τ=t∈R+

+

+
∑

j∈Z+

σ̃j [x, t; u]λ̃−j+s(σ̃)−1(s(σ̃)− j)
∂λ̃

∂λ
g(t; λ)

∣

∣

∣

∣

∣

∣

τ=t∈R+






≡ 0,

where we have put by definition g̃(τ ; λ̃) :'
∑

k>>−∞ g̃k(τ)λ̃−k for τ ∈ R+ and

|λ̃| → ∞. Since the spectral parameter λ = λ(t; z) at the moment t = 0+ coincides



with an arbitrary complex value z ∈ C, the condition |z| → ∞ together with (8.13)
at the moment t = 0+ gives rise to the following recurrent relationships:

∑

j∈Z+

[

∂σ̃j/dt + σ̃′
j ·K[t; u] +

∑

k>>−∞

(s(σ̃)− k)σ̃k · g̃j−k−1

]

λ̃−j+s(σ̃)

∣

∣

∣

∣

∣

τ=t∈R+

=

(8.14)

=
∑

j∈Z+

σ̃j(s(σ̃)− j)
∂λ̃

∂λ
g(t; λ)λ̃−j+s(σ̃)−1

∣

∣

∣

∣

∣

∣

τ=t∈R+

≡ 0 (mod d/dx)

for all j ∈ Z+, x ∈ R, t ∈ R+ and u ∈M. Having solved the algebraic relationships
(8.14) for the prior unknown function g(t; λ), t ∈ R+, we will obtain the generating
functional γ(z), z ∈ C, of conservation laws for (2.1) in exact form. This completes
the constructive part of the proof of the theorem above.

From the practical point of view we need first to get the differential equation
(8.7) in exact, maybe in asymptotic form and find further the dispersive function
ω̃(x, t; λ̃) and the local generating functional σ̃(x, τ ; λ̃) defined via (8.8) and (8.9)
for all x ∈ R, τ ∈ R+ and |λ̃| → ∞, and next one can find the equation (8.3) due
to the algorithm based on the relationships (8.14). This together with the pos-
sibility of applying the general scheme of the gradient-holonomic algorithm

PM
[40]

gives rise to determining in many cases the above mentioned Lax-type represen-
tation completely in exact form, that successfully solves the pretty complex direct
problem of the integrability theory of nonlinear dynamical systems on functional
manifolds.

Having obtained the generation function γ(z) ∈ D(M), z ∈ C, of an infinite
hierarchy of conservation laws of the dynamical system (2.1) on the manifold M,
we can build appropriately a general Lagrangian functional LN ∈ D(M) as follows:

LN = −γN+1 +
N
∑

j=0

cjγj, (8.15)

where, by definition, γ(z) =
∫

R
dxσ(x, t; z) and for |z| → ∞ functionals γj =

∫

R
dxσj [x, t; z], j ∈ Z+, are conservation laws due to expansion (8.2), with cj ∈ R,

j = 0, N, being some arbitrary constants and N ∈ Z+ being an arbitrary but fixed
nonnegative integer. If the differential order of the functional γN+1 ∈ D(M) has the
highest one of the orders of functionals γj ∈ D(M), j = 0, N, and additionally, this
Lagrangian is not degenerate, that is det(Hess γN+1) 6= 0, we can apply in general
amost all the theory developed before, to prove that the critical submanifold MN =
{u ∈ M : grad LN = 0} is a finite-dimensional invariant manifold inserted into
the standard jet-manifold J (∞)(R; Rm) with the canonical symplectic structure
subject to which our dynamical system is a finite-dimensional Hamiltonian flow
on the invariant submanifold MN .



9 Invariant Lagrangian construction :discrete man-

ifold case

Let us consider the discrete Lax integrable dynamical system on the discrete mani-
fold M without an a priory given Lax-type representation. The problem arises how
to get the corresponding conservation laws via the gradient-holonomic algorithm
Pri
[8]. To realize this way let us study solutions to the Lax equation:

dϕn/dt + K ′
n[τ, u] · ϕn = 0 (9.1)

local functionals ϕn[u] ∈ T ∗
un

(M) at the point un ∈ M, n ∈ Z. In analogy to
the approach of Chapter 7 we assert that equation (9.1) admits a comlexified
generating solution ϕn = ϕn(t; λ) ∈ T ∗

un
(M) ⊗ C, n ∈ Z, with z ∈ C being a

complex parameter in the following form:

ϕn(t; z) ∼= (1, an(t; z))τexp[ω(t; z)]

( n
∏

j=−∞

σj(t; z)

)

, (9.2)

where ω(t; z) is some dispersive function for t ∈ R+, an(t; z) ∈ Cm−1,
σn(t; z) ∈ R are local functionals on M, having the following asymptotic expansions
at |z| → ∞:

an(t; z) '
∑

j∈Z+

an[t; u]z−j+s(a), σ(j)
n (t; z) '

∑

j∈Z+

σn[t; u]z−j+s(σ). (9.3)

To find the explicit form of the asymptotic representation (9.2) we need to study
additionally the asymptotic solutions to the following attached Lax equation with
respect to the new evolution parameter τ ∈ R+:

dϕ̃n/dτ + K ′
n
∗
[τ, u] · ϕ̃n = 0, (9.4)

where ϕ̃n ∈ T ∗
un

(M) ⊗ C, and a point u ∈ M evolves subject to the following
dynamical system:

dun/dτ = Kn[τ ; u], (9.5)

for all n ∈ Z. Having made the assumption above we can assert based on the
general theory of asymptotic solutions to linear equations like (9.4), that it admits
also in general another asymptotic solution in the similar form:

ϕ̃n(τ ; λ̃) ∼= (1, ãn(τ ; λ̃))τexp[ω̃(τ ; λ̃)]

n
∏

j=−∞

σ̃j(τ ; λ̃), (9.6)



where for all n ∈ Z and at τ ∈ R+ the asymptotic expansions

ãn(τ ; λ̃) '
∑

j∈Z+

ã(j)
n [x, τ ; u]λ̃−j+s(ã),

σ̃n(τ ; λ̃) '
∑

j∈Z+

σ̃(j)
n [τ ; u]λ̃−j+s(σ̃) (9.7)

hold. The expansions above are valid if |λ̃| → ∞ as |λ(t; z)| → ∞, z ∈ C. The
latter is the case because of the Lax-integrability of the dynamical system (9.5).
The evolution

dλ̃/dτ = g̃(τ ; λ̃), λ̃
∣

∣

∣

t=0
= λ(t; z) ∈ C, (9.8)

where g̃(τ ; ·) : C→ C is some meromorphic mapping for all τ ∈ R+, is in general
found making use of the corresponding solution to (9.4) at u = 0.

Substituting the expansions (9.6) and (9.7) into (9.4), we obtain some recur-
rence relationships, giving rise to a possibility the expressions for local functionals
σ̃j [t; un], j ∈ Z+, which can be found exactly. Having this done successfully, we
assert that the functional

γ(t; z) =
∑

n∈Z

ln σ̃n(τ ; λ̃)
∣

∣

∣

τ=t∈R+

⇒
∑

n∈Z

lnσn(t; z), (9.9)

where λ̃ = λ̃(τ ; λ), τ ∈ R+, and λ(t; z) ∈ C, is a meromorphic solution to equation

dλ/dt = g(t; λ), λ|t=0+ = z ∈ C (9.10)

with still independent meromorphic function g(t; ·) for almost all t ∈ R+. The
latter can be found making use of the following determining condition: the local

functional ϕ̃n(τ ; λ̃)
∣

∣

∣

τ=t∈R+

→ ϕn(t; z) ∈ T ∗(M) ⊗ C for all t ∈ R+ and z ∈ C.

Hence, the following equality holds immediately:

d

dt
(
∑

n∈Z+

ln σ̃n(τ ; λ̃)
∣

∣

∣

τ=t∈R+

) = (9.11)

∑

n∈Z+

σ̃−1
n (t; λ̃)

[

∂σ̃n

∂t
+ σ̃′

n ·Kn[u] +
∂σ̃n

∂λ̃
g(t; λ̃)+

∣

∣

∣

∣

τ=t∈R+

+
∂σ̃n

∂λ̃

∂λ̃

∂λ
g(t; λ)

∣

∣

∣

∣

∣

τ=t∈R+



 = 0

for all t ∈ R+. Equating coefficients of (9.11) at all powers of the spectral parameter
λ(t; z) ∈ C to zero modulus d/dn, n ∈ Z, we will find the recurrent relationships



for the function g(t; λ) of (9.8) to be determined successfully. Thereby, using the
equation (9.10) and an expansion σ(t; z) '

∑

j∈Z+
σj [t; un]z

−j+s(γ) for |z| → ∞,
where s(σ) ∈ Z+ is some integer number, we obtain an infinite hierarchy of discrete-
wise conservation laws of the initially given nonlinear dynamical system (2.1) on
the manifold M. But because of the parametric dependence of the conservation
laws built above on the evolution parameter t ∈ R+, we cannot use right now the
theory developed before to prove the Hamiltonian properties of the corresponding
vector fields on the invariant submanifolds. To do this in an appropriate way, it is
necessary to augment the theory developed before in some important details.

10 The reduction procedure on nonlocal Lagrangian

submanifolds

1. The general algebraic scheme. Let G̃ := C∞(S1;G) be a Lie algebra of
loops, taking values in a matrix Lie algebra G. By means of G̃ one constructs the
Lie algebra Ĝ of matrix integral-differential operators

PSA
[36]:

â :=
∑

j�∞

ajξ
j, (10.1)

where the symbol ξ := ∂/∂x signs the differentiation with respect to the inde-
pendent variable x ∈ R/2πZ ' S1. The usual Lie commutator on Ĝ is defined
as:

[â, b̂] := â ◦ b̂− b̂ ◦ â (10.2)

for all â, b̂ ∈ Ĝ, where ”◦” is the product of integral-differential operators, taking
the form:

â ◦ b̂ :=
∑

α∈Z+

1

α!

∂αâ

∂ξα

∂αb̂

∂xα
. (10.3)

On the Lie algebra Ĝ there exists the adinvariant nondegenerate symmetric bilinear
form:

(â, b̂) :=

∫ 2π

0

Tr (â ◦ b̂) dx, (10.4)

where Tr-operation for all â ∈ Ĝ is given by the expression:

Tr â := resξ Sp â = Sp a−1, (10.5)

with Sp being the usual matrix trace. With the scalar product (10.4) the Lie
algebra Ĝ is transformed into a metrizable one. As a consequence, the dual to Ĝ



linear space of the matrix integral-differential operators Ĝ∗ is naturally identified
with the Lie algebra Ĝ, that is Ĝ∗ ' Ĝ.

The linear subspaces Ĝ+ ⊂ Ĝ and Ĝ− ⊂ Ĝ such as

Ĝ+:=







â :=

n(â)�∞
∑

j=0

ajξ
j : aj ∈ G̃, j = 0, n(â)







,

Ĝ−:=

{

b̂ :=
∞
∑

j=0

ξ−(j+1)bj : bj ∈ G̃, j ∈ Z+

}

, (10.6)

are Lie subalgebras in Ĝ and Ĝ = Ĝ+ ⊕ Ĝ−. Because of the splitting of Ĝ into
the direct sum of its Lie subalgebras one can construct the so called Lie-Poisson
structure

Ad, Bl, Oe, PM
[37, 38, 39, 40] on Ĝ∗, using a special linear endomorphism R of Ĝ:

R := (P+ − P−)/2, P±Ĝ := Ĝ±, P±Ĝ∓ = 0. (10.7)

For any smooth by Frechet functionals γ, µ ∈ D(Ĝ∗) the Lie-Poisson bracket
on Ĝ∗ is given by the expression:

{γ, µ}R (l̂) =
(

l̂, [∇γ(l̂),∇µ(l̂)]R

)

, (10.8)

where l̂ ∈ Ĝ∗ and for all â, b̂ ∈ Ĝ the Rcommutator in (10.8) has the form
Oe, PM
[39, 40]:

[â, b̂]R := [Râ, b̂] + [â,Rb̂], (10.9)

subject to which the linear space Ĝ becomes a Lie algebra too. The gradient
∇γ(l̂) ∈ Ĝ of a functional γ ∈ D(Ĝ∗) at a point l̂ ∈ Ĝ∗ with respect to the scalar
product (10.4) is defined as

δγ(l̂) :=
(

∇γ(l̂), δl̂
)

, (10.10)

where the linear space isomorphism Ĝ ' Ĝ∗ is taken into account.
The Lie-Poisson bracket (10.8) generates Hamiltonian dynamical systems on

Ĝ∗ related with Casimir invariants γ ∈ I(G∗), satisfying the condition:

[∇γ(l̂), l̂] = 0, (10.11)

as the corresponding Hamiltonian functions. Due to the expressions (10.8) and
(10.11)the mentioned above Hamiltonian system takes the form:

dl̂/dt := [R∇γ(l̂), l̂] = [∇γ+(l̂), l̂], (10.12)



being equivalent to the usual commutator Lax type representation
PM, La
[40, 41]. The

relationship (10.12) is a compatibility condition for the linear integral-differential
equations:

l̂f = λf,

df/dt = ∇γ+(l̂)f, (10.13)

where λ ∈ C is a spectral parameter and a vector-function f ∈ W (S1;H) is an
element of some matrix representation for the Lie algebra Ĝ in some functional
Banach space H.

Algebraic properties of the equation (10.12) together with (10.14) and the
associated dynamical system on the space of adjoint functions f ∗ ∈W ∗(S1;H):

df ∗/dt = −(∇γ(l̂))∗+f ∗, (10.14)

where f ∗ ∈W ∗ is a solution to the adjoint spectral problem:

l̂∗f ∗ = νf ∗, (10.15)

being considered as some coupled evolution equations on the space Ĝ∗ ⊕W ⊕W ∗

is an object of our further investigation.
2. The tensor product of Poisson structures and its Backlund trans-

formation. To compactify the description below we will use the following desig-
nation of the gradient vector

∇γ(l̃, f̃ , f̃ ∗) := (δγ/δl̃, δγ/δf̃ , δγ/δf̃ ∗)T

for any smooth functional γ ∈ D(Ĝ∗ ⊕W ⊕W ∗). On the spaces Ĝ∗ and W ⊕W ∗

there exist canonical Poisson structures
Bl, OS, PM
[38, 42, 40]

δγ/δl̃ :
θ̃
→ [(δγ/δl̃)+, l̃]− [δγ/δl̃, l̃]+ (10.16)

at a point l̃ ∈ Ĝ∗ and

(δγ/δf̃ , δγ/δf̃ ∗)T :
J̃
→ (δγ/δf̃ ∗, −δγ/δf̃)T (10.17)

at a point (f̃ , f̃ ∗) ∈ W ⊕W ∗ correspondingly. It should be noted that the Poisson
structure (10.17) is transformed into (10.12) for any Casimir functional γ ∈ I(Ĝ∗)
. Thus, on the extended space Ĝ∗ ⊕W ⊕W ∗ one can obtain a Poisson structure
as the tensor product Θ̃ := θ̃ ⊗ J̃ of the structures (10.17) and (10.18).

Let us consider the following Backlund transformation
PM, OS, SP
[40, 42, 46]:

(l̂, f, f ∗) :
B
→ (l̃(l̂, f, f ∗), f̃ = f, f̃ ∗ = f ∗), (10.18)



generating on Ĝ∗⊕W⊕W ∗ a Poisson structure Θ with respect to variables (l̂, f, f ∗)
of the coupled evolution equations (10.12), (10.14), (10.15).

The main condition for the mapping (10.19) to be defined is the coincidence of
the dynamical system

(dl̂/dt, df/dt, df∗/dt)T := −Θ∇γ(l̂, f, f ∗) (10.19)

with (10.12), (10.14), (10.15) in the case of γ ∈ I(Ĝ∗), i.e. if this functional is taken
to be not dependent of variables (f, f ∗) ∈W ⊕W ∗. To satisfy that condition, one
has to find a variation of any smooth Casimir functional γ ∈ I(Ĝ∗) as δl̃ = 0,
considered as a functional on Ĝ∗ ⊕W ⊕ W ∗, taking into account flows (10.14),
(10.15) and the Backlund transformation (10.19):

δγ(l̃, f̃ , f̃ ∗)
∣

∣

∣

δl̃=0
= (< δγ/δf̃ , δf̃ >) + (< δγ/δf̃ ∗, δf̃ ∗ >) =

(< −df̃ ∗/dt, δf̃ >) + (< df̃/dt, δf̃ ∗ >)
∣

∣

∣

f̃=f, f̃∗=f∗

=

(< (δγ/δl̂)∗+f ∗, δf >) + (< (δγ/δl̂)+f, δf ∗ >) =

(< f ∗, (δγ/δl̂)+δf >) + (< (δγ/δl̂)+f, δf ∗ >) =

(δγ/δl̂, δfξ−1 ⊗ f ∗) + (δγ/δl̂, fξ−1 ⊗ δf ∗) =

(δγ/δl̂, δ(fξ−1 ⊗ f ∗)) := (δγ/δl̂, δl̂). (10.20)

As a result of the expression (10.21) one obtains the relationships:

δl̂
∣

∣

∣

δl̃=0
= δ(fξ−1 ⊗ f ∗), (10.21)

or having assumed the linear dependence of l̂ and l̃ ∈ Ĝ∗ one gets right away that

l̂ = l̃ + fξ−1 ⊗ f ∗. (10.22)

Thus, the Backlund transformation (10.19) can be now written as

(l̂, f, f ∗) :
B
→ (l̃ = l̂ − fξ−1 ⊗ f ∗, f̃ = f, f̃ ∗ = f̃ ∗). (10.23)

The expression (10.24) generalizes the result, obtained in the papers
PM, SP
[40, 46] for

the Lie algebra Ĝ of integral-differential operators with scalar coefficients. The
existence of the Backlund transformation (10.19) makes it possible to formulate
the following theorem.

Theorem 1. A dynamical system on Ĝ∗ ⊕W ⊕W ∗, being Hamiltonian with
respect to the canonical Poisson structure Θ̃ : T ∗(Ĝ∗⊕W⊕W ∗)→ T (Ĝ∗⊕W⊕W ∗),
and generated by the evolution equations:

dl̃/dt = [∇γ+(l̃), l̃]− [∇γ(l̃), l̃]+, df̃/dt = δγ/δf̃ ∗, df̃ ∗/dt = −δγ/δf̃ , (10.24)



with γ ∈ I(G∗) being the Casimir functional at l̂ ∈ Ĝ∗ connected with l̃ ∈ Ĝ∗ by
(10.23), is equivalent to the system (10.12), (10.14) and (10.15) via the constructed
above Backlund transformation (10.24).

By means of simple calculations via the formula (see for egz.
PM, Bl
[40, 38])

Θ̃ = B
′

ΘB
′∗,

where B
′

: T (Ĝ∗⊕W ⊕W ∗)→ T (Ĝ∗⊕W ⊕W ∗) is the Frechet derivative of (24),
one brings about the following form of the Poisson structure Θ on Ĝ∗⊕W ⊕W ∗ 3
(l̂, f, f ∗):

∇γ(l̂, f, f ∗) :
Θ
→

(
[

l̂, (δγ/δl̂)+

]

−
[

l̂, δγ/δl̂
]

+
−

−fξ−1 ⊗ δγ/δf + δγ/δf ∗ξ−1 ⊗ f ∗ δγ/δf ∗ − (δγ/δl̂)+f − δγ/δf + (δγ/δl̂)∗+f

)

that makes it possible to formulate the next theorem.
Theorem 2. The dynamical system (10.20), being Hamiltonian with respect to

the Poisson structure Θ in the form (10.26) and a functional γ ∈ I(Ĝ∗), gives the
inherited Hamiltonian representation for the coupled evolution equations (10.12),
(10.14), (10.15).

By means of the expression (10.23) one can construct Hamiltonian evolution
equations, describing commutative flows on the extended space Ĝ∗ ⊕W ⊕W ∗ at
a fixed element l̃ ∈ Ĝ∗. Due to (10.24) every equation of such a type is equivalent
to the system







dl̂/dτn = [l̂n+, l̂],

df/dτn = l̂n+f,

df ∗/dτn = −(l̂∗)n
+f ∗,

(10.25)

generated by involutive with respect to the Poisson bracket (10.17) Casimir invari-
ants γn ∈ I(Ĝ∗), n ∈ N, taking here the standard form:

γn = 1/(n + 1)(l̂n, l̂)

at l̂ ∈ Ĝ∗.
The compatibility conditions of the Hamiltonian systems (10.25) for different

n ∈ Z+ can be used for obtaining Lax integrable equations on usual spaces of
smooth 2π-periodic multivariable functions that will be done in the next section.

3. The Lax type integrable Davey-Stewartson equation and its triple

linear representation. Choose the element l̃ ∈ Ĝ∗ in an exact form such as

l̃ =

(

1 0
0 −1

)

ξ −

(

0 u
ū 0

)

,



where u, ū ∈ C∞(S1; C) and G = gl(2; C). Then

l̂ = l̃ +

(

f1ξ
−1f ∗

1 f1ξ
−1f ∗

2 + u
ū + f2ξ

−1f ∗
1 f2ξ

−1f ∗
2

)

, (10.26)

where f = (f1, f2)
T and f ∗ = (f ∗

1 , f ∗
2 )T , ”−” can sign the complex conjuga-

tion. Below we will study the evolutions (10.25) of vector-functions (f, f ∗) ∈
W (S1; C2) ⊕W ∗(S1; C2) with respect to the variables y = τ1 and t = τ2 at the
point (10.26). They can be obtained from the second and third equations in
(10.25), having put n = 1 and n = 2, as well as from the first one. The latter is
the compatibility condition of the spectral problem

l̂Φ = λΦ, (10.27)

where Φ = (Φ1, Φ2)
T ∈ W (S1; C2), λ ∈ C is some parameter, with the following

linear equations:

dΦ/dy = l̂+Φ, (10.28)

dΦ/dt = l̂2+Φ, (10.29)

arising from (10.26) at n = 1 and n = 2 correspondingly. The compatibility of
equations (10.28) and (10.29) leads to the relationships:

∂u/∂y = −2f1f
∗
2 , ∂ū/∂y = −2f ∗

1 f2, (10.30)

∂f1/∂y = ∂f1/∂x − uf2, ∂f ∗
1 /∂y = ∂f ∗

1 /∂x− ūf ∗
2 ,

∂f2/∂y = −∂f2/∂x + ūf1, ∂f ∗
2 /∂y = −∂f ∗

2 /∂x + uf ∗
1 .

Analogously, replacing t ∈ C by it ∈ iR, i2 = −1, one gets from (10.29) and
(10.30):

du/dt = i(∂2u/∂x∂y + 2u(f1f
∗
1 + f2f

∗
2 )), dū/dt = −i(∂2ū/∂x∂y + 2ū(f1f

∗
1 + f2f

∗
2 )),

∂(f1f
∗
1 )/∂y − ∂(f1f

∗
1 )/∂x = 1/2∂(uū)/∂y = −(∂(f2f

∗
2 )/∂x + ∂(f2f

∗
2 )/∂y),

df1/dt = i(∂2f1/∂x2 + (2f1f
∗
1 − uū)f1 − ∂u/∂xf2),

df ∗
1 /dt = −i(∂2f ∗

1 /∂x2 + (2f1f
∗
1 − uū)f ∗

1 − ∂ū/∂xf ∗
2 ), (10.31)

df2/dt = i(∂2f2/∂x2 − (2f2f
∗
2 + uū)f2 − ∂ū/∂xf1),

df ∗
2 /dt = −i(∂2f ∗

2 /∂x2 − (2f2f
∗
2 + uū)f ∗

2 − ∂u/∂xf ∗
1 ).

The relationships (10.31), (10.32) take the well known form of the Davey-Stewartson
equation

Bl, KSS
[38, 43] at ū ∈C∞(S1; C) being a complex conjugated to u ∈C∞(S1; C).

The compatibility for every pair of equations (10.28), (10.29) and (10.30), which



can be rewritten as the first order linear ordinary differential ones in such a way:

dΦ/dx =





λ u −f1

ū −λ f2

f ∗
1 f ∗

2 0



Φ,

dΦ/dy =





λ 0 −f1

0 λ −f2

f ∗
1 f ∗

2 0



Φ,

dΦ/dt = i





λ2 + f1f
∗
1 1/2∂u/∂y −λf1 − ∂f1/∂y

−1/2∂ū/∂y −λ2 − f2f
∗
2 −λf2 − ∂f1/∂y

λf ∗
1 + ∂f ∗

1 /∂y λf ∗
2 + ∂f ∗

2 /∂y 0



Φ,

where Φ = (Φ1, Φ2, Φ3)
T ∈ W (S1; C3), provide its Lax type integrability. Thus,

the following theorem holds.
Theorem 3. The Davey-Stewartson equation (10.32), (10.33) possesses the

Lax representation as the compatibility condition for equations (10.34) under the
additional natural constraint (10.27).

In fact, one has found above a triple linearization for a (2+1)-dimensional dy-
namical system, that is a new important ingredient of the Lie algebraic approach
to Lax type integrable flows, based on the Backlund type transformation (10.23)
developed in this work. It is clear that the similar construction of a triple lineariza-
tion like (10.4) can be done for many other both old and new (2+1)-dimensional
dynamical systems, on what we plant to stop in detail in another work under
preparation.

11 Conclusion

The developed above theory of parametrically Lax-type integrable dynamical sys-
tems concedes to widen to a great extent the class of exactly treated nonlinear
models in many fields of science. It is to be noted here the following impor-
tant mathematical fact being got in the paper: almost every nonlinear dynamical
system admits a parametrically isospectral Lax type representation but a given
dynamical system is the Lax-type integrable if an evolution of the spectrum pa-
rameter doesn’t depend on a point u ∈ M at all Cauchy data. This result has
allowed us to develop a very effective direct criterion for the following problem:
whether a given nonlinear dynamical system on the functional manifold M is para-
metrically Lax-type integrable or not. Having the problem above solved, we have
suggested the reduction procedure for the associated nonlinear dynamical systems
to be descended on the invariant submanifold MN ⊂M built before inheriting the
canonical Hamiltonian structure and the Liouville complete integrability. Thereby,



the powerful techniques of perturbation theory can be successfully used for dy-
namical systems under consideration, as well as the relationships between the full
Hamiltonian theory and various Hamiltonian truncations could be now got under-
standable more deeply.

The imbedding problem for infinite-dimensional dynamical systems with ad-
ditional structures such as invariants and symmetries is as old as the Newton-
Lagrange mechanics, having been treated by many researches, using both analyt-
ical and algebraic methods. The powerful differential-geometric tools used here
were created mainly in works by E. Cartan at the beginning of the twentieth cen-
tury. The great impact in the development of imbedding methods was done in
last time, especially owing to theory of isospectral deformations for some linear
structures built on the special vector bundles over the spase M as the base of a
given nonlinear dynamical system. Among them there are such structures as the
moment map l : M → G∗ into the adjoint space to the Lie algebra G of symmetries,
acting on the symplectic phase space M equivariantly

Pri,Gill
[8, 10], the connection of

the Cartan-Eresman structures appearing via the Wahlquist-Estabrook approach
Wah
[11], and many others.

For the last years the general structure of Lagrangian and Hamiltonian for-
malisms was studied thoroughly using both geometrical and algebraical methods
Kup,Kupe
[12, 13]. The special attention was paid to the theory of differential-difference dy-
namical systems on the infunite-dimensional manifolds

Kupe,Deift
[13, ?]. Some number of ar-

ticles was devoted to the theory of pure discrete dynamical systems
Mos,Bae,Ves,Levi
[15, 16, 17, 18],

as well treating the interesting examples
Levi
[18] appeared to be important for appli-

cations.
In future work we intend to treat further imbedding problems for infinite-

dimensional both continuous and discrete dynamical systems basing on the differential-
geometric Cartan’s theory of differential ideals in Grassmann algebras over jet-
manifolds, intimately connected with the problem under regard. As it is well
known, there existed by now only two regular enough algorithmic approaches
PSA, PM, SP
[36, 40, 46] to constructing integrable multi-dimensional (mainly 2+1) dynami-
cal systems on infinite-dimensional functional spaces. Our approach, devised in
this work, is substantially based on the results previously done in

PM, SP
[40, 46], ex-

plains completely the computational properties of multi-dimensional flows before
delivered in works

Bl, KSS
[38, 43]. As the key points of our approach there used the

canonical Hamiltonian structures naturally existing on the extended phase space
and the related with them Backlund transformation which saves Casimir invari-
ants of a chosen matrix integral-differential Lie algebra. The latter gives rise to
some additional Hamiltonian properties of considered extended evolution flows be-
fore studied in

Bl, PM
[38, 40] making use of the standard inverse scattering transform

La, Bl, PM
[41, 38, 40] and the formal symmetry reduction for the KP-ierarchy

OS, SP
[42, 46] of



commuting operator flows.
As one can convince ourselves analyzing the structure of the Backlund type

transformation (10.24), that it strongly depends on the type of an ad-invariant
scalar product chosen on an operator Lie algebra Ĝ and its Lie algebra decompo-
sition like (10.6). Since there exist in general other possibilities of choosing such
decompositions and ad-invariant scalar products on Ĝ, they give rise naturally to
another resulting types of the corresponding Backlund transformations, which can
be a subject of another special investigation. Let us here only mention the choice
of a scalar product related with the operator Lie algebra Ĝ centrally extended by
means of the standard Maurer-Cartan two-cocycle

PSA, Oe, PM
[36, 39, 40], bringing about new

types of multi-dimensional integrable flows.
The last aspect of the Backlund approach to constructing Lax type integrable

flows and their partial solutions which is worth of mention is related with Darboux-
Backlund type transformations

Bl, MS
[38, 44] and their new generalization recently de-

veloped in
Ni, SP
[45, 46]. They give rise to very effective procedures of constructing

multi-dimensional integrable flows on functional spaces with arbitrary number of
independent variables simultaniously delivering a wide class of their exact analyt-
ical solutions, depending on many constant parameters, which can appear to be
useful for diverse applications in applied sciences.

All mentioned above Backlund type transformations aspects can be studied
as special investigations, giving rise to new directions in the theory of multi-
dimensional evolution flows and their integrability.
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